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Abstract
We will show that the Morrison–Walker blob complex appearing in Topological Quantum
Field Theory is an operadic bar resolution of a certain operad composed of fields and local
relations. As a by-product we develop the theory of unary operadic categories and study some
novel and interesting phenomena arising in this context.

Keywords Blob complex · Operadic category · Fields · Bar resolution

Mathematics Subject Classification 55U15 · 18D50 · 81T05

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Operadic Categories and Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 The Shades of Unitality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Discrete Operadic Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Partial Operads, Partial Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Operadic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Free Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 The Bar Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Blobs Via Unary Operadic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Blobs via Colored Operads, and Comparison Theorems . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Communicated by Vladimir Dotsenko.

B Martin Markl
markl@math.cas.cz

Michael Batanin
bataninmichael@gmail.com

1 Institute of Mathematics, The Czech Academy of Sciences, Žitná 25, 115 67 Prague, Czech Republic

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10485-023-09759-4&domain=pdf


    6 Page 2 of 49 M. Batanin, M. Markl

Introduction

The blob complex was introduced by Morrison and Walker in [14]. It associates to an n-
dimensional manifold M, equipped with a system of fields C containing an ideal of local
relations U, the blob complex B∗(M,C), which is a chain complex whose salient feature is
the isomorphism

H0
(
B∗(M,C)

) ∼= A(M) := C(M)/U(M),

where A(M) is the skein module associated to M. If the fields come from an n-category C
with strong duality, A(M) is the usual topological quantum field invariant of M associated to
C. The name originated from a blob , defined as the standard n-dimensional ball embedded
in M.

The initial impulse for the present work was a seminar given by K. Walker at MSRI,
Berkeley, in the winter of 2020. The second author noticed a striking similarity between the
diagrams drawn by Kevin on the board, and pictures representing elements of free operads
over graph-related operadic categories that can be found in [4, Section 5]. This inspired the
idea that the blob complex might be the bar resolution of an operad over a suitable operadic
category.

That hope indeed turned out to be true; there even exist two related but non-equivalent
ways to interpret the blob complex within operad theory. The first interpretation produces
a complex quasi-isomorphic to the Morrison–Walker blob complex – the bar construction
of a certain operad of fields over an operadic category of blob configurations in M. The
second interpretation identifies the blob complex with Fresse’s bar construction of a tradi-
tional coloured operad, reminiscent of the little discs operad; the colours are blobs in M

with boundaries decorated by fields. Both approaches thus lead to several versions of ‘blob
complexes.’ Their relations are summarized in Fig. 4 at the end of this paper.
Disclaimer. The present work does not bring anything new to the theory of blob complexes
per se, neither does it add anything to the explicit calculations given in [14]. The free, acyclic
resolution of the skein module in Theorem B on page 64 might however pave the way for
the study of derived TQFT invariants.
Novelties. The operadic category of blobs is unary, meaning that the cardinalities of all its
objects are one. The blob complex thus represents an interesting, highly nontrivial example
of a unary operadic category and justifies careful analysis of operads, operadic modules,
fibrations and various versions of the bar construction in this context. Several interesting and
new phenomena were discovered en route.

Conceptual understanding of the relationship between the decorated version of the unital
operadic category of blobs and the un-decorated one in Sect. 9 inspired the notion of partial
discrete operadic fibrations, partial operads and the associated partial Grothendieck construc-
tion, given in Sect. 4. The concrete partial operad that arose in this context is unital in a weak,
unexpected sense, formalized in Definition 30 by introducing pseudo-units. Pseudo-unitality
is a new, nontrivial concept even in the realm of traditional algebra, as Example 21 shows.
We also introduce several versions of the ‘standard’ unitality condition for operads over
operadic categories that are not equipped with the chosen local terminal objects required in
[1, Section 1].

While free modules over classical operads have simple structure, cf. e.g. [5, Sub-
section 2.10.1], this is not true in the world of operads and their modules over general
operadic categories, where the structure depends on the shape of the operadic category, as
illustrated in Example 72. A structure result can however still be obtained under the condition
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of rigidity introduced in Definition 70, which has no analog in the standard operad theory.
We believe that all the above notions admit generalizations to non-unary operadic categories.

The present paper has two parts. Part 1 develops general theory of unary operadic cate-
gories, operads,modules and resolutions, Part 2 is devoted to applications to the blob complex.
The main results of the article are Theorem A on page 52, Theorem B on page 64 and The-
orem C on page 73. Propositions 44 and 82 have no counterparts in traditional algebra.
Requirements and conventions. We will assume working knowledge of operads; suitable
references are the monograph [13] and the overview [12]. Operadic categories and related
notionswere introduced in [1], but all necessarymaterial from that paper is recalled in Sects. 1
and 3. Some preliminary knowledge of [14] may ease reading Part 2.

Categories will be denoted by typewriter letters such as C,O,Q, &c, operads and their
modules written in script, e.g. P, S, M, &c. From Sect. 6 on, all algebraic objects will live
in the monoidal category R-Mod of graded modules over a unital commutative associative
ring R. Chain complexes will be non-negatively graded, with differentials of degree −1. By
a quasi-isomorphism we mean a morphism of chain complexes that induces an isomorphism
of homology.
Part I Unary Operadic Categories

1 Operadic Categories and Operads

Our immediate aim is to rephrase the definitions of operadic categories and their operads as
given in [1, Section 1] to the particular, unary case when the cardinality functor is constant
and equals 1. We believe that this would make this article independent of [1].

Unary operadic categories will appear in Definition 4 as categories equipped with fiber
functors; Propositions 8 and 10 then describe them also as algebras for a certain monad.
Operads over unary operadic categories are introduced in Definition 13. In this section we
however, unlike in [1], do not require the existence of chosen local terminal objects in operadic
categories, neither do we assume units of operads. A refined analysis of these additional
structures is given in Sect. 2.

Remark 1 The approach to unary operadic categories presented in this section has a lot of
overlaps with the material from [6] concerning the use of the décalage comonad D recalled
in (8). But in contrast with [6], where D-coalgebra structure is fixed and the fiber-functor
structure is imposed on top of it, we begin with imposing a fiber-structure functor and adding
some pieces of D-coalgebra structure only when it is necessary. This allows us to analyze
subtler unitality properties of operadic categories.

Lemma 2 Let O be a category. Each family
{
FS : O/S → O | S ∈ O

}
of functors indexed by

objects of O induces a family
{
Fc : O/S → O/FT (c) | c : S → T

}
of functors indexed by

arrows of O with Fc the composite

O/S
c!

(O/T )/c
FT /c

O/FT (c).

It extends the family
{
FS

}
S∈O in the sense that the composite

O/T
F1T

O/FT (1T )
domain

O,

where 1T : T → T is the identity morphism, equals FT : O/T → O for each T ∈ O.
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The verification is straightforward. Since the Lemma will be used several times in the
present paper, we give a detailed description of the extension

{
Fc

}
c:S→T . Let f : X → S ∈

O/S. Embed f in the diagram

X
h

f

T S
c

in which h := c f . Interpreting the arrows h and c as objects of O/T , f appears as a morphism
f : h → c in O/T . We then define

Fc( f ) := FT ( f ) : FT (h) −→ FT (c) ∈ O/FT (c).

To describe the action of Fc on a morphism � : b → a in O/S given by the commutative
diagram

Y
φ

b

X

a

S,

embed that diagram into

Y

h

φ

b
X

a

l

T Sc

(1)

in which h := cb and l := ca. Then Fc(�) : Fc(b) → Fc(a) is given by the commutative
diagram

FT (h)
FT (φ)

FT (b)

FT (l)

FT (a)

FT (c).

(2)

Definition 3 A family FS of functors as in Lemma 2 is called a family of fiber functors if,
for each arrow c : S → T in O, the diagram of functors

O/S
F c

F S

O/FT (c)

FF T (c)

O

(3)

commutes.

To expand Definition 3, introduce the following notation and terminology. Given a map
f : X → S, we callFS( f ) the fiber of f and denote it simply byF ( f ). The fact that F ∈ O

is the fiber of f will also be expressed by writing F � X
f→ S. For a morphism � in O/S
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given by the diagram

X ′

f ′

φ
X ′′

f ′′

S

denote by φS the induced map FS(�) : F ( f ′) → F ( f ′′) between fibers. Then the com-
mutativity of (3) on objects is expressed by the equality of the fibers in the diagram

F � F ′ φS
F ′′

= � �
F � X ′ φ

f ′

X ′′

f ′′

S.

(4)

In words, the fiber of a map equals the fiber of the induced map between its fibers.
To expand the commutativity of (3) on morphisms, notice that in the above notation,

diagram (2) reads

F (h)
φT

bT

F (l)

aT

F (c).

In the situation of (1), diagram (3) requires that

(φT )F (c) = φS .

Definition 4 A strict unary (nonunital) operadic category is a category O equipped with a
family of fiber functors as per Definition 3. A strict operadic functor � : O′ → O′′ between
strict unary operadic categories is a functor that commutes with the associated fiber functors.

Since all operadic categories and operadic functors in this article will be strict, we will
for brevity omit this adjective. If not indicated otherwise, by an operadic category we will
always mean unary and nonunital one.

Remark 5 Recall that a simplicial set is a collection S• = {Sn}n≥0 of sets together with maps

di : Sn → Sn−1, 0 ≤ i ≤ n, n ≥ 1, and

si : Sn → Sn+1, 0 ≤ i ≤ n, n ≥ 0,

that satisfy the identities:

did j = d j−1di if i < j,

si s j = s j+1si if i ≤ j,

di s j = s j−1di if i < j,

di s j = identity = d j+1si if i = j, and

di s j = s j di−1 if i > j + 1.
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An important example is the simplicial nerve N•(O) = {On}n≥0 of the category O, which is
a simplicial set of the form

O0 s0 O1
d0

d1

s0

s1
O2

d0

d1

d2

· · · .

In the above display, On consists of chains

T0
f0−→ T1

f1−→ · · · fi−2−→ Ti−1
fi−1−→ Ti

fi−→ Ti+1
fi+1−→ · · · fn−1−→ Tn (5)

of arrows of O. The operator d0 acts on (5) by removing T0, dn removes Tn . The operator

di with 0 < i < n replaces the part Ti−1
fi−1−→ Ti

fi−→ Ti+1 of (5) by the single arrow
fi fi−1 : Ti−1 → Ti+1. The operator si replaces Ti in (5) by the identity automorphism
1 : Ti → Ti .

The extra structure on O given by Lemma 2 is equivalent to adding to the nerve of O a
sequence of additional face operators

dn+1 : On → On−1, n ≥ 1, (6)

as in

O0 s0 O1
d0

d1
d2

s0

s1
O2

d0

d1

d2
d3

· · · ,

defined as follows. Rewrite (5) as

T0
f0

ω0

T1
f1

ω1

· · · fi−2
Ti−1

fi−1

ωi−1

Ti
fi

ωi

Ti+1
fi+1

ωi+1

· · · fn−2
Tn−1

ωn−1

Tn

(7)

withωi = fn−1 · · · fi : Ti → Tn , 0 ≤ i ≤ n−1, and apply the fiber functorFTn : O → O/Tn
to (7) interpreted as a chain of maps in O/Tn . The result is a chain of maps in O. This is by
definition the value of dn+1 at (5).

The sequence (6) satisfies all standard simplicial identities except for the top one, that
is, the composite dndn+1 : On → On−2 is not necessary equal to dndn : On → On−2. The
condition of Definition 3 restores this relation.

Let us denote by D(A) the coproduct

D(A) :=
∐

c∈A
A/c (8)

of the slice categories over the objects of a small category A. It is simple to verify thatD(A) is
a unary operadic category, with the fiber functor that assigns to each morphism ϕ : f ′ → f ′′
in D(A) given by the diagram

X ′ ϕ

f ′

X ′′

f ′′
c

the object ϕ ∈ A/X ′′ ⊂ D(A).

123



Operads, Operadic Categories and the Blob Complex Page 7 of 49     6 

The functorD : Cat → Cat has a natural structure of a comonad in the category of small
categories called décalage comonad, cf. [6]. We briefly describe its structure morphisms.
Its counit

εA : D(A) → A (9)

sends an object X → c ∈ D(A) to X .
To understand the comultiplication δ : D(A) → D2(A) we observe that the objects of

D2(A) are commutative triangles

X
f

h

Y

g
c

(10)

and the set of morphisms between such triangles can be nonempty only if the right arrow
g : Y → c is the same in both triangles. In this case a morphism from

X ′ f ′

h′

Y

g
c

to (10) is given by a morphism φ : X ′ → X in A which makes the tetrahedron

X
f

h

X ′ f ′

φ

h′
Y

g

c

commutative. The comultiplication δ assigns to an object f : X → c the commutative
triangle

X
f

f

c

1c

It follows from the following elementary categorical fact that the functor D : Cat → Cat
is also a nonunital monad.

Lemma 6 Let M : C → C be an endofunctor on a category C and d : M � 1C a natural
transformation of M to the identity functor on C. Then the pair (M, μ) with μ := Md is a
nonunital monad over C, and dA : MA → A is an M-algebra for each A ∈ C.

Proof The diagram of natural transformations

M2

dM

Md
M

d

M
d

1C

(11)
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commutes by the naturality of d . Applying M on that diagram and substituting μ for Md
gives the commutative diagram

M3

μM

Mμ
M2

μ

M2 μ
M

meaning that M is a nonunital monad. The second part of the lemma is clear. ��
Corollary 7 The functor D : Cat → Cat has a natural nonunital monad structure.

Proof The assumptions of Lemma 6 are fulfilled for M := D and d the counit εA in (9). ��
Proposition 8 Unary (non-unital) operadic categories with small sets of objects are algebras
for the non-unital monad D in Cat.

Proof A family
{
FS : O/S → O | S ∈ O

}
of functors is the same as a single functor

F : D(O) → O. It is easy to see that F is a D-algebra if and only if {FS}S∈O are the fiber
functors in Definition 3. ��
Definition 9 The tautological unary operadic category generated by a small category A is
the category T(A) := A � D(A) with the fiber functors given by the composite

D(T(A)) = D(A � D(A)) ∼= D(A) � D2(A)
1�κ−→ D(A) ↪→ A � D(A) = T(A)

where κ = D(εA) with εA the counit in (9).

Explicitly, the fiber of amorphism g : S → T inA ⊂ T(A) is g again, but interpreted as an
object of A/T ⊂ D(A) ⊂ T(A), while the fiber of a morphism F : h → c of D(A) ⊂ T(A)
represented by the diagram

X

f

h

T

Sc

is f ∈ A/S ⊂ D(A) ⊂ T(A).
The operadic category T(A) is an operadic subcategory of D(A
), where A
 is the result

of formally adjoining a terminal object 
 to A, which means adding to the morphisms of A

the unit endomorphism of 
 and one new morphism X
!→ 
 for any object X ∈ A. The

inclusion
T(A) = A � D(A) ↪→ D(A
) (12)

sends an object X ∈ A to X
!→ 
 ∈ D(A
) and objects X → Y of D(A) into the

corresponding objects of D(A
). The image of (12) covers all objects of D(A
) except


 !→ 
. Inclusion (12) will be used in Sect. 9 in our description of the operadic categories
of blobs.

Proposition 10 The assignment A �→ T(A) gives rise to a (unital) monad in Cat whose
algebras are (non-unital) operadic categories with small sets of objects.

Proof Direct verification. ��
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Remark 11 Comparing Propositions 8 and 10, one may wonder why two very different mon-
ads have the same algebras. The explanation lies in the unitality ofT versus the non-unitality
of D . As a simple example of this phenomenon, consider the nonunital monad T̊ in Set that
sends a set X to the coproduct

∐
n≥2 X

×n , and the unitalmonad T given by TX := ∐
n≥1 X

×n .

Both T̊ and T have the same algebras, namely associative (non-unital) monoids. Ideologically,
T is obtained from T̊ by freely adjoining the monadic unit. The relation between T(A) and
D(A) is of the same nature.

Let� : OpCat → Cat be the obvious forgetful functor from the category of unary (non-
unital) operadic categories with small sets of objects to the category of small categories. The
following statement follows from Proposition 10 combined with the classical equivalence
between monads and the associated pairs of adjoint functors, cf. [8, Theorem VI.2.1].

Proposition 12 For an arbitrary small category A and a unary (non-unital) operadic cate-
gory O, one has a natural isomorphism of functor sets

OpCat(T(A),O) ∼= Cat(A,�O).

In other words, T(A) is the free unary non-unital operadic category generated by a small
category A.

We are going to introduce (non-unital) operads over (non-unital) unary operadic cate-
gories. Our definition is the non-unital, unary version of [1, Definition 1.11]. Unital operadic
categories and unital operads will be the subject of Sect. 2.

Definition 13 Let V = (V,⊗, 1) be a monoidal, not necessarily symmetric, category and O
a unary operadic category. A (non-unital) operad for O in V, or simply an O-operad, is a
collection P = {P(A)}A of objects of V indexed by objects of O together with structure
morphisms

γh : P(F) ⊗ P(B) −→ P(A)

given for any arrow h : A → B in O with fiber F . Moreover, the associativity requires that,

for any pair of composable arrows A
f→ B

g→ C in O, the diagram

P(F) ⊗ P(Y ) ⊗ P(C)

γ fC ⊗1

1⊗γg
P(F) ⊗ P(B)

γ f

P(X) ⊗ P(C)
γg f

P(A)

(13)

commutes. Themeaning of the symbols in that diagram is explained by the following instance
of (4):

F � X
fC

Y= � �

F � A
f

g f

B

g

C .

(14)
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We will see later in this paper that operads over unary operadic categories share many
features with associative algebras, but also ones that do not have analogs in classical algebra.
We believe that they in their own right might present an interesting theme of research.

Definition 14 Let � : O′ → O′′ be an operadic functor and P an O′′-operad. The restriction
of P along � is the O′-operad �∗(P) with components �∗(P)(s) := P

(
�(s)

)
, s ∈ O′′.

Example 15 Let A be a small category and D(A) the associated operadic category (8).
A D(A)-operad in V is the same as a collection A = {A( f )} f of objects of V indexed
by morphisms of A with a ‘multiplication’ A( f ) ⊗ A(g) → A(g f ) for any pair of com-

posable arrows A
f→ B

g→ C of A. The multiplication is required to be associative in the
obvious sense. Intuitively, A is a non-unital Mor(A)-graded associative algebra in V. The
unital version of this example has a nice categorical interpretation, cf. Example 25 below.

Example 16 An operad over the tautological operadic category T(A) in Definition 9 is
the same as a pair (A,M) of a D(A)-operad A as in Example 15 and a collection
M = {

M(A)
}
A∈A of objects of V indexed by objects of A, equipped with the ‘actions’

A( f ) ⊗ M(B) → M(A) given for any morphism A
f→ B in A. It is moreover required that

the diagram

A( f ) ⊗ A(g) ⊗ M(C) A( f ) ⊗ M(B)

A(g f ) ⊗ M(C) M(A)

commutes for any pair A
f→ B

g→ C of composable morphisms in A. Intuitively,M is a left
Ob(A)-graded A-module.

2 The Shades of Unitality

In this section we discuss sundry versions of unitality for operadic categories and their
operads, with or without the presence of chosen local terminal objects. This refinement of
definitions given in [1] is required in Part 2 by the applications to the blob complex.

Definition 17 Suppose that the set π0(O) of path-connected components of a unary operadic
category O is small and a family

{
Uc ∈ O | c ∈ π0(O)

}
(15)

of chosen local terminal objects is specified,withUc belonging to the connected component c.
We say that O is left unital if the fiber functor FS : O/S → O sends the identity auto-

morphism 1 : S → S to one of the chosen local terminal objects of O, for each S ∈ O. The
category O is right unital if FUc : O/Uc → O is the domain functor for each c ∈ π0(O).
Finally, O is unital if it is both left and right unital. An operadic functor between left and/or
right unital operadic categories is assumed to preserve the chosen local terminal objects.

Unital operadic categories in the sense of the above definition are precisely the unary
versions of operadic categories introduced in [1, Section 1].
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Remark 18 A choice of local terminal objects is equivalent to the existence of a sequence of
maps s0 := U : π0(O) → O0 and sn+1 : On → On+1, n ≥ 0, in the nerve of O which makes
the diagram

π0(O0)
s0

O0d0 s0

s1

O1
d0

d1

s0

s1

s2

O2d1

d0

d2

· · ·

inwhich d0 : O0 → π0(O0) assigns to an object ofO the corresponding connected component,
an ‘almost’ simplicial set. All simplicial identities that make sense should be satisfied by this
new degeneracy operators. Another way to say it is that specifying local terminals is the same
as to equip O with a D-coalgebra structure [6, Proposition 5].

The only thing which is missing to make this new complex a simplicial set is the top face
operator dn+1 : On → On−1. As we saw in Remark 5, a fiber functor on O adds such an
operator for all n > 0. We can also define

d1 : O0 → π0(O)

as the connected component of the fiber of the identity automorphism. The left unitality then
says that these new degeneracy and face operators satisfy the usual simplicial identities

dn+1si = si dn

for all i < n. The right unitality implies that these operators satisfy the remaining relation

dn+1sn = 1.

And, of course, right and left unitality together mean that the diagram

π0(O0) s0 O0 s0
d0

d1
s1

O1
d0

d1

d2

s0

s1

s2

O2d1

d0

d2

d3

· · ·

is a simplicial set. The unital unary operadic category structure on O is exactly this extra
structure on the nerve ofO, which can be deduced from the characterization of unary operadic
categories given in [6, Section 4]. The data of a unital unary operadic category thus provide
a right inverse to décalage of a simplicial set satisfying Segal condition.

For general operadic categories there exists a similar but more subtle characterization
which involves actions of the symmetric groups on fibers. This will be the subject of an
upcoming work [2].

Exercise 19 The operadic category D(A) is unital, with the set of the chosen local terminal

objects
{
c

1→ c ∈ D(A) | c ∈ A
}
. The tautological operadic category T(A) is left unital if

and only if each connected component of A has a terminal object. It is however never right
unital.

To see why, assume that U ∈ A is a local terminal object of A. By definition, the fiber of
a morphism a → U is a → U again, but now being an object D(A) ⊂ T(A). Thus the fiber
of a → U is not a, so FU : T(A)/U → T(A) is not the domain functor as required by the
right unitality. The inclusion D(A) ⊂ T(A) is an example of a unital operadic subcategory
of a non-unital one.
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Example 20 Each unital associative monoid A determines a unital unary operadic category
OA as follows. Its objects are the elements of A, and morphisms are pairs (x, a) : xa → a,
for a, x ∈ A. The composition of the chain

yxa
(y,xa)

xa
(x,a)

a

is themorphism (yx, a) : yxa → a. The identity automorphisms are the pairs (e, a) : a → a,
where e is the unit of A. The fiber of (x, a) : xa → a is x and the only chosen terminal
object is e. This example and also Examples 21 and 22 below are put in more general context
in Exercise 39.

Example 21 Suppose that the associative monoid A in Example 20 possesses, instead of a
two-sided unit e, a family {eb | b ∈ A} such that each eb is a right unit for A, i.e.

z et = z for each z, t ∈ A, (16a)

and a form of the left unitality requiring that

et t = t and etb t = t for each t, b ∈ A, (16b)

is fulfilled. Notice that the second equation of (16b) with b := eb implies the first one, but for
the reasons explained in the next paragraph we keep both of them. We will call the structures(
A, {et }t∈A

)
as above pseudo-unital monoids.

Let OA be the modification of the category constructed in Example 20 with the unit
automorphisms defined by (ea, a) : a → a, for a ∈ A. The first equation in (16b) guarantees
that (ea, a) is indeed an automorphism of a, the second one that {(et , t)}t∈A are the left units
for the composition in OA, and (16a) that they are the right units. We leave as an exercise to
prove that

– each et is a global terminal object of OA, and
– with an arbitrary et as the chosen terminal object, OA is a right unital operadic category.

Moreover,

OA is unital ⇐⇒ OA is left unital ⇐⇒ A is unital.

Example 22 The set A := {u, v} with a binary operation given by

uu := u, vv := v, uv := u and vu := u,

and the ‘pseudo-units’ eu := u and ev := v, is a pseudo-unital monoid in the sense of
Example 21. The associated category OA consists of two isomorphic objects u and v, related
by the isomorphisms (u, v) : u → v and (v, u) : v → u.

More generally, an arbitrary set X with a multiplication X × X → X given by the
projection to the second factor and pseudo-units et := t for t ∈ X is a pseudo-unital monoid.
The associated operadic category OX is the chaotic groupoid generated by X .

Remark 23 Let us try to ‘categorify’ pseudo-unital monoids of Example 21 by assembling
the pseudo-units {eb | b ∈ A} to a single map η : A → A with η(b) := eb, b ∈ A. The right
unitality (16a) is expressed by the diagram

A × A
μ

A

A × A

1×η

π1
A
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in which μ is the multiplication in A and π1 the projection to the first factor. Similarly, (16b)
can be expressed via the diagrams

A × A
η×1

A × A

μ

A




A

and A × A × A
1×τ

A × A × A
μ×1

A × A

η×1

A × A


×1

π1
A A × A

μ

where
 is the diagonal a �→ a × a, a ∈ A. Since the diagrams above involve the projection
and diagonal, pseudo-unitality admits a categorification only inside a cartesian monoidal
category.

Below we present three versions of the unitality for O-operads. The unitality in the sense
of the first one is precisely the unary version of the standard definition [1, Definition 1.11].

Definition 24 Assume that the unary operadic category O is unital in the sense of Defini-
tion 17, with the set (15) of chosen local terminal objects

{
Uc | c ∈ π0(O)

}
. Let P be an

O-operad in V equipped with a family of morphisms

{
ηc : 1 → P(Uc) | c ∈ π0(O)

}
. (17)

We say that P is left unital if, for any T ∈ O, the diagram

P(Uc) ⊗ P(T )
γ1

P(T )

1 ⊗ P(T )

ηc⊗1

∼=
P(T )

(18)

in which Uc is the fiber of the identity automorphism 1 : T → T , commutes.
The operad P is right unital if, for any F ∈ O and the unique morphism ! : F → Uc to

some local chosen terminal object Uc, the diagram

P(F) ⊗ P(Uc)
γ!

P(F)

P(F) ⊗ 1

1⊗ηc

∼=
P(F)

commutes. Finally, P is unital if it is both left and right unital.

If the background monoidal category is the cartesian category Set of sets, the family (17)
is determined by a choice of units ec := ηc(�) ∈ P(Uc), c ∈ π0(O), where � is the unique
element of the monoidal unit {�} of Set.

Example 25 Let A be the operad over the operadic category D(A) described in Example 15.
Exercise 19 tells us that D(A) is a unital operadic category with the chosen local terminal
objects

{
1c : c → c ∈ D(A) | c ∈ A

}
. Assume the existence of a family

{ηc : 1 → A(1c)}c∈A
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of morphisms in V indexed by objects of A. The left (resp. right) unitality of A is then
expressed by the left (resp. right) diagram below:

A(1c) ⊗ A( f ) A( f )

1 ⊗ A( f )

ηc⊗1

∼=
A( f )

A( f ) ⊗ A(1B) A( f )

A( f ) ⊗ 1

1⊗ηB

∼=
A( f )

which are required to commute for any morphism f : c → B of A.
We notice that unital D(A)-operads in V are the same as lax 2-functors A → �V, with A

considered as a 2-category with trivial 2-cells, and �V the 2-category with one object and
V as the category of morphisms. In particular, if A is the chaotic groupoid Chaos(I ) on the
set I , then D(A)-operads are small V-enriched categories with the sets of objects I .

The next version of unitality makes sense also if the base operadic category O is not unital,
i.e. when the chosen local terminal objects as in Definition 17 are not available.

Definition 26 Let P be an O-operad equipped with a family of morphisms
{
ηT : 1 → P(UT ) | T ∈ O, UT is the fiber of 1 : T → T

}
. (19)

We say that P is left unital if, for any T ∈ O, the diagram

P(UT ) ⊗ P(T )
γ1

P(T )

1 ⊗ P(T )

ηT ⊗1

∼=
P(T )

(20)

commutes.
For an arbitrary morphism f : T → S of O, the axioms of unary operadic categories

provide the diagram

F � F
fT

UT= � �

F � S
f

f

T

1

T

(21)

with fT the inducedmap between fibers. The right unitality requires that the induced diagram

P(F) ⊗ P(UT )
γ fT

P(F)

P(F) ⊗ 1

1⊗ηT

∼=
P(F)

commutes for an arbitrary morphism T
f→ S of O. The operad P is unital if it is both left

and right unital.
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Example 27 Consider the algebra (A,M) over the (non-unital) tautological operadic category
T(A) described in Example 16. The left unitality of (A,M) requires that the D(A)-operad
A is left unital, cf. Example 25, and the commutativity of the diagram

A(1c) ⊗ M(c) M(c)

1 ⊗ M(c)

ηc⊗1

∼=
M(c)

for all c ∈ A. The right unitality of (A,M) is just the right unitality ofA. Notice that whenV is
the cartesian category of sets andA the terminalD(A)-operad, i.e. whenA( f ) is the one-point
set for each morphism f of A, unital T(A)-operads are the same as presheaves over A.

Proposition 28 Suppose that the operadic category O is unital. Then the left (resp. right)
unitality in the sense of Definition 24 implies the left (resp. right) unitality in the sense of
Definition 26. In the opposite direction, the (two-sided) unitality of Definition 26 implies the
(two-sided) unitality of Definition 24.

Remark 29 Notice thatwedonot claim that the left (resp. right) unitality ofDefinition26 alone
implies the left (resp. right) unitality of Definition 24; the second part of the proposition is true
only for the (two-sided) unitality. This should be compared with the obvious fact that, while
an associative algebra admits at most one two-sided unit, it might have several left or right
units. An immediate implication of the proposition is that, for operads over unital unary
operadic categories, the two definitions provide equivalent notions of (two-sided) unitality.

Proof of Proposition 28 Let
{
Uc | c ∈ π0(O)

}
be the set (15) of chosen local terminal objects

of O. Since the fiber of each identity automorphism in a unital unary operadic category is
a chosen local terminal object, each UT in Definition 26 equals Uc for some c ∈ π0(O)
uniquely determined by T . Therefore the family (17) determines a family (19) which clearly
fulfills the left (resp. right) unitality if the family (17) does. Thus the left (resp. right) unitality
of Definition 24 implies the left (resp. right) unitality of Definition 26.

Suppose now that P is unital in the sense of Definition 26 and prove that the map ηT in
the family (19) depends only on UT , not on a concrete T . By this we mean that if T and S
are objects of O such that the identity automorphisms T → T and S → S have the same
fiber, sayU , then ηT = ηS . It clearly suffices to verify this property for S = U . To show that
ηT = ηU , consider the diagram

P(U )

P(U ) ⊗ P(U )

γ1

P(U ) ⊗ 1

1⊗ηT

∼=

1 ⊗ P(U )

ηU⊗1

∼=

1 ⊗ 1

ηU⊗1 1⊗ηT

1

∼=

(22)
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associated to the diagram

U �U
1

U= � �

U � T
1

1

T

1

T .

The commutativity of (22) follows from the left unitality of ηU and the right unitality of ηT .
It implies that the composite of the leftmost arrows equals the composite of the rightmost
arrows, i.e. ηU = ηT .

The family (19) thus determines a family (17) by ηc := ηUc that satisfies the left and right
unitality of Definition 24. For instance, (18) is fulfilled with ηT in place of ηc by (20), but
ηT = ηc as proven above. The right unitality is discussed similarly. ��

The following definition extends the concept of pseudo-unitality of associative monoids
introduced in Example 21 to operads. The background monoidal category will be crucially
the cartesian category of sets, cf. Remark 23.

Definition 30 Let S be an O-operad in Set equipped with a family of elements
{
et ∈ S(UT ) | T ∈ O, t ∈ S(T ), UT is the fiber of 1 : T → T

}
. (23)

Then S is left pseudo-unital if, for any T ∈ O and t ∈ S(T ), γ1(et , t) = t and

γ1C (eγξ (ρ,c), ρ) = ρ

for an arbitrary diagram

UT � R
1C

R

= � �

UT � T
1

ξ

T

ξ

C

(24)

of morphisms in O and elements ρ ∈ S(R), c ∈ S(C). The operad S is right pseudo-unital
if, in the situation of diagram (21),

γ fT (ϕ, et ) = ϕ

for any t ∈ S(UT ) and ϕ ∈ S(F). Finally, S is pseudo-unital if it is both left and right
pseudo-unital. In this case we call the elements of the collection (23) the pseudo-units of S.

Proposition 31 Assume that S is an O-operad in the category of sets, left (resp. right) unital
in the sense of Definition 26. Then it is left (resp. right) pseudo-unital.

Proof The monoidal unit of the category Set is the one-point set {�}. The family (19)
determines a family as in (23) by et := ηT (�). Notice that this et depends only on UT , not
on a concrete t ∈ S(UT ). It is simple to verify that if S is left (resp. right) unital in the sense
of Definition 26, then {et } are left (resp. right) pseudo-units of S. ��
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Example 32 Let O be a unital unary operadic category. The operad ∅ with ∅(T ) the empty
set for each T ∈ O, is a pseudo-unital operad, which is however not unital. This shows that
pseudo-unitality is less demanding than unitality even when O is unital. Below is a less trivial
example.

Example 33 Let
⊙

be the terminal unary unital operadic category, i.e. the category with one
object 
 and one morphism 1 : 
 → 
 with fiber 
, which is simultaneously the unique
chosen terminal object. Nonunital

⊙
-operads in Set are non-unital monoids, i.e. sets with

one binary associative operation. Unital
⊙

-operads are unital monoids, and pseudo-unital⊙
-operads are pseudo-unital monoids introduced in Example 21.

3 Discrete Operadic Fibrations

Discrete operadic fibrations appearing as operadic Grothendieck constructions [1, Section 2]
are strong, useful tools for constructing new operadic categories from old ones, as several
examples given [3, Section 4] convincingly show. In the first part of this section we recall
unital versions of the relevant definitions given in [1], the second part is devoted to the
non-unital case required in Part 2 by our applications to the blob complex.

Definition 34 An operadic functor p : Q → O between unary unital operadic categories is
a discrete operadic fibration if

(i) p induces an epimorphism π0(Q) � π0(O) of the sets of connected components, and
(ii) for any morphism f : T → S in O with fiber F and any two objects ε, s ∈ Q such that

p(s) = S and p(ε) = F , there exists a unique morphism σ : t → s in Q with fiber ε
such that p(σ ) = f . Schematically,

Q :
p

ε � t !
σ

s

O : F � T
f

S.

(25)

The unary version of the operadicGrothendieck construction [1, page 1647] associates to a
unital Set-valued operad S over a unary unital operadic category O, cf. Definition 24, a unary
unital operadic category

∫
O S together with an operadic functor p : ∫

O S → O as follows.
Objects of

∫
O S are elements t ∈ S(T ) for some T ∈ O. Given s ∈ S(S) and t ∈ S(T ), a

morphism σ : s → t in
∫
O S is a pair (ε, f ) consisting of a morphism f : S → T in O and an

element ε ∈ S(F), where F is the fiber of f , such that γf (ε, t) = s. The fiber of a morphism
σ : s → t of this form is ε ∈ S(F). The unit automorphism 1t : t → t of t ∈ S(T ) in

∫
O S

is the pair (ec,1T ), where ec := ηc(�) ∈ S(Uc),Uc is the fiber of the identity automorphism
T → T and � is the only element of the monoidal unit {�} of the category Set. The chosen
local terminal objects of

∫
O S are

{
ec ∈ S(Uc) | c ∈ π0(O)

}
.

The categorical composition in
∫
O S is given as follows. Assume that a ∈ S(A), b ∈ S(B)

and c ∈ S(C) are objects of
∫
O S, and φ : a → b, resp. ψ : b → c their morphisms given by

pairs (ω, f ), resp. (y, g), where f : A → B, resp. g : B → C are morphisms of O with the
fibers F resp. Y , and ω ∈ S(F) resp. y ∈ S(Y ) are such that

a = γ f (ω, b) and b = γg(y, c).

The composite ψφ in
∫
O S is defined to be the pair (x, g f ), where x := γ fC (ω, y) and fC is

as in diagram (14).
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It turns out that the functor p : ∫
O S → O that sends t ∈ S(T ) to T ∈ O is a discrete

operadic fibration. The correspondence S �→ ∫
O S is one-to one, as claims the following

unary version of [1, Proposition 2.5].

Proposition 35 TheGrothendieck construction provides an equivalence between the category
of unital O-operads in the monoidal category of sets, and the category of discrete operadic
fibrations of unital unary operadic categories over O.

Given a discrete operadic fibration p : Q → O, the corresponding Set-operad S has the
components

S(T ) := {t ∈ Q | p(t) = T }, T ∈ O. (26)

Any discrete operadic fibration induces an isomorphism π0(Q)
∼=→ π0(O) by [1, Lemma 2.2].

For each chosen local terminal Uc ∈ O therefore exists precisely one chosen local terminal
uc ∈ Q with p(uc) = Uc. The units of S are then defined as ec := uc ∈ S(Uc), c ∈ π0(O).

Let us proceed to the non-unital situation. The modification of discrete operadic fibrations
is straightforward:

Definition 36 An operadic functor p : Q → O between unary, not necessary unital, operadic
categories is a discrete operadic fibration if it has the lifting property in item (ii) of Defini-
tion 34.

The non-unital version of the Grothendieck construction has as its input a pseudo-unital
Set-valued operad S as in Definition 30. The objects of the resulting non-unital operadic
category

∫
O S are the same as in the unital case, and also themorphisms and their compositions

are defined as before. The unit automorphism 1t : t → t of t ∈ S(T ) in
∫
O S is however now

the pair (et ,1T ), where et ∈ S(UT ) is as in (23).

Proposition 37 The above version of the Grothendieck construction is an equivalence
between the category of pseudo-unitalO-operads inSetand the category of discrete operadic
fibrations over a unary operadic category O.

Proof Given a discrete operadic fibration p : Q → O, the corresponding Set-operad S

has the components as in (26). The pseudo-unit et ∈ S(UT ) associated to t ∈ S(T ) is, by
definition, the fiber of the identity automorphism t → t in Q. To verify that this recipe is the
inverse of the Grothendieck construction is straightforward. ��
Example 38 Let O be an unital operadic category. The Grothendieck construction

∫
O 1O of the

terminal unital O-operad in Set is isomorphic to O. The Grothendieck construction
∫ ∅ of the

‘empty’ pseudo-unital operad from Example 32 gives the discrete operadic fibration � O → O
of non-unital operadic categories, where � O is the trivial operadic category (no objects).

Exercise 39 Let
⊙

be the terminal unital operadic category in Example 33. Verify that the
operadic categoryOA discussed inExample 20 resp. 21 equals theGrothendieck constructions∫

 A, with A interpreted as an unital, resp. pseudo-unital

⊙
-operad, cf. Example 33. Then

show that there are one-to-one correspondences between

– unital associative monoids,
– unital

⊙
-operads, and

– discrete operadic fibrations of unital unary operadic categories over
⊙

.

Likewise, there are one-to-one correspondences between
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– pseudo-unital associative monoids,
– pseudo-unital

⊙
-operads, and

– discrete operadic fibrations of unary operadic categories over
⊙

.

In particular, the chaotic groupoid generated by X is the Grothendieck construction
∫

 X of

the pseudo-unital monoid X discussed in Example 22, with the fibers given by the domain
functor.

4 Partial Operads, Partial Fibrations

The Grothendieck construction used in (50) of Part 2 to decorate blobs by fields on their
boundaries uses a pseudo-unital operad S whose structure operations are only partially
defined. This requires further generalization of the material of Sect. 3. Namely, we formulate
a ‘partial’ version of Proposition 37 tailored for the context of Proposition 87 in Part 2.

Definition 40 A partial O-operad is a collection of sets S = {S(A)}A∈O with structure oper-
ations

γh : D(h) −→ S(A), h : A → B a morphism of O with fiber F ,

defined on a subset D(h) ⊂ S(F) × S(B). The domains
{
D(h)

}
h are such that, for each

diagram as in (14),
(
S(F) × γg(D(g))

) ∩ D( f ) = (
γ fC (D( fC )) × S(C)

) ∩ D(g f ) (27)

and γ f (1 × γg) = γg f (γ fC × 1) on the set in (27).

Equation (27) means that the composites γ f (1× γg) and γg f (γ fC ×1) are defined on the
same subset of S(F) × S(Y ) × S(C).

Definition 41 Let S be a partial O-operad as in Definition 40 equipped with a family of
elements {

et ∈ S(UT ) | T ∈ O, t ∈ S(T ), UT is the fiber of 1 : T → T
}
. (28)

We say that S is left pseudo-unital if, for any T ∈ O and t ∈ S(T ), γ1(et , t) is defined
and equals t . We moreover require that, for any diagram as in (24) and elements ρ ∈ S(R),
c ∈ S(C) for which γξ (ρ, c) is defined, γ1C (eγξ (ρ,c), ρ) is defined and equals ρ.

We say that S is right pseudo-unital if, in the situation of diagram (21), γ fT (ϕ, et ) is
defined for any t ∈ S(UT ) and ϕ ∈ S(F), and equals ϕ. Finally, S is pseudo-unital if it is
both left and right pseudo-unital.

Example 42 Partial pseudo-unital operads over the terminal unital operadic category
⊙

are
partial pseudo-unital monoids. We define them as partial associative monoids A equipped
with a family {eb ∈ A | b ∈ A} such that the product z et is defined for each z, t ∈ A and
equals z and, if tb is defined, then etb t is defined and equals t , for each t, b ∈ A. Such partial
pseudo-unital monoids are, of course, partial versions of pseudo-unital monoids introduced
in Example 21.

The Grothendieck construction recalled in Sect. 3 works even when S is only a partial
unital Set-valued operad. The objects of the modified category

∫
O S are elements t ∈ S(T ),

T ∈ O, as before, but the pair (ε, f ) with f : S → T , ε ∈ S(F) and F the fiber of f , is a
morphism s → t in

∫
O S only if γf (ε, t) is defined (and equals s).
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Let us verify that (27) guarantees that the categorical composition is defined for all pairs
of morphisms of

∫
O S whose targets and domains match as usual. Assume that φ : a → b

and ψ : b → c are as in the paragraph on page 27, Sect. 3, where the composition in
∫
O S is

described. Since γg(y, c) is defined and equals b, and γ f (ω, b) is also defined, the composite
γ f (ω, γg(y, c)) is defined and, thus, γg f (γ fC (ω, y), c) is defined by (27). In particular,
γ fC (ω, y) must be defined, and we define the composite ψφ to be the pair (x, g f ), where
x := γ fC (ω, y).

Theunit automorphism1t : t → t of t ∈ ∫
O S is the pair (et , t),where et is as in (28); notice

that γ1(et , t) is defined. The projection π : ∫
O S → O of unary operadic categories sends the

object t ∈ S(T ) of
∫
O S to T ∈ O. Let us formulate a ‘partial’ version of Definition 36.

Definition 43 A partial discrete operadic fibration is an operadic functor p : Q → O between
unary operadic categories, together with a choice of subsets

L( f ) ⊂ p−1(F)× p−1(S), f : T → S is a morphism in O with fiber F . (29)

The sets {L( f )} f are such that

(i) for any (ε, s) ∈ L( f ) there exists a unique lift σ as in (25),
(ii) for any morphism σ : t → s in Q with fiber ε, one has (ε, s) ∈ L

(
p(σ )

)
, and

(iii) for any T ∈ O and t ∈ p−1(T ), one has (ut , t) ∈ L(1T ), where ut is the fiber of the
identity automorphism 1t : t → t .

Denote the lift σ of (ε, s) ∈ L( f ) in item (i) above by �( f , ε, s). Consider the diagram (14)
in O and elements y ∈ p−1(Y ), r ∈ p−1(C) and ε ∈ p−1(F). We require that

(y, c) ∈ L(g)&
(
ε, �(g, y, c)

) ∈ L( f ) ⇐⇒ (ε, y) ∈ L( fC )&
(
�( fC , ε, y), c

) ∈ L(g f ).
(30)

Equivalence (30) expresses that the lift of the composite g f exists if and only if there
exist composable lifts of f and g. We leave the proof of the following ‘partial’ version of
Proposition 37 to the reader.

Proposition 44 The ‘partial’ Grothendieck construction is an equivalence between the cate-
gory of partial pseudo-unital O-operads in Set and the category of partial discrete operadic
fibrations over a unary operadic category O.

5 Operadic Modules

The inputs of the classical bar resolution [9, Section X.2] are an associative algebra � and
its (left)�-module C . In Sect. 7 we generalize the input data to an operad P and its suitably
defined P-moduleM. Operadic modules are the content of the present section; its floor plan
is similar to that of Sect. 1.

WhileP is, as before, defined over an operadic category O,P-modules live over a categori-
cal ‘module’ M over O. This feature has no analog in the classical algebra. The word ‘module’
in the rest of this paper might thus mean either a categorical module over an operadic cate-
gory, or a module over an operad. We believe that the concrete meaning will always be clear
from the context.

Definition 45 Let C be a category. A categorical (left) module L over C, or simply a left
C-module, consists of a set of objects L0 and, for each such L ∈ L0 and each object S of C,
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a (possibly empty) set of ‘arrows’ L(L, S). These data are equipped with the ‘actions’

L(L, S) × C(S, T ) � (α, g) �−→ gα ∈ L(L, T ), L ∈ L0, S ∈ C,

which are associative, i.e. ( f g)α = f (gα) for α and g as above and f ∈ C(T , R), and unital,
meaning that 1Sα = α for each α ∈ L(L, S) and the identity automorphism 1S ∈ C(S, S).

Right C-modules as well as C-bimodules can be defined analogously, but we will not need
them here.

Remark 46 The notion of a categorical left C-module admits the following categorical and
the related simplicial interpretations. Let L be a categorical left C-module. For each L ∈ L0

consider the category L/C with object the arrows α : L → T in L(L, T ) and morphisms the
‘commutative’ triangles

L
α β

T S
f

where α, β are arrows from L and f is a morphism in C such that α = f β. Let DC(L) =∐
L∈L0 L/C. Taking the target provides us with a functor d0 : DC(L) → C with the lifting

property of a discrete Grothendieck opfibration. We also have the source-map d1 : DC(L) →
L0 which obviously factorizes as

DC(L)
π0−→ π0(D

C(L))
s−→ L0.

Conversely, let L be a category equipped with a map of sets γ : π0(L ) → L0 and
a discrete opfibration t : L → C. We claim that these data determine a categorical left
C-module L with

L0 = L0 , DC(L) ∼= L , d0 = t and d1 = γπ0.

Indeed, any category is the coproduct of its connected components, in particular

L =
∐

c∈π0(L )

L c =
∐

L∈L0

( ∐

c∈γ−1(L)

L c
)
.

Now for L ∈ L0 and S ∈ C we define the set of arrows L(L, S) as the set of objects of
α ∈ ∐

c∈γ−1(L) L
c such that t(α) = S. The action of C is defined using the lifting property

of the opfibration t .
Translated to the language of simplicial sets this construction amounts to the following.

The simplicial nerve of the category DC(L), cf. Remark 5, consists of the sets Ln, n ≥ 1, of
all possible composable chains

L
α−→ S0

f0−→ S1
f1−→ · · · fn−2−−→ Sn−1
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where L ∈ L0 and S0, . . . , Sn−1 ∈ C. The functor d0 induces a diagram of sets

L0 L1 s1
d1

d0

L2
d1

d2

s1

s2

d0

L3

d1

d2

d3

d0

· · ·

C0 s0 C1
d0

d1

s0

s1
C2

d0

d1

d2

· · · .

(31)

In this diagram all usual simplicial identities hold, the bottom and the shifted top simpli-
cial sets satisfy Segal conditions and, moreover, all (commutative) diagrams involving top
horizontal face operators

Ln
dn+1

d0

Ln+1

d0

Cn−1
dn

Cn

are pullbacks.Conversely, any diagramwith the above properties is the ‘nerve’ of a categorical
left module.

Remark 47 The rule (α, g) �→ gα does not look as a left action, one would expect (α, g) �→
αg instead. This unpleasing feature is due to the bad but favored convention of writing ‘α
followed by g’ as gα.

Example 48 Given a category C and a set S, one has the chaotic C-module Chaos(S,C)with
exactly one arrow L → T for every L ∈ S and T ∈ C. A concrete example will be given in
Sect. 9.

Example 49 If both C and L have just one object, the resulting structure is the standard left
module over an associative unital algebra.

Example 50 Each category is a leftmodule over itself.More generally, any functor F : D → C
determines a left module L(F) over C whose set of objects are objects of D and whose set
of arrows L(d, c) equals C(F(d), c), for d ∈ D, c ∈ C. Still more generally, any functor
F : Dop × C → Set determines a left C-bimodule by similar formulas. Such functors are
also known as profunctors, distributors or bimodules from D to C.

Example 51 If L is a C-module and c ∈ C, then there exits the left ‘overmodule’ L/c over
C/c whose objects are arrows α : L → c in L. Arrows from α to g : T → c ∈ C/c are
diagrams

L
ϕ

α

T

g
c

in which ϕ ∈ L(L, T ) is such that α = gϕ.
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Definition 52 We denote by MOD the category whose objects are pairs (C,L) consisting of
a category C and its left module L. Morphisms from (C′,L′) to (C′′,L′′) are pairs (�,�)

consisting of a functor � : C′ → C′′ and of a rule that assigns to each object L ′ of L′ an
object �(L ′) of L′′, and to each arrow α : L ′ → S′ of L′ an arrow α∗ : �(L ′) → �(S′) of
L′′ such that the diagram

�(S′)

f∗�(L ′)
α∗

( f α)∗ �(T ′)

commutes for an arbitrary morphism f : S′ → T ′ of the category C′.

In the following analog of Lemma 2, M is a left module over a unary operadic category O
and, for each S ∈ O, M/S denotes the left O/S-module introduced in Example 51.

Lemma 53 Each family
{
(FS,GS) : (O/S,M/S) → (O,M) | S ∈ O

}
of morphisms in MOD

indexed by objects of O induces a family

{
(Fc,Gc) : (O/S,M/S) → (O/FT (c),M/FT (c)) | c : S → T

}
(32)

of morphisms in MOD indexed by arrows of O, with Fc as in Lemma 2.

Proof Analogous to the proof of Lemma 2. ��

Definition 54 Let O be an operadic category with the associated familyFS of fiber functors,
and M a left O-module. We call a family (FS,GS) in Lemma 53 a family of fiber morphisms
if the module part of the extension (32) is such that

M/S
G c

G S

M/FT (c)

GF T (c)

M

commutes for any c : S → T .

We use similar notation and terminology as for operadic categories. That is, given an
arrow α : M → S in M, we call GS(α) the fiber of α and denote it simply by G (α). The fact
that G = G (α) will be abbreviated by G � M

α→ S. For a diagram

L

β

α
X

g

S

(33)

where α : L → X is an arrow in M , g : X → S is a morphism of O and β = gα, we denote by
αS the induced arrow G (β) → F (g) between the fibers. The module analog of diagram (4)
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associated to (33) reads

G � H
αS

F= � �

G � L
α

β

X

g

S.

(34)

Definition 55 An operadic module over a not necessarily unital operadic category O is a
categorical left O-module M equipped with a family of fiber morphisms as per Definition 54.
A morphism from an operadic module M′ over O′ to an operadic module M′′ over O′′ is a
morphism (�,�) : (O′,M′) → (O′′,M′′) in MOD that commutes with the associated fiber
morphisms.

Remark 56 As for operadic categories, cf. Remark 18, there exists a simplicial interpretation
of operadic modules. The fiber functor of a left operadic module M adds to a diagram as
in (31) additional top face operators, leading to the diagram

M0 M1 s1
d2
d1

d0

M2
d1

d2
d3

s1

s2

d0

M3

d1

d2

d3
d4

d0

· · ·

O0 s0 O1
d0

d1

s0

d2
s1

O2

d0

d1

d2
d3

· · · .

The new face operators satisfy all usual simplicial relations.

Example 57 Let A be a small category and B a left A-module. Since each overmodule in
the coproduct DA(B) := ∐

c∈A B/c over objects of A is a module over the category D(A),
cf. Example 51, DA(B) is a left D(A)-module. With the fiber functor assigning to an arrow
ψ : α → f in DA(B) of the form

L

α

ψ
X

f

c

the objectψ : L → X ofDA(B), the moduleDA(B) becomes a left operadic module over the
operadic category D(A). It is easy to verify that also TA(B) := B � DA(B) is a left operadic
module over the tautological operadic category T(A) of Definition 9. We call TA(B) the
tautological T(A)-module generated by B.

Example 58 Let F : D → C be a functor and L(F) the left C-module constructed in Exam-
ple 50. Consider the category

D(F) =
∐

c∈C
F/c.
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There is a natural functor

F : D(F) → D(C)

which sends an object F(d) → c of D(F) to the same object but considered as an object of
D(C). Then DC(L(F)) = L(F) as a left operadic D(C)-module.

Let us formulate amonadic description of leftmodules over operadic categories, analogous
to Propositions 8 and 10. Since it is a straightforward generalization of the material in Sect. 1,
we will be telegraphic.

Denote by Mod the subcategory of MOD consisting of pairs (A,B)with A a small category.
One has the functor DMod : Mod → Mod given by DMod(A,B) := (

D(A),DA(B)
)
which

turns out to be a nonunital monad. Likewise, the functor TMod : Mod → Mod given by
TMod(A,B) := (

T(A),TA(B)
)
is a (unital) monad.

Proposition 59 Algebras for the nonunital monad DMod, resp. for the unital monad TMod

are pairs (O,M), where O is a non-unital unary operadic category with a small set of objects,
and M its left operadic module.

Definition 60 Let M be a left operadic module over a unary operadic category O, and P an
O-operad inV. A (right)P-module inV is a collectionM = {M(M)}M of objects ofV indexed
by objects of M along with the ‘actions’

ν = να : M(G) ⊗ P(L) → M(X)

given for any arrow α : X → L in Mwith fiber G := G (α). Moreover, for any arrow L
α→ B

in M and a morphism B
g→ C in O, the diagram

M(G) ⊗ P(F) ⊗ P(C)

ναC ⊗1

1⊗γg
M(G) ⊗ P(B)

να

M(X) ⊗ P(C)
νgα

M(L)

(35)

is required to commute. The symbols in that diagram are explained by the following instance
of (34):

G � X
αC

F= � �

G � L
α

gα

B

g

C .

Definition 61 Let (�,�) : (O′,M′) → (O′′,M′′) be a morphism of left operadic mod-
ules, P an O′′-operad, �∗(P) the restriction of P along � as in Definition 14, and M a
P-module. The restriction �∗(M) of M along (�,�) is the �∗(P)-module with the com-
ponents �∗(M)(m) := M

(
�(m)

)
, for m ∈ M′′.

Example 62 Any operadic category O is a left operadic module over itself. Having this in
mind, each O-operad is a module over itself.
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Definition 63 Suppose that P is left unital in the sense of Definition 26 and M a P-module.
An arbitrary arrow α : M → S of M induces the diagram

G � G
αT

UT= � �

G � M
α

α

T

1

T

with αT the induced map between the fibers. The P-module M is unital if the diagram

M(G) ⊗ P(UT )
ναT

M(G)

M(G) ⊗ 1

1⊗ηT

∼=
M(G)

in which ηT is as in (19), commutes for an arbitrary arrow M
α→ T in (21).

Example 64 A unital operad P is a unital module over itself, cf. Example 62.

Definition 65 Let (M′, ν′) and (M′′, ν′′) be left operadicP-modules. Amorphism� : M′ →
M′′ is a family � = {

�M : M′(M) → M′′(M)
}
of morphisms in V indexed by objects of M

such that the diagram

M′(G) ⊗ P(L)
ν′
α

�G⊗1

M′(X)

�X

M′′(G) ⊗ P(L)
ν′′
α

M′′(X)

commutes for each α : X → L with fiber G. We denote by ModM(P) the corresponding
category.

6 FreeModules

In this section we study the structure of free operadic modules. The main result, Proposi-
tion 71, requires a certain rigidity property that has no analog in the classical algebra. The
base monoidal category will be from this point on the category R-Mod of (graded) vector
spaces over a commutative unital ring R though any symmetric monoidal category whose
monoidal structure behaves nicely with respect to coproducts participating in our formulas
for free modules would do as well.

To warm up, we recall the following simple classical facts. Let E be a vector space and
� a non-unital associative algebra. Then

F̊(E) := E ⊕ (� ⊗ E)

with the left �-action given by λ(e ⊕ a ⊗ f ) := 0 ⊕ (λ ⊗ e + λa ⊗ f ), for λ, a ∈ � and
e, f ∈ E , is the free left �-module generated by E .
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Assume now that � possesses a two-sided unit 1 ∈ � and restrict to the subcategory of
left �-modules on which 1 acts as the identity endomorphism. The free �-module in this
category is obtained by identifying, in F̊(E), e ⊕ 0 with 0⊕ 1⊗ e for each e ∈ E , explicitly

F(E) := F̊(E)
(
e ⊕ 0 = 0 ⊕ (1 ⊗ e)

) ∼= � ⊗ E (36)

with the left �-action on the right hand side given by λ(a ⊗ e) := λa ⊗ e.

Remark 66 Let us act on both sides of the equality e ⊕ 0 = 0 ⊕ (1 ⊗ e) in the denominator
of (36) by some λ ∈ �. By the definition of the left�-action, we get the equality 0⊕(λ⊗e) =
0 ⊕ (λ · 1 ⊗ e), which implies the relation

λ · 1 ⊗ e ∼ λ ⊗ e for each λ ∈ �, e ∈ E (37)

that is λ · 1 ∼ λ for each λ ∈ �. The assumption that 1 is also a right, not only the left unit
of � guarantees that the ‘unexpected’ relation in (37) is satisfied automatically.

Free modules in the operadic context have a similarly simple structure only when the
following unary version of the weak blow-up axiom [3, Section 2], abbreviated WBU, is
fulfilled.
Weak blow-up (category version). For each morphism f ′ : X ′ → S in O with fiber F ′, and
another morphism φ : F ′ → F ′′, the left diagram in (WBU) below can be uniquely completed
to the diagram in the right hand side so that φ will became the map between the fibers induced
by ϕ:

F ′ φ
F ′′

�

X ′

f ′

S

F ′ φ
F ′′

� �

X ′ ϕ

f ′

X ′′.

f ′′

S

(WBU)

Weak blow-up (module version). A straightforward modification of the operadic blow-up
with φ, ϕ and f ′ arrows of M and f ′′ a morphism in O.

Exercise 67 The operadic categories D(A) and T(A), as well as the left modules DM(A) and
TM(A), satisfy WBU.

Let E = {E(M)}M be a collection of graded vector spaces indexed by objects of M. For a
given object M ∈ M, put

F̊(E)(M) := E(M) ⊕ ⊕
α

(
P(T ) ⊗α E(G)

)
, (38)

where α runs over arrows M
α→ T in M, G is the fiber of α, and P(T ) ⊗α E(G) := P(T ) ⊗

E(G), the subscript α of the tensor product symbol indicating the summand corresponding
to this concrete α.

For α : M → T with the fiber G, the action να : P(T ) ⊗ F̊(E)(G) → F̊(E)(M) is
described as follows. If e ∈ E(G) ⊂ F̊(E)(G), the action is ‘tautological,’ i.e.

να(e, t) := t ⊗ e ∈ P(T ) ⊗α E(G) ∈ F̊(E)(M).
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Let s ⊗ h ∈ P(S) ⊗β E(H) ∈ F̊(E)(G), where β : G → S has the fiber H , and α be as
before. In this situation we have the diagram

S G � H
β

� �

X

g

M � H

α

ω

T

constructed from the initial data α : M → T and β : G → S invoking the WBU. We define
the action of t ∈ P(T ) by

να(s ⊗ h, t) := γg(s, t) ⊗ h ∈ P(X) ⊗ω E(H) ∈ F̊(E)(M).

Proposition 68 The above structure makes F̊(E) an operadic P-module. It is the free left
operadic module generated by E.

Proof Thefirst part of the proposition is a simple exercise. Let us attend to the freeness.Denote
by CollM the category of collections E = {E(M)}M of vector spaces indexed by objects of
M and their component-wise morphisms, and recall fromDefinition 65 the category ModM(P)

of left operadic P-modules. There is an obvious forgetful functor � : ModM(P) → CollM.
The freeness of F̊(E) means that, for each E ∈ CollM, M ∈ ModM(P) and a morphism
ω : E → �M in CollM, there exists a unique morphism � : F̊(E) → M in ModM(P) such
that the diagram

E
ω

ι

�M

�F̊(E)

��

in which ι : E → �F̊(E) is the obvious inclusion, commutes in CollM. We prove this claim
by giving an explicit formula for �. Namely, for

e ⊕ (t ⊗ g) ∈ E(M) ⊕ (P(T ) ⊗α E(G)) ⊂ F̊(E)(M), M ∈ M,

we put

�M (e ⊕ (t ⊗ g)) := ωM (e) + (−1)|g||t | · να(ωG(g), t) ∈ M(M).

It is not difficult to verify that the above formula defines the required morphism in ModM(P),
and that such a morphism is unique. ��

Let us discuss the unital version of the above constructions, assuming that that the operad
P is left unital in the sense of Definition 26 . In the situation captured by diagram (21) denote
1T := ηT (1) ∈ P(UT ). For each α : M → T in (21) we identify, in (38), e ⊕ 0 ∈ E(M) ⊂
F̊(E)(ϒ) with

0 ⊕ (1T ⊗αT e) ∈ (
P(UT ) ⊗αT E(M)

) ⊂ F̊(E)(M).

Finally, we denote by F(E) the quotient of the free nonunital P-module F̊(E) by the relation
generated by the above identifications.
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Proposition 69 The P-module F(E) is the free unital operadic P-module generated by E.

Proof Follows from the freeness of F̊(E) established in Proposition 68 combined with the
definition of unitality. ��

A structure result for free unital P-modules similar to the isomorphism in (36) holds at
objects of M that are rigid in the sense of

Definition 70 An object M of an operadic O-module M is rigid if there is precisely one object

 of O and one arrow M → 
 with fiber M .

Proposition 71 For a rigid object M of a left operadic O-module M, one has the isomorphism

F(E)(M) ∼=
⊕

α

(
P(T ) ⊗α E(G)

)
, (39)

where the direct sum runs over all arrows α : M → T of M and where G is the fiber of α.

Proof The rigidity of M guarantees that each e ⊕ 0 ∈ E(M) is identified in F(E)(M) with
precisely one element of the sum in the right hand side of (39). ��
Example 72 Let O be the terminal unary operadic category with one object 
 and M the left
O-module with one object � and one arrow � → 
. A left unital O-operad is a classical
left unital associative algebra �, and a unital P-module is the classical right �-module on
which the left unit 1 ∈ � acts trivially. The object � ∈ M is rigid and (39) recovers the
isomorphism (36).

Let O be as before, and let M have one object � but no arrow. A unital P-module is just a
vector space. The free unital P-module generated by E is thus E again, while the right hand
side of (39) is trivial. This shows that (39) need not to hold without the rigidity assumption.

7 The Bar Resolution

Our aim will be to introduce an operadic analog of the following classical construction. Let
� be a (graded) unital associative algebra and C a left �-module. An (un-normalized) bar
resolution of C , cf. [9, Section X.2], is an augmented chain complex β∗(�,C)

ε→ C of the
form

· · · ∂n+2−→ βn+1(�,C)
∂n+1−→ βn(�,C)

∂n−→ βn−1(�,C)
∂n−1−→ · · · ∂1−→ β0(�,C)

ε−→ C,

where βn(�,C) := � ⊗ �⊗n ⊗ C and the differential ∂n : βn(�,C) → βn−1(�,C) is
defined as the sum ∂n := ∑n

0(−1)i di with

di (λ0 ⊗ · · · ⊗ λn ⊗ c) := λ0 ⊗ · · · ⊗ λiλi+1 ⊗ · · · λn ⊗ c

if 0 ≤ i ≤ n − 1, while

dn(λ0 ⊗ · · · ⊗ λn ⊗ c) := λ0 ⊗ · · · ⊗ λnc,

for λ0, . . . , λn ∈ �, c ∈ C . The augmentation β0(�,C)
ε−→ C is defined using the left

action of � on C by ε(λ0 ⊗ c) := λ0c. The following theorem is classical, cf. again [9,
Section X.2].

Theorem 73 The augmented chain complex β∗(�,C)
ε−→ C is an acyclic resolution of C

via free left �-modules.
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Let 1 ∈ � be the unit of �. For each n ≥ 1 define linear operators s j : βn(�,C) →
βn+1(�,C), 0 ≤ j ≤ n, by

s j (λ0 ⊗ · · · ⊗ λn ⊗ c) := λ0 ⊗ · · · ⊗ λi ⊗ 1 ⊗ λi+1 ⊗ · · · λn ⊗ c

for 0 ≤ j ≤ n, and

sn(λ0 ⊗ · · · ⊗ λn ⊗ c) := λ0 ⊗ · · · ⊗ λn ⊗ 1 ⊗ c.

The following statement is also classical.

Proposition 74 The family β•(�,C) = {βn(�,C)}n≥0 of vector spaces with the operators
di and s j defined above is a simplicial vector space. The bar resolution β•(�,C) is its
associated chain complex.

The operadic analog of β∗(�,C) will possess the similar properties. The input data will
be a left module M over an operadic category O, an O-operad P and a P-moduleM. The basic
building blocks will be the diagrams TM of the form

TM : T0 T1
f1 · · ·f2

Tn−1
fn−1

Tn
fn

M
α

� · · · � � �

F1 · · · Fn−1 Fn N

(40)

where T0, . . . , Tn are objects of O, f1, . . . , fn are morphisms of O, and M
α→ Tn is an arrow

of M. Further, F1, . . . , Fn are the fibers of f1, . . . , fn , respectively, and N is the fiber of α.
We will call (T0, F1, . . . , Fn, N ) the fiber sequence of TM . For n ≥ 0 denote

βn(P,M)(M) :=
⊕

P(T0) ⊗ P(F1) ⊗ · · · ⊗ P(Fn) ⊗ M(N ) (41)

with the direct sum running over all towersTM in (40). We assemble the above vector spaces
into an augmented chain complex

· · · ∂n+1−→ βn(P,M)(M)
∂n−→ βn−1(P,M)(M)

∂n−1−→ · · · ∂1−→ β0(P,M)(M)
ε−→ M(M).

Its nth differential ∂n is the sum
∑n

0(−1)i di , with di acting on an element

t0 ⊗ p1 ⊗ · · · ⊗ pi ⊗ pi+1 ⊗ · · · ⊗ pn ⊗ n (42)

of P(T0)⊗P(F1)⊗· · ·⊗P(Fi )⊗P(Fi+1)⊗· · ·⊗P(Fn)⊗M(N ) as follows. If 1 ≤ i ≤ n−1,
replace first the piece

Ti−1 Ti
fi

Ti+1
fi+1

� �

Fi Fi+1

in the tower (40) by

Ti−1 Ti+1
fi fi+1

�

F ′,

123



Operads, Operadic Categories and the Blob Complex Page 31 of 49     6 

where F ′ is the fiber of fi fi+1. This situation gives rise to the following instance of (4):

Fi+1 � F ′ ( fi+1)Ti−1
Fi= � �

Fi+1 � Ti+1
fi+1

fi+1 fi

Ti

fi

Ti−1.

(43)

The operation di now replaces pi ⊗ pi+1 in (42) by γ (pi+1, pi ) ∈ P(F ′), where γ is the
operadic composition induced by the subdiagram Fi+1 � F ′ → Fi of (43). To define d0, we
cut the left end

T0 T1
f1

T2
f2 · · ·f3

� �

F1 F2

of the tower (40) to

T1 T2
f2 · · ·f3

�

F2

and replace t0 ⊗ p1 in (42) by γ f1(p1, t0) ∈ P(T1). To define dn , we replace

Tn−1 Tn
fn

M
α

� �

Fn N

in (40), by

Tn−1 M
fnα

�

N ′

which gives rise to

N � N ′ αTn−1
Fn= � �

N � M
α

fnα

Tn

fn

Tn−1.

(44)

We finally replace pn ⊗ n in (42) by the composite ν(n, pn) ∈ M(N ′) associated to the
subdiagram N � N ′ → Fn of (44).
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It remains to attend to ε : β0(P,M)(M) → M(M). By definition, β0(P,M)(M) is the
direct sum

⊕
P(T0)⊗M(N ) over diagrams N � M

α→ T0. For t0 ⊗ n ∈ P(T0)⊗M(N ) we
define ε(t0 ⊗ n) to be να(n, t0) ∈ M(M).

Proposition 75 One has ∂n∂n+1 = 0 for all n ≥ 1, and also ε∂1 = 0.

Proof The equality ∂n∂n+1 = 0 follows from the face relations for the operators di , the
vanishing ε∂1 = 0 from the associativity (35) of the module action. We leave the verification
of both as an exercise. ��

Definition 76 The augmented chain complex ε : β∗(P,M)(M) → M(M) is the (un-
normalized) bar resolution of the P-moduleM at the object M of M.

Suppose that P is unital as per Definition 26 and M is a unital P-module. For M ∈ M
define linear maps

s j : βn(P,M)(M) → βn+1(P,M)(M), 0 ≤ j ≤ n, (45)

as follows. Consider an element u ∈ βn(P,M)(M) in (42) associated to the towerTM in (40).
ThenmodifyTM by inserting the identity automorphism of Tj to it, which results in the tower

T0 T1
f1 · · ·f2

Tj
f j

Tj
1 · · · Tn−1

fn−1
Tn

fn
M

α

� · · · � � · · · � � �

F1 · · · Fj UTj · · · Fn−1 Fn N

with the fiber sequence (T0, F1, . . . , Fj ,UTj , Fj+1, . . . , Fn, N ). Then s j (u) ∈ βn+1(P,M)

is defined as

s j (u) := t0 ⊗ p1 ⊗ · · · ⊗ p j ⊗ 1 j ⊗ p j+1 ⊗ · · · ⊗ pn ⊗ n

where 1 j := ηUTj
(1) ∈ P(UTj ) is given by the unitality of the operad P, cf. (19). We

formulate the following analog of Proposition 74.

Proposition 77 If P is unital, the family β•(P,M)(M) = {βn(P,M)(M)}n≥0 of vector
spaces with the operators di and s j defined above is a simplicial vector space for each
M ∈ M. The piece β∗(P,M)(M) of the bar resolution is its associated chain complex.

Proof Direct verification. ��

Definition 78 For M ∈ M denote by B∗(P,M)(M) the normalization of the simplicial
abelian group β•(P,M)(M), i.e. the quotient of β∗(P,M)(M) by the images of the degen-
eracy operators (45). The augmented chain complex ε : B∗(P,M)(M) → M(M) is the
normalized bar resolution of the P-moduleM at the object M of M.

In the rest of this section we assume that the operadic category O and the left operadic
O-module M satisfy the weak blow-up axiom recalled in Sect. 5.

Proposition 79 The direct sums M ⊕ β0(P,M) and βn(P,M) ⊕ βn+1(P,M), n ≥ 0, are
free left P-modules.
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Proof It follows directly from the definition of β0(P,M) and (38) that M ⊕ β0(P,M) ∼=
F(�M). It thus remains to prove that

βn(P,M)(N ) ⊕ βn+1(P,M)(N ) ∼= F(�βn(P,M))(N ),

for each n ≥ 0 and N ∈ M. Invoking (38) again, we conclude that it suffices to show that

βn+1(P,M)(N ) ∼=
⊕

!

(
P(S) ⊗! βn(P,M)(M)

)
, (46)

where the direct sum is taken over all arrows ! : N → S, and where M is the fiber of ! .
Consider the component

P(T0) ⊗ P(F1) ⊗ · · · ⊗ P(Fn) ⊗ M(N )

in the direct sum (41) defining βn(P,M)(M) associated to the tower TM in (40). Using WBU
(n+ 1)-times, we embed TM as the tower of morphisms between the fibers into the diagram

T0 T1
f1 · · ·f2

Tn−1
fn−1

Tn
fn

M
α

� � · · · � � �

S1

g1

S2

!2

g2 · · ·g3
Sn

!n

gn
Sn+1

gn+1

!n+1

N

!

β

S

which contains the tower

!(TM ) : S S1
g1

S2
g2 · · ·g3

Sn
gn

Sn+1
gn+1

N
β

with the fiber sequence (S, T0, F1, . . . , Fn, N ). We may thus interpret the summand

P(S) ⊗ P(T0) ⊗ P(F1) ⊗ · · · ⊗ P(Fn) ⊗ M(N ) ⊂ P(S) ⊗! βn(P,M)(M)

in the right hand side of (46) as belonging to the component of βn+1(P,M)(N ) associated
to the tower !(TM ). It is easy to show that the map

⊕

!

(
P(S) ⊗! βn(P,M)(M)

) −→ βn+1(P,M)(N )

thus defined is an isomorphism. ��
Let us move to the issue of acyclicity of the bar resolution. For an objectϒ ∈ M denote by

ϒ/O the category whose objects are arrows α : ϒ → X , X ∈ O, and morphisms α′ → α′′
are commutative diagrams

ϒ
α′ α′′

X ′ X ′′

where the horizontal arrow is a morphism of O. It will turn out that the bar resolution is
acyclic at objects ϒ of M with the property that

(P1) the category ϒ/O has a global terminal object ϒ
!→ 
 such that

(P2) the fiber of ϒ
!→ 
 is ϒ and the fiber functor F : O/
 → O is the domain functor.
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The terminality in (P1) means that each arrow α : ϒ → X in M is uniquely left divisible:

ϒ
α

!
X

∃ ! 
 .

By (P2), the fiber of the unique arrow X
!→ 
 is X .

Assume that P is left unital the sense of Definition 26 and M a unital P-module as in
Definition 63. Since the fiber of the identity 1 : 
 → 
 is 
, by the left unitality of P there
exists a morphism η
 : 1 → P(
) for which the diagram

P(
) ⊗ P(X)
γ1

P(X)

1 ⊗ P(X)

η
⊗1

∼=
P(X)

commutes. Likewise, the unitality of M implies the commutativity of

M(ϒ) ⊗ P(
)
ν!

M(ϒ)

M(ϒ) ⊗ R
∼=

1⊗η


M(ϒ).

Weare finally able to formulate the operadic version of Theorem73. Recall that we assume
that the operadic categoryO and the left operadicO-moduleM satisfy theweak blow-up axiom,
P is a unital O-operad in R-Mod andM a unital P-module.

TheoremA The augmented chain complex β∗(P,M)(ϒ)
ε→ M(ϒ) is acyclic whenever

ϒ ∈ M fulfills properties (P1)–(P2) above. If ϒ is rigid in the sense of Definition 70, then
βn(P,M)(ϒ) is a piece of a free unital P-module for each n ≥ 0. An obvious similar
statement holds also for the normalized bar construction B∗(P,M).

Proof It follows from the definition of β0(P,M) and (39) that β0(P,M)(ϒ) ∼= F(�M)(ϒ).
We need to prove that

βn+1(P,M)(ϒ) ∼= F(�βn(P,M))(ϒ),

for each n ≥ 0 which, by (39), amounts to proving that

βn+1(P,M)(ϒ) ∼=
⊕

!

(
P(S) ⊗! βn(P,M)(M)

)
, (47)

where the direct sum is taken over all ! : ϒ → S, and where M is the fiber of ! . But this
isomorphism was established in the proof of Proposition 79, cf. (46) with N = ϒ .

To prove the acyclicity of the augmented complex β∗(P,M)(ϒ)
ε→ M(ϒ), we con-

struct the contracting homotopies h : M(ϒ) → β0(P,M)(ϒ) and hn : βn(P,M)(ϒ) →
βn+1(P,M)(ϒ), n ≥ 0, as follows. For u ∈ M(ϒ) we put

h(u) := 1
 ⊗ u ∈ P(
) ⊗! M(ϒ) ∈ β0(P,M)(ϒ).

To construct hn for n ≥ 0, we consider a tower Tϒ as in (40) with M = ϒ and a related
element u ∈ βn(P,M)(ϒ) in (42). Since ϒ ∈ π0(
), all Ti ’s and T0 in particular belong to
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π0(
), so there exists a unique ! : T0 → 
, hence Tϒ can be uniquely extended to

h(Tϒ) : 
 T0
!

T1
f1 · · ·f2

Tn−1
fn−1

Tn
fn

M
α

� � · · · � � �

T0 F1 · · · Fn−1 Fn N

with the associated fiber sequence (
, T0, F1, . . . , Fn, N ). We finally define hn(u) to be
1
 ⊗ u in the component of βn+1(P,M)(ϒ) corresponding to the tower h(Tϒ). The desired
property of the contracting homotopies for h, h0, h1, . . . constructed above is easy to verify.

��
We note that the right unitality ofP only is sufficient for the acyclicity of β∗(P,M)(ϒ)

ε→
M(ϒ). Theorem A has the following obvious

Corollary 80 For each ϒ fulfilling (P1)–(P2) above, one has

H0(β∗(P,M))(ϒ) = M(ϒ)

Span{να(n, x)} ,

where Span{να(n, x)} ⊂ M(ϒ) is the subspace spanned by all να(n, x)’s with α : ϒ → X,
n ∈ M(N ) and x ∈ P(X), where N is the fiber of α. The higher homology of β∗(P,M)(ϒ)

is trivial.

Remark 81 If O is the terminal operadic category with one object 
, and the left O-module
M has of one object � and one arrow � → 
 as in Example 72, then the above operadic
constructions reduce to the classical machinery à la MacLane [9] recalled at the beginning
of this section.

The following kind of functoriality has no analog in classical homological algebra.

Proposition 82 Let (�,�) : (O′,M′) → (O′′,M′′) be amorphism of operadic left modules, let
P be an O′′-operad,�∗(P) its restriction along �,M a P-module and �∗(M) its restriction
along (�,�). Then, for each M ∈ M′, there exists a natural chain map

β∗(�,�)(M) : β∗
(
�∗(P),�∗(M)

)
(M) → β∗(P,M)

(
�(M)

)

such that the diagram

β∗
(
�∗(P),�∗(M)

)
(M)

β∗(�,�)(M)

�∗(M)(M)

β∗(P,M)
(
�(M)

)
M

(
�(M)

)
,

in which the horizontal arrows are the augmentations, commutes.

Proof The component

�∗(P)(T0) ⊗ �∗(P)(F1) ⊗ · · · ⊗ �∗(P)(Fn) ⊗ �∗(M)(N )

of β∗
(
�∗(P),�∗(M)

)
(M) corresponding to the tower in (40) is mapped to the component

P
(
�

(
T0)

) ⊗ P
(
�(F1)

) ⊗ · · · ⊗ P
(
�(Fn)

) ⊗ M
(
�(N )

)
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of β∗(P,M)
(
�(M)

)
corresponding to the tower

�(T0) �(T1)
�( f1) · · ·�( f2)

�(Tn−1)
�( fn−1)

�(Tn)
�( fn)

�(M) .
�(α)

� · · · � � �

�(F1) · · · �(Fn−1) �(Fn) �(N )

It is simple to check that the morphism thus constructed has the desired properties. ��
Part II Fields and Blobs

8 Basic Notions

Wewill dealwithmanifolds, their boundaries, embeddings,&c.Theprecisemeanings of these
nouns will depend on the setup in which we choose to work –manifolds could be topological,
smooth, piecewise linear, with some additional structures, &c. Since all constructions below
are of combinatorial and/or algebraic nature, we allow ourselves to be relaxed about the
nomenclature; compare the intuitive approach in the related sections of [15]. We reserve d
for a non-negative integer.

Definition 83 A system of fields is a rule that to each manifold X of dimension≤ d+1 assigns
a set C(X). This assignment should satisfy properties listed e.g. in [14, Section 2]. We will
in particular need the following:

(i) For each codimension-zero submanifold Z of ∂X one has a functorial restriction

C(X) � c �→ c|Z ∈ C(Z).

(ii) Let X ′ �Z X ′′ be a manifold obtained by glueing manifolds X ′ and X ′′ along a common
piece Z of their boundaries, and c′ ∈ C(X ′), resp. c′′ ∈ C(X ′′) be fields whose restrictions
to Z agree. Then c′ and c′′ can be glued into a field c′ �Z c′′ ∈ C(X ′ �Z X ′′)which restricts
to the original fields on X ′ resp. X ′′.

We will denote by C(X; c) the subset of C(X) consisting of fields that restrict to c ∈ C(Z).
We will always be in the situation when Z in (ii) is closed, so we will not need ‘glueing with
corners’ described in [14, Section 2]. We allow Z to be empty, in which case we denote the
result of the glueing by c′ � c′′ ∈ C(X ′ � X ′′). Standard examples of fields are C(X) the set
of maps from X to some fixed space B, or C(X) the set of equivalence classes of G-bundles
with connection over X .

Definition 84 Let X be a (d+1)-dimensional, not necessarily connected, manifold, with the
(possibly empty) boundary ∂X and the interior X̊ . A blob in X is the image D of the standard
closed (d+1)-dimensional ball D

d+1 ⊂ R
×(d+1) embedded in X in so that either

(i) D ⊂ X̊ , and X \ D̊ is a (d+1)-dimensional manifold with the boundary ∂X ∪ ∂D, or
(ii) D is one of the connected components of X .

A configuration of blobs in X is a nonempty unordered finite set D = {D1, . . . , Dr } of
pairwise disjoint blobs in X .

We will sometimes use D also to denote the union
⋃

D := ⋃r
i=1 Di if the meaning is

clear from the context. It is a manifold with the boundary ∂D := ⋃r
i=1 ∂Di and the interior
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D̊ := ⋃r
i=1 D̊i , and X \ D̊ is a (d+1)-dimensional manifold with the boundary ∂X ∪ ∂D . If

some of the blobs in D happen to be some of the components of X , then the corresponding
components of X \ D̊ are d-dimensional embedded spheres, interpreted as degenerate (d+1)-
dimensional manifolds with empty interiors.

In the rest of this paper we assume that the space of fields on codimension zero sub-
manifolds of X is enriched in R-Mod. This is the case e.g. when the fields come from a
(d+1)-category whose spaces of top-dimensional cells are linearly enriched, cf. [14, Sub-
section 2.2].

Definition 85 A local relation is a collection of subspaces U = {
U(D; c) ⊂ C(D; c)}

specified for any blob D ⊂ X and any field c ∈ C(∂D), which is an ideal in the following
sense.

Suppose we are given blobs D′ and D such that D̊ ⊃ D′, and a field c�c′ ∈ C(∂D�∂D′).
Then for any local relation u ∈ U(D′; c′) and any field r ∈ C(D \ D̊′; c � c′), the glueing
u �∂D′ r is a local relation in U(D; c).

It is a simplified version of [14, Definition 2.3.1], sufficient for our purposes. The config-
uration of balls and fields in Definition 85 is depicted in the following schematic picture:

∂D

∂D

r

u

Definition 86 For local relations as in Definition 85, denote by U(X) the subspace of C(X)

spanned by fields of the form u �∂Dr , where D ⊂ X is a blob, r ∈ C(X \ D̊; c) a field and
u ∈ U(D; c) a local relation. A TQFT invariant of X called the skein module associated to a
system of fields C and local relations U is the quotient

A(X) := C(X)/U(X).

If X has a non-empty boundary ∂X and b ∈ C(∂X), one has the obvious restricted version

A(X; b) := C(X; b)/U(X; b).

9 Blobs Via Unary Operadic Categories

We are going to introduce various operadic categories and operadic modules together with
the related operads and their modules, arising from the blobs and fields in Sect. 8. Our aim
is to describe the associated bar resolutions, cf. the second half of Sect. 7. In Sect. 10 we
show that they are quasi-isomorphic to the original blob complex in [15]. The notation is
summarized at the end of this section.

Let us fix a connected (d+1)-dimensional, not necessarily closed, non-empty manifoldM.
If its boundary ∂M is non-empty, some constructions below will depend on a fixed field b
on ∂M. We will however often omit such a boundary condition from the notation.
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We denote by blob the category opposite to the category of configurations of blobs in M

and their ‘well-behaved’ inclusions. More precisely, objects of blob are configurations D
of blobs in M as in Definition 84, and a unique map D ′ → D ′′ exists if and only if D ′′ is a
blob configuration in the union of blobs inD ′, cf. Definition 84 again. In what follows, by an
inclusion of blob configurations we will always mean a well-behaved inclusion in this sense.

Let us turn our attention to the operadic categoryD(blob) associated to the small category
blob via the recipe of (8). Its objects are inclusions i ′ : D ′ ←↩ D of blob configurations
in M. Notice that there is a one-to-one correspondence between these inclusions, i.e. objects
of D(blob), and blob complements, which we define as closed submanifolds of M of the
form

⋃
D ′ \ ⋃

D̊ with D a blob configuration in D ′. Morphisms i ′ → i ′′ of D(blob)
are diagrams

D ′ D ′′

D

i ′′i ′
(48)

of inclusions of blob configurations. The fiber of the above morphism is the inclusionD ′ ←↩

D ′′ interpreted as an object of blob/D ′′ ⊂ D(blob).
Let blob be the category blob with a terminal object ∅ formally added. In this par-

ticular case, ∅ can be viewed as the empty configuration of blobs, whence the notation.
Inclusion (12) describes the tautological operadic category Blob := T(blob) as the sub-
category of Blob := D(blob) whose objects are inclusions i ′ : D ′ ←↩ D , where D is
allowed to be empty. If this is so, we identify i ′ with D ′ ∈ blob. Morphisms of Blob then
arise as diagrams in (48) with possibly empty D .

Every system of fields C in Definition 83 leads to the decorated version blob(C) of the
operadic category blob. Its objects are pairs (D; c) consisting of blob configurations D in
M and of a field c ∈ C(∂D). Morphisms (D ′; c′) → (D ′′; c′′) are inclusions D ′ ←↩ D ′′ of
blob configurations subject to the condition:

if the blob configurations D ′ and D ′′ share a common blob D, then c′|∂D = c′′|∂D .
We will tacitly assume that all inclusions of decorated blobs satisfy the above condition.

Denoting by blob(C) the category blob(C) extended by the empty blob, the tautological
operadic category Blob(C) := T(blob(C)) becomes the full subcategory of Blob(C) :=
D(blob(C)) whose objects are ‘extended’ morphisms i ′ : (D ′; c′) ←↩ (D; c) in blob(C)
with D allowed to be empty, and morphisms the diagrams

(D ′; c′) (D ′′; c′′)

(D; c)

i ′′i ′
(49)

with D allowed to be empty.
It turns out that Blob(C) is the partial operadic Grothendieck construction, in the sense

of Sect. 4, over its un-decorated version. Explicitly

Blob(C) ∼=
∫

Blob
S, (50)

where S is the following partial pseudo-unital Blob-operad in Set. The component of S
corresponding to D ′ ←↩ D ∈ Blob is the set C(∂D ′ ∪ ∂D). We denote this component
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by S

(
D ′
D

)
. The partial composition

γ : S
(
D ′
D ′′

)
× S

(
D ′′
D

)
−→ S

(
D ′
D

)
(51)

associated to the morphism in (49) is defined for the pairs (x, y) of fields

x ∈ C(∂D ′ ∪ ∂D ′′) = S

(
D ′
D ′′

)
and y ∈ C(∂D ′′ ∪ ∂D) = S

(
D ′′
D

)

such that
x |∂D ′′ = y|∂D ′′ (52)

in which case

γ (x, y) := x |∂D ′ ∪ y|∂D ∈ C(∂D ′ ∪ ∂D) = S

(
D ′
D

)
.

Let T ∈ Blob be the inclusion D ′ ←↩ D . The fiber UT of the identity T → T is the
inclusion D ′ ←↩ D ′. By definition,

S(T ) = C(∂D ′ ∪ ∂D) and S(UT ) = C(∂D ′).

Thepseudo-unit et in (28) associated to a field t ∈ S(T ) is the restriction et := t |∂D ′ ∈ S(UT ).

Proposition 87 The isomorphism (50) holds for the partial pseudo-unital operad S defined
above. The natural projection Blob(C) → Blob that forgets the decorating fields is thus a
partial discrete operadic Grothendieck fibration.

The proposition is easy to check. The subspace L( f ) in (29) associated to the partial
discrete operadic Grothendieck fibration Blob(C) → Blob equals

L( f ) = {
(ε, s) ∈ C(∂D ′ ∪ ∂D ′′) × C(∂D ∪ ∂D ′′)

∣∣ ε|∂D ′′ = s|∂D ′′
}

when f is the morphism (49).
We will also need modules arising from blobs and fields. Let us denote by m the left

blob-module with one object M and the unique arrow M → D for each configurationD of
blobs in M. In the terminology of Example 48, m is the chaotic module Chaos

({M},blob)
.

Likewise, let m := Chaos
({M},blob)

be the left blob-module with one object M and
one arrow M → D for each configuration D of blobs, plus one arrow M → ∅.

Referring to Example 57, we introduce the tautological operadic Blob-module M :=
Tblob(m). It is, by the obvious analog of the inclusion (12), the operadic submodule of the
Blob-module M := Dblob(m). Objects of M appear in M as inclusions M ←↩ D of blob
configurations, where D might be empty, and the diagram

M D ′

D

i ′i

in M represents an arrow from M ←↩ D ∈ M to D ′ ←↩ D ∈ Blob with fiber M ←↩ D ′ ∈ M.
In the above diagram, D is again allowed to be empty.

Every system of fields in Definition 83 gives rise to the decorated versions of the above
modules. Namely, we have the left blob(C)-module m(C)with single object the pair (M; b),
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where b ∈ C(∂M) is the fixed boundary condition. By definition, m(C) has one arrow
(M; b) → (D; c) for each configuration (D; c) of decorated blobs such that D ⊂ M̊. If
D consists of a single blob D and M = D, then the arrow (M; b) → (D; c) exists only if
and only if b = c. Thus m(C) is a chaotic module unless M is a ball.

Letm(C)be the leftblob(C)-module obtained fromm(C)by addingone arrow (M; b) → ∅

for each (M; b) ∈ m(C). The Blob(C)-module M(C) := TBlob(C)(m(C)) is then a natural
submodule of M(C) := Dblob(C)(m(C)) whose objects are inclusions (M; b) ←↩ (D; c)
where D is allowed to be empty.

Lemma 88 All objects of M(C) that have the form (M; b) → ∅ are rigid in the sense of
Definition 70 and satisfy (P1)–(P2) on page 51. On the contrary, none of the objects of M(C)
is rigid and none of them satisfies (P1)–(P2).

Notice that (M; b) → ∅ is the image of (M; b) under the natural inclusion M(C) ↪→ M(C).
Thus (M; b) becomes rigid and satisfying (P1)–(P2) when considered as an object of M(C).
Therefore M(C) is a kind of completion of M(C), whence the notation.

Proof of Lemma 88 The object (M; b) → ∅ of M(C) has the desired properties for 
 :=
∅ → ∅. The second part of the lemma is easy to check. ��

Assume, as in the previous section, that the fields on codimension-zero submanifolds of
M are linearly enriched. We are going to define a Blob(C)-operad F with values in R-Mod
as follows. If D and D ′ are nonempty blob configurations, we put

F

(
(D ′; c′)

(D; c)

)

:= {
f ∈ C(D ′ \ D̊)

∣∣ f |∂D = c, f |∂D ′ = c′}.

The definition is completed by setting

F

(
(D; c)

∅

)

:= U(D; c),

where U(D; c) ⊂ C(D; c) is the subspace of local relations, cf. Definition 85, that restrict to
c at ∂D . Finally,

F

( ∅
∅

)

:= R, the ground ring.

Thus F is composed of fields that extend the given ones on the boundary. The structure
operation

F

(
(D ′; c′)

(D ′′; c′′)

)

⊗ F

(
(D ′′; c′′)

(D; c)

)

−→ F

(
(D ′; c′)

(D; c)

)

associated to the morphism in (49) is given by the glueing of fields along ∂D ′′. The operad
F is unital, with the units

c ∈ F

(
(D; c)

(D; c)

)

if D �= ∅, and 1 ∈ F

( ∅
∅

)

.
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We will also use the Blob(C)-operad F defined as the restriction of the Blob(C)-operad F
along the inclusion Blob(C) ↪→ Blob(C). We define an F-moduleM by

M

(
(M; b)

(D; c)

)

:= {
f ∈ C(M \ D̊)

∣
∣ f |∂D = c, f |∂M = b

}

if D �= ∅, and

M

(
(M; b)

∅

)

:= C(M; b).

Denote finally byM theF-module which is the restriction, cf. Definition 61, of theF-module
M along the pair (ι, j) : (Blob(C),M(C)) → (Blob(C),M(C)) of the natural inclusions.

Referring to Definition 76, we will consider for a fixed field b on the boundary of M two
augmented complexes, namely

β∗(F,M)
(
(M; b) → ∅

) −→ C(M; b) and β∗(F,M)(M; b) −→ C(M; b).
By the functoriality of Proposition 82, the pair (ι, j) induces the commutative diagram

β∗(F,M)(M; b) C(M; b)

β∗(F,M)
(
(M; b) → ∅

)
C(M; b)

of augmented complexes. The next theorem follows from Theorem A, Lemma 88 and an
easy computation.

TheoremB The augmented complex β∗(F,M)
(
(M; b) → ∅

) → C(M; b) is a component

of an acyclic resolution of M via unital free F-modules. In particular

H0
(
β∗(F,M)

(
(M; b) → ∅)

) ∼= C(M; b).
The complexβ∗(F,M)(M; b) → C(M; b) resolves the skeinmodule inDefinition 86, namely

H−1
(
β∗(F,M)(M; b) → C(M; b)) ∼= A(M; b).

An obvious similar statement holds also for the normalized bar construction.

The subscript −1 of H refers to the homology at C(M; b). In the next section we prove
that the complex β∗(F,M)(M; b) → C(M; b) is quasi-isomorphic, but not isomorphic(!),
to the blob complex introduced in [14].

Having in mind the comparison with other ‘blob complexes’ in the next section, we
describe the complex β∗(F,M)(M; b)more explicitly. The corresponding towers in (40) are
in this particular situation the same as the towers of admissible inclusions

TM : (D0; c0) ι0

(D1; c1) ι1

(D2; c2) ι2 · · · ιn−1

(Dn; cn) ι
(M; b) (53)

of decorated blob configurations.
For 0 ≤ k ≤ n−1 and D ∈ Dk+1 denote by Dk

D the sub-configuration of Dk
D of blobs

which are subsets of D, i.e.

Dk
D := {

D′ ∈ Dk | D′ ⊂ D
}
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with the order induced from Dk . Denote also by (Dk
D, c

k
D) the configuration Dk

D with the
decoration on the boundary inherited from Dk . The product in the right hand side of (41)
then equals

⊗

D∈D 0

U(D; cD)⊗
n−1⊗

k=0

{ ⊗

D∈D k+1

D k
D �=∅

C
(
D\D̊k

D; cD�ckD
)⊗

⊗

D∈D k+1

D k
D=∅

U(D; cD)
}

⊗C(M\D̊n; b�cn).

(54)
Since all inclusions in (53) are admissible, if Dk

D = (D), then cD = ckD and thus in (54)

C
(
D \ D̊k

D; cD � ckD
) = Span(c).

An analogous formula for the piece B∗(F,M)(M; b) of the normalized bar construction in
Definition 78 can be obtained by restricting in (54) the first tensor product in the curly braces
to D ∈ Dk+1 such that Dk

D �= (D).
Tower (53) determines the planar rooted tree TM with n+2 levels. Its root is at level zero,

level � has one vertex for each blob D ∈ Dn−�+1, 1 ≤ � ≤ n+1. There is one oriented edge
D′ → D for each pair (D′, D) with D ∈ Dk+1 and D′ ∈ Dk

D . Since blob configurations are
linearly ordered sets by definition, the set of input edges of each vertex is linearly ordered
too, so TM is planar, cf. [3, Example 4.9]. We invite the reader to draw a picture.

The product (54) is thus the space of all vertex-decorations of TM such that the root is
decorated by the fields on M, the twigs (= the vertices with no input edges) by the local
relations, and the remaining vertices by the fields on the blob complements, all subject to the
matching of the fields on the boundaries. This description will play an important rôle in the
next section.

Notation recall

Operadic categories:

blob the category opposite to the category of blob configurations and
their inclusions

blob the category blob extended by the empty configuration
Blob the tautological operadic category T(blob) associated to blob
Blob the operadic category D(blob)

blob(C),blob(C),
Blob(C),Blob(C)

the C-decorated versions of the above categories

Operadic modules:

m the chaotic left blob-module Chaos({M},blob)with one object
M

m the chaotic left blob-module Chaos({M},blob)with one object
M

M the tautological Blob-module Tblob(m) associated to m
M the Blob-module Dblob(m)
m(C), m(C), M(C), M(C) the C-decorated versions of the above modules

Operads and their modules

F the Blob(C)-operad of fields
F the restriction of F to Blob(C)
M the F-module of fields
M the F-module defined as the restriction ofM to M(C)
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Fig. 1 A piece of the colored
operad Fc—a schematic picture
of a ‘punctured blob’

M

D1

D2

D3

D

cc1

c2

c3

10 Blobs via Colored Operads, and Comparison Theorems

The assumptions about the base manifold, blobs, fields, local relations &c., are the same as
in Sect. 9. We start by showing that these data determine a traditional R-linear unital colored
operad Fc, cf. [10, Section 2] for the definition of colored operads. Operad modules were
introduced in [11, Definition 1.3], cf. also more recent [5, Subsections 2.1.5–6].

Colored operads require colors. In our case, colors will be pairs (D, c) consisting of a
blob D in M with a field c ∈ C(∂D) on its boundary. Suppose that D = {D1, . . . , Dr } is a
configuration of blobs in D as in Definition 84, and r ≥ 2. Then

Fc

(
(D, c)

(D1, c1) · · · (Dr , cr )

)
:= C

(
D \

r⋃

i=1

D̊i ; c � c1 � · · · � cr
)
, (55)

the span of fields in C(D \ D̊) that restrict to the field c� c1 � · · · � cr on ∂D∪ ∂D , cf. Fig. 1.
To define the component

Fc

(
(D, c)
(D′, c′)

)
, (56)

we distinguish two cases. If D′ ⊂ D̊, then (56) equals C(D \ D̊′; c � c′) as expected. If
D = D′, we moreover require that c = c′, and then

Fc

(
(D, c)
(D, c)

)
:= Span({c}),

the R-linear span of the one-point set {c}. If r = 0, we define

Fc

(
(D, c)

∅
)

:= U(D; c),

the space of local relations. They thus appear as operations with no input and one output,
that is, the ‘constants.’
Warning. The symbol ‘∅’ in the above display is not an input color, but indicates that the set
of inputs is empty.

Proposition 89 The structure Fc defined above is a unital colored R-linear operad.
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Proof Let x ∈ Fc

(
(D; c)

(D1; c1) · · · (Dr ; cr )
)
and xi ∈ Fc

(
(Di ; ci )

(Di
1; ci1) · · · (Di

ki
; ciki )

)
, 1 ≤ i ≤ r .

Then the operadic composite

x(x1, . . . , xn) ∈ Fc

(
(D, c)

(D1
1; c11) · · · (D1

k1
; c1k1) · · · (Dr

1; cr1) · · · (Dr
kr

; crkr )
)

(57)

is the field obtained by glueing the fields x, x1, . . . , xr along the boundaries of the balls
D1, . . . , Dr . The color-matching guarantees that this glueing is possible. The image of the
glueing

Fc

(
(D; c)

(D1; c1) · · · (Dr ; cr )
)

⊗ Fc

(
(D1, c1)∅

)
⊗ · · · ⊗ Fc

(
(Dr , cr )∅

)
−→ Fc

(
(D, c)

∅
)

consists of local relations as expected due to the ideal property of Definition 85. The operad

axioms are immediately clear, including the unit property of c ∈ Fc

(
(D, c)
(D, c)

)
. ��

Fields on the base manifold M that restrict to a given b ∈ C(∂M) form a left Fc-module
Mc with the components

Mc
(
(D1, c1) · · · (Dr , cr )

) := C
(
M \

r⋃

i=1

D̊i ; c1 � · · · � cr � b
)
,

with the left Fc-action assigning to each m ∈ Mc
(
(D1, c1) · · · (Dr , cr )

)
and to xi ’s as in the

proof of Proposition 89 the element

m(x1, . . . , xn) ∈ Mc
(
(D1

1; c11) · · · (D1
k1; c1k1) · · · (Dr

1; cr1) · · · (Dr
kr ; crkr )

)
,

given by the glueing of fields as before. In the rest of this section, by ‘colors’ we mean the
colors used in the definition of the operad Fc and its module Mc.

TheoperadFc and itsmoduleMc canbeused towrite formula (54) forβ∗(F,M)(M; b) and
for its normalized modification B∗(F,M)(M; b) in a nice compact form. Given D ∈ Dk+1,
denote

(Dk
D, c

k
D) = (

(D1
D, c

1
D), . . . , (D

iD
D , ciDD )

)
and Dn = (

(D1
n, c

1
n), . . . , (D

in
n , cinn )

)
.

The right hand side of (54) then becomes

⊗

D∈D 0

Fc

(
(D; cD)∅

)
⊗

n+1⊗

k=0

⊗

D∈D k+1

Fc

(
(D; cD)

(D1
D, c

1
D), . . . , (D

iD
D , ciDD )

)

⊗Mc
(
(D1

n, c
1
n), . . . , (D

in
n , cinn )

)
. (58)

Notice that the two tensor products in the curly brackets of (54) have been absorbed by one
tensor product, thanks to the convenient definition of the operadFc. The normalized variant is
obtained by assuming that in the ‘big’ tensor product either iD ≥ 2, or iD = 1 but D1

D �= D.
As in the paragraph following formula (54) we interpret the product (58) as the space of

all vertex-decorations of a planar rooted tree with n + 2 levels and edges colored by fields,
such that the root is decorated by Mc and the other vertices with Fc in such a way that the
output and the inputs of the decorations match the colors of the adjacent edges.

Comparing the above with the material in [5, Subsection 4.3.2] we identify (58) with the
constant part of the colored version of Fresse’s simplicial bar construction C∗(Fc,Fc,Mc),
resp. with its normalization N∗(Fc,Fc,Mc). We therefore have

123



Operads, Operadic Categories and the Blob Complex Page 45 of 49     6 

Proposition 90 There are natural isomorphisms of chain complexes

β∗(F,M)(M; b) ∼= C∗(Fc,Fc,Mc)(∅) and B∗(F,M)(M; b) ∼= N∗(Fc,Fc,Mc)(∅) (59)

compatible with the augmentations.

Proposition 90 provides a bridge between blob complexes viewed from the perspective
of unary operadic categories and blob complexes based on colored operads. Fact 4.1.7 of
[5] applied to P = Fc and R = Mc may suggest that the complexes C∗(Fc,Fc,Mc) and
N∗(Fc,Fc,Mc) are acyclic in positive dimensions. This is however not true, because the
crucial assumption of connectivity required by Fact 4.1.7 is violated in our situation.

B. Fresse introduced in [5, Section 4] the differential bar construction B∗(L, P, R) of an
augmented P-operad with coefficients in a right P-module L and a left P-module R. We
will use the obvious colored version of his construction with P = Fc, L = Mc and R = Fc.
Let Ic be the colored operad whose only nontrivial component is

Ic

(
(D, c)
(D; c)

)
:= Span({c}),

the R-linear span of the field {c}. The operad of fields Fc is augmented by the obvious
morphism ε : Fc → Ic of colored operads. We denote by F̂c := Ker(ε) the augmentation
ideal.

Let B(Fc) be the cofree conilpotent cooperad generated by the component-wise suspension
of the colored collection F̂c. Mimicking Fresse’s definition we consider

B∗(Mc,Fc,Fc) := Mc ◦ B(Fc) ◦ Fc, (60)

where ◦ is the straightforward colored version of the composition product [5, §1.3.5]. The
iterated product (60) bears the differential given by the operad structure of Fc and the right
Fc-action onMc. The differential bar construction B∗(Mc,Fc,Fc) is thus a colored collection
with components

B∗(Mc,Fc,Fc)
(
(D1, c1) · · · (Dr , cr )

)
.

We will be particularly interested in the component with r = 0 (i.e. ‘no inputs’), which we
denote by B∗(Mc,Fc,Fc)(∅).

The elements of B∗(Mc,Fc,Fc)(∅) can be visualized as finite linear combinations of
forests growing from Mc, whose trees have forks (= vertices) decorated by the fields in F̂c,
branches (= edges) colored by blobs with fields on the boundaries, and twigs (= leaves) by
the fields in the local relations, cf. Fig. 2. We must however be careful, since the fields (=
decorations of the vertices) are assigned degree +1, cf. (60), so we are in fact dealing with
the equivalence classes of forests in Fig. 2 with vertices linearly ordered compatibly with
the partial order given by the distance from the soil (= root). We identify a forest F ′ with the
forest ε · F ′′, where ε ∈ {+1,−1} is the signum of the permutation that brings the order of
vertices of F ′ to the order of vertices of F ′′. The differential contracts the edges, one at a
time, and decorates the new vertex thus created by the glued field. Notice that this description
is practically identical with the definition of the blob complex in [14].

In the ‘forest representation’ of B∗(Mc,Fc,Fc)(∅), the homological degree is the number
of vertices. In particular,

B0(Mc,Fc,Fc)(∅) ∼=
⊕

(D;c)
Mc

(
(D; c)) ⊗ Fc

(
(D; c)

∅
)

=
⊕

(D;c)
C(M \ D̊; c � b) ⊗ U(D; c)
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Fig. 2 Viewing elements of
B∗(Mc,Fc, Ic)(∅) as forests.
Internal vertices are decorated by
fields on punctured blobs, leaves
by generators of local relations,
the soil by a field on M

Fig. 3 The initial part of the
augmented bar construction

−←−← ⊕

B1(Mc,Fc, Ic)(∅)Fc(M) B0(Mc,Fc, Ic)(∅)

with the augmentation map ε : B0(Mc,Fc,Fc)(∅) → C(M; b) given by gluing the fields in
C(M \ D̊; c � b) with the fields from U(D, c).

Example 91 Figure 3 symbolizes the types of terms in the initial part

C(M; b) ε←− B0(Mc,Fc,Fc)(∅) ∂←− B1(Mc,Fc,Fc)(∅) ∂←− · · ·
of the augmented bar construction. This should be compared to the explicit description of
the initial terms of the blob complex given on pages 1500–1502 of [14].

We finally arrive at

Proposition 92 The blob complex B(M,C) of [14, Section 3] is isomorphic to the piece

C(M; b) ε← B∗(Mc,Fc,Fc)(∅) (61)

of the augmented differential bar construction.

Proof Comparing the respective definitions, we easily construct the required isomorphism

C(M; b) B0(Mc,Fc,Fc)(∅)ε

∼=

B1(Mc,Fc,Fc)(∅)∂

∼=

B2(Mc,Fc,Fc)(∅)∂

∼=

· · ·∂

B0(M,C) B1(M,C)
∂

B2(M,C)
∂

B3(M,C)
∂ · · ·∂

of chain complexes. Notice the degree shift. ��
Recall that Fresse introduced, for a ‘traditional’ operad P , a right P-module L and a left

module R, the levelization morphism

φ∗(L, P, R) : B∗(L, P, R) → N∗(L, P, R)

from the differential bar construction to the normalization of the simplicial bar construc-
tion. While the elements of B∗(L, P, R) are represented by decorated trees, the elements
of N∗(L, P, R) are decorated trees equipped with levels. The chain map φ∗(L, P, R) sends
a given decorated tree to the sum, with appropriate signs, of all decorated trees with levels
whose underlying non-leveled decorated tree equals the given one. Fresse then proved in
[5, Theorem 4.1.8] that φ∗(L, P, R) is a quasi-isomorphism. Although he assumed simple
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connectivity, his theorem holds without this assumption, which expresses the folklore fact
that the space of levels of a given tree is a contractible groupoid, cf. also [7]. Combining
this with isomorphisms (59) and (61) results in the following comparison between the orig-
inal blob complex B∗(M,C) defined in [15, Section 3] and the normalized bar resolution
B∗(F,M)(M; b), cf. Definition 78.

TheoremC The levelization morphism of [5, Theorem 4.1.8] induces a quasi-isomorphism

B∗+1(M,C)

�∗ ∼

C(M; b)

B∗(F,M)(M; b) C(M; b)
of augmented chain complexes.

The colored operadFc is a rightmodule over itself, so onemay also consider B∗(Fc,Fc,Fc)
instead of B∗(Mc,Fc,Fc). Since the pieces ofFc possess also the output color, the components
of B∗(Fc,Fc,Fc) are

B∗(Fc,Fc,Fc)
(

(D; c)
(D1; c1) · · · (Dr ; cr )

)
. (62)

Although the connectivity assumption of [5, Lemma 4.1.3] is not fulfilled, a simple explicit
contracting homotopy which was in fact constructed in the proof of [15, Proposition 3.2.1]
shows that (62) is acyclic in positive dimensions for each choice of colors. If the basemanifold
M is isomorphic to a ball D, we easily verify that

B(Mc,Fc, Ic) ∼=
⊕

c∈C(∂D)

B(Fc,Fc, Ic)

(
(M; b)

∅
)
.

The acyclicity of (62) combined with Proposition 92 gives

Corollary 93 (Corollary 3.2.2 of [14]) If M is isomorphic to a (d+1)-dimensional ball, then
the chain complex B(M,C) is contractible.

Conclusions

Chain complexes featured in Part 2 together with the connecting maps are summarized in
Fig. 4. In that figure:

– B∗+1(M,C) in row (i) is the original blob complex of [15],
– B∗(Mc,Fc,Fc)(∅) in row (ii) is the piece of Fresse’s bar construction,
– C∗(Mc,Fc,Fc)(∅) in row (iii) is the piece of Fresse’s simplicial bar construction,
– N∗(Mc,Fc,Fc)(∅) in row (iii) is the normalization of C∗(Mc,Fc,Fc)(∅) ,
– β∗(F,M)(M; b) in row (iv) is the piece of the un-normalized bar resolution in Defini-

tion 76,
– B∗(F,M)(M; b) in row (iv) is the normalization of β∗(F,M)(M; b), and
– the items in row (v) are as in row (iv) but this time applied on F andM.

The vertical map φ∗ is Fresse’s levelization morphism, �∗ is the map in Theorem C. The
remaining maps are either natural isomorphisms, or augmentations, or inclusions, or projec-
tions. The vertical isomorphism between row (i) and (ii) comes from Proposition 92, the two
vertical isomorphism between rows (iii) and (iv) are that of Proposition 90.
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Fig. 4 Sundry chain complexes and their maps
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