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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 79 (2006), pp. 139-151 

TRANSFERRING A^ (STRONGLY HOMOTOPY ASSOCIATIVE) 
STRUCTURES 

MARTIN MARKL 

ABSTRACT. The aim of this simple-minded "applied" note is to give explicit formulas 
for transfers of Aoo-structures and related maps and homotopies in the most easy 
situation in which these transfers exist. The existence of these transfers follows, in 
characteristic zero, from a general theory developed by the author in [5]. The easier 
half of our formulas was already known to Kontsevich-Soibelman and Merkulov [2, 9] 
who derived them, without explicit signs, under slightly stronger assumptions than 
those made in this note. 

1. INTRODUCTION AND RESULTS 

We will work in the category of (left) modules over an arbitrary commutative unital 
ring R. Therefore, by a chain complex we will understand a chain complex of R-
modules, by a linear map an i?-linear map, etc In particular, results of this paper 
apply to the category of abelian groups and to the category of vector spaces over a 
field of arbitrary characteristic Let us consider the following situation. 

Situation 1. We are given chain complexes (V,dy), (W.dw) and chain maps / : 
(V, cV) —> (W,dw), g ' (W,dw) -» (V,dy) such that the composition gf is chain 
homotopic to the identity ly : V —> V, via a chain-homotopy h. 

A compact way to express Situation 1 is to say that g : (W,dw) —• (V, LV) 1s a left 
chain-homotopy inverse of / : (V, cV) ~> (W,dw)- Our assumptions are in particular 
satisfied when the complexes (V, dy) and (IV, cV) are chain homotopy equivalent. In 
this note we address the following 

Problem 2. Suppose we are given an Ax>-structure fi = (1^2,^3, • • •) on (V,dy). In 
Situation 1, give explicit formulas for the following objects: 

(i) an ^co-structure v = (v2, ^3,...) on (IV, dw), 
(ii) an 4,0-map <p = (y>i,v?2,...) : (V, 9 , ^ , ^ 3 , • • •) -+ (W,d,v2)vz, • • •), 

(iii) an A^-map j> = W>i,Vfy...) : W 5 , ?y2,̂ 3, • • •) -* (V,d,fi2, Us, • • •), and 
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(iv) an i4oo-homotopy H = (Hi, H2,.. •) between tpip and l y 

such that (p extends / , tp extends g and H extends h or, expressed more formally, 

<Pi = / , i]\ = 9 and Hx = h. 

Our strategy will be to construct suitable degree n — 2 maps {pn : V®n —• V}n>2 

(the p-kernels) and suitable degree n - 1 maps {gn : V®71 —> V}n>i (the q-kernels) 
such that .vn, <pn, ^ n and Hn defined by the following Anzatz: 

(1) i/n:= fopnog®n, <pn:=foqn, ipn := h o pn o g®n and Hn:=hoqn 

answer Problem 2. We give both inductive (formulas (7) and (8) in Section 3) and 
non-inductive (Propositions 6 and *7 of Section 4) formulas for the kernels. 

Remark 3. We already mentioned in the Abstract that the formulas for vn and ^ n 

were given, without explicit signs, in [2] (non-inductive formulas) and also in [9] (induc­
tive formulas). Kontsevich and Soibelman [2] assumed (in our notation) that (W,dw) 
was a subcomplex of (V,dy), / : (V,dy) —• (W,dw) a projection, g : (W,dw) *-» 
(V,dy) the inclusion and, of course, that gf was chain homotopic to the identity l y . 
Merkulov [9] made similar assumptions and he moreover assumed that (V, <9y,/z) was 
an ordinary dg-associative algebra, that is, fin = 0 for n > 3. Our formulas for ipn and 
Hn are, to our best knowledge, new ones. A surprising interpretation of the p-kernel 
in terms of homotopy operads is suggested by [3]. 

Remark 4. In principle, the transfer demanded in Problem 2 could also be obtained by 
applying the Coalgebra Perturbation Lemma of Huebschmann and Kadeishvili [1, 2.1+] 
to the induced maps Tc([f) : TC([V) -> Tc([ W) and Tc(|g) : TC([W) -> T c ( | V). 
But to apply this lemma, one needs to assume that fg = lw and, moreover, also the 
annihilation properties (also called the side conditions, see [7] for an analysis of these 
conditions) 

/ o h = 0, hog = 0 and hoh = 0\ 

The formulas of [1] in fact also use the kernels, though the authors did not make this 
concept explicit. The role of the p-kernel is played by the summation ^ n > o ( ^ 0 ^ ) n an(^ 
the q-kernel is represented by Y2n>o(^ ° ^)n> w h e r e S^ is the square-zero coderivation 
of Tc([ V) corresponding to the Aoo-structure /x and h is the extension of h as a 
coderivation homotopy, see [1, Perturbation Lemma 1.1]. It can be shown that, under 
the conditions formulated in the previous paragraph, these kernels coincide with the 
kernels used in the present paper. Without these conditions, the formulas of [1] are 
wrong. 

This work was stimulated by E. Getzler who indicated that there might be some 
need for explicit transfers. The j4oo-case discussed here in fact turned out to be more 
elementary than we expected, which we attribute to the existence of a canonical non-U 
polarization [6, Remark 25]. 

Acknowledgment. We are indebted to our wife Kvetoslava for sketching out the 
carp's head after Figure 4. 
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2. CONVENTIONS 

In this unbelievably boring section we set up sign conventions used in this note. 
The signs in the axioms of jloo-algebras and related objects are unique up to an 
action of the infinite product X™C2 of the cyclic group C2 = {-1,1}. For example, 
(62,63, • • •) G C2 x C2 x • • • acts on the signs in Axiom (2) below by 

( ^ 2 , ^ 3 , . . . ) ' — • ( 6 2 ^ 2 , 6 3 ^ 3 , . . - ) . 

The sign convention used here is compatible with the one of [4]. It differs from the 
original one of Jim Stasheff [10] by the action, in Axiom (2), of (e2, e3,...) with en = 
(_l)*(n-i)/2 = f ®™0 |®n . where |(resp. [) denotes the suspension (resp. desuspension) 
operator. 

We are going to recall axioms for an Aoo-structure \i = (^2,^3, * • *) ° n {V,dy) 
(Axiom (2)), an .A^-structure (^2,^3,...) on {W,dw) (Axiom (3)), for an A^ map 
ip : (V,CV,AO ~~> (W,ciV,i/) (Axiom (4)), for an Aoo map $ : (W,dw,v) —• (V,CV,AO 

(Axiom (5)) and for an ^oo-homotopy H between the composition xl>ip and ly (Ax­
iom (6)). In Axioms (2) and (3), /in : V®n -+ V and vn : W®n - • W are n-multilinear 
degree n - 2 maps, in Axioms (4) and (5), (pn : V®n —• W and -0n : W®n —• V are 
n-multilinear maps of degree n - 1, and finally in Axiom (6), Hn : V®n —• V is an 
n-multilinear degree n map. Here are the axioms in their full glory: 

(2) í(/i„) := ^ ( - íyC+^/Xfc t l® ' - 1 ® m ® I®*"*), n > 2, 
A 

(3) 5(un) := J^i-lf'+^M^1 ®"i® -**"')> n Ž 2, 
A 

l)*(ri r * W « ® •••«¥>-*)+ 

).(.+D+«v,fc(1®<-i ® w ® !«*-•), n > i, 

L)*(i.™.'-*Vfc(^ri«8»...®^rJ+ 

1).(.+i)+n^t(l®i-i g , , ^^ i®*-*), n > 1, and 

l)n+r'+*(ri--r'Vfc((^v)r1 ® • • -® M0-,-i ®J-r.®-®fc-i) 

L)»+i(i+1)//fc(l®i-1®w®ll®fc-i) + ( ^ ) n - ( l v ) „ , n > 1. 

In the above display, 

(4) %n) :=-£(-! 

-ĽИ 
A 

(5) 
ß 

-D-1 

(6) ć(Яn) : = - £ ( - ! 
(7 

+B-1 

c 

= {k,l\k + l = n + l, M > 2 , l<i<k}> 
= {fc, r i , . . . , rk I 2 < k < n, n , . . . , rfc > 1, n + • • • + rk = n}, 

= {fc,i,r1,...,ri I 2 < fc < n, 1 < i < fc, Ti,...,^ > 1, Ti + • • • + r{ + A; - i = n}, 
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and, for integers U\,... ,us, we denoted 

tf(i_i,..., __,):= ^T ua(up + l). 
l<a<0<s 

The symbols 5 in the left hand sides denote the induced differentials in the correspond­
ing complex of multilinear maps. To interpret the above axioms in terms of elements, 
one must of course use the Koszul sign convention. For example, Axiom (2) evaluated 
at elements v\,..., vn E V, reads 

dVfin(vu . . . ,vn) - ] T (-l)n+^l+-"+lw '^l/in(i;1,..., Vi-i,cV(vi), v<+i , . . . , 0 
\<i<n 

••= Y^(-l)i{l+1)+n+i{lvil+"^"'Vfc^l,• • • ,Vi-l,/ . .K• • • .fli+.-l),WW, • • -,vn), 
A 

which is [4, Equation (1)]. If Tc(—) denotes the tensor coalgebra functor, then 
• n is the same as a degree —1 square-zero coderivation 5^ of Tc([ V) whose 

linear part is cV, 
• v is the same as a degree —1 square-zero coderivation 5U of Tc([ W) with linear 

part dw, 
• ip is the same as a dg-algebra homomorphism F : (Tc([ V), 6^) —• (Tc([ W), _v), 
• tp is the same as a dg-algebra homomorphism G : (Tc([ W), 5U) —• (Tc( | V), c^), 

and 
• H is the same as a coderivation homotopy between GF and the identity map 

ofTcQV). 

3. INDUCTIVE FORMULAS 

In this section we give inductive formulas for the kernels. Let us start with the 
p-kernel. We set p2 := \x2 and 

(7) Vn := D-1)* (n ,"" r*W / l °Pn ® • • • ® /» °ft.J 
B 

with the formal convention that hpx = 1. For our inductive definition of the q-kernel 
we need the following notation: 

Pn = E ( " 1 ) " ( r i " "'^^(h opri ® • • • ® hopni ® i®»-«+i) 

where 

_9 := {k, n , . . . , n_i | 2 < k < n, i < k, n , . . . , r;_i > 1, 

n H h r<_i + k - i + 1 = n} , 

i is a fixed integer, 1 < i < n, and where we again put hpx = ly> We then define 
ql:=ly and, inductively 

(8) Qn = E ( - 1 ) n + r i + " ( r i ' - , r i H ( _ 7 / o _ri ® •' • ® (// o, r j - 1 ® hoqn ® 1°*- ') . 
c 

The first result of this note is: 

Theorem 5. Let {pn}n>2 and {qn}n>\ be defined inductively by (7) and (8). Then vn, 
<pn, $n and Hn determined by these pn andqn as in formula (1) solve Problem 2. 
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FIGURE 1. An element of P7. 

Proof. A straightforward but awfully technical induction shows that the kernels sat­
isfy: 

*(Pn) = E("1)W + 1 ) + nA(1 0 i '1 ® 9f oft ® I0*'*), n > 2, 

and 

<%n) = - E("1^(ri ,"" ,r*)ft^ °*i ® • ' • ® »/ ° « J + 
B 

- J](-l)i('+1)+nft(l®i"1 ® w ® I®*"*), n > 1. 
A 

It is then almost obvious that the above two equations imply Axioms (2)-(6) for i/n, 
ipn, t/!n and Hn defined by (1). • 

4. NON-INDUCTIVE FORMULAS 

In this section we give non-inductive formulas for the kernels. Our formulas will be 
based on the language of trees which we use as names for maps and their compositions. 
Formally this means that we work in a certain free operad, but we are not going to use 
this fancy language here. The terminology of trees is recalled in Section II.1.5 of [8]. 

Let Pn denote the set of planar directed trees with at least binary vertices (that is, 
all vertices have at least two incoming edges), with interior edges decorated by the 
symbol A, and n leaves. An example of such a tree is given in Figure 1. To each 
decorated tree T e Pn we assign a map FT : V®n —• V, by interpreting T as a "flow 
chart," with 6 denoting the homotopy h : V —• V and a vertex of arity (= the number 
of incoming edges) k denoting the map /i* : V®k —• V. For example, the tree T in 
Figure 1 gives the degree 5 map 

FT = fiz{h o JJ,2{1V ® h o ji2) ® l v ® h o /x3) : V®7 -> V 

which, evaluated at (a,b,c,d, e,/,p) e V®1', equals 

FT(a, 6, c, d, e, /,g) = (-l)M^(h o ii2(a, h o Li2(6, c)), d, h o Li3(e, / , g)). 

Finally, we assign to each tree T 6 Pn the sign #(T) as follows. For a vertex 
v e Vert(T) of arity k and 1 < i < fc, let r, be the number of legs (= leaves) e of T 
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FIGURE 2. A subtree of S used in the definition of the total order .<. 

such that the unique path from e to the root of T contains the z-th input edge of v. 
We then define t?T(v) := tf(n,..., rk) and 0(T) := EveVert(T) M^)-

For example, for the tree T in Figure 1 we have, at the vertex u of arity 3, T\ = 3, 
f2 = 1, r3 = 3, at the vertex v of arity 2, rx = 1, r2 = 2, at the vertex w of arity 3, 
ri = r2 = r3 = 1 and, at the vertex x of arity 2, r\ = r2 = 1. Therefore, modulo 2, 
0 r(u) = 3-2 + 4-4 = 0, tiT(v) = 1-3=1, tiT(w) = 1-2 + 2-2 = 0 and tfT(x) = 1-2 = 0, 
which gives, again mod 2, tf(T) = 1. We may finally formulate the following almost 
obvious: 

Proposition 6. The p-kernelpn : V®71 —> V, defined inductively by (7), can also be 
defined as 

pn := J^ (-1)*(T) • FT, for each n > 2. 
T€P„ 

Let us proceed to our non-inductive definition of the q-kernel based on a slightly 
more elaborate definition of a decoration of a planar tree. We need to observe first 
that each planar tree S admits a natural total order of its set of vertices Vert(S) 
determined in the following way. 

We say that a vertex u is below a vertex v if v lies on the (unique) directed path 
joining u with the root. This defines a partial order on the set of vertices of 5. It 
is easy to see that there exists precisely one total order < on the set Vert(S) which 
satisfies the following two conditions: 

(i) If u is below v, then u < v. 
(ii) Suppose S contains a subtree of the form shown in Figure 2 and 1 < i < k — 1. 

Then v{ and all vertices below vt are less, in the order <, than vi+\. 
See Figure 3 for an example of such an order. 

The next step is to redraw the tree in such a way that the vertices are placed into 
different levels, according to their order, and then draw horizontal lines slightly below 
the vertices, as illustrated in Figure 4. Now we decorate some (not necessary all) of 
the intersections of the horizontal lines with the edges of the tree with symbols y or 

^, according to the following rules: 
(i) Let X\,..., Xfc be the points at which a horizontal line intersects the edges of 

S, numbered from left to right. Then there is some 0 < s < k - 1 such that 
the points X\,..., xs are decorated by ^, xs+\ is decorated by 6 and the points 
xs+2,... ,xk are not decorated, 

(ii) Each edge of S is decorated at most once. 
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FIGURE 3. Ordering vertices of a planar tree. The vertices are num­
bered, from the biggest to the smallest one. 

FIGURE 4. Drawing horizontal lines. 

FIGURE 5. A decoration of the tree from the previous figure. 

(iii) Each internal edge of S is decorated. 

Condition (i) means that we may see the following pattern1 on the horizontal lines: 

Q t n i l l - l E.T 
with the case 8 = 0 (no black dot) allowed. 

A decoration of the tree from Figure 4 is shown in Figure 5. All possible decorations 
of the tree /!\ are shown in Figure 6. 

^ h i s should remind us about the time when this paper was finished - carp with potato salad is 
the most typical Czech Christmas dish. 
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FIGURE 6. All possible decorations of a tree. 

Let Qn be the set of all decorated, in the above sense, planar directed trees with at 
least binary vertices and n leaves. To each S G Qn we assign a map Gs : V®n —• V, 
by interpreting S as a "flow chart," with (j) denoting the homotopy h : V —• V, ^ 
denoting the composition g/, and a vertex of arity k the map jik : V'®*1 —• V". For 
example, the tree 5 in Figure 5 gives degree 6 map 

to{9f ° te{h o fi2(gf ®gf)®ho ^2(gf ®h))®ho /j3(/i ® I®2)) : V®7 -> V. 

Finally, we must define a sign £(S) of a tree S G Qn. The definition is more difficult 
than the definition of the sign $(T) of a tree T G Pn, because e(S) will depend also on 
the decoration, not only on the combinatorial type, of the tree S. 

To calculate e(S), we must first decompose S into trees Ti,...,Tfc representing 
summands of p-kernels, following the pattern of (8). The sign is then defined as 

k 

e(S) := n + n + t?(n, . . . , r{) + ^ 0(7}), 
I 

where Ti,..., r{ have the same meaning as in (8). Let us calculate, as an example, the 
sign of the decorated tree from Figure 5. The decomposition of this tree into trees 
from P is shown in Figure 7. In this figure, T\ is the decorated subtree with vertices 
u and v and T2 is the subtree with vertices a, b and c. The sign of S is then the sum 
e(S) := 7 + 3 + 1 • 4 + tf(Tx) + i/(T2) = 0 (mod 2). The following proposition then 
follows from boring combinatorics argument. 

Proposition 7. The q-kernelqn : V®n —> V, defined inductively by (8), can also be 
defined as 

9 n : = £ ( - l ) £ ( 5 ) - G s , for n > 2 , 
8€Q» 

and qi := ly for n = 1. 

5. WHY DO THE TRANSFERS EXIST 

As we already observed, if the basic ring R is a field of characteristic 0, the existence 
of transfers follows from a general theory developed in [5] - see "move (S)" on page 
141 of [5]. We want to make this statement more precise now. In this section we 
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FIGURE 7. Decomposing a tree into p-kernels. 

assume that the reader is familiar with colored operads which describe diagrams of 
algebras, see [5] again. The rest of the paper is independent of the material in this 
section. 

Let Vin be the 2-colored operad describing structures consisting of an associative 
multiplication p on a vector space V and linear maps of vector spaces / : V —• W, g : 
W —• V such that gf = ly. Let also Vout be the 2-colored operad describing diagrams 
consisting of an associative multiplication p on V, an associative multiplication v on 
W, and homomorphisms f : V —> W, g : W —• 17 of these associative algebras such 
that gf = ly. An explicit description of these operads can be found in Example 12 
of [5], where Vin was denoted V(S,D) and Vout was denoted Vs- Finally, let S : Vout —> 
Vin be the map defined by 

S(p) := p, S(f) := f, S(g) := g and S(v) := fp(g ® g). 

This well-defined map of colored operads represents a solution of the following "clas­
sical limit" of Problem 2. 

Problem 8. We are given two vector spaces V, W and linear maps / : V —> W, 
g : W —• V such that gf = ly (in other words, / : V <-• W is an inclusion and g 
its retraction). Given an associative algebra structure p : V ® V —• V on the vector 
space V, find an associative algebra structure v :W ®W -*W on W such that / and 
g became homomorphisms of associative algebras. 

Let Kin be the dg-operad representing the "input data" of our transfer problem 
for .<4oo-algebras, that is, diagrams consisting of an ^-structure p = (p2,pz,...) on 
(Vy dy), dg-maps / : (V, dy) —• (W, dw), g : (W, dw) —• (V, dy) and a chain homotopy 
h between gf and ly. Let pin : 1Zin —• Vin be the map of colored operad given by 

Pinito) •= P>, Pin(Hn) '= 0 for n > 3, pin(f) := / , pin(g) := g and pin(h) := 0. 

In the same vein, let 7loUt be the dg-operad representing a solution of our trans­
fer problem, that is, diagrams consisting of an -Aoo-structure /i = (ji2, p,^,...) on 
(V,dv), an .Aoo-structure v = (v2,v3,...) on (W,dw), .Aoo-maps ip = (ipi,(p2,...) : 
(V,d,fi) -> (W,d,v), rp = (^1,-02,. ••) • (W,d,v) -* (V,d,p) and an .Aoo-homotopy 
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H = (Hi, H2> • • •) between tyip and \y. Let pout : TZoUt —» 7£ut be the map defined by 

Amt(/42) := A*, Pout(Hn) := 0 for n > 3, Am*(̂ 2) := 1/, poutM := 0 for n > 3 , 

/-W(v>i) := / > Aut(<Pn) := 0 for n > 2, Awt W>i) := 9, Am* W>n) := 0 for n > 2, 

and Pout(Hn) := 0 for n > 1 . 

The following proposition follows from the methods of [5] and [6]. 

Proposition 9. The map pin : lZin —» Vin is a cofibrant resolution of the colored 
operad Vin and pout : 1ZoUt —> V0Ut is a cofibrant resolution of the colored operad Vout. 

It follows from [5, Lemma 20] that there exists a lift S : 1ZoUt —> 1Zin making the 
following diagram commutative: 

s 
'^out * '^in 

pout 

Each such lift 5 clearly provides a solution of Problem 2 while formulas (1) determine 
a specific lift of S. 

Observe that, very crucially, we work with algebras without units. It is straight­
forward to realize that the unital version of Problem 8 does not have an affirmative 
answer. Indeed, given a unit \y 6 V for A, we would be forced to define \w := /(1V)-
It is then easy to see that such 1^ is a unit for the transferred structure if and only 
if fg = Iw, that is, / and g are isomorphisms inverse to each other which we did not 
assume. This observation explains why our solution of Problem 2 which is, as we ex­
plained above, a lift of the classical Problem 8, works only for non-unital Ax,-algebras. 
Transfers of unital jloo-structures present much harder problem, see the analysis in [5]. 

6. SOME OTHER PROPERTIES OF THE TRANSFER 

In this section we analyze what happens if g is not just a left homotopy inverse of 
/ , but if / and g are chain homotopy equivalences inverse to each other. 

Let Aoo(V)d) denote the set of isomorphism classes (with respect to .Aoo-maps) of 
yloo-structures on a given chain complex (V, d). Suppose we are given chain maps 
/ : (V, dy) —• (W, dw), g : (W,dw) —• (V,dv) and a chain homotopy h between gf 
and ly. It can be easily shown that the first formula of (1) defines a set map 

Trf,g,n:A00(V,dy)->A00(W,dw). 

Suppose we are given also a chain homotopy / between fg and lw, that is, / and g 
are now fully fledged chain homotopy equivalences inverse to each other. Then one 
may as well consider the map 

Tr9,fJ : ^oo(W, dw) -> AooiV, dy). 

We found the following proposition surprising, because there is no relation between 
the homotopies h and /. 
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Proposition 10. Let f and g be chain homotopy equivalences, with chain homotopies 
h : gf = ly and I : fg = lw. Then both T r / ^ and Tr^/ are isomorphisms and 

Tr9,f,i = T r / ] ,h • 

Proof. Formulas (1) give an .^-structure v on {W,dw) together with an y^-map 
tp : {V,dy,v) —» {W,dw,n)- Let u s aPPly (1) once again, this time to construct an 
Axrstructure p, on {V,dv) together with an A^-map (p : {W,dw,v) -> {V,dv,ji), 
using g instead of / , / instead of g and / instead of h. We must prove that \i is 
isomorphic to \i. To this end, recall the following .Aoo-case of "move (M2)" of [5]. 

Proposition 11. Let {A,dA,£), {B,dB)f]) be A^-algebras and 0 = {0\,62,...) : 
{A,dA,£) —> {B,dB,r}) an A^-map. Suppose that C : {A,dA) —> {B,ds) is a chain 
map, homotopic to the linear part 6\ of 6. Then C can be extended into an A^-map 
C={CX = C,C2,...) : {A,dA,0 -> {B,dB,rj). 

Now observe that the linear part of the composition ip<p equals 11 y. Proposition 11 
then implies the existence of an Aoo-map C = ( ly,C2 , . . . ) : {V,dy,[i) —> (V,dy,p.) 
which is clearly an isomorphism. This finishes our proof of Proposition 10. Observe 
that the composition (ptp need not be an isomorphism, therefore the full force of 
Proposition 11 is necessary. • 

Let us consider again chain homotopy equivalences / and g, with chain homotopies 
h : gf = ly and I : fg = lw- Given an jloo-structure /z = (/x2,/i3,...) on {V,dy), 
let us construct, using formulas (1), an .Aoo-structure v = {vu v2,...) on {W, dw) and 
.Aoo-maps ip, x/> as before. A natural question is when such a situation gives rise to a 
"perfect" chain homotopy equivalence in the category of jloo-algebras. The following 
proposition follows from the methods of [7]. 

Proposition 12. The chain homotopy I can be extended into an A^-homotopy L be­
tween A^-maps ipi/> if the chain homotopy equivalence {f,g,h,l) extends into a strong 
homotopy equivalence in the sense of [7, Definition 1]. This, according to [7, Theo­
rem 11]. happens if and only if 

[fh — If] = 0 in Hi(Hom(y, W)) or, equivalently, 
(9) 

[gl-hg]=0 in H1{Hom{W,V)). 

If the i4oo structure /x = (/i2, /i3,...) on {V, dy) is generic enough, then the vanishing 
of the obstruction classes in (9) is also necessary for the existence of an extension of / 
into L. 

7. TWO OBSERVATIONS 

Transfers and polyhedra. The formulas for v, (p, t/> and H given in (1) are summa­
tions of monomials in the "initial data" \x2, n$, • • • , / , g, h with coefficients ±1. Ezra 
Getzler conjectured that these monomials might in fact correspond to cells of certain 
cell decompositions of the polyhedra governing our algebraic structures - Stasheff's 
associahedra [8, page 9] Kn, n > 2, and the multiplihedra [8, page 113] Ln, n > 2. 
For Kn, the decomposition induced by the p-kernel pn is given by taking the tubular 
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FIGURE 8. The decomposition of the associahedron K4 induced by p4. 
It consists of 10 squares and one pentagon. The squares adjacent to the 
vertices of K4 correspond to the five trees of P4 with two interior edges, 
the squares adjacent to the edges of K4 correspond to the five trees of 
P4 with one interior edge. The pentagon in the center of K4 corresponds 
to the corolla (tree with no interior edge) in P4. 

FIGURE 9. Decompositions of the multiplihedron L3. The left picture 
shows the decomposition of L3 into 3 squares corresponding to the terms 
of p3. The right picture shows the decomposition of the same multipli­
hedron into 10 squares corresponding to the terms of q3. 

neighborhood of dKn in the manifold-with-corners Kn, as illustrated for n = 4 in Fig­
ure 8. We do not know a similar simple rule for the multiplihedra, see also Figure 9. 

Minimal models. The material of this subsection is well-known to specialists. Recall 
that an ./loo-algebra (VV, cW,M2,,-I3> • • •) is minimal if dw — 0. Methods developed in 
the previous sections can be used to construct minimal models of ./loo-algebras as 
follows. 

Let A = (V, dy, H2, M3, • • •) be an ./loo-algebra and W := H(V, dy) the cohomology of 
its underlying chain complex. Let Z := Ker(dv), B := Im(dy) and choose a "Hodge 
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decomposition" 

(10) V=^D®W®By with Z^W®B. 

Observe that the composition u := dv o tD : D —* £?, where to * D <—• V denotes 
the inclusion, is a degree - 1 isomorphism of vector spaces. Let / : V —• W be the 
projection and g : W —• V the inclusion induced by (10). Finally, let h : V —• V be 
the degree - 1 map denned as the composition LD OW"1 O7T£, where 7TB : V —• B is the 
projection induced by (10). 

It is clear that / : {V,dv) —• (VV,0) and g : (IV, 0) —• {V,dv) are chain maps and 
that h is a chain homotopy between gf and lv. Therefore the formula 

(11) "n:=foPnog*», 

where pn is the p-kernel defined in Section 4, gives a minimal model MA = {W,dw = 
0, v2, ^3,...) of the jloo-algebra A = (V, cV, M2> M3> • • •)• This construction is functorial 
up to a choice of the Hodge decomposition (10). 

More precisely, observe that decompositions (10) form a groupoid with morphisms 
given by chain endomorphisms of (V,dv). We clearly have: 

Proposition 13. The minimal model MA is a functor from the groupoid of Hodge de­
compositions (10) to the groupoid of minimal AQO-algebras and their Aoo-isomorphisms. 

Observe that the "input data" / , g, h constructed out of the Hodge decomposi­
tion (10) satisfy the side conditions mentioned in Remark 4, therefore we could as well 
use the formulas of [1]. 
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