LINEAR ALGEBRA 1

8. Linear Independence

- 1. When is a system of one, two or three vectors independent?
- **2.** Check if the following vectors are linearly independent in \mathbb{R}^3 :
 - a) $(2,3,-5)^T$, $(1,-1,1)^T$, $(3,2,-2)^T$,
 - b) $(2,0,3)^T$, $(1,-1,1)^T$, $(0,2,1)^T$.
- **3.** Let u, v, w be three linearly independent vectors in a space V over \mathbb{R} . Are the following sets linearly independent?
 - a) $\{u, v, 0\},\$

b) $\{w, u, v\}$,

c) $\{u, u + v, u + w\},\$

- d) $\{u v, u w, v w\}$.
- **4.** Let V be a vector space over the field $\mathbb F$ and let $X\subset Y\subset V$ be two sets of vectors. Decide whether the following are true theorems
 - a) If X is independent, then Y is independent,
 - b) If X is dependent, then Y is dependent,
 - c) If Y is independent, then X is independent,
 - d) If Y is dependent, then X is dependent.
- **5.** Decide whether the vectors $(0, 1, 1, 1)^T$, $(1, 0, 1, 1)^T$, $(1, 1, 0, 1)^T$, $(1, 1, 1, 0)^T$ are independent in \mathbb{R}^4 and in \mathbb{Z}_3^4 .
- **6.** Let U, V be subspaces of W. Show that $U \cap V = \{0\}$ if and only if each vector $x \in U + V$ can be uniquely represented as x = u + v, where $u \in U, v \in V$.
- 7. Decide whether the following sets are independent in the space of all functions $\mathbb{R} \to \mathbb{R}$ (over \mathbb{R}):
 - a) $\{2x-1, x-2, 3x\}$,
 - b) $\{x^2 + 2x + 3, x + 1, x 1\},\$
 - c) $\{\sin x, \cos x\}$.
- **8.** Find 4 dependent vectors in \mathbb{R}^4 so that
 - a) exactly one vector is a linear combination of the remaining three,
 - b) each vector is a linear combination of the remaining three,
 - c) exactly two vectors are a linear combination of the remaining three,
 - d) exactly three vectors are a linear combination of the remaining three.