LINEAR ALGEBRA 1

9. Bases and Dimension

Bases and coordinates

1. Find the bases of the following vector spaces over given fields and determine their dimension.

a) \mathbb{R}^2 over \mathbb{R} ,

b) \mathbb{C}^2 over \mathbb{C} ,

c) \mathbb{C}^2 over \mathbb{R} ,

d) \mathcal{P}^2 – the space of all polynomials of degree 2 or less,

e) $\mathbb{R}^{2\times 2}$ over \mathbb{R} ,

f) the space of all symmetric matrices in $\mathbb{R}^{2\times 2}$ over \mathbb{R} .

- **2.** Determine whether $(-1, 5, 3) \in \text{span}\{(1, 2, 2), (4, 1, 3)\}$. If yes, find it's coordinates in the basis given.
- **3.** Find, in the space \mathcal{P}^2 , the coordinates of x^2+2 in the basis $x^2+1, x-2, 2x^2+x-1$.
- **4.** The coordinates of a vector v in the basis $B = (b_1, b_2, b_3, b_4)$ are $[v]_B = (a_1, a_2, a_3, a_4)$. Find the coordinates of v in:

a) $B_1 = (b_4, b_3, b_2, b_1),$

b) $B_2 = (b_1 + b_4, b_2, b_3, b_4),$

c) $B_3 = (b_1 + b_4, b_2 + b_3, b_4, b_2).$

Dimension

- **5.** Find all subspaces of the vector space \mathbb{R}^2 .
- **6.** Find the number of subspaces of \mathbb{Z}_p^2 over \mathbb{Z}_p .
- 7. Let U,V be subspaces of a vector space W and let $\dim U=7, \dim V=8, \dim W=13.$
 - a) Find the lowest and highest possible value of $\dim(U+V)$ and give examples for both
 - b) Find the lowest and highest possible value of $\dim(U \cap V)$ and again show that the estimate is tight.
- **8.** Let W be a direct sum of it's subspaces U, V i.e. $W = U + V = \{u + v : u \in u, v \in v\}$ and $U \cap V = \{0\}$. Show that if u_1, \ldots, u_n is a basis of U and v_1, \ldots, v_m is a basis of V, then $u_1, \ldots, u_n, v_1, \ldots, v_m$ is a basis of W.

 Hint: look at the list S.