Introduction

The methods developped in "Lokal prdsentierbare Kategorien" (L.N. vol.
221) were not sufficient to decide whether any of the following cate-
gories were locally presentable: the category of functors on a small
category U with values in a locally presentable category which pre-
serve a given class of colimits in U , the category of cosheaves on

a site with values in a locally presentable category, the categories
of coalgebras, bialgebras, Hopfalgebras ... over a commutative ring A
and likewise the category of comodules (resp. bimodules) over a A=-co
algebra (resp. A-bialgebra), the category AG of G-coalgebras, where
€ 1is a cotriple with rank in a locally presentable category A , the
category Adj(A,B) of adjoint functors between two locally presentable
categories A and B , etc. These questions were solved affirmatively
in [31], [32], [33] and [3”] by new techniques. In the process the
notion of a bialgebra in a category - generalizing the notion of a bi-
algebra over a commutative ring = emerged as the unifying concept from
the point of view of the constructions on which the prodfs were based.
The basic problem in all cases involved the construction of generators
in the category under consideration which in turn lead to the follow-

'ing general question: Given an object A i& a category A equipped

with a structure }{ and given a subobject U of A in A . How

does one construct a subobject. U' with structure ' containing U

such that the inclusion U'Ss>A 1is compatible with the structures '
1is P

and and such that U' is not much bigger than U ? The complexity

of this problem is perhaps best illustrated by two seemingly unrelated
examples: Given a Hopfalgebra H over a commutative ring A and a
A-submodule U of H . Find a sub-Hopfalgebra U' of H containing
U such that the underlying A-module of U' is not much bigger than
U ; or more specifically, that the size of U' depends only on U

but not on H. Clearly U' 1is = if it exists = not unique because



there is no such thing as "the" sub-Hopfalgebra '"generated" by U.
(For coalgebras over a commutative ring the corresponding problem was
investigated by M.Barr [l ] using purity.) On the other hand consider
an object A equipped with a descent datum §, and a subobject U

of A . Find a subobject U' <containing U and a descent datum ?U'
on U' such that Py is compatible with ¢, and U' 1is not much
bigger than U . A construction of (U;?U.) was given by Grothendieck

and Verdier in SGA 4 (p. 138-179) in a more general context. But the

proof has a gap and their size estimate of U' is false.
OQur main results consist in 1) making precise what an object with
structure is - this is done by the notion of a bialgebra in a category

2) solving the above mentioned problem for bialgebras in locally pre-
sentable categories under appropriocte conditions and 3) establishing
size estimates for the constructed sub-bialgebras which in most cases
are the best possible (cf. 3.1, 3.8,3.22). With the exception of §5

all our results in §3 - §6 are applications of this.

Roughly speaking a bialgebra in a category A with respect to a
given set M of operations and a set R of relations consists of an
object A€ A together with a structure morphism (uA for every M€ M
and a functorial diagramm for every ré€ R which commutes. In the lit=
erature so far a structure morphism (MA on an object A 1is a morph-
ism like A x A —> A, A —> A || A, A®A — A, A -—A4,
A® A —> A @ A, etc. In contrast we allow it to be a morphism
FA — F'A, where F and F' 1is any pair of functors with domain A

and a common codomain (the latter can depend on /u). F is called the

domain of M and F' the codomain. Like_wise a relation is normally
given by diagrams such as Ax...x A :::::3 A, A ::::3 A Q) ... Q1A
A® ...0A 3 A, A T3 A0 ...8 A, AT3A,

AR ... 8 A ::::::; A® ... 8 A, etc. which are built up of struc-

ture morphisms /%fAAéM, and canonical morphisms (like twisting, etc.)
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The relevant aspect here is that diagrams are natural with respect to
those morphisms A — A' in A which are compatible with the given
operations. Therefore we define a relation r to be a map which
assigns to every object A equipped with structure morphisms /MA s
MEM , a diagram GA::j.G'A which is natural in the sense just ment-
ioned and where G and G' is any pair of functors with domain A
and common codomain (the latter can depend on r ). An object equipp-
ed with structure morphisms is said to satisfy the relation r if the
corresponding diagram commutes. In this way one obtains the category
Bialg(A) of bialgebras in A with respect to specified operations

M and relations R . The morphisms in Bialg(A) are those morphisms

in A which are compatible with the operations in M

The notion of a bialgebra covers a wide range of examples, e.g.
universal algebras resp. coalgebras in a category with finite products
resp. coproducts in the sense of Lawvere [21] or Birkhoff [2.], coal-
gebras over an arbitrary commutative ring A and likewise A-Hopfal-
gebras resp. A-bialgebras in the usual sense (more generally tensor
product preserving functors on a Prop in the sense of MacLane [Zq]),
comodules over a A-coalgebra, bimodules over a A-bialgebra, algebras
over a triple, coalgebras over a cotriple, données de recollements,
descent data and more generally sections (resp. cartesian closed
sections) with respect to a fibration, functors on a small category
which preserve a given class of limits resp. colimits, sheaves and co-
sheaves on a site, pairs of adjoint functors between locally present-
able categories and more generally ZI-continuous resp. ZI-cocontinu-
ous functors on a small category U with respect to an arbitrary
class I of morphisms in the set valued functor category [Egggﬁg],
and finally I-closed objects in a category A with respect to a bi-
functor T : B x A —> C and a class of morphisms in B

(Recall that A€ A 1is called I-closed with respect to T if



T(o,A) 1is an isomorphism for every o€ I).

A bialgebra in a category A 1is denoted with (A,M,R), where Ae A
is the underlying object and M and R refer to the specified opera-
tions and relations. Given a subobject U of the underlying object A
we are concerned with the construction of sub-bialgebras (U',M,R) of
(A,M,R) containing U such that U' is "as small as possible'", in
particular the construction should provide effective size estimates for
U' in terms of U , M and R (but not A ). More generally given a
bialgebra (A,M,R) and an object U we investigate factorizations of
a morphism f : U —>A into a morphism U —U' and a bialgebra mor-
phism (U',M,R) —> (A,M,R) such that U' 1is not much bigger than
U and its size can be estimated in terms of U , M and R . It is
obvious that without conditions on M , R and on the underlying cate-
gory A no reasonable answers can be expected. In order to elaborate
on these conditions we recall a few baSic facts about locally o-pre-

sentable categories.

Let o 2 ?Lo be a regular cardinal. A directed set is called oa-fil-
tered if every subset with less than o elements has an upper bound.
A functor F 1is said to preserve o-filtered colimits if the domain of
F  has colimits over a-directed sets and F preserves them. An object
A in a category A 1is called a-presentable (resp. a-generated) if the
hom functor [A,—]: A ————§ §g£§ preserves o-filtered colimits (resp.
preserves those a-filtered colimits whose transition morphisms are
monomorphic). For instance, if A 1is the category of groups, rings,
modules over a ring, etc., then A€ A 1is oa-presentable (resp. a-gen-
erated) iff A admits a presentation in the usual sense by less than
o generators and less than o relations (resp. less than o genera-
tors). In particular ‘Xo—presentable (resp. %o—generated) is equiva-
lent with finitely presentable (resp. finitely generated) and likewise

70l—presentable (resp. 'X]—generated) with countably presentable (resp.



countably generated). A category A is called locally a-presentable
if it has colimits (i.e. sums and cokernels) and a set M of oa-pre-
sentable generators. (It is called locally presentable if it is locally
a-presentable for some &.) In é locally o-presentable category A
every object is o'-presentable for some regular cardinal o' and,
roughly speaking, for B 2 a an object A€A is PB-presentable iff

it is the cokernel of two morphisms T%%Uj :::3 I%%Ui , where Ui,Uiji
and J and I have less than B8 eliments. Moreover A has limits

(= inverse limits), is cowellpowered and o-filtered direct limits cam -
mute with kernels and products with less than o factors. Also a functor
F between locally presentable categorigs preserves y-filtered co-
limits for some <y provided it has either a left or right adjoint. The
class of locally presentable categories is larger than one might expect
and includes the categories of sets, groups, rings, modules and more
generally universal algebras, the category of set (group, ring ...)
valued sheaves on a small category with respect to a Grothendieck topo-
logy, the category of set (group, ring ...) valued functors on a small
category U which preserve a given set of limits in U (e.g. the cate-
gory Cat of small categories and other "universal algebras'" with
partial operations), the dual category 92220 of compact spaces, etc.
In contrast the categories Comp and Top of (compact) topological

spaces and other related categories are not locally presentable.

For the above mentioned construction of sub-bialgebras of a bialgebra
containing a given subobject (resp. the decomposition of a morphism

into a morphism and a bialgebra morphism) we need the following.

1) the underlying category A and the categories occuring in the de-
finition of the operations and relations are locally presentable(O? more

generally "catégories localisables" in the sense of Y.Diers [5]).

2. the operations M and relations R form a set and the functors
Q
which are domain or codomain of either an operation or relation



preserve PB-filtered colimits for some cardinal B.~

Then there are cardimals <y such that a bialgebra (X,M,R) 1is <y-pre-
sentable in Bialg(A) iff its underlying object X 1is y-presentable
in A (cf. 3.8). Moreover for a bialgebra (A,M,R) and a <y-presenta-
ble object UEA every morphism f : U —> A admits a decomposition
into a morphism U—U' and a bialge“ra morphism (U',M,R) —> (A,M,R)
such that U' 1is again <y-presentable (cf. 3.8). The class of all such
vy's is cofinal in the class of all cardinals. Of speciul intérest is
the smallest possible <y . Estimates are gi;en in terms of A , M and
R . (The analogue assertiongconcerning the existence and size estimates

of sub-bialgebras containing a given subobject are discussed later on.)

We illustrate the above with some examples.

a) For Hopfalgebras over a commutative ring A one can choose fogT
v any cardinal 2 Zﬁ (cf. 4.4). In particular every A-homomorphism
U—+—>H from a countably presentable A-module U to an arbitrary
A-Hopfalgebra H admits a decomposition into a A=-homomorphism U—U'
and a Hopfalgebra morphism U'—>H such that the underlying A-module
of U' 1is again countably presentable (the corresponding assertion for
finitely presentable A-modules 1is obvioéay false). Moreover the A-Hopf-

.

algebras whose underlying A-module is countably presentable form a

set" of dense generators in the category of A-Hopfalgebras (i.e. the
equivalence classes of such Hopfalgebras form a set).

The same holds for A-bialgebras, A-coalgebras etc. (cf. 4.3-4.7). More
over the following categories are locally %l-presentable: commutative
A~Hopfalgebras, cocommutative A-Hopfalgebras, bicommutative A-Hopfal-
gebras, A-bialgebras, commutative A-bialgebras, cocommutative A-bi-
algebras, bicommutative A-bialgebras, A-coalgebras, cocommutative

A-coalgebras, comodules overa A-coalgebra, bimodules over a A-bialge-

bra, etc (cf. 4.3-4.9).



b) Let ?V be a fibration with base € and let & : So-——+ S be a

morphism in C such that 1) the fibres ?fs and %; over So and
0

S are locally countably presentable categories and 2) the inverse

. ¥ ¥ ¥ *
image functors o, P, » Py and Py

take countably presentable objects into countably presentable objects

preserve filtered colimits and

(cf. Grothendieck [16], also for the notation). Then for an object
Aé‘ggo with descent datum ?A and a countably presentable object

ue 3%0 every morphism f : U —>A a&mits a factorization into a mor-
phism U—>U' and a morphism (U',?U,) (A’qk) between descent
data such that U' 1is again countably éresentable (cf. 4.14, 4.15).As
a consequence the category Desc(@%o) of descent data is locally
'X]—presentable and the forgetful functor Desc(géo)———e»gg cotriple-

able provided the inverse image functors preserve colimits (ecf. 4.15).

Likewise Desc(&%o) is a Grothendieck category (resp. a topos) provid-
ed the fibres are’and the inverse image functors preserve colimits and
finite limits (4.16).

If a : So——é S 1§ of % -descent type (cf. Grothendieck [17] 1.7),
then the above implies that every descent datum on objects of @f%) is
effective providdd every descent datum on countably presentable objects
is effective (cf. 4.18).

L]
Similar assertions hold for sections and cartesian closed sections with

respect to a fibration (cf. 4.19-4.26).

¢c) Let 6 = (G,e,8) be a cotriple in a locally a-presentable ca-
tegory A and assume that G : A—>A preserves f-filtered colimits
for some B8 . Let ¥y 2 sup('xl,a,B). Then for a G-coalgebra (A,E)
and a y-presentable object U€ A every morphism £ : U — A admits
a factorization into a morphism U—>U' and a G6-coalgebra morphism

(U',£') —> (A,£) such that U'€ A is again y-presentable (cf.4.lo)

This implies that the category AG of @G-coalgebras is locally

sup. ( Xl,a,B)-ptesentable and that a €-coalgebra is <y-presentable iff

IJ €
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its underlying object is. Moreover A is a topos (resp. a Grothendiecé

G
category) provided A is and G : A—3 A preserves finite limits
(ef. 4.11),

Applications of this are given for comodules over a A-coalgebra

(cf. 4.8) and for bimodules over a A-bialgebra (cf. 4.9).

d) Let U be a small category and I a set of morphisms in
[HO’EEEEJ' Let X be a locally o-presentable category and let
CCZ[E,E] be the category of all ZI-cocontinuous functors. For instance
if % is given by a set K of colimits in " U (resp. by a Grothendieck
topologsethen the Z—coco%&nuous functors U-—3X are exactly the K-co-
limit preserving functors on U (resp. the. 7T -cosheaves on U ). Let
Y be any regular cardinal such that o ¢ y 2 Xll and Yy > card(l),

y > card(do(U)), vy > card(ro(u)) for every o€ % and Ueg U, where
do and ro denote the domain and codomain of o ._Then for a ZI-co-
continuous functor t : U—X and a Y-presentaBle functor SG[H)§J
every natural transformation s — t admits a decomposition

s —3>s'—> t such that s' : U—>X is ZI-cocontinuous and again
Y-presentable in [H,&]. This implies that the category Ccz[g,§] of
Z-cocontinuous functors is locally y-presentable and that the inclu-
sion CCZ[H’X] <5 [U,X] has a right adjoint. The latter has been

a long outstanding problem in category theofy.

The above can be generalized to a class I of morphiisms whose codo-
mains {r0|c€ I} form a set (modulo equivalence). Therefore we can
also consider functors, which preserve a given class of colimits in
u (in particular one can choose all existing colimits in U ). The
abov#size estimates for Yy however have to be replaced by more ela-’
borate ones. The apparatus needed for the generalization to a class &
is substantial (the entire chapter § 5. concerning purity and a good

deal of § 6 ). Further generalizations concern the replacemant of X

by a topological category over X (cf. 6.21).



{ e) The category Adj(A,B) of adjoint fuctors between locally pre- \
sentable categories A and B can be shown to be equivalent with the
category of I-cocontinuous functors U-—>3B for an appropriate small
category U and a set I of morphisms in [HO’EEEEJ (cf.6.19). Thus by
d) above Adj(A,B) 1is again locally presentable. In contrast if A and
B are Grothendieck categories (or topoi), then Adj(A,B) mneed not be
so. A surprising counter example is the following. Let A be the cate-
gory of abelian p-groups for some prime p and B = Ab.Gr. the catego-
ry of all abelian groups. Then Adj(A,B).can-be shown to be equivalent

with the category of p=-adic complete abelian groups (cf. 6.25 c)),

f) Let T : B x A —> C be a bi&ﬁunctor between locally presen-

table categories and let I be a set of morphisms in B . Let

A
_Z,T
be the full subcategory of A consisting of all X€A such that

T(o,X) 1is an isomorphism for every o € ¥ . For example T can be
Dy » Torg(—,-), [-,—], ExtK (-,-) etc. and I the inclusion of a set
% of right ideals an the ring A . Assume that for every B¢€ B there

is a cardinal B8 sych T(B,-) preserve %;filtered colimits (which

B

is obviously the case for the above examples). Then there are cardi-

nals y such that every morphism f : U —> A with AE€ éz T and U
. H

y-presentable in A admits a decomposition U— U'—>»A with

U'e AZ o and U' being again y-presentable in A (cf. 6.2). For
b

instance if T is as above, ¥ is countable and the ideals Ie(?
countably presentable, then one can choose for <y any cardinal > %l.

If T = B, » then AZ ® consists of modules which are uniquely
* YA

divisible by the ideals of ¥ . For instance,let A and B be Gro-

thendieck categories and U€ A a generator with endomorphism ring A.

Then the category Adj(A,B) of adjoint functors between A and B

is equivalent with the full subcategory of AE consisting of those

left A-objects which are uniquely divisibl. by the Gabriel filter

131in A associated with A (cf. 6.25 b)), ]
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We now return to the problem of constructing sub-bialgebras (U',M,R)
of a bialgebra (A,M,R) which contain a given subobject UCA such
that U' 1is not much bigger than U . This’can be done under the con-
ditions as above (c¢f. 1) and 2)) but the size e¢stimates for U' are
different, in general less effective. They are best stated in terms of
noetherian conditions. The details are too involved to be given here
(cf. 3.22, 3.23). and we illustrate them with an example. Let A be a

commutative noetherian ring (or more generally a %, 6 -noetherian ring

1
which means that every countably generated ideal 1is countably presen-
table). Then every countably generated A-submodules of a A-Hopfalgebra
is contained in a sub-Hopfalgebra whose underlying A-module is again
countably generated. The same holds for A-bialgebras, A-coalgebras
etc. If A 1is not ‘Zl-noetherian this need not be so. However there

is always a cardinal <y such that A is y-noetherian (i.e., every
y-generated ideal is <y-presentable). Then the above holds for y-gen-
erated A-submodules of A-Hopfalgebras, etc., The same phenomenmhappens
for locally presentable categories. By Gabriel-Ulmer [13], 13.3 a lo-
cally a-presentable category is locally <y-noetherian for some 7y > o

The increase of y over a accounts for the less effective size

estimates for the constructed sub-bialgebras.

.

The basic idea for the construction of sub-bialgebras I got in a
seminar of the University of Zurich 1974/75 in which Kaplansky's de-
composition of projective modules into a direct sum of countably gen-
erated projective modules was studied (among other things). The par-
allel may be still apparent in § 1 in which an "elementwise" expo-
sition of the basic techniques is given. The incentive to study sub-
bialgebras ''generated" by z subobject resulted from a problem which
was given to us (= a group of students) in Heidelbe}g in 1964 by
A.Dold. He suggestrd to investigate the category of cocontinuous

abelian group valued functors on a Grothendieck category A in terms

. - =l
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Lf a generator U A and its endomorphism ring A . We didn't get « (
anywhere with it at the time but I kept it in the back of my =ind and
worked on it from time to time without much success. The turning point
was the discovery that in the special case A = abelian p-groups the
category of cocontinuous functor is equivalent with the category of

P-adic complete abelian groups.



