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§ 3 Bialgebras in locally preseutable categories

In this chapter some guestions of "Universal bialgebra" in a local-
ly presentable category A are investigated. Qur definition of bialge-
bras in a category A is fairly broad and includes universal algebras
and coalgebras in the sense of Birkhoff [1] or Lawvere [ﬁf], I-conti-
nuous and I~cocontinuous functors in the sense of Gabriel-Ulmer [53]
€.1, algebras, coalgebras, Hopfalgebras and bialgebras in the usual
sense over a commutative ring A , Oor more generally bialgehras with

respect to some temnsor product and an arbitrary Prop [2%], coalpebras

over a cotriple with rank in

e

(e.g. comodules over a A-coalgebra),
algebras over a triple with rank in A , the category of descent data
with vrespect to fibrations and ;ore generally sections and cartesian
closed sections with respect to a fibration or cofibration, etc. Rough-
ly speaking a bialgebra (A,M,%) <consists of an object A 1in A to-
gether with a set M of cperations which satisfy certain relations R .
An operation 1s rePreéented by a morphism p(A) : FA-—-—3F'A for somne
pair of functors T,F' : Azz3X , dnd a relation by a morphism pair
r(A,M} : HA==3H'A for scme pair of functors H,H' A=Y (for de-

tails sce 3.1). Given a bialgebra (A,M,R) and a subobject U« A

in the underlying category 4 , which we assume to he locally noetherian

for the moment, we are concerned with sub;bialgebras (D',M,R)

of (A:M,R). éanﬁaining U such that U' 1is nqt much bigger than U .

We give in 3.22 a construction and sizg estimates for U' which in

many cases are the best possible. For instance, if A 1is a commutative
. ¢

noetherian ring, then it follows that any countably generated submodule

of a Hopfalpebra (resp. coalgebra, bialgebra, comodule over a fixed

A-coalgebra) is contained in a sub-Hopfalgebra (resp. sub-cozlgebra,...)

whose uvaderlying A-wedule is again countably generated regardless

of the size of A . If the category A is not locally noetherian,

the situation is different and the question should ke put instead

as follows: Given a bizlgebra (A,M,R) and a morphism
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£ U;-%A in the underlying category A with U being a v - pre—
sentable object, does then f factor through a bialgebra morphism
(U",M,R) —> (A,M,R) such that U' is y' - precentable and ' is
not much bigger than vy ? In 3.8 we give a construction and size
estimates for U' similar to the noetherian case which in particular
implies the existence of dense'generators in the above mentioned
examples. If A 1is any commutative ring and (A,M,R) is a A-Hopf—
algebra (resp. coalgebra, bialgebra, comodule over a fixed A-coalge-
bra), then by 3.8 any homomorphism f : U—3A with [} being
countably presentable factors through a Hopfalgebra morphism
(U",M,R)—> (A,M,R) (resp. coalgebra morphism ...) such that TU'
is again countably presentable.‘Also 3.8 implies that every descent
data is effective provided every descent data on '"small" objects is
effective. For modules "small" means countably presentable. Mére
generally for a fibration with countably presentable fibres "small"
means countably presentable provided either the inverse image func=—
tors have right adjoints which preserve countably filtered direct
limite or the inverse image functors take countably presentable
objects into countably presentable objects and preserve filtered

direct limits. The main results of this chapter are 3.8, 3.9, 3.22,3.24

—
{

and 3.28. The last two comncern conditions which guarantee that!the

category Bialg(A) of bialgebras in a locally y-presentable.category. A
is locally y'-presentable and that +y' 1is not ahch bigger than Yy .
For instance, if A 1is any commutativ; ring, then they imply that the
categories of commutative A-Hopfalgebras, cocommutative A-Hopfalge-
bras, A-coalgebras, A-bialgebras, comodules over a fixed A-coalgebra
etc. are locally countably ﬁresentable, regardless of the size of A .
Also if & is‘a cotriple with rank a in a locally y-presentable
category A , then the category éG of &-coalgebras in A is locally
y'-presentable, where «y' = sup('Xﬁ,y,u)
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3.1 In this paragraph we give the basic definitions. Let A be a

category. Let M be a set (or class) and assume that with each

B E M there is associated an ordered pair of functors

T i A—X and F : A-—3X . Note that the domain is always
du = —u cu - = y

A and that each pair has the same codomain (which can vary from pair

to pair)

Also note that the assignment y e~y (qu’Fcu) need not be injective.

A pre—bialgebra (A,u(A))ue M in A with respect to M 1is an object

A €A together with -morphism r(A) : quA.m——%FCUA for every

neEM We say that an element u & M 1s an operation and u(A) is

(s

at

e
?i

[=H

he structure morphism on A assoc

!('D

d with 3 . A mOrp I il com

1 -t

(A,u(A)) (A", u(A")

»betw een ple blalgeblas is a morphlsm

ne M ve M

f : A—>A' in A whlch is compatlble w1th the structure morphisms,

i.e. for every ueM¥ the diagram

v (A)

d].l CH x
quf Fcuf’
FY AY —— 3 F A"

S u(a") o

commutes. The category of pre-bialgebras is denoted with P—BialgM(é)

Let V : P-BialgM(é)~«—->é denote the (faithful) forgetful functor

(A, u(A)) c MNﬂﬁ?A . If it is clear which M we ate referring to we
ué

write P-Bialg(A) instead of P—BialgM(é) . Further we abbreviate

(A,u(A)) (:ﬁ to (A,M) 1in order to avoid expressions of extreme com-
U &
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plexity in the following. This notation doecs no longer distinguish
between pre-bialgebras with the same underlying object. The reader
should keep this in mind.

Clearly in practice one is not interested in all pre-bialgebras but on-

ly inithose which satisfy certain given relations. The relations are nor-

‘mally expressed in terms of diagrams which have to commute, Thé diagrams

are constructed from the structure morphisms and other canonical wmor-—

phisms. However there is a. great deal of variety and a scheme of

sufficient generality to cover the above mentioned examples becomes

hopelessly involved. Supprisingly it turned out - after many

attempls — that the explicit description of the relations in terms

of structure and canonical morphisms is not necded to establish the
main Fesults of this chapter. Instead the following common features
suffice : 1) for every pre-bialgebra the diagrams expressing the
relations are given in some way 2) the diagraﬁs are natural with
reSpeét to pre-bialgebra morphisms.

More precisely by a relation r on P—BialgM(é) we mean ‘a pair of
Iuncto?s Fdr 1 A —> Kr and Fcr : é'—e- zr together with a pair

of matural transformations FdroV:::;.FcroV. Explicitely with every

pre-bialgebra (A,M) there is associated a pair of morphisms

“r(A,M) e Fq A 3 FcrA' in such a2 way that for every pre-bialgebra

morphism f: (A,M) —> (A',M) the diagram

r (A,M) :
| F dr A T F cr A
F dr £ F cr :
r(A',M)
N 1 T v 1
Fi A 3 FcrA

commutes in the obvious sense (ie. with respect to both components
of r ).
Let R be a set (or class) of relations on P—BialgM(é).

*

A bialgebra (A,M,R) in A with respect to M and R is a



pre-bialgebra (A,M) such that for every ré&R the morphisms

r(A,M) : FdrA pu— FcrA coincide. In other words a bialgebra is a

pre-bialgebra satisfying the relations of R. A morphism between

bialgebras is a morphism between the underlying pre-bialgebras. The

category of bi@l&é&ﬁii is denoted with BialgM R(A)
. . B

. If there is

no ambiguity we drop the indices M and R . Clearly Bialg(A)
is a full subcategory of P-Bialg(A). The forgetful functor
Bialg(A) — A , (A,M,R)~»~>A , is also denoted with Vv .

3y the support of the operations M and the reilations R we mean

the set (or class) I of all functors ¥ and FCr , wWhere

i ¥
du’ cp’tdr

v and r are running through M and R respectively. The subclass

of all functors of [F which are the domain of either an operation

or a relation is denoted with Td . Likewise WC “denotes the subclass

of all functors appearing as- the., codomain of either an operation or

a relation. In the following the hypothesis are o)

e
i

teun stated in

{A%]

—t— i ———— » ety NG S

terms of F, ® and. [ instead of M and R i It is therefore
e S d’? ———= " seEets s =t R el

cssential to keep their meanings in mind (d = domain , ¢ = codomain),
3.2 Rewmarks I) It is casy to express that for some specified
operation ugEM the structure morphism p{(A) FdUA»~$> FCUA

should be an isomorphism for every pre-bialgebre (A,¥M) ¢ One has

to add an operation y to M and two relations to R expressing

i) Y o= 4 ] i U = i o . I .
n(A) U (A) 1dquA anc u(A)Yp () lchuA (cfn 3.2 IT11I4)

II) One can call an operation il&géﬁéii (resp. coalgebraic)

if qu and Fcu are endofunctors of A  and FCU is the identity'

of é {(resp. qu = idé); and likewise for relations. Typical

examples are functors A——A which assign to an object A its

n-fold BEEQBEER coproduct or tensor product etc.

ITT) TFor examples of bialgebras see § 4 and § 6. It should however bhe
Same of
clear at this point how to express the examples given in the intro-
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duction to § 3 as bialgebras, i.e. how to choose the underlying category

(=]

A , the operations M aund the relations R such that Bialg(A) 1is

a) the category of groups, rings, ..., cogroups, ... in A .

b) the category of algebras, coalgebras, bialgebras, Hopfalge-

bras ... over a commutative ring A.

c) the category of ' -algebras (resp. G-coalgebras) for a

T

triple (resp. cotriple €) in A

d) the category of descent data (or données de recollement) in

the standard situation

2k
z T i
o 1 —~ mE 20
Tg —> g —F-»E Fg1xs! _”-"_l_,L’f“g*.xs'xs'
s S —7;'—"’ S s

given by o : S§' = S (cf. Grothendie-k Db] Def. 1.4 = Def 1.7).

The reader should be familiar with  -these examples, in particular

know what the functors F, , F F F"r and the natural trans-
A

du cu’ v’
formations Fdrov % FcraV look like for every cpervation pe& M
and relation réeR . If not, he is advised to first have a look at

§ 4 because Lhe following is often motivated by these

examples.,

3.3 We start with some elementary properties of the underlying

-,

functor V: Bialg(A) —> A concerniné the preservation of limits

and colimits.

Lemma Let H : D —> Bialg(A) be a functor such that the limit

(resp. colimit) of the composite V¢H : D —» A exists. Then the

following hold:

a) Lf every Fe FC preserves Li@ VeH , then }im H exists 1in

D

Bialg(¢A) and lim H = (lim VeH,M,R) .’
& e
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b) If every FG‘Fd preserves 1i3 VeH , then 1im H exists in

Bialg(A) and 1lim H = (lig VeH,M,R) .

Proof It suffices to consider a) because b) is dual.
By assumption for every operation u& M "there is an unique morphism
UQ&&P VeH) : Edu(iiﬁ Ve H) ——3 Fcugllm VeH) such that for every D€ D

the diagram

H(lim VeH) v
i i T VR : Flim ( g
qu(<L£?1 Vo H) . Fcu(llm Vo) —1im (FCu o Vol)
Fay (pp) Fo, (Pp)
w((VeH)D) i)
Fiy ((VOH)D) ey E., ((Vol)D)

commutes, where Pp ) 1imKVoH)~«+(VoH)D .denotes the canonical morphism.
Thus 1lim (Ve H) together with u(iig VeH) , y€M , is a pre-bialgebra
and Py is a pre-bialgebra morphism for every D¢ D . Hence for every

relation re¢ R and every D€D the morphism pair r &im VoeH,M)

gives rise to a commutative diagram (with respect to both components

L

of r )
r(lim Ve H,M) n
i e e i 7e —_— i1 o
Fdl‘ (Lllln Ve H) - — Fcr (Cllm V 'H) ""}(]._l:_n Fcr Vel
Fdr(PD) qu(pD)
v r (HD) ~ 2
Fdlg(VvH)D):__ R F . ((Vel)D)

This shows that r(éig VeH,M) 1is the inverse limit over all "pairs"
r(HD) , D& D . Since the two components of r(HD), DCD , coincide, the
same holds for r éiE.V°H’M) and thus 2&23 VeH,M) is a bialgebra. One
readily checks that the latter together with the bialgebra morphisms

Py ¢ (lim VeH,M,R)~——3 HD is the limit of H : D~——>Bialg(A)
e ‘ -~ =



§3 -8-

3.4 Corollary a) If A is complete and every PelF, preserves

limits, then Bialg(A) is complete and the forgetful functor

V : Bialg(A) —> A preserves {and creates) limits. Moreover

V is tripleable provided it has a left adjoint.

b) Likewise if A is cocomplete and every TFe Fd preserves

colimits, then Bialg(A) 1is cocomplete and the fo orgetful functor

V preserves (and creates) colimits. Moreover V 1is cotripleable

provided it has a right adjoint.

c) 1t

{e>

has oa-filtered colimits and every FeIFd preserves

them, then Bialg(A) has wou-filtered colimits and V preserves

(and creates) them.

As for the tripleability and cotripleability note that by 3.3 a), b)
the underlying V always preserves (and creates) both V=-con-
tractible kernels and cokernels. The condition e¢) holds in most
examples for an appropriate ¢ . This is not so for a) and b)
However a) holds when all coperaticns and relations are algebraic
(3 2 Tl), while condition L) holds whén all operations and |

relations are coalgebraic (3.2 1I1),

3.5 1In order to study the category Bialg(A) from the point of
view of locally presentable categories the first question to answer
is whether there exist o-presentable objects f&r suffic 1enL1y
large o and how they 1o$k like. The following and 3.6, 3.7 give

a partial answer.

Lemma TLet A be a category with a-filtercd colimits and let

M  and R be a data for blalgcbras (3.1). Assume that card(M) < o

and Lhat every Fe F preserves a- filtered collmlts Then a




bialgebra (U,M,R) is

o-precentable 1in
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Bialg (A)

3
and TFU are oa-presentable for every Fele.

Remark Tf the underlying functor V : Bialg(A)—>4A and the
ﬁ%iﬁc preserve monomorphisms - e.g. in the situation 3.4 a
there is an analoguous assertion for a-generated cbjects: A
(U,M,R) is o-generated provided 1) card(M) < a and cvery
serves o-filtered colimits 2) U and FU are a-generated
Fe Td . The proof is the same as for 3.5.

Proof First note that by'3.4 c) Bia]g(é) has o-filtered
and V : Bialg(é) —>» A preserves (and creates) them. Let

provide

d

Ue A

functors

)

then
bialgebra
Fe

pre-

for every

colimits

(X,M,R) = liQ (Xv,M,R) be an og-filtered colimit in Bialg(A) and
%I

let f

(U,M,R) —=>

A
m{(U) £ o and .w(FU) < a for every
'] I'e = L }( “\
ljm>\Xv,M,R) (1$%"v‘d’R) and
lying morphism U -— 1im X of
u .4
v , \ . ;¢
U —=——> X —— linm Rv for some

lying canonical morphism. In general

1im(Xv,M,R) be a bialgebra morphism with
v

FeF, . Since
d
U is o-presentable, the under-
f adwits a factorization
v , where u, denotes the undey-
.f  is aot & bilalgebra morphism
v

because for an operation p &M the merphisms FcuAv o ni{t) and
U(Xv) o qufv need not coincide. However they beceme equal when
composed with F u F { —»> F 1lim X because [ = u f is a

cu v cpv cu——> v vy
bialgebra morphism. Since quU is o-presentable and

5

T lip X ¥ 1im ¥ X is an oa-filtered colimit, this implies
c TV ";)‘7"' cu v :
that there is a transition morphism u : Xv-—a X\)I - depending
on w - such that the diagram
*) It is nmot assumed that the codomain of ¥, Fe Wafis locally
presentable, but merely that [FU,-} preserves all existing

c—~filtered colimits.
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I‘cu(u'}f\))
F U — =
cy
A
u(U)
Fa,U — >

Edu(uafv)

commutes. Since card(M) < o

X - Xv" which has this property for

\Y

that f (U,M,R) —> lim (X, ,M,R)

bialgebra morphisms (U,M,R) —

the canonical map

(XDH,M, R)—+

F X
cu v
I

u (Xy')

quxw

one can find a transition morphism

every yu € M. This shows

admits a factorization into

lim (X,,M,R), i.e.

v

o . -
lim [(UsMaR)’(X\)sM:R)] — [(UsM’R)a _]_1.111‘) (X\),I-,R)—!

v
is surjective.
Hence (U,M,R) is o-presentable in
also directly from the Ffact that V

ful and preserves

in A).

3.6 Remark One would like to conclude
(U,M,R) is o-presentable in Bialg(é)
object

provided o 1is sufficiently large and

If A is locally finitely presentable,

smallest o for which this is true. In

Bialg(A).
Bialg(A) —> A

o-filtered colimits and that

A 1is

V.

In the same way one can show it is also injective.

(The former follows
is faith-

U is o-presentable

from 3.5 that a bialgebra

provided its underlying

Ue A is. We will show below .in 3.7 that this is true

1Pcally presentable.
then 3.7 provides the

general this is not so and

resorting to 3.7 can give poor estimates. However in examples one

often knows enough about the functors

find out directly what the smallest «

impliecs T(FU) < o for every Feg F

a

following. Assume

sentable and that

every I has a right

Feg F

A particular situation 1is
that the codomain of every

adjoeint G

d (eg. in 3.2 III) to

is such that 7n(U) <aq

the

Fe ¥

g is

locally pre-

I e AT

GF pre-

there is a (smallest) regular cardinal B such that every
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serves f-filtered colimits. Hence a(U) < B implies @ (FU) < B for

every T, because [FU,-] = [0,6, -] . Likevise ¢(u) < g implies

e (FU)<B for every Fe[Fd and  Uc A

3.7 Lemma Let A be a 1oca1]y o~-pres entaklo category and let IF

el ry “4

bc a set of funcL015 w1th domaln A whlch preserve o- £11tered COllmltS

Let T o> oo be a repuldl ardlnal such that

1) if X€ A and w(X) 2 o , then w(FX) < a for every FEF,

2) if p < a and B < o 4 then Bp_< o

Then «(U) < o implies @ (FU) < q for every FGﬁFd and U& A .

Corollery Let A be a ]ocally o prosentable category with a data

M and R for bialgebras (3.1). Assume that card(M) < o and that

every TFe¢ [F preserves u—filtered colimits. Let @ > o be a cardinal

Er— Fr————— - ———

with the above ploportlos 1) and 2). Then a bialgebra (U,M,R) is

o plesentqb]e 1n Bialg (A) p10v1ded U 1s a- prebcntable in A .

Remarks a) Note that condition 2) 1s trivially satisfied if either

a==’Xb or o 1is of the form (ZY)+ for some y+ > q

b) Since the o-presentable objects in A form a small subcategory
there exists always a cardinel o with the properties 1) and 2),.

c) Using 5.1 one can prove an assertion analoguous to 3.7 fcr locally

ao-generated categories (cf. remark 3,5).

Proof of 3.7 The case o = o 1is trivial and we assume o > o . Given

o

UcA with n(U) < o« we are looking for an " a-filtered colimit

presentation U = lim X such that 7(X,) < a for every K and the
=5 K’ =
cardinality of the index system is strictly smaller than o . Since

F‘GFd preserves a-filtered colimits, it then follows easily that

T (FU) = w(lim FX ) < «
.._I_<._.., K =
We need some preparation. Let D be a partially ordered set which is

-filtered and let D' Dbe a subset of cardirality < o . Then D'

o
w

contained in an o-filtered subset D" whose cardinality is also < o
. ' « T 3 .
One constructs D" by transfinite induction as follows., Let D' = D!
o

1f X < a is a successor ordinal then let Di be the subset consisting
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of Di_] and an upper bound in D for every subset ICDA"_l with
card(I) < o . If A < a 1is a limit ordinal let Di = }?& Dp In
either case it follows from asé@%tion 2) that \ald(D ) < o . Clearly
D" = i Di is a-filtered and card(D") < a because o <

Let U< A be a-presentable. TIPD by 1.7 there is a cokernal diagram

| f

ey oS Ux,
1CI g J1€J

such that 1) card(l) < o > card (J) 2) Xi and X. are o-presen-

J
table for every 1i¢&I and j€J and 3) U 1is a retract of Y . Ve
will show that w(FY) < o for every Fe-Fd . Since this implies
T(FU) < a », We can assume without loss of generality that Y = U.

Let D be the partially ordered set consisting of quadrnpl

. ) ' ~—»~_‘; R
(IK,JK,fK,gK) s, where IKC I, JKCTJ and LK,gK ![ X. “__§~1L X .
=i jegy
are morphisms such that card(IK) < g > card(JK) and K
the canonical diagram
fK
| ]
! | X, & > l | x
ie1, g €J, !
K K J &k
l |
i\
1] 1
Ly, - —— X,
1€ 1 g ] €J
commutes. The ordering is given by inclusion, i.e. K < K' provided
IKc.Iw 9 JKC'Jw § and the induccd diagram
£ § |
J__L_Xi > ___l,XJ
1\[ IK By J]/JK
£, i
J_I X, T | X
1 € IK' éK' 1€ JK'
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commutes. Note that in both diagrams the vertical morphisms need not
be monomorphic! (This complicates the proof considerably). Using

that 'L“L‘Xi is w-presentabls and J_J.Y is the ag—-filtered co-
i GIK ‘ jeJ
limit of its subcoproducts with less than ¢ summands, it is routine

to verify that D 1is o~filtered. Let D' be the subset of D
obtained in the following way: For every pair I'c I and J'¢C J

with card(I') < o > card(J') pick one element (I £ ) of D

K"'TK’ K’gK

with the property 1I' = IK and J''= JK (provided there is such

an element, there wmay be many cr none with this properity). Clearly
condition 2) and card(l) < o > card(J) imply card(D') < a . Given
J_J#F. with card(1") = « thcr@ is an element (Ii,JK,fy,g )

&f&é Y o= 1 because l“i k is a-presentable and J_JﬁX is

e 1
ic _ jeJ
the a-filtered colimit of its subcoproducts with less than o sum-

mands. Likewise given J_J X. with card(J') < o one can find
je J!' ]

- . - A i - h - TV - . f g ; o ‘i N
an element (IK,IK,iK,gK) such that J L;JK From this 1t follows
that D' is not empty and that the colimits of D"-—sA, K-¢Jﬂlﬂ Xi

ier, -
and D”—u—éé , Ko~ L ‘ k , are J_ELXi and L_lh respec- i
jedJ 1€ 1 1€ J
tively (for D" sce abvve). Whence the colimit of D" ----- YA,

K romd XK . Coker(fy,gK) is U . Note that: D" 1is o-filtered and

card(D") < & . Since XK = coker(£<,gK) is a-presentable, by con-
dition 1)‘ FXK is G-presentable for every FE:Ed . Summarizing we ob-
tain ‘

T(FU) = n(¥ lin XK) = ﬂ(llm_F%K) ; &’

KeD" KeD"
because an t-colimit of o-presentable objects is again G-presentable.

This completes the proof.

3.8 Theorem Let A be a lo

i o

cally presen

be a 1o table catepory and let M , R

and F be a data for bialgebras (cf. 3.1). Assume there is a regular

cardinal R such that cvery Fe&l preserves Bf-filtered colimits.

L.et y > R be any repular c:

rdinal such that

a

a) cald(h) < vy > card(R) and A is locally y-presentable.
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b) if UE A is y-presentable, then FU is y-presentable for

every Fele (cf. 3.6, 3.7 for vy = Q).

Let (A,M,R) be a bialgebra and let Ue¢ A be a y-presentable object.

Then every morphism f : U—3A admits a factorization into a morphism

U—>U' and a bialgebra morphism (U',M,R) —— (A,M,R) such that

U'€ A 1is again y-presentable. Moreover a bialgebra (X,M,R) 1is y-pre-=

sentable in Bialg(A) iff X is y-presentable in A

Remark Note that <y has to be strictly bigger than g ; hence Y ?.Xl'

If the codomain of every FG?Ed is locally presentable, then by 3.7

there is always a cardinal y > B such that the above conditions

a) and b) hold. The point is of course to choose Y &as small as

possible. Thé moste useful situation seems vy =4K]‘ and B =4Zo g

This happens in any c¢f the following cases

1 card (M) < kfo 2 card(R) , w(A) = }fo , every F€/ preserves
filtered colimits, and every FCIFd takes finitely presentable

objects into coﬁntably presentable objects (ef. 3.7).

IT card(M) s 2:0 > card(R), n(é) < XTI,'every F&lF preserves
filtered colimits, and every F€de takes countably presentable

objects into countably presentable objects

TII card(M) < )fo > card(R), w(A) < X every F€lF preserves

1 3’

filtered colimits and every Fe:md has a right adjoint GF

which preserves countably filtered colimits (cf. 3.6).

sisting ©of all y-presentable objects. Then for every YEY the cate-

gory Y(y)/Y is y-filtered and the colimit of the forgetful functor

Y(y)/Y—>Y is Y ; i.e. the inclusion z(y)iiaz is dense (cf.D3]3.l).

Definition A set valued functor on a small category is called

3.1o0 Corollary Let FlatY[X(y)o,Sets] denote the full subcategory

3.9 Corollary Let Y(y} be the full subcategory of Y = Bialg(A) con-

B
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of [E(Y)O,Sets] consisting of all «y-flat functors. Then the functor

¥ —> Flor, [ 3% sets] , ¥ of,v]

is an equivalence.

T3.11 Remarks I One can view 3.lo as a "generalization" of [ki] 7.9
The latter asserts that a locally y-presentable category X is of the
form X s StYfg(y)o,Eg] . Thus, if Y(y).is y-cocomplete, then by

D3] 5.4 a functorx X(Y)O —> Sets is y-flat iff it is y-continuous,
i.e. FlatYfX(y)o,Sets] = Styfg(y)‘o,y@ (ef. [1317.9).

IT It will be apparent from the proofs of 3.8 - 3.10 that the hypo-

theses have not been fully used; in particular the existence of
arbitrary colimits in A . Besides b) and card(M) < y >.card{R) only
the following_properties are used

a) A has B—filtered colimits for some B < y and every FeF

preserves them,

b) for every A€A the category A(y)/A of y-presentable objects

over A 1s y-filtered and A is the colimit of A(y)/A—A.,

(U—A) ~~x U (cf. 2.8).

iy . s e - - vmame e me—

In general Bialg(A) 1is not locally presentable but iF has again

e - - . - I SR ——

p-filtered colimits and by 3.9 it inherits property b). For instance
the category of flat left A-modules over a ring A need not be
locally presentable,but has filtered colimits ;hd satisfies property b)
for every <y . An important class of éategories'wﬂiéh are not locally

presentable but for which 3.8 = 3,lo applies are the '"catégories lo-

calisables" recently introduced by Y. Diers [S].

Proof of 3.10o. By 3.4 Y bas y-filtered colimits. The functor

Y —> [Y(y)°%,sets] , ¥Yws[-,¥] is full and faithful because the

inclusion Y(v) L5 v

is dense, cf [ j3.4. Moreover it preserves
and reflects y-filtered colimits because the objects of Y(y) are

y-presentable in Y . Also its values are in Flat [z(y)o,SetST

—
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because by 3.9 Y(y)/Y is y-filtered for every Y€Y . Hence the

factorization Y-——~9Flat fY(Y) Sets] Y'Vq[}uY] is a full em-

beddlng Wthh preserves Y—flltered COllmltS. If F : Y(Y) ___9 Sets

is . y—flat let D be a y- letered category together with a functor

D—> Y, D v Y such that F = lim [—,YD] . By the above

D T

DeD
Lin [-,v,] = [~,Limg ;] , whence F = [-,v] for Y = lig -
DED DED DeD

This completes the proof. : ' ' -

Proof of 3.8 and 3.9 Since the proof is fairly involved and techni- -

cal we first give a sketch.

In a first step (3.12 - 3.17) we construct factorizations of
f: U —> V(A,M,R)

U — Ul——> U2—7..... —> Ug —>

for every ordinal ¢< B such that w(Up) <) and for every operation
g) 54 y

e M there is a morphism p(2,5+1) quUf — ¥

0. 1T the
> Feoulsa making th

diagram

n(g, e+ 1)

quUS

commutative. Using that qu and F preserve RB-filtered colimits,

we obtain in the limit a morphism (;jm Ug) —> F (11“3U3+1) for

every ueM. The latter make }ing Ug into a pre—bialgebra and
. <R
U —> A into a pre-bialgebra morphism. Since By

lim fp : 1i

—_ ot

8<«B g«

the colimit U' = 1lim Ue is again f—presentable. In this way one
<R

cbtains a¢factorization of £ : U —> A 'into a morphism U — U

5

0,

and a pre—bialgeﬁfa mo£5ﬂiéﬁ fh-é-iim % : (Ui;M):;——9(A,M) with
——— $<fy

(U',M) being Yy -presentable in P~Bialg(A) (cf. 3.5).
J | A |
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In a second step (3.18—3.20) we construct factorizations

4

) %5 Wi 22— _—> Whmw— ...
(A,M,R)

in the category P-Bialg(A) for every ¢<B such that W(Us)SY
and for every relation reR the vertical morphism pairs

in the diagram

F, af F. ol
dr 1 dr 2
? ) L] 1
-—..-_..._.ﬁ D e 0 o« oaw 3
F, U Fyp U} — F, U} > Fo. A
i
r(U', M) r{(u!, M lr(Ué,Mj ~| r(A,M)
o] i 1
Fcrai v Vv 1cra2 v Vv
| 1] 1
-—._.-9 ___.,._.______;, .__#.......
FcrU Fcr v _ FcrU2 Fcr 5

"become equal when composed with the adJacent horlzontal morphism

(Note that the two components of r(A,M) coincide). Since relations on
P-Bialg(A) commute with B-filtered colimits pass sirg to the limit

yields a pre-bialgebra (U",M) = liQ (Ué ,M) which satisfies the
€<R

relations. Since B‘-X', one has also = (U") < )+ Thus the induced

factorization (u? M) ——> (U" M) —> (A M, R) of £': (U',M) —> (A,M,R)

together with the one from the first step yields the deSLred decompo_

. sition of f U———}V(A M, R)

P - — -
TR S < st

Finally to show that a Y presentable bialgebra (X,M;R? has.a
uyenresentable“nnéerlying object X ‘We atudy the category of.those
bialgebras (U,M,R) over (X,M,R) whose underlying object U 'is
X—presentable.'We show that (X,M,R) 1is the colimit in Bialg(A) of
these bialgebras and that this (comma) category 1is J*—filtered. Thus
the identity of (X,M,R) admits a factorization
(X,M,R) "—>_(U,M;R) —> (X,M,R) with n(U)Saﬂ . Hence X 1is a retract

of U and thus alqo Y- preseutable. Conversely,ﬁif X is Y—nresentable,
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then by 3.5 (X,M,R) 1is likewise in Bialg(A)

3.12 Let R =g and let (A,M) be a bialgebra and f : U — A

a morphism with «(U) < y. Let (Ut,M) be a family of bialgebras

teT

with card(T) < y and let (ht~: Ut — U)té'T be ~family of

morphisms such that Ut is y-presentable and fo ht : (Ut,M)-—+ (A M)

is a bialgebra morphism for every te T . We will show that f admits

a factorization into a morphism g' : U —> ‘U' and a bialgebra
morphism £': (U',M) — (A,M) such that U' is Y-presentable and

'o ht H (Ut,M)-—% (U',M) is a bialgebra morphism for every té T

g

3.13 Let BA £ be the category whose objects are factorizations
’
f

= (U - U, —% A) of f with “(Ui) < v and whose morphisms

i —> j are morphisms o : U, —> U, in A with a%g. = g, and
. 3 i = ic®i i
fjaE = fi . Since RA = A(y)/A is y-filtered (cf. 2.8), it easily
follows that the functor
g £y £
EA,f — _QA, (1 — Ui —> A)rvw(Ui —> A)

is cofinal and that D. £ is also y-filtered. Since 8 < y the
B = SR R L

category RA has B-~wellordered colimits which are computed point-—

wise. Hence the same holds for For an ordinal X < B8 let

l; (resp. ll) denote the wellordered set of - all ordinals p < )

(resp. p < X). By transfinite induction we will construct a functor

N S

. - , . .
¢ Ig™Dy g A~ (U= U, —24)
. id f
with $0) = (V25 U —254) such that
lig £
. =, T
Lin § = (U—lin U, ~=2—2y 4,
= A<65 A
is a factorization of f : U—7A with the properties stated in 3.12.

For p < 1 1in lé the transition morphism @(p)—%@(r) is denoted

with of
T

3.14 The induction hypothesis for an ordinal A is as follows.
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There 1s a functor

] gO fp
i N ~ y >
() 1,90, ¢ 0 (U v A)
whose value at 0 1is (U ld% U £ >A) together with a morphisml
*5) u(o,P+19“f_FunEf—??gqu+]

for every uw & M and every p such that p+l1 < A subject to the
following condition: For every te&T and for every pair p,T with

p+l < 1T+! < XA the diagrams

o N . p+l y
F_(h.) F (o) F. (a . .) Fo @) F_(f__.)
_Cu Tt CU 0L gy LSS PrL T T . B T < 2 S
F.Uy > PO, ? Foul, ? FUos FeuUrsi y A
(%%%) u(Ut) " u(A)
F. (h) F g ' F, (£)
duy -t du du ~ T dy T
e —C——— 4 it i —————— LY F
quut ’quUo 5 quUp > quU 5 duA

commute.

3.15 Tor A=1 we put ((0) = (id;,£) and (#) trivially bholds

whereas (#) and (®¥X%) are vacuous. If A is a limit ordinal < B ,

the functor § H l;——%QA £ given by induction hypothesis has to be
?

extended to LA . Since EA £ is y-filtered, the image of
H

».

Q : £Af—*)BA,f has an upper bound in EA,f 5> 1.e. there is an object

. . T o
(fA" gx,)e RA,f together with a morphism Aya 3 (fT,gT)———%(fA,,gA,)

for every T < A . Since RA £ is y-filtered, there is moreover an
: b

object (fk’gk)é EA together with a morphism

. £
' ) A

u; : (fA"gx')~_—9(fA’gA) such that for every pair p < T 1in LK

i P - To P To_ A, T b _ X, 0
the equation oy a, ® o holds, where oy aA° Oy e and ay axoax

. Y - p
Therefore we can define Q(X) = (fl’gk) and @(p<a) = o, and
obtain an extemnsion $ : I)\-———QDA £ Note that (%) and &x#%) hold
. - T,

trivially for every p with p+l £ A and every pair op,t with



p+1
if

(]

satisfying *%3k) for every
suffices to construct o

U(X‘],)\

and

1 =

and

) quUA—l-“PFcuUA such that the conditions (), (%) and
(¥X%) hold. For an operation pEM it follows from F A = lin F 1.
cH Temh o0 1
ﬂ(quUA_]) < v o> n(quUp) and. A < y that there is an object
. . i . i A=-1 .
i(py) in BA,f together with morphisms oy 3 (fl-l’gxmi) }(fi,
ulr=-1,1) : quUA—I—_}FcuUi such that for every € T  and every

A

I

S

§

< v+l 2 X 'because X isa

is not a limit ordinal,

—>DA ¢ together with

A=l
A

il =120
limit ordinal.
then by assumption there is a functor

a morphism p(p,p+1) duU5_>FCuUp+l

HEM and every p with p+1 < 1 . It

p < XA-1 the two squares on the right in the diagram

o p+l
F h F F : F f.
. cu( t) . cu(ap+l? | Cu(al ? . 'Cu( ;) _—
cu t cH o cu ptl cH 1 €$
w(U) u(p,p*-l)f u(x—l,')"/ n(A)
T, () e N ST / F (5o p)
? “*‘9 S S L a== F. A
Fd U FupUu ’ quUp ? auUA—l 2 du

commuterwhere o =

0+1 A=1 p+1
% %=

Note that for XA=1 > 0 the left side

of the diagram commutes by induction hypothesis whereas for A = I

this can be established using

way as for the middle square.

y-filtered, there is an object

. . 1 -
with a morphism ay F (fi’gi)

i

a, ¢ o

A

A
i

-1

Hence we can deflne Q(A)

u(k-

that

1

JA) = F <a>°u<x i)

ﬁ H IA—}RA £ 1s an exte

satisfies (¥x3k)

3.16

We now construct a facto

ﬂ(quUt) 2 vy > card(T) in the same
Since card(M).< y™ and D, . is
—A,f
8y £

(U > U A)A) in D . together
A —A, £

-9(fx,gx) for every uw &€ M such that

) is independant of i = 1i(p)
A
A=
l’gl é(l 1<A) .‘ai and

for uE'M . With this one easily sees

nsion onto LA and that u(A-1,2)

rization of f : U—=2A into a morphism

g;)
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g' + U=U' and a bialgebra morphism f' : U'->A such that the

4 |} ]
properties stated in 3.12 hold. Let (UiiéIIjLéA) be the colimit

of § : IB—->DA £ - Then, as mentioned in the.middle of 3.13, we have

| I : 1 - . i ] . T : .

U = lim UA and f' = 1im fA whereas g' : U-U' is the canonical

A<B A<B
morphism into the colimit.
For every u€ M the functors d and Fcu pPreserve B-filtered

a
colimits, in particular lim F, U, —5F ligm U and
e n<g dnA du g A

limg Fc U, —F lim U, - Passing to the colimit with 3., 14 (¥%) and

r<g  C¥ P NY: .
¢%*)yields an unique morphism u(U') : F U'—%»FCUU' such that the

du
diagram
t
= !iﬁ%__) S
/'/______.—' - 5 :
(h ) - ,_: \:\ . Fcu(f )
——————9 _— — F . U'! ——F A
cuUt F U0 itg-FCUUX+I 4 cuU 7 c)
/I\ e - I~ A,
|
u(u,) 11mM(A A+1) u(u") u(a)
t >\<B
Ay () » Fd/lﬂf’)
3T, U ~3F , A
qu .__9qu o 7 iig quUX ///Frdu du
) ]
Fau(s"
commutes. This shows that U' together with the morphisms
w(U'), n€M , is a bilagebra and that f' : U'->4 and g'ht : Ut—éU'
are bialgebra morphisms for every t€&€ T . This completes the proof of
the assertion in 3.12
3.17 For a bialgebra (A,M) 1let B(A M) be the category of-
,l

bialgebras over (A,M) whose underlying object in A 1is y-presentable.

Recall that for every AE A the category D, = A(y)/A of

Y-presentable objects over A is y-filtered (even Y—-cocomplete) and

that the colimit of BAméé,(U-E?A)AAzU , is A (cf. 2.8). From this

and 3.12 it }eadily follows for a bialgebra (A,M) that the forgetful
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functor

(*) R(A,M)——QPRA’ {(U,M)‘f—é'(A,M)}Aa»(U——;A)

is cofinal and that E(A M) ig y-filtered (but in general not
b

y-cocomplete). In particular (A,M) is the colimit of
G%) D,y —>Biate(a), { W, 0 v,
b

and B(A M) has B-wellordered colimits which are preserved by the

functors () and (%,

:3.18 We now return to the general case and drop the assumption R = &

which was made at the beginning -of the proof in 3.12. For a bialgebra

(A,M,R) 1let D be the category of bialgebras over (A,M,R)
'—(A,M,R) ‘

whose underlying object in A is y-presentable. Clearly the forget-

ful functor

S i — — - e I = e

(?'F?? 2(4,M,R) B(A M) ' {(U M R)“‘**(A M, R)}~*?{(U M) —Z3 (A, M) }

is a full embedding. We wiil show below in 3.%0 that it is cofinal.

From this and 3.17 it follows that D is also y-filtered and
: "'(A M9R)

that (A,M,R) is the colimit of

"—(A M,R) . Blalg(A)’ {(u,n, R) —E—(a, M, R)$~T(U, M, R)

If (X,M,R) 1is y-presentable in Bialg(A), then this implies that the
identity of (X,M,R) admits a factorization ’
(X,M,R)—é(U,M,R)—EP(X,M,R) with féfB(X M,R) Hence X 1is a retract
of U, in particular X 1is also y-presentable. Conversely, %f X

is y-presentable in A , then by 3.5 (X,M,R) is Y-presentable in
Bialg(A) . This proves the second assertion of 3.8. Moreover this
shows that the category R(A,M,R) is the category of Y-presentable
objects over (A,M,R) in Bialg(A) which completes the proof of 3.9,

3.20 For the cofinality of the functor 3.19 it suffices to show that
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a pre-bialgebra morphism £ : (U,M)A(A,M,R) with m(U) ¢ v factors
through a bialgebra morphism f' : (U',M,R) = (A,M,R) such that
m(U') < v . The construction of f' isg similar to 3.12 - 3.16. Let

D be the category whose objects are factorizations
—(A M), f £

&
{(U M)-————>(U M)-—“—% (A, M)} of £ w1th n(Uj) < v and whose
morphisms 1i—-3j are morphisms a; : (Ui,M)—>(Uj,M) in P~Bialg(A)

- . _ il _ i _, :
with the properties fi = fjaj and gj ajgi « Since E(A,M) is

y-filtered and has B-wellordered colimits, it easily follows that the

functor

Damy, e TR My legafibwlE s (v a,m)

is cofinal and that is also y-filtered and has B-~well="

Deamy, ¢

ordered colimits.

Recall that E; (resp. £X> denotes the wellordered set of all

ordinals p < o (resp. p < 1). By means of transfinite inductions

we construct a functor

“—>9<A,M),f

- T
8 ¢ I

8
with Q(0) = {(u u) = (U, M) -Af >(8,)}

. . ; ; ' . £! 1
such that the factorization lig Q = {(U,M)—&—é(U',m)-——>(A,M)y of

f has the required properties. We write

By

8 f .
Q{p) = {(U,M)~—B§(UO,M)——Q%(A,M)} for pé'lé and ,Q(p<T) = aﬁ for

< 1t in I-
P =g

We define Q(0) = {idU,f} . Assume Q has been constructed for all

< i.e. is i
p A, i.e. there is a funector 0 EA-QE(A M), £

2(0) = {idU,f} - If X is a limit ordinal we extend Q to

with @(0) = {id,,f}

L
by defining Q(A) as an appropriate upper bound of the image of

: = i ils i 3. .
2 lx >2(A,M),f (the details are as above in 15). Now let A be
& successor ordinal. For every relation r € R we have “(Fdar-l) <y

Since FcrA = llw FcrUi is a y-filtered colimit and the morphisms

1fDAWf
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r(A,M) : FdrAiztirA coincide, there is a factorization
f.

(U,M)-—ié(U.,M)-—i9(A,M) and a morphism
i
A=

o : (f

i A=1" g)\—l)-__)(fl‘ gl)

in B(A,M),f depending on r such that the morphisms

. -
T o) 2 Fy Uy (SSF U
become equal when composed with F d%“l : F U —F U, . Since
cY 1 cr A-1 cY 1

card(R) < vy and ] ; is y-filtered tﬁere is a factorization
—{(A M), f
2 L
{,m) —2> (U, ,M) === (4,M)}

together with morphisms oF (fi’gi)—_>(fk’gk) in

A Dia,uy,g such
A1 _ i, a-1 . e _
that ay = 06,° a; : (fk—l’gk—l)’—><fk’gk) 1s 1independant of 7 ,

i
. ' ) A—~1 . .
Thus we can define Q(iA) = (gx,fx) and Q(A—l < A) = o) and it isg

clear that @ is a functor. This shows that there 1is

—
L™ 2m,m, s

: -
a functor @ I E(A M), £

cofinality of the forgetful functor

with Q(0) = {idU,f} . By 3.17 and the

.

== . . 2 F .
E(A,M),f 2(A,M)’ (fl,gl)mayfl

the colimit of O exists and can be computed pointwise, i.e.

g lim fA
lim @ = {(u,M) —& (%_i_gé U, 5 2M) =>(A,M) }
»,
where g' denotes the canonical morphism intb the ¢olimit. From the
construcftion of a;+] : (f A’gk)__é(fk+l’gk+l> and the diagram
) . »
U _ﬁififvlcruﬁl = IBE, Uy T i]:g; U,
r (U ,M) ’ r(UA+]’M) ]1E$1(UA’M) lfli? UA,M)]
F. U ~-114£—@"’7A‘--+—1?F U 2 —lim F, U, —Z3 P, linU

dr ) dr )+1 dr == ")

A< B A<B
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it follows for every r€ R that the two components of the morphism

pair r(lim UA’M) coincide. Hence (Liﬂ UA’M) is a bialgebra.
A< : A<B

3.21 Definition A sub-bialgebra of a bialgebra (A,M,R) 1is a bialge-

bra (U,M,R) ‘together with a bialgebra morphism £ : (U,M,R)—>(A,M,R)
whose underlying morphism in A 1is a monomorphism.

Clecarly £ : (U,M,R)-—>(A,M,R) 1is then also a monomorphism in
Bialg(A). However the forgetful functor V : Bialg(A)—3 A does not
preserve monomorphisms in general (for an exception see 3.4 a)).

*;he question arises whether there is an assértion analogous to 3.8 for
c-generated objects. This is mnot so. The reason for this asymmetry
lies in the fact that the underlying‘functor V : Bialg(A)--3A and the
functors F¢ FC need not preserve monomorphisme. We give below in
3.22 a version of 3.8 for y-generated objects corfecting this
deficiency by additional assumptions. From the point of view of
applications 3.22 is useful in either of the following situations:

1) A 1is locally y-noetherian, i.e. every +y-generated object is

y-presentable, cf, ﬁﬂ] 9.19. or 2) every FEF_ preserves finite
: - o

limits, e.g. in the algebraic case 3.2" IT ).

3.22 Theorem Let A be a locally presentable category with a data

M , B and. F for bialgebras (3.1). Assume there is a regular

cardinal B such that

1) every Fg€F preserves. fB-filtered colimits

2) every pg-wellordered colimit of monomorphisms in

|
|

[ >
H
[45]
B
{3
[S)
H
3
[

monomorphism.

Let y > B Dbe any regular cardinal such that

3) card(M) < y and card(R) < ¥y

4) A is locally y-noetherian and if UE A is y-presentable, then

FU 1is <y-preseuntable for every F¢ Fd (cf. 3.6, 3.7 for y = a) .

[



Instead of 4) one can agsume

4)' A is

serves finite limits; moreover if

refw

is y-generated for every d

Card(R) < v iﬁ redundant).

locally vy-generated (cf. [13]

pre-

Fgmc

U€ A 1is y-generated, then FU

(in this case the assumption

Then the following hold.

a) If (A,M,R) is a bialgebra and UcC A is a y-generated subobject
of A, then there is a sub-bialgebra _(U',M,R)—E—a(A,M,R) such
that U' contains U and 0' is alsc y—-generated.

b) A bialgebra (X,M,R) is y-generated in Bialg(A) iff X. is
y-generated in A .

c) A bialgebra (A,M,R) is the y-filtered colimit in Bialg(A) of
its y-generated sub-bialgebras.

d) If A 1is locally y-noetherian, then every y—generated bialgebra
is y-presentable in Bialg(A); in particulax if Bialg(a) is co-
complete (cf. 3.24 a), b) and 3.27 below), then Bialg(A) dis lo-
cally y-nonetherian. ‘

3.23 Remarks

a) Note that Yy has to be strictly bigger than 8 , hence Y 2.)q

If the codomain of every FcCIF

resp. 5.1 there is always a cardinal

4 is locally presentable,

then by 3.7
.
Y > B "such that the above con-

ditions 3) and 4) hold (resp. the second half of 4)'). The point is of

course to choose Yy as small as possible.
seems y = )q and B8 = f%
preserves filtered colimits

I Every T e¢lF

generated), every FGIFC

A is locally finitely noetherian (resp. A

The most useful situation

. This happens in any of the following cases.

(=Y

card (M) < }2 > card(R) ,

is locally finitely

takes finitely generated objects into

countably presentable objects (resp. into countably generated ob-

jects and every FE?WC

preserves finite limits),

cf. Corollary
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to 3.7,

IT Every F€IF preserves filtered colimits and every countable co-
limit of monomorphisms in A 1is again a monomorphism,
card (M) < f% 2 card(R) , A is locally l@l—noetherian (resp. A
is locally )(l"generated), every FEle takes countably genera-
ted objects -into countably presentable 'objects (resp. into coun-
tably generated objects? and every Fé‘mc preserves finite 1li-
mits), cf. Corollary to 3.7.

ITI Every FegIF preserves filtered colimits and every countable co~
limit of monomorphisms in A is again a monomorphism,
card (M) < j% > card(R) , A is 1ocally.}q-noetherian (resp. A
is locally fq-generated).
Every Fe:Fd has a right adjoint which preserves countably fil-

tered colimits (resp. every FCIFd has a right adjoint which pre-

serves monomorphic countably filtered colimits, and every Fe:mc

preserves finite limits), cf. 3.6.

b) As before in 3.8 the existence of arbitrary colimits in A is not

needed for 3.22 (cf. 3.1! a), b)).

Proof of 3.22 The proof is the same as for 3.8 with the following

obvious modifications. First for 3.12 - 3.16:
In 3.12 the morphisms f : U—=>A and ht H Ut~—ﬁU s t&T , are mono-

morphisms and e(U) < ¥y E‘E(Ut) . In 3.13 the category RA consists of

all y-generated subobjects of A and likewise QA £ consists of all
b
y-generated subobjects of A containing £ : U—>A (clearly both

categories are y~filtered, [13] 9.1 - 9.,3),
the
With this proof (3.14 - 3.16) of 3.12 goes through without change be-

cause either by assumption:4) in 3.22) one has W(quU) < vy, for every

.

neM and every U€A with e(U) <y or by 4)' in 3.22 one has
e(quU) <y, for every U€A with e(U) < v and the transition mor-
phlsms in FcuA = 113 FcuUi are monomorphic for every uweMM . No.e

i
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that by assumption 2) in 3.22 the induced morphism lim fk P lim UX~—9A

: A<B A<B
is again a monomorphism.
Second for 3.17 - 3.20:
In 3.17 and 3.18 the categories B(A,M) and D(A,M,R) consist of all

sub-bialgebras of (A,M) (resp. sub-bialgebras of (A,M,R)) whose
underlying object in A is y~-generated. In 3.20 the underlying mor=
phism of f : (U,M)—> (A,M,R) in A is a monomorphism, and the cate=-
gory Q(A,M),f consists of all sub-prebialgebras of (A,M,R) which
contain £ : (U,M) -3 (A,M,R) and whose underlying object in A is
Y—-generated.

With this the arguments in 3.17 = 3.20 go through without change. Note
that as above by assumption 2) in 3.22 the induced morphism

lig fA : lig(UA,M)-——ﬂ(A,M) in 3.20 is again s monomorphism. Also note
A<B A<B

that in the presence of the assumption 1), 2), 3) and 4)' the cofinali-
ty argument in 3.20 is redundant because by 4)' a sub-prebialgebra of

a bilialgebra satisfies the relations automatically (whence the assump-
tioﬁ -card(R) < vy 1is not ﬁeéded). ﬁgréoger.inﬂs.l9 a bialgebr;

Ei;ﬁ;k)i ;; Y-ééﬁe?étéd beéausé of the remark following 3,5.--"

With these modificaticns it follows from 3.18 that the assertions a,
b) and c¢) in 3.22 hold. As for d) it suffices to show that a y-genera-
ted bialgebra (X,M,R) is y~presentable in Bialg(A) . By 3.22 b) X
is Y—geni‘ated in A and hence also Y—presentabfb because A is lo-

cally y-noetherian. By 3.5 and assumptibn 4) in 3.22 ’(X,M,R) is y-pre-

sentable in Bialg(A) .

We now investigate the completemness and cocompleteness of Bialg(A).
Basically this occurs when the given data M s R and IF for bialgebras
(3.1) has one of the following properties: 1) every FéWFC preserves

limits (algebraic case, cf. 3.2 II), 2) every FC[F Preserves coli-

d'
mits (coalgebraic case, cf. 3.2 II), and 3) the data M , R and |IF

can be decomposed into one of type !) and one of type 2).(rough1y
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speaking every operation is algebraic or coalgebraic and every rela~-
tion is algebraic or coalgebraic or a distributive law between an alge~-

braic and coalgebraic operatican).

3.24 Theorem Let A be a lcoccally presentable category with a data

M, R and [ for-bialgebrag‘(cf. 3.1). Assume there is a regular cax-

dinal B such thal every Fe ' preserves RB~filtered colimits.

Let vy > B be any regular cardinal such that

1) card(M)} < v > card(R) and A is locally y-presentable,

2) if U&€A is y-presentable, then TU is y-presentable for every

Fé:Fd (cf. 3.6, 3.7 for v = o ).

Then the following hold.

a) If every Féfﬁd preserves colimits, then Bialg(A) 1is lo-

cally y-presentable and the forgetful functor V : Bialg(A).—A

P

RSA

cotripleable, The right adjoint cF : A——Bialg(A) of V preserves

y-filtered colimits (c¢cF = cofree functor).

b) If every Fech preserves limits, then Bial

09
N
i
N’
[
o
)—.-
(o}
@]
W
H
—
A
4

sup(B,n(A))~presentable and the forgetrul functor V : Bialg(A) —5A

Y

is trip!

eable and preserves B-filtered colimits. (The left adjoint

=

: A——Bialg(A) of V is the free functor).
Remark Note the asymmetry between sup(B,n{A})) and vy 1in a) and

b). For the locally y-noetherian case see 3.22 d). FTor conditions

R « g A B s - ',~
guaranteeing B =33 and y =X see the remark” following 3.8.

o) 1

3.25 Corollary Let A be a Grothendieck category (resp. a topos)

with a data M , R and [ for bialgebras. If every FéiFd preserves

colimits and every F€IFC finite limits, then Bialg(é) is again

a Grothendieck category (resp. a topos). This follows from 3.24 a),

4,11 and 3.3.

Proof a) It follows from 3.8 and 3.4 b) that Bialg(A) 1is locally

Y-presentable., By the special adjoint functor theorem the forgetful
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‘functor V Bialg(A)—>A has a right adjoint cF :.é—;;eBialg(é),
whence by 3.4 b) V is cotripleable. For every y-presentable object
(U,M,R) € Bialg(A) the functors [(U,M,R),CF—] and [U,—] are equi-

valent by adjointness, and by 3.8 U 1is Y-presentable. For a y-fil-

d colimi ¢ = 1im X I rohi
tered colimit X 1$m Xv the canonical morphism
S }ig cFXv-+cF(£%3 Xv) gives rise to a commutative diagram
o
i , [U,M,R), ] o =
[(w,M,R), Lim CFX\)] o3 [(U,M,R), cF (_1_}12 X\))] —{U, lin xv]
v v v
:lJ 4’
. . . T
_1_\1;3 [(U,M,R), ch\)] . SRS, - 3 1tm LU,XV]

Hence [(U,M,R),‘f] is a bijection for every y-presentable object
(U,M,R) € Bialg(A) . Since these objects forma set of (dense) generators
in Bialg(A) (cf. 3.9), it follows that P is an isomorphism. Thus

cF ¢ A——Bialg(A) preserves y-filtered colimits.

by By 3.4 a), c¢) Bialg(é) has limits and p-filtered colimits and
A Bialg(é}__aﬁ preserves and reflects them. In order to show that

V. has a left adjoint, we verify the solution set condition. For every
object U€&€ A there is a regular cardinal & such that U 1is S-pre-
sentable. By 3.7 there is a regular cardinal v such that ¢ < Y > B
and the conditions a) and b) of 3.8 hold for <y . Since the category
A(y) of y-presentable objects in A is small, it follows from 3.8
and 3.1 that the same holds for Y{(y) (see 3.9),~wﬂere Y = Bialg(A) .
It then follows from 3.8 that a set of representatives of Y(y) - i.e.
a skeleton - is a solution set for U . Hence V : Bialg(A)——>A has a
left adjoint F and is tripleable by 3.4 a). The composite

Ve F : A—>A preserves B-filtered colimits and it therefore follows

from Gabriel-Ulmer [fﬂ] le.3 that Bialg(A) 1is locally sup (B, m(A))~

presentable.

3.26 It is well known that the category of commutative (resp. co-
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commutative) Hopfalgebras over a commutative ring A can be viewed

as the category of cogroup (resp. group) objects in the category of
commutative A-~algebras (resp. cocommutative A-coalgebras). Similarly
the category of commutative (resp. cocommutative) A-bialgebras can be
viewed as the category of comonoid (resp. monoid) objects in the cate~
gory of commutative A-algebras (resp. cocommutative A-coalgebras). In
beth cases this rests on the fact that in the category of commutative
A-algebras (resp. cocommutative A-coalgebras) tﬁé categorical copro-
duct (resp. product) is the tensor product iifted from MQQA . Thus
theorem 3.24 can be applied twice - first a) and then b) or vice versa-
and it follows that any of the above categories is locally )«I"presen-
table. However the category of arbitrary A-bialgebras (resp. A-Hopf-
algebras) cannot be expressed this way because the tensor product 1if-
ted to the category of A-algebras or A—-coalgebras is.not the categori-
cal coproduct or product. The following is motivated to rectify this,

at least in part.

3.27 Definition Let M , R and |F be a data for bialgebras in

.

A (3.1). A decomposition of M , R and F into an algebraic and coal-

gebraic part consists of a data M , R and F in A and a data

M,

=0l

and. F in Bialgq ?(A) with the following properties:
Ll AN -

1) BlalgM,R(é) = Blalgﬁ,§<3131gﬁ,§(é)) .

|

2) every éf@c preserves limits,

IS

3) every € g Preserves colimits,

=i

Likewise a decomposition of ¥ , R and [F into a coalgebraic and al-

gebraic part consists of a data M , R and F in A and a data

S\

Wi y R and

.in Bialgﬁ f(A) with the properties
3 A

1 ’; 1 s il = + —— —_— \
1) BlalgM,R(é) BldlgM,R(BlalgM,R(é’)
2) every ?c‘@d preserves colimits,

3) every 'F@ Gc preserves limits.



§ 3 -32-

For example to express the category A-Bialg of arbitrary A-bialge=-

bras in this way let A = ModA and chocse M to comsist of a multi-

plication u : ldé ® 1dé————>1dé and a un1F no constA--»-m-éldé and

R of the associative and unitary laws. Then B = Bialgﬁ f(A) 1s ob-
k= B =2

viously the category of A-algebras and the tensor product lifts from

oty _y s
gﬂﬂﬂ to B . Let M in B consist of a comultiplication

A s idB -;—-.*.idB ®A id and a counit g : idB-nmﬁconst and let R -

B A

consist likewise of the coassociative and counitary laws. With this

one readily checks that Bialgq'ﬁ()) is canonically isomorphic with
M,R 2

A-Bialg(A) , cf. 4.4 for details. Unfortunately it doesn't seem possible

to express the category of arbitrary A-Hopfalgebras in a similar way.

While the antipode can be viewed as a morphism s : idB—~“m§idBopp I

don't know how to express the relations involving s in B . One

would have to show that for a A-bialgebra (M,u,u,A,e) the composites

M_M£~>M @, M E_"@v_iﬁ M ®, M -2 M  and
A id ® g u L. . . ;
M——— M D, M -3 M @, M-——-3M which are defined in ModA are

multiplicative or antimultiplicative whithout using that they coincide

vith M-—Zy A %oy

«

3.28 Theorem Let A be a locally preseutable category. Let M , R
and [ be-a data for bialgebras in A which admits a decomposition
into an algebraic part M , R , I and a coalgebraijc part M , R , F

A
(c£. 3.27). Assume there is a regular cardinal g such that every

Feff and every Fe [ preserve B-filtered colimits. Let vy > B be

any regular cardinal such that

1) card(M) < Y o, card(ﬁ) < vy , card(R) < vy , card(i) < y and A

is locally y-presentable,

2) if UEA and (X,ﬂ,§)€iBialgq ﬁ(é) are y-presentable, then TU
A,

«
'

and F(X,M,R) are y-presentable for every Fef,; and Feff,
(cf. 3.6, 3.7 for vy = %).
' v

Then BialgM’R(é) Bialgﬁ’i(Bialgﬁ,ﬁ(é))
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and the underlying functors

Bialg% 1{(é_)~——-—~---—) Bialgq~5(A) and Bialgq E(A)-———9 A
L g & S XS LL ¢ it - g

are cotripleable and tripleable respectively.

Proof By.3.24 b). the underlying functor Bialgﬁ-i(é)————>é> is triple-
able and Bialgﬁ ﬁ(é) is locally y-presentable., Likewise by 3.24 a)
.
the underlying functor BialgTv1 R(A)—f—_—éBialgﬁ ﬁ(A) is cotripleable
<Ly s ’ - '

and Bialg_bI R(é) is locally y-presentable:

‘i3.29 Remark 1In the same way one considers morphism between algebraic
theories and the corresponding algebraic functors (cf. Lawvere [21]),
one can study morphisms between data for bialgebras. For a given data
M, R in A and a subset M'C M there is an obvgous relative forget-

ful functor

Viep ¢ PoBialsy (A—P-Bialg,, (&) , (A,u(A)), o\ =Au) .\ .
Let R' be a set of relations on P—BialgM.(é) which hold in
. . L] - F .
BlalgM,R(é) , 1.e. Vrel(A,M,R)éfBlalgM,’R,(é) for every
(A,M,R) € Bialg,, P(é) . Then there is also an induced forgetful functor
L-L, A9
Vrel : BlalgM’R(é)-~—-9 BlalgM,,R,(é)

One can easily generalize the results of this chgpter - in particular
3.8, 3.22, 3.24, 3.28 - to this situation. But in. general it is dif-
ficult to find a data M" , R" in BialgM,R,(é) - hopefully simpler

than M , R ~ such that BialgM R(é) = BialgM" R"(Bialgw, R'(é)) :
’ H & H

(see 3.26, 3.27 for cases like Bialg(A) z Coalg(Alg(A))



