§ 4 Examples of bialgebras in locally presentable categories

In this section we give a first series of examples of bialgebras and
apply the main results of § 3. A second series can be found in § 6.
In the following we discuss universal algebras (4.1), universal co-

algebras (4.2), cealgebras over a commutative vring A (4.3), A-bial-~

gebiras and A-Hopfalgebras and generalizations (4.4 -~ 4.7), comodules

= g — s S =

over a A-coalgebra (4.8), bimodules over a A-bialgebra (4.92), ccalgebras
over a cotriple (4.10 ~ 4.12), algebras over a triple (4.i3), données

de recollement and descent data (4.14 - 4.16) and more gerrally

.

sections and cartesian closed sections with respect to a fibragion
or cofibration (4.19 -~ 4.26). Although some of these cases are dual
to each other as far as the data for bialgebras is concerned, the

assertions resulting from 3.7, 3.8, 2.9, 3.22, 3.24 and 3.29 are not

and can be quite different. We always assume the base category A to

be locall resentable although, as for 3.8, 3.9 and 2.22 the existence
y P g

mostly i }
ol arbltrary colimics 1n A 1s not needed. Weiieave the generallzairon
.- 2y

by means of 3.11 toc the reader.

N

We use the following notation for a data (3.1) of bialgebras M, R, [F :

For an cperation peM and a relatien r&£ R we write ¢ ng'“?Fcp

and r ; T "‘”9FC respectively. A data will often be given by first

drT 2 Yer

specifying the set F of support functors and then indicating the

operations and relations in this form.

4.1 universal algebra.

Lett A be a category with finite products, Let O be a finitary

algebraic theory in the sense of Lawvere Llf (or Birkhoff), eg. groups,

-
A
rings, algebras... . Let M be a set of defining operations and R
o set of defining relations for € in the usual sense. For peM

le

e

F = id and let F : A-—3A Dbe the funcitor A~¥TTA which
cy o A du — — N

assigns to an object its n rfold produvct, where nUl is the arity
|5
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of w . A pre-bialgebra (A,M) 1is an object A € A together with a

morphism | IA——)A for every u&e M . For a relation r € R let
n .

Fcr = ldé and let Fdr : A—> A be the functor A“‘?Ll A , where
n_ denotes the arity of r . The functor Fdr is also denoted with
idAnr . Since relations are built up of operations and projections,

for every pre-bialgebra (A,M) and every relation reR there is a

morphism pair r(A M) : I !A.::$A which is naturul in (A,M) - i.e.

Wlth respect to pre—blalgebra morphlsms. Note that Ec = {1d } and

Fd {1d ; idA ) idAz...} . It is stralghL forward that Blalg(é)

is isomorphie with the category ©-Alg(A) of ©-algebras in A

(i.e. the category of product preserving functors 84)

Assume that A 1is locally a-presentable. Let B be the least

regular cardinal such that B-filtered colimits commute with finite

products, whence B8 < a by [|3] 7.12. By an obvious cofinality argu-

ment for every n > O the functor A—A , A«élnlA preserves pf-fil-

tered colimits, moreover it is right adjoint to A—4 , A”ﬁJﬁLA 5

Thus by 3.24 b) and 3.7 (remark) 6-Alg(A) 1is locally a-presentahle

and the forgetful functor V : G—Alg(g)——éé is tripleable and pre-

serves B-filtered colimits (cf. also [13] 11.4).

Let y be a regular cardinal such that

1Y) B <y 20, 2) card(M) < v > card(R) and 3) if A€A is

—_—

y-presentable, then so is ]n!A for every finitg n > 0 (cf. 3.7

remarks). Then by 3.8 a @-algebra (X,M,R) is y-presentable in

[N

ff X 1is y-presentable in A .

6-Alg (4)

H

Likewise, Yy 1is a regular cardinal such that

1) B <y2a, 2) card(M) <y and 3) if A€ A 1is y-generated, then

so is [TA for every finite n 2 0 , then a 6-algebra (A,M,R) 1is

e

y-generated in ©-Alg(A) iff A is y-generated in A (cf. 3.22).

If in addition A is locally y-noetherian, then so ii 6-Alg(A) .

The generalizationSto non-finitary theories in the sense of Linton [23]

with rank or to partial operations are obvious generalizations and
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left to the reader (see also 6.14). The above can be gemralized to

categories A which are dual to a locally presentable category. By

114

means of 4.2 below and 6-Alg(A) (G—Coalg(éo))0 it follows that

the category of ©-algebras in the dual of ailocally presentable cate=.
gory is itself the dual of a locally presentable category. In particu-
lar if "A = Comp- (compact spaces) or A 1is any Grothendieck AB 5 ca-=

tegory with cogenerators, then ©-Alg(A) is the dual of a.locally

presentable category.

4.2 universal coalgebra

Let A be a category with finite coproducts. Let © be a finitary
algebraic theory and let M and‘ R be sets of defining operations

and relations as above. For upeg M let ,qu = idé and let Fcu : A—A
be the functor A~AL%LA . A pre-bialgebra (A,M) 1is an object AC€A
together with a morphism A__;éﬁ'A for every ute¢M . Likewise for a

relation Tr€ R let = id and let Fcr : A—3 A, A“i%i,A . As
. r

Fdr A

above there is for every pre-bialgebra (A,M) a morphism pair

r(A,M) : Aizééé. A and the category Bialg(A) is isomorphic with the .
T

category ©-Coalg(A) of O6-coalgebras in A . Note that _wd = {idA}

(2)

_ = (0) . (1) . i (n) .
and FC = {ldé ", J.dA R 1dA ,} s Where ldA denotes the

functor A“ﬁl%_A . If A has finite products, then A-3A , A~QJHLA

is left adjoint to A~y [TA .
n
w,
Assume that A 1is locally presentable and let

P

<
\%

sup I)fl, T(A), card(M)+, card(R)+} .

(Recall that 6+ denotes the least regular cardinal > & .) Since

A(y) 1is closed in A wunder finite coproducts (cf. 2.8), it follows

from 3.24 a) that the category ©-Coalg(A) iﬁ locally y-presentable

and the underlying functor V : G—Coalg(ﬁ)Qe%é. is cotripleable and

its right adjoint «<F : A-—236-Coalg(A) preserves y-filtered colimits. .

Moreover by 3.8 a 8-coalgebra (X,M,R) 1is y-presentable in ©6-Coalg(A)
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iff X 1is y-presentable in A , in particular a morphism U-—(A,M,R)

with 7(U) < vy admits & decomposition into a morphism U—2U' and

a 6-coalgebra morphism (U',M,R)-—3(A,M,R) such that «(U') < y .

Likewise if A is locally y-noetherian and if in A B-filtered co -

limits of monomorphisms are monomorphic for some B < y , then by

3.22 d) S—Coalg(é) iﬁ locally y-noetherian, In addition every y-ge-

nerated subobject of a @-coalgebra is contained in a 6-subcoalgebra -

whose underlying object is also y-generated. (Note if A 1is not lo-

cally y-noetherian, then the latter need not hold, in particular a
6-coalgebra (X,M,R) .need not be y-generated in ©-Coalg(A) if X

is y-generated in A , and conversely.)

The generalization$ to non“finit;ry theories in the sense of Linton [23]
with rank or to partial co-operations are obvious and left to the
reader (see also 6.14 - 6.16). The above can be generalized to catego-

ries A which are dual to a lccally presentablie category. This is done

m

(6-Alg (A°0°,

in some way as in 4.1 by means of 8-Coalg(A)

4.3 Coalgebras over a commutative ring.

Let A

Mod be the category of A-modules over a commutative ring A .

A

Let [F = {constA , 1d , id @ id , id & id @ id} » Where id is the identi-

ty functor of ModA and const, ModA

A~>A ., The tensor product is taken over A . Let M = {A,e} 5

-—éModA is the constant functor

where A ¢ id---»id ® id and ¢ : id—-econstﬁ are operations called

comultiplication and counit. A pre-bialgebra is a A-module A :to- .

gether with homomorphisms AA : A—3 A @ A and €y ¢ A— A . Let

f i
R = {rl > Ty s r3} , where ry ¢ id=z:=3id ® id @ id and ‘
r, id===3 id, ry : id===3'id are relations, called coassociative

and counitary laws, which for a pre-bialgebra (A, AA, sA) are given

by the diagrams
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It is straight ferward that ry, T and r are relations and that

N

3
Bialg(Modﬁ) "is the category A-Coalg of A-coalgebras. Note that

Ey = {id} . Recall that gggA is&locally Y—noethefian (i.e. every
Y-generated quule is y-presentable) for some Yy > Xfo iff every ideal
IcA is y-generated. If A has this property, it is called y-noe-
therian; in particular for y = )vo the notion Kz-noetherian coin-
cides with noetherian in the-usual sense. Clearly if A is noetherian,
then it is y-noetherian for any ¥ 2 2% .

By 3.2% a) the category A-Coalg is locally .xl—presentable and

Eg 3.8 for vy : ‘XH a coalgebra fX,AX,eX) is yY-presentable in

A-Coalg iff its undexrlying module X is y-presentable in ModA « In

particular a A-homomorphism U—na(A,‘AA,eA) zwith T(U) < v admits a

&
decompositioq into a A-homomorphism U-—U' andAcoalgebra morphism
(v', AU,,qu)-——é(A, AA,SA) such that #(U") < vy

Likewise, if A is y-noetherian for some Y 3~X3, then by 3.22

A-Coalg is locally y-noetherian and a y-generated A-submodule of a

coalgebra is contained in a subcoalgebra whose underlying A-module i

Y—=generated. Moreover a coalgebra ii Y-generated in A-Coalg iff its

underlying module is y-gemrated in Mod, . (Note that these assertions

— —=A

need not hold if A 1is not y-noetherian.)

The same results hold for the category of cocommutative A-coalgebras.
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For by adding to the above data of bialgebras a relation expressing

tﬁe cocommutativity of A:id--3 id ® id one obtains instead the cate-
gory of cocommutative A-coalgebras.

The above improves the results of M. Barr [1 ] considerably. He showed
that for § > sup(@ard(A)+,)¢l) every d-generated submodule of a A-co-
algebra is contained in a subcoalgebra whose underlying module is also
6-generated; in particular the coalgebras whose underlying module is
sup(card(A)+),.XH)-generated, form a set of gemrators in A-Coalg . As
shown above these probleﬁs have something tB do with the (minimal) num-
ber of generators for-ideais I>cA and not with tﬁe cardinaliﬁy ofriA
The latter enters his argument for a different reason. A submodule of

a coalgebra which is closed under the comultiplication need not be a
subcoalgebra because it need not be coassociative. If however the sub-
module is pure, then the coassociativity carries over. Therefore he
considered only pure submodules and embedded the given submodule of

the coalgebra into a pure submodule. In this way the cardinality of A

comes in and the "generated" subcoalgebra can become much bigger

than necessary. ‘

As for Fox's [8 ] generalization of Barr's results see 4.7 below.

4.4 Bialgebras, Hopfalgebras over a commutative ring, generalizations

to Props and locally presentable categories.

Let A = ModA be the category of modules over a commutative ring A -

The data M, . R, f for A-bialgebras is as follows. ief ]

F = {.constA , id , ide id , id.aixi@id} be as above for coalgebras (4.3),
~Let M = {A s € s U ,u} be operations, where A : id— —> id® id
e : id—-—> const, , u i id ® id——> id and u : const,— —> id are

operations called comultiplication, counit, multiplication and unit
respectively. Thus a pre-bialgebra is a A-module A together with

homomorphisms AA t A—> A ® A, €y ¢ A-— A, My A® A—A

and u, A~—3A . Let R = {rl, r2""rlo} , Wwhere
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r, : id=-3id @ id @ id , r, : id>Z3id , ry + idZ2Z3id are as
above in 4.3 and the relations L idgidgid Z 23 i4d , rg idZZ3id
N o=t — ] p N . - >
re ¢ 1d-..31d » Ty id @ idZ”-3id @ id , rg constA-_.>constA s
) — = . . . ] - . L
r9 : constA__.g,ld@ld : rlo 1d @ 1d_.__.>c,on~stA are given for a pre-
bialgebra (A’AA’eA’“A’uA) by Fhe diagrams
"
A Ao A | A \'_" / A
id & u,®id ~ ke
A /‘\/ A9ty / &0 A &
AgA A® 4 1.dA 1dA®uAl luASIdA 1dA
#\ Ae A Aea
1
A fa T S
A X A
Ta
A®Ao A A —2> A A Aa@A A
\
A® A Ae A id, T A
= _ ‘ :
£
A
\ / N,
™
A AwA
A
A - Aw® A A

>
7
X
"8
c
o
te
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where fA : A® A A@ A—3> A ® A® A® A is the homomorphism

interchanging the two inner factors. It is straight forward that

r r

gty T are relations on P-Bialg(yggﬂ) and that Bialg(ModA)

1° lo

is the category A-Bialg of A-bialgebras. In order to express the ca-

tegory A-Hopf of A~Hopfalgebras as bialgebras in Mod one adds to

A

M an operation § : id-~-3id (= the antipode) and to R two rela-

tions «r H idi::iid s Lo 3 id7-3id which for a pre-bialgebra

11

(A,AA,EA,UA,UA,SA) are given by the diagrams

idAQ’} SA SAaidA
A@ d——m3 A @ A A A ——————>3A@ A

=3
b3
/
o
>

h

V Hy
A A A ) A
€ ' €
. A : A
uA MM\HNN\\\HMQ ////%EZ/H
A A

~Likewise by adding relations expressing the comuwutativity of u or

the cocommutativity of A or both one can obtain the categories o

th

commutative A-bialgebras énd A;Hopfaléebrasy cocommutative A-~bialw

gebrag and A—Hopfélgébras and bicommutative A-bialgebras and A-Hopf-
algebras. Note that le =1{F and that x(A @& A) ¢ n(A) and likewise
HEEA 2 A) g e(A) for eve;y AGZQQQA i

4.5 Thus for vy z:xl it follows from 3.8 that E_A—bialgebra (X,M,R)

is y-presentable in A-Bialg iff its ﬁnderlying module X is y-pre-
sentable in ModA . Moreover a A-homomorphism U— (A,M,R) with
T(U) < v admits a decomposition into a A-homomorphism U——U' and a

A-bialgebra morphism (U',M,R) — (A,M,R) such that w(U') 5 v ; in

particular the A-bialgebras whose underlying module is Xl—presentable

form a set of dense generators in A-Bialg (cf. 3.8 and [L3] 3,11

If in addition A is y-noetherian for some Yy 2 :xl (cf. 4.3),

then by 3.22 a y-generated submodule gf_i_bialgebra iﬁ contained in a
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subbialgebra whose underlying module is also y-generated. Moreover a

A-bialgebra is y-generated in A-Bialg iff its underlying module is

y-generated in ModA .

The same assertionshold for the categories of commutative A-bialgebras
and A-Hopfalgebras, cocommutative A-bialgebras and A-Hopfalgebras

and bicommutative A-~bialgebras and A-Hopfalgebras.

4.6 With the exception of arbitrary A-Hopfalgebras all of the above

categories are locally Xl—presentable. In addition the various rela-

tive forgetful functors have left adjoints resp. right adjoints. If A

is y-noetherian for some vy > %l s then the above categories are also

loqallz X]-noetherian.

The data of bialgebras for these categories admit a decomposition into
Ialgebraic and coalgebraic parts, c¢f. 3.27. Thus the first assertion
follows from 3.28 and the last from 3.22 d) while the one concerning

adjoints is a consequence of either 2.9 or the special adjoint functor

theorem. For more details see 3.26 and the discussions following 3.27.

4.7 Generalizations Let P be a prop in the sense of Mac Lane Eﬂﬂ

Section 24, and assume that it can be defined by a countable number of
operationsland reiations (see M. Barr [ ] p. 605/606 for a discussion).
It is clear that %the tensor product preservipg functors g—f>M2iA
can be expressed as bialgebras and therefore the assertions in 4.5
carry over to this situation. Likewise if the prop P is algebraic or
coalgebraic ([1 ] 6.1) or admits a decomposition as in 3.2 , then the
category of tensor product preserving functors 2-—>MQQA is locally
7x]-presentablg,and if A is y-noetherian for vy 2_X1 , it is locally
Y-noetherian, etc.

More generally let A be a category equipped with a bifunctor

® : Ax A-—A which is coherently associative, symmetric and unitary.

Then for an arbitrary prop P one can express tensor product preser-
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Ving functors”as bialgebras as above. If A 1is lccally presentable

aﬁd ® preserves o-filtered colimits in both variables for .some k

o > )oo » then 3.8 (resp. 3.7).and 3.22 (resp. 5.1) apply.

Moreover if the prop P is of algebraic or coalgebraic type (cf. [L]f
6.1) or admits a decomposition like in 3.27, then the category of ten-

sor product preserving functors P-—- A is again locally presentable:

etc. (see 3.28 and 3.22 d)). In particular this applies to the coalge~
the

braic situation considered by Fox LS ]. We leave it toAreader to spe -
cify the minimal cardinais in 3.7 - 3.28 for tensor product preserviug
functors P-—>A (note that the case q = X‘o is particularly simple

and useful).

While props give rise to data of bialgebras, the converse is not

true, not even for A = ModA and

F = {constA y id , id @ id.,id & id & id} . For instance, as M. Barr

pointed out to me, Lie algebras over A cannot be expressed as tensor
product preserving functgrs B;€>EEQA for some prop P because the
Jacoby identity involves addition of structure morphisms, However they
can easily be described as bialgebras, the Jacoby identity is given by
the relation A ® A & AJ:g%iiA., where f(x,v,2) = 0 and

g(x,yv,z) = [[x,y],z] + [[y,z],x] + [[z,x],y] .(Note that fA and By
are obviougly natural with respect to A-homomorphismspreserving the
bracket). The notion of bialgebras allows more flexibility as far as
relations are concerned , It ié also more natural and its simplicity
should be compared with the technical problems involved with a prop P
and the coherence aparatus for & and P .

I should add that these prop problems prompted me to look for'some—
thing simpler. When I met M.Barr and T. Fox in the fall of 1975 I had
ten "different" proofs for the same theorem (namely 3.8); one for I-co-
continuous functors, one for coalgebras over a cotriple, one for des-

cent data ,, one for A-coalgebras, one for comodules over a coalgebra,
1]

one for A-bialgebras,... . On the other hand Fox [Sj] had a proof for
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a tensored locally presentable category and a coalgebraic prop, but no
réasonable ;ize estimates for the generators he constructed. In order
to obtain that and also to cover the case of non-coalgebraic props I
had to look for an "eleventh proof" of 3.8 considering interlocking
operations and relations which turned to be very technical and ex-
tremely laborious. Fox [g ] had got i around this problem in the same
way as Barr [1 ] by using purity (see 4.3 above). The use of purity
however makes good size estimates impossible and thus something else
had to be found. In this way I was led to the notion of pre-~bialgebras
and bialgebras as defined in 3.1, the above mentioned example of Lie-
algebras served as a guide. The unification of the eleven proofs of

3.8 was a somewhat "unexpected fringe benefit",

4.8 Comodules over a A-coalgebra,

Let A = ModA be the category of modules over a commutative ring A
and let C be a A-coalgebra with comultipiication A : C—>C®C
and couunit € : C-—>A (cf. 4.3). Recall that a right C-comodule is a

A-module A together with a A-homomorphism § A—3AgC such that

A

the diagrams

A e C Ag C

] / ,_\_‘
A\ A® Cea C vEn 4s & A
5 ,/io‘llm ; .
A AeC A

commute. The tensor product is over A . A right C-comodule morphism

(A,SA).——>(A‘,6A,) is a A-homomorphism f : A——A' with the property

§,,0 f =(f ®,id8° GA - The category of right C-comodules is denoted

A!
with ComodC (cf. Demazure—-Gabriel [#] p. 174, Sweedler ES] 30/31).

To express ComodC as bialgebras in ModA let F = {id, ¢ C,®¢C ® c}

and M = {GY , where 1d 1is the identity of ﬂgiA and & an
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OPeration id--3>@ C . Let R = {r],rz} » where r idzzz3e@ C @ C

and r, idzz33id are given by the above diagrams. Clearly r, and

r, are relations on P—Bialg(ModA) and ComodC = Bialg(ModA) holds.

Note that Fy = {id} ;

Thus by 3.22 and 3.8 the category Comod, is locallyixl-ggesen—

) ;E‘YmpreSentgble in Comod

X

table and for vy a'ya a comodule (X,§ c

if X 4is y-presentable in ModA » in particular a A-homomorphism

Fa— —_—

U —— (A,GA) with @(U) < vy £actofs into a A-homomorphism U-—>TU"

and a comodule morphism (U',SU,)-—~——9(A,6A) such that «(U') < vy

Likewise if A 1is y-noetherian for some ¥ 3>¢1 (cf. 4.3), then by

3.22 {Comod, 1is locally y-noetherian and a comodule is vy-generated in
Lomod, . ng] d e SIENUCYNEIEES 01l

Comod, iff its underlying module is y-generated in Mod, . In additio

“—A et il

a y-generated A-submodule of a comodule is contained in a subcomodule

whose underlying module is y-generated. The last assertion was first

proved by Wischnewsky [3&] under the additional assumption that

Y > card(A) . Following Barr 1] he used purity arguments which in
d

(1] 1 0
general make the “generatsd” subcomodule bigger than neccssary.

If C is A-flat one can easily show that ComodC is a locally

361—presentab1e Grothendieck category and that for o z.%a a comodule

R ’ Talso. T
is a-generated iff its underlying module is, etc. (cf. 3.25,3.22/see[ﬁ59

4.9 Bimodules over a A-bialgebra

LN
Let ModA be as above and let H be a A-bialgebra with multiplication

put H® H—>H , unit u : A——>H , comultiplication A : H—H ® H

and counit € ! H—-A (cf. 4.4). Recall that a bimodule over H 1is

a A-module A together with A-homomorphisms My f A ® H——3%A and
6A t: A—>A @ H such that 1) Hy defines a right H-module structure
on A with H being viewed as a A-algebra 2) GA defines a right

a
H--comodule structure on A with H being viewed asAA—coalgebra

3) 6A is H-linear, where the right H-structure on A @ H 1is given

11

by A : H——3H @ H, i.e. if A(g) = I gi'® g;" , then
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" (m @ h)g =IZ mgg ® hgi" (cf. Sweedler [28] 4.1)., For instance, if
XE:ﬂQQA then X ®H, idep, id® A) is a H-bimodule. A morphism
between H~bimodules is a A-homomorphism which is compatible with both
Structures. Let Eiﬂﬁiﬂ denote the category of bimodules over H
To express BimodH as bialgebras in Mod let

A
F = {id, @ H, @ § ® H} and let M = {s,u} consist of operations

¢ ¢ id~-> @ H and p : @ H--9 id » where id is the identity

functor of ModA . Let R = {r] s Ty's Tg o T, s r5} consist of re-
lations L idz== = @ H e H , r, ¢ ido=z3'id , ry ¢ @ He®@ Hz=3 id
r, * idz== 3 1id , rg ! @ Hz= 3@ H , where r; and r, are as above

. A . . T
in 4.3 and g L r5 are given for a pre-bialgebra (A,SA,uA)

by the diagrams

. A ® H
ey b /\
1 & u H 1 ;
A A ldA/i;& uA
A@ H&® H A v
'\\ _ A® A > A
uA@ldN. A' .
] -
A® 1 '
idAé_“gT@idH
A® H® B @ H >A Q@ H® HQH
0A®A/ \UA®U
~L
A® H A® H

with T : H @ H-——H @ H being the twist homomorphism h ® h'~>»h' @ h

One easily checks that T ..,r5 are relations on P—Bialg(ModA) and

that Bialg(ModA) = BimodH . Note that Fqy = F and that every functor
in Fd is colimit preserving. Moreover for every AeiModA it follows

from [A & H ., - ] i [A,[:H;—]] and [A @ He H , - ] = [A @_ H,[H,‘]]

that (A ® H) < sup<ﬂ(A) , ﬂ(H)) > m(A ® H® H) and likewise
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e(A @ H) < sup(e(A) , e(H)) 2 e(A @ H e H) .
Thus by 3.24 a) Bimod, is locally sup(% ,,v(R))-presentable

and for vy 2 sup()fl,n(H)) it fellows from 3.8 that a bimodu ule

(X,8y,uy) is v-presentable in Bimod, iff X is y-presentable

Mod, 3 inm particular a A-homomorphism U——>(A,8,,u,) with =(U) < y

factors into a A-homomorphism U-—2U' and a bimodule morphism

(U',GU‘,UU,)———~">(A,dA,uA) such that w(U") < v .

Likewise if A is y-noetherian (cf.. 4.3) for some vy

2 sup (X ,m(H)) ,

then BimodH is locally v -noetherian and a bimodule is y~generated in

ﬁimodH iff its underlying module is Y—g&gg&ated in MoqA . In addition

a2 y-generated A-submodule of a bimodule is contained in a sub-bimodule

whose underlying A-module is Y—generated.

Lctually E}modH is locaily CK]—presentable and locally S8-noetheriagn

where § is the least regular cardinal > ﬁﬁl such that every right
ideal of H is &-generated (in the category of right H-modules).

THis follows from 3.28 resp. 3.28 and 3.24 a) because there is a deccm-

position PBimod Comod (Mod ) in the sensc of 3.27. In more detail

H H *H
the algebraic part of M = {6,u} and ,R = {r L5ty 4,r5} is
- - - 1 1 . 'he 2
M' = {uy} and R' = {r35f4j whence BlalgM, o (Mod, ) .MQQH . There
is a functor & H : ModH--———>ModH s, A A A 8, H (see 3) above) to-
gether with natural transformations @ ¢ : & H—-—-m-%idMOd and
——h

& At @ H—>® H @ H , where € 1is the counit of H and A the co-
RS
multiplication. (The verification that & A 1is well defined is some ~

-

what laborious but straight forward.) With this onhe can define the co-

algebraic part of M and R as M" = {6 t id-~-9 @ H} and

ety

R" = {r, ¢ id=z3 o Hege B , r., : id::ﬂﬁ id s where 1d 1is the iden~
1

tity of ModH and r and r, are defined exactly as in 4.8. It 1is

now routine to show that BialgM” R"(MOdH) = BimgQH . Note that if H
>

is flat over A , then ﬁiﬂOdH is a locally 9f]—presentab1e Grothen~

dieck category and for o > sup(Qfl,e(H)) a bimodule is a~generated

iff its underlying module is, etc. (cf. 3.25, 3.22).



§ 4 -15-

4.10 Coalgebras over a cotriple.

Recall that a cotriple 6 = (G,8,e) 1in a category A consists of a
functor G : A-—>A and natural transformations & : G——-—-;VG2 (= comul-
tiplication), € : G —n—éidA (=counit) satisfying G& « & = 8G = GI (co-
associative law) and Ge « 8§ = id_ = G + § (counitary law). A G-coal-

G

gebra in A is a pair (A,&) , where £ : A-—>GA 1is a morphism satis=~

fying e(A)oc £ = idA and GE e E = §(A)o E -, A morphlsm (A, g)———+(A',g )

of G-coalgebras is a morphism £ : A—> A" satlsfylng £'°£ = Gfog

The category of all G-coalgebras is denoted with é@ . The underlying

functor éG—_—a A, (A,g) ~9> A 1is left adjoint to the cofree functor
&n——ééG sy A~ (GA,8(A)) . Given a cotriple & = (G,8,e) in A it is

easy to describe A in terms Jf bialgebras. Let I = {id G, Gz}

—G A’

aund let. M = {6} be an operation § : idA——-9 G . Thus a pre-bialgebra

is an object A€ A together with a morphism GA : A——>GA . Let
I 1 P . g - — 2 i
{rl,r2j be the relations r, : K"3(; and r, ldA‘“‘* 1dA

which for a pre-bialgebra (A,GA) are given by the diagrams

GA GA
] i
6, / Y §(A)
s \ ) Sy N\le (A)
A”D G A
\\\x 24
~ & /( A- - »Y A
A \3 - A 1d
GA A
Clearly r, and r, are relations on P—BialgCA) and AG 2 Bialg (A)
holds. Note that F, = {idé}

Assume A is locally presentable and that G as rank (ecf. 2.1)

and let vy > Sup(}ii,ﬂ(é),ﬁ(Gj) . Then by 3.24 a) é@ is locally

sup(?fl,w(é),ﬂ(G))wpresentable and by 3.8 a coalgebra (X,&X) is y-pre-

sentable in éé iff X 1is y-presentable in é 3 in particular a mor-

phism U-——Q(A,GA) with n(U) s vy admits a decompoeltlon into a mor-

phism U—>U' and a coalgebra morphism (U' U,)————;(A s ) such

e e e e - S e emam s e e Rt =

R T

that W(U'j‘s Y . L1kew1be 1f ,éz is locally Y~ noetherlan for _some



§ 4 ~l6-
Yy > sup()@l,w(é),ﬂ(G)) and if in A B-filtered colimits of monomox-
phismg are monomorphic for some B8 < y , then é@ is locally y-noe-
therian and a poalgebra (X’6X) @E Y—%EEEEEE§E iﬂ é@ _££ X i_ Y-ge=
nerated in A . Also a y-generated subobjecy U of a coalgebra (s,6,)
if MEEEEiESQ 1n a subcoalgebra (o 6U,) such that U' 1is y-generated.
4.11 Corollary Let €& = (G,8,e) be a cotriple in a topos A (resp.
Grothendieck category). Equivalent are

(1) A

finite limits because

é@

S

is a Grothendieck ¢

topos, one readily chec
13] 12.13 a) - 4) (=6Gi

The Tast assertion foll

4,12 Remarks @If G do

not be a Grothendieck ¢
let U-S3AD.Gr. be the

;ii finite p-groups for
tego}y of additive funé

all cocontinuous functo

Ag is a topos (resp. Grqfhenaieck category) and the lgft
3§igigﬁ écm——%é_, (A,GA)fWﬂ A , preserves finite limits.

(i1) 6+ A—>A preserves finite limits and has rank.

Moreover iff i) holds, then éG is a locally sup(?Cl,ﬂ(é),ﬂ(G))~E£g~

sentable topos (resp. Grsothendieck category) and for

vy > sup(?C],ﬂ(é),w(G)) a poalgqhgg (X,8. ) is Y—generated in é@

iﬁf X is y- EEEEE?EEE in A, etc.-ksee S 95 and 3. 22 f01 ='%O).

- Proof-- gy (i1) - e first assertion is trivial and the second

follows from 2.9.

(ii)==(i) By 4.lo é@ ig locally présentable. The undetlying functor

é@ —>A preserves and creates colimits. The same holds with respect

to

G 1is finite liwit preserving. This implies that
ategory provided A is. Likewise if A 1is a
ks with this that A satisfies the conditiocns

—&

raud's axioms) and hence is -a topos.

B =X

(o}

ows from 3.25 and 3.22 for

then A need

es not preserve finite limits, G

ategory (resp. topos), if A 1is. For imstance,

inclusion of the full subcategory consisting of

some prime p Let A = [E,QB-E£~]+ be the ca-

tors and lett XCA be the full subcategory of

T
rs. 16 below the i1nclusion

By 6. XCA has a
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right adjoint and the resulting cotriple on A  has obviously the pro-
perty é@ £ X 4 By 6.25 ¢) below AG is isomorphic with the category
of p-adic complete abelian grouwps which is not a Grothendieck category
(e.g. the colimit of the system Z@Z-MBLyw/p29~—2; .. 18 zero because

in the category of all abelian groups it is the Prifer group Z(pw)

whose completion is zero.)

b) Corollary 4.11 may sound like the well knowu theorem "If € is a
left exact cotriple in an elementary‘topos E,, then E’G is again an
elementary topos" but in fact in has little to do with it. The main
ingredient in 4.11 is the existence of generators in é@ which is not
contained in the assertion concerning elementary topoi. Also in the

latter there is no rank assumption on the cotriple which is necessary

for the existence of generatcrs.

4,13 Algebras over a triple. Let T = (T,u,u) be a triple in a cate-

gory A and let é? denote the category of M-algebras in A, cf.DS]

Ui

§ To. The description of A as bialgebras in A is dual to 4.10, i.e.
if F o= {ia,,T,T%} , M = {v : T--3id -
- - é: 5 I s . _é{
2 ) . ) L ] . . R
{r} t Tz 34 dA" r, ot 31d&} are dual to the data for bial

gebras in 4.lo, then AE = Blalg(A) . Note that EC = {idA} and

W {ldA"’TZ} - Assume A is locally presentable and T has rank

(2.1). Then by [ ] § lo AE is locally sup(m(A),n(T))-presentable.

LS

Let v > X e a8 regular cardinal such that vy > w(A)
I —= = = : .

s v > 7(T) and

that @w(U) < v implies w(TU) < vy for Ue A .(Note that by 3.7 such

cardinals exist.) Thus by 3.8 a TM-algebra (X,uX) is y-presentable

in é# iff X 1is y-presentable in A , Likewise if vy >'X1 is a regu-

lar cardinal such that vy 2 e(A) , v > e(T) and that e(U) < vy im-

plies €e(TU) < & for U&€A (cf. 5.1), then by 3.22 a M-algebra

(X,UX) is Y-generated in AE iff X is y-gemerated in A . If i

AT pi —_— —

addition A is locally y-noetherian, then 80 is ém . (Note that for

B 2 sup(w(A),n(T)) a morphism U——9(A,UA) with w(U) < B obviously
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factors into a morphism U—V and a T-algebra morphism

(V,uv)———a(A,uA) such that (V,uv) is B-presentable in AF s namely
the one given by the free T-algebra on U , but V need not be B-pre-

sentable in A ) .

4,14 Descent data and données de recollements.

We follow Grothendieck [\L] but limit ourselve to descent data. . The

case of donnees de recollement is almost identical (but simpler) and

the obvious modifications are left to the reader. It should be noted

that the following is a special case of cartesian closed sections be=

low in 4.19. Let & be a fibration with base C , i.e. for each

XeC there is a category éfx (= the fibre over X) and for each mor=

phism f : X—Y a functor f*:EFY">EfX (= the inverse image of f)

and for each composite X—£>Y-§$C a natural equivalence

*
Cog . : (gf)-—>£%g* subject to the usual compatibility conditions
b

(see [lb] Def. 1.1 or [UF]). Let o

So-~>S be a morphism in C

and assume that the fibre products S S and S x S x So exist.

X
o3¢ "o 05 0o g

Let S5, = 8§ x § and let p. ¢ S.— S denote the projection
1 0 ¢ © 1 1 ., ©

on the i-th factor, i = 1,2. Likewise let 82 =8 xS xS and
og "og "o

let pij H Sz—é S] denote the partial projection on the i~th and

j-th factor, where (i,3j) = (3,1), (3,2), (2,1) . Clearly

PiP3; = PPyys PPy = PyP3y and PyPyy = PyP3, hold and these mor=
phisms together with the diagonal A : so——asl mgive rise to a dia=
gram ’
x & P£3q"™
) 2—— —=ti
PaL™ ]
_?_/S — ¥ 3 s — iz/s
O f?‘,,* 1 P&Q“ 2
’ T Yo% %
and natural equivalences c, . t id—>A Py s €, . : id—A P, >
. v 2 =1 L]
AT ; EooR %
“Pyyr P, (PP3)—p3P) EITIE I (Plple:79P21p1 ’
=% % : ¥ =% %
¢ : (p,p ﬁ;:ép * p* and ¢ $ 56 fég % ¥
PypsPy 02721 21 72 Py 0, P1P31/ TPy Py

Recall that a descent datum on an object Ae:is is an isomorphism
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=¥ g i . ¥ .
?A P A-f>p2 A with the properties A ($k) s 1dA and

¥ = X0 Ve, ¥ ; -
B (@A) = Py, (?A) Py (%k) modulo equivalence, i.e, the

diagrams

1Py
il X
A Aep, )
. A
V\\ Nz
BpfY S % ()
b3
% . B
¥y p;f (A) — Pgp Py(4)
. A
~ -1
= e A)
P3P
N
¥ L 23
v
! o
* * ¥ %
P,,P, (A) - > p,, P, (A) (PyPo,) (A)
21P Py () 21 P2 2 32;
[~
~ _1
=lc (a)
P21,p2 _ By

(32550 (A = (p,p,, 3¢ (&) 7

_00
)
-
N
~
)
S
iR

e
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commute., In the following we mean by a descent datumalso a pair

(A,qk) satisfying the above conditions. A morphism (A,@A)-—é(A', @A,)

between descent data is a morphism §

-
A—>A' in é; with the
o

- i
property p, (&)° qk = (PA.°p{*(£) . The resulting category of descent

data 1is denoted with Desc(ﬁé) . To express descent data as bialge-
- _ k¥ L x ¥ ¥ W ¥
bras in g; let {pl s Poy s 1dg, s A Py s Pgy Py » Pgy Py }

o} . —So * *
and let M = {?,@} consist of operations : P] -2 Py and

P 3 P2__>p1 ., Likewise let R = {rlf‘rZ ,r3 ’rA} consist of relations

R S L ¥y ¥ . o= e 3 s
r, pl--$p1 » Ty ! PyTIFP, 5 Tg o 1d§%-m-§ld§¥ and
r, : p N p¥-iip *13* which for a pre—%ial ebrzp (A, ¢ ? ) are
4 31 P1-73P31 P g » A TA7F
given by
id id .
. pIA « PiA
I S —— PR p, A SeSSmEmsad p g
Pa °Pa Pa® Pa

and the two diagrams above. With this it is immediate that

il

X \ . o L1 - * ¥ . _ * ¥
Desc(ééo; BLalg(gso) . Note that Fd {p] s Py s ldig. > P3y Py }
: 2 = s R ¥ ¥y oL g ce (73 has co-
and EC 1Py 5 Py gy 1d§§ s Pgy pz} . Thus by 3.3 Deacgzso) has cu

(%
limits (resp. limits) and the forgetful functor Desc(gé )-—)5?8 >
; ‘ o
(A,<?A)“f#A preserves them provided EES has colimits (resp. limits)

[

and the inverse image functors p1¥, pzw and p3j{ preserve
them. Likewise 1if EES has y-filtered colimits for some vy 2 Xoand
o ;

the above functors preserve them, then Desp(giﬂ) has y-filtered co~-
" |
o

limits and the forgetful functor preserves them.

4,15 Assume that 87 87 and 97 are locally presentable and

s g 23
o} 1 2 ¥
that the inverse image functors p]¥, p2¥ and Pqyg have
rank (2.1). Let y > B Eg_cérdinals such that
1) gé is locally y-presentable and
) :
2) the functors pfk, pi* and p3f< preserve B-filtered

colimits and take y-presentable objects intoc y-presentable ocbjects

(the existence of such y's follows from 3.7, see also 3.6).
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Then by 3.8 for every descent datuw\(A,%h) and every morphism

£ 1 UA in 32 with w(U) < v there is a decomposition of f
“o

into a morphism U-->U' and & morphism (U',(PU,)—e(A, @A) of des-

cent data such that «w(U') < vy . Moreover a descent datum (X,(px) is

Y-presentable in Desc(gé ) iff X is y-presentable in T « If in

© * o .-
addition the inverse image functors Py > pzw and Py
. . i g . iy
preserve colimits (resp. limits), them by 3.24 Desc(d, ) is localiy

o
Y-presentable (resp. B-presentable) and the forgetful functor

Desc(g; )y — @é , (A ,@A)AAJA is cotripleable (resp. tripleable). In

=g kS = D il
o o ~

particular the canonical functor (cf. Llé] 1.4)

) - e g !‘\/ o % . 7 Vg =1
é : 3% > Deuc(j;o), Y (a (Y),cpzi«(l) cplaa(Y) )

7 . . S g 3 . .
1s an equivalence iff o : ¢S°%>§% 18 cotripleable (resp. triple—
“o

able). The relationship between descent and tripleability (resp. cotri-

pleability) was first noticed by J. Beck and J. Benabou.

I . ,
.16 If 5; , 32' and 3; are Grothendieck categories (resp. to-
© R 2 % = %
poi) and the Inverse image functors Py s by and Py; preserve

- ¢ o ]
colimits and finite limits, then Desc(fg ) is again a Grothendieck
Er =S4 ==L SHE S &

category (resp. topos). This follows from 3.25.

4.17 The version of 4.15 for generated objects is as follows. Assume

3

3
2

= —S — sl

0 ] 2 a
and p3;% have rank (2.1). Let vy > B ©bhe cardinals such

that gg . gj and @; are locally presentable and that pi*, P

that

——

.

o

f . i : .
1) gg‘ 1s locally y-noetherian (resp. &z 1s locally y-generated)
0 =

. : . L . .
2) every B-well ordered colimit of monomorphisms in Q% 1s agailn
¢}

>
3) the functors P, , P and Py preserve fB-filtered colimits

1 2

and take <y-presentable objects into y-presentable objects

(resp. they preserve PB-filtered golimigi and finigg limits and

take y-generated objects into <y-generated objects, cf. 5.1)




Lhon by 3.22 for every deoceut datum (A,%DA) and every y-generated

subobject U of A there is a Y~generated subobject U'c A contain-

ing U and a descent datuy (U, qu') such that the 1nc1uolon

U'Ss A is a morphism of descent data . Moreover a descent datuwm

(S
&’(PX) 1s y-generated in Des(és ) iff X Iéf Y*ggpeteEgﬁ EE E;
0] 0

etc.

4.18 A possible application of the above is the following. If des-

cent data are effective on small objects in g; » then they are
’ 0

effective on all objects. In more detail let L q = Desc(g

) -
5/ be

the canonical functor defined in 4. . Recall that o : SO -> 85 is

called of F-descent type (resp. of strict F-descent type).if ﬁ is
full and faithful (resp. an equivalence), cf. [ib] Def. 1.7. In

addition to the assumptions made for the first half of 4.15 we assume

] . * o ol
that E: has y-filtered colimits and that g« : és_?'ﬁé

5 0

preserves y-filtered colimits. Then o : SOvM}S is of strict T-descent

type provided it igxgifymgescent type and every descent data (U,@U)

)]

with U y-presentable in &% is effective (i.e. in the image ol

O <
9). This follows from 4.15 and 3.9 which imply that every descent

datum (A,¢A) in Desc(%% ) is the y-filtered colimit of descent da-
0
ta (Ui,¢Ui) with ﬂ(Ui) < v 3 whence if @(Yi) rU ?U ; then

ﬂ):(lim Yi) ¥ Lig vy = Ling,9y ) = (A5,

3
The smallest cardiunals v and B8 which are possgible for this (and 4.15)
are Xl and /Xb . Thus, ii. 3; is locally countably presentable (ox
0
finitely presentable) and %; has countably filtered colimits and the
: . : ¥ ¥ * * 1=
lnverse 1image functors al, Py 5 Py and Py, DPreserve fil=

tered colimits and take countably presentable objects into countably

presentable objects, then every descent datum is effective provided

descent data are effective on countably presentable objects and

X- 35‘—‘—:53: is of y--desceﬂg tfpg.

4.19 Sections and cartesian closed sectlons with respect to a fibration,

The following is based on, or rather prompted by exposé I in SCA 4 by

b
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A. Grothendieck and J.L. Verdier [IF] (mainly p. 138-179). At my talk
E3H] M. Tiérney suggested to compare the notion of a bialgebra (3.1)
with the notion of a section {tésp. cartesian closed section) for a
fibration, and theorem 3.8 with theorem I 9.25 in [l?l. (Both apply

to descent data and récollements in the context of Grothendieck cate-
gories or topoi and yield the éxistence of generators.) In order to
facilitate the comparison we essentially use the notion and notation
for a fibration p : E——)E ags defined in I}?] p. I6o, although it
differs from the one used in 4.1% above (for an exposé on the different
ways to look at fibratiomns see Giraud [i%l or SGA 1 exposée VI). Let

p : E-»B be a fibration with small base B . For an object B¢ B

the fibre p_](B) is denoted with EB and the inverse image functor
for a merphism f : A-B in B with f*’: EB—?EA .Let HomB(g,E)

denote the category of sections with respect to p : E—>B-, i.e. the

full subcategory of TE,E] consisting of all functors s : B—E with

the property ps = idB , ¢cf. [i}] p. 161, Likewise let HomcartB(E,E)

be the full subcategoryofHomB(E,E) of all cartesian closed sections,

i.e. all sections s : B—2E such that: for every morphism f : B-3A
the canonical morphism -s(B)—%f*(A) is an isomorphism. The main theo-

rems' of section I.9 in [i}] concern the existence of generators in
and

HomB(E,E)HSp\ HomcartB(B,E)\implicite size estimates in terms of
s —_ .

"filtrations cardinales". Without loss of generality one can assume
»*
that the objects of B form a set whose cardinality is the same as

that of a skeleton of B ; this can always be achieved by pulling back
the fibration p : E—B along a full inclusion E—i~9§ (for skeleon

o o ; s N . . .
B of B see [ze]...). In order to express sections and cartesian c¢losed

. , . N -y g . *
sections as bialgebras let A= I l EB and let [F = {fopY!(XJ;Y)iMor]ﬁ

. BeB £
consist of all composites Il Eps »Eg ?Ey
Ben = f¥

all morphisms of B and 2, denotes the canonical projection onto Eg,.
."

where £ runs through

Let M = {uf|f€.Mor E} » where f : X—Y runs through all morphisms

of B and Mg is an cperation pX--af*p . Thus a pre-bialgebra consists o

Y
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a family (s._) of objects in E  together with a family

°B’B¢ B

. _wg‘* : -j $ g e
{uf.sx > £ Sy }(X er)C Mor B of morphisms. Let

R={r., |Be€Bl v {r, |f,gc Mor B and gof defined}
1dB — f.g —

* - . - . — ’9 - -

consist of relations ridB P PyIIipg for every B¢ B and

T, P, 2e” £%p for every composite - X_EAY—gaz in B , which for
f,g X 7 Z

a pre-bilalgebra (SB’pf)BE;E,fQZMor p 2are given by the diagrams

id . fl&s\,

S - I~ ;f-_';: A
B CE e
/-/— "‘“‘“--.-__:\h ) // \\‘} .
SB‘ ;aSB = 1dB (SB) Sy 5 g (Sz)
. /‘"%& , ~id
Hig - 4 >
b (gef) (s A )

With this it is straight forward that Bialg(A) = HomB(E,E) . Clearly

FC = F , Wd = {PB|B6:E} and every projection Py Preserves all

(existing) colimits and limits. In order to obtain cartesian closed

sections one adds to M for every morphism £ : X—>Y an operation

ﬁf : fﬁpy-f>px and to R two relations which for a pre-bialgebra

st,pf,ﬁf)B ¢ are given by the diagrams

3 ‘_ =
Hg AL sy pr g o1 BX e
= 3 _— \“\3}.

I3 ) 1 f*S N _

X | %Y

With this Bialg(A) = HomcartB(E,E) . Note however that inthis case

F = Wc = md . Thus the functors in IFd preserve only those colimits

(resp. limits) which are preserved by all inverse image functors £
f€Mor B . The above shows that sections and cartesian closed sec-
tions are specia] cases of bialgebras. The converse, i.e. that for

a given data M , R and |IF of bialgebras in a category X there
is a fibra;ion E-—B such that either HomB(E,E) = Bialg(X)

or HomcartB(g,E) = Bialg(X) , is very unlikely.
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Such a hypothetiga} fibration would have to have weird properties
(cf, discussion below in ...)
4.20 Assume that the fibre ﬁg is locally presentable for every
B&B and that the inverse image functor £r . EY~~>EX has rank (2.1)
for every morphism f X->Y 1in B Let vy 2 %ﬁ be any regular car-
dinal such that 1) vy > H(EP) for every Be B 2) vy > W(f%) for every
23 2

£ X—=>Y and 3) vy > Mow B Lett § be the least regular cardinal

> X, satisfyi ~ 3). Then i = b ||  obje $o) L
&5 > ‘] satisfying 1) ) Then in A £CEEB an object (aB)BG_E is
Y~presentable iff /&B is y-prescutable in _EB for every BEB , in
particular A is locally S-presentable and the projections Pg take
Y-presentable cobjects into y-presentable objects and likewise for Y-ge—
nerated objecits. Moreover for every f : X-»Y the functor
- _k_T .
£ p. E .~} E preserves §~filtered colimits.

Y - —B —X

BeB

4.21 Assume 4.20. Then by 3.8 for every section s€'HomB(§,;) s for
cami ' iect Family -
every family (tB)BQE of objects and every family (fB tB ~>SB)Bt R
of morpbisms such that w(tB) <y in E, for every B¢ B there is

a section t'g HomB(E,E) topether with a natural transformation

¢ t'-»e such that £'B is y-presentable in E, and £, : t - sB
: s - v P8 } -

admits a decomposition LB—ét B —>»sB for every B¢ B . Moreover a

section s B-»E is y-presentab in HomB(E,E) iff sB is y-pre--

sentable in E, for every B¢ B .

Assume in addition to 4.20: that there is a regular cardinal B < ¥y

such that for every Be€B pB-well ord

ered colimits of monomorphisms

in are monomorphic and that eith

By

er E is locally y-noetherian

—B
or all inverse image functors f*, where fc Mor B , preserve finite
limits. Then for every section s B-+E and every family
(fp & ty = SB>B. p ©f v-generated subobjects there is a subsection
@ t'Ss s  such :hgg t'B contains tp, and t'BE 1is y-generated
in EB for ?vegy BE€ B Moreover a section s B->E 1is y-generated
in Homp(B,E) iff sB is y-gemerated in E; for every Be3B .
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4.22 Assume 4.20. Then by 3.24 a) HomB(g,E) is locally 6-presen-

table and the functor

Hom, (B E)- ]—r s ~I(SBY g
BLB 2

is cotrlpleable Its right adjoint prese crves §~-filtered colimits.

Assume in addition to 4.20 that every inverse image functor £%,

where f¢ Mor B , prescrves finite limits and that every fibre EB 5

where Be€ B, is a Grothendieck category (resp. a topos). Then by *

3 28 Hom (B,E) 1is also a Grothendieck category (resp. a topos).

4.23 Assume 4.20 and that for every f¢ Mor B the inverse image

Rl . s .
functor " preserves limits. Let &' be the least regular cardinal

such that every £ preserves 6'-filtered colimits. Then by 3.24 b)

HomB(E,E) ii locally §'-presentable and the functor

Hom, (B E)—> | I_E e ~a(sB)y o
B& B -2

is trlp eable and preserves §'=filtered cclimits. (Note that in con-

trast fto 4.22 the case §' =’XO is possible, eg. if Mor B is finite,

every fibre EB », BE€B, is locally finitely presentable and £* pre~

\

serves filtered colimits for every f € Mor B o.)

4,24 The situation ifior Homcart (B E) is different because |F

d -

consists of all composites l rf —JSE —}E . In general these func-
BeB
tors mneither take y-presentable objects into y-presentable objects

nor do they preserve colimits. Therefore additional conditions are

needed to guarantee the validity of 4.21 - 4.23 for HomcartB(E,E)

They are as follows.

For the first half of 4.21 one has to assume 1n addition to 4.20 that

for every f£ £ Mor B the inverse image functor £¥  takes Yy-present-

able objects into y-presentable objects, and for the secound half of

4.21 that every f*  takes y—-generated objects into y-generated

obiects.,
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For 4.22 (both the first and second half) one has to assume in addition

to 4.20 that for every f¢ Mor B the inverse image functor f7 pre-

serves colimits and takes Y-preseintable objects into y-presentable ob~

*

jects. (Note that by the special adjoint functor theorem every f has

B 0 0 : N n, - x
right .adjoint fx . Thus it follows from LX,fkmj = Lt X,—] that the
2 :

functor £ takes y-presentable objects into y-presentable objects 1iff

fxo preserves y-filtered colimits for every f & Mor B <)

. . X
For 4.23 no additional assumptions to 4,20 are needed. The functor f

may not take §'-presentable objects into §'~presentable objects with §
as in 4.23, but by 2.7 there is a regular cardinal 6 > &' such that

every fﬂ takes S—presentable objects into S—presentable objects. Thus

by 3.24 b) Homcarty(B,E) 1s locally é'-presentable with &' as in

4,23 and HomcartB(E,E)~«é | IE s SNvQ(sB)BG:B is tripleable and

B& B =

4.25 Remark TFor the first half of 4.21 (in particular the existence

of y-presentable gernerators in HomB(E,E)) the assumptions 4.2c are

not fully used, in particular the existence of arbitrary colimits 1in

<

the fibres EB » BEB , is not needed. Instead of 4.20 it suffices to

assume that there ave regular cardinals vy > B > )fo such that the
following conditions hold
1) card(Mor B) < ¥y

ES

2) for every B&E B the fibre EB has B-filtered colimits and for

every f£€ Mor B the inverse image functor £ preserves RB-fil-:

tered colimits

3) for every B€E€ B and every AETEB the category EB(Y)/A of

Y-pPresentable objects over A 1is y-filtered and A 1is the co-

limit of EB(Y)/A- A, (U—2A)~> U .

This follows from 3.11 a), b) and 4.19.

Likewise the first half of 4.21 holds also for HomcartB(E,E) provided

£
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in addition to the above conditions 1) - 3) the following is satisfied.

' ~ . . P
4) for every f¢€ Mor B the inverse lmage functor ff  takes Y-present

able objects into y-presentable objects.

4,26 Comparison wighﬂ§§éﬁ__l;2; The main theorem I. 9.25 asserts the
following. Let p : E-——>B be a fibration with a small base B and

assume that for every morphism £ in B the inverse image functor £

has rank (2.1). Then hoth HomB(E,E), and HomcartB(E,E) admit .a

set of strict generators provided the following four conditions are

satisfied a) every fibre EB » B2 B , has a set of strict ) generatorvs

b) every fibre EB s b€ B , has colimits and pullbacks c¢) for every
B< B the kernel functor MorZEB—;*EB s (u,v)~7ker(u,v) , has rank (2.1),
whore MorzgB denotes the category of morphism pairs in EB with com-
mon domain and codomain d) in every fibre EB » BE€ B , the pullback of

%
a strict epimorphism ) 1s agaln a strict epimorphism.

The conditions a) - Q) imply that fo; every R&DB the fibre EB is
locally presentable; (This is because by [t?] I. 9.11 every object 1in
EB is prescentable.) The conwverse is not true. A locally presentable
category satisfies a), b) and c) but not d) in general; e.g. the ca-

tegory Cat of small categories does not satisfy d). Grothendieck and

Verdier do not give explicite size estimates for the generators and the

ones which result from their proof are not very effective. For instance
o,

if the fibres are locally finitely or 1oca11y)xl—presentab1e and the in-

! /
verse image functors preserve filtered colimits and if the set of mor-

phisms of B is countable, then their proof yields that all sections

+
s€ HomB(g,E) with 1w (sB) < (ZlCO) for every Be B form a small ge-
- +
nerating (even dense) subcategory. (Recall that (2 Xb) denotes the
. X o .
least regular cardinal > 2 ) . In contrast it follows from 4.21 above
¥) o
An epimorphism f : A---B jie called strict if it is the cokernel of
its kernel pair A x A==Zx A . In Gabriel-Ulmer [IBj § 1 strict epimor-

phisms are called regular.
L3
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that already all sections se HomB(E,E) such that sB 1is countably
presentable for every BeB form—a small generating (even dense) sub-
category.

The proof of Grothendieck and Verdier (cf. I. 9.22 - 1. 9.26) for the
existence of generators in HomcartB(E,E) is not correct. The error

is on p. 173 in [1?], where they claim that the indicated composed
morphism f*KX(B)i)~~)f*(X(B))-X(f)j; X(a) factors through a canoni-
cal morphism X(a)j-—>¥%y(xj)= ﬁ(a)' for some j , assuming_?hé? .I
is cv-filtered <; T Zzt gfand dévant c )énd X(B)i is c+—preseﬁtab1e
<; c—accessible). This need not be so because in general f£%* does
not take c+—presentable objects into c+—presentab1e objects! As a mat-"
ter of fact with ¢ as in [Ivj'p. 173 the cardinal ﬂ(f%(B)i) can

be arbitrary large although £* has rank. (As a guidance for this
phenomenon we mention the filtered colimit preservinglforgetful functor
MQQA—igggi for some ring A , which takes finitely presentable ob-
jects into card(A)+—presentable objects, c¢f. also 3.5 -~ 3.7) As a
consequence of this error the lemmata 9.21.16 (i) and 9.21.19 are
incorrect and the "filtrations" of HomcartB(E,E) given in I.9.22-

N (X
I. 9.26 are not "filtrations cardinales as claimed.

LS



