§ 6 Local presentability of é? .
'y

and Adj(A,B); examples

This section 1s a coptinuation of § 4. We give furiher examples of bi-

algebras =~ 1in particular Y-cocontinuous and Z-cecuntinuous functors

S,
pairs of adjoint functors ete. - and apply the resulis of § 3 and § 5.
Let T ¢ B x A—-C bc a bifunctor aud let (o : daw-+r0)oez be a
class of morphisms in B . Let éZ,T be the full subcategory of A

consisting of all objects X€ A such that T(o,X) 1is an isomorphism
for every o€ 3% . The bifunctor T(-,-) and the class £ give rise

to a data for bialgebras in A such that Bialg(A) = éZ T and fthe
-

.ﬁL&é (c¥. 6.1).

forgetful functor Bialg(A)- >§' is the inclusion éf T
9

The main resuit 6.12 (resp. 6.15) concerns conditions on T ¢ B x A-—2C

and on a class I which guarantee that éy T is locally S-presentable
~ 3

(resp. locally 8-noetherian) for some specified cardinal § depending
on T and £ . If T 1is the bifunctor = : [Eo,gggij X [g}§}~_%§

(resp. 1T = [“,w]) as defined in 2.lo, then A = [g,ﬁ] and A, .
. b

consiste ewactly of all I-cocontinuous (resp. IL-continucus) functors

on U with values in X (cf. 6.14, 6.15). By choosing I according-

\

ly one can obtain colimit (resp. limit) preserving functors U-—X or
cosheaves (resp. sheaves) with respect to a Grothendieck topology on U
and values in X (cf. 6.10 ~‘6.17)- Moreover the category of pairs of
adjoint functors between locally presentable ca?egories is equivalent
with a category of I-cccontinuous funétors (cf. 6.i8'— 6.20) .

Another example for T is the tensor product $[
L

£ ¥ = {Ic—%A}Iéaf is the set of all inclusions for a family\E’of right

over some ring LA .

ideals in A , then AMEQE = consists exactly of all left A-modules
A

: o . . g . i
X which are uniquely divisible by VW ., i.e. for which multiplication
ImAmeﬁX is an iscmorphism for every I&% . For inmstance, 1f A 1s

a Grothendieck categery aud A = [U,U] the endomorphism ring of a

t

generatoy U« A, then the functor Cocont[é,éﬁ,ﬁg.]u—éAMod_s te—tl



induces an equivalence between cocontinuous functors t : A-—JAb.Gr.

~

] g . A, . ol . .
and uniquely J’-divisible left A-modules, where J9 is the Gabriel filter

cn A associated with A (cf. 6,25b)), Cocontinuous functors can have
unexpected features, eg. the category of cocontinuous functors from

abelian p-groups to abelian groups is equivalent with the category of
p~adic complete abelian groups. Similar assertions hold in more gensral
situations (ef. 6.25¢)).

6.1 Lenma Let T : B x A—3C bLe a bifunctor and (o :-Ado~—-->r0)oe, 5

a class of morphisms in B . Then there is a data M,R,F for bial-

gebras in A (cf. 3.1) such that Bialg(a) = Ay, r -2nd the forgetful
fungtor V i Bialg(A)— A is the inclusion A, ,C A . The class F
consists of all functors T(do,~) : A—>C and T(ro,-) 1 A—C ,
where o runs through I and F = md = mc holds. Moreover if I

is a set, them so are M,R and F

Proof Let IF be as above. For M and R we limit ourselves to an

intuitive description. A pre-bialgebra is an ohject X¢E A together
with a2 morphism o (X) : T(ro,X) —»T(do,X) for every o¢ % . MNote that
the forgetful functor P-Bialg(A)-— A need neither be an embedding
nor full. The relations on a pre-~bialgebra (X’O(X))oejz express

that the composites

T@do,0) 9% rre, 1) X, Tdo,x) amd T(ro,x) 2F), T(do,X)

:r_(&).(._)}, T (rO',X)

are the ident;t#es of T(do,X) and T&rG,X) respectively for every
o€ X . In other words T(o,X) 1is an isomorphism and o(X) 1ts in-
verse. Hence a bialgebra is an object X<<A together with an isomor-
phism o (X) : T(ro,X)»%aT(do,X) whose inverse is T(o,X) . Therefore

the map Bialg(é)mﬁé R (X’G(X))O( Z'“’X is bijective on objects

$,T
and it can be made into a functor é by mapping a bia/gebra mor-

phism £ : (X,0(X)) =3 (X' ,0 (X)) onto f :+ X—X' . Then

oG % )

is obviously‘an isomorphism. So we can identify AZ T with Bialg(4)
N
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and the forgetful functor Bialg(A)»--»«;‘)A,(X,o(X))c ,Z~wﬂX becomes the
= — <

inclusion AZ T(;é « The other assertions in 6.1 are obvious.

6.2 Theorem Let T : B x A—-C be a bifunctog, where A is a lo-

Ll

[

18

y presentable catepgory. Let I be a s

e

t of morphisms in B

Assume there is a repgular carolnal o

1JJ
r("

ich that T(do,~-) : A—3C

and T(ro,-) preserve a—filtgged colimiEﬁ for every o< i . Let

Y > a be any regular cardinal such that

a) card(x) < vy and &4 is locally y- presentable

b) if U€ A is y-presentable, then 8o are T(do,U) and P®(ro,U)

for every ove (cf. 3.7 for vy = a).

Then every morphism £ : U—>A with the properties Ac¢ éz T and
m(U) = v admits a factorization U--»U'-—A such that =(U') s y
and U'g éZ,T . Moreover an object XC?éZ T is y-presentable in
Ay p Lff it is y-presentable in A .

Proof The ass ertlons follow directly from 6.1 and 3.8. It should be
noted however that 2 direct proof can pe given following the patteru

in l... . This proof is simpler because it involves only a one-step

construction in contrast to the two-step construction in 3.8.

6.3 Remarks

a) Note that <y has to be strictly bigger than™ o . Moreover if
every object in C is presentable, then by 3.7 there is always
a cardinal vy satisfying the conditions a) and b). The point 1is .
of course to choose <y as small as possible (cf. remark following

3.8).

b) The theorem also holds when A 1is not locally presentable, but

merely satisfies conditions a) and b) in 3.11. In either case

AZ - need not be locally presentable, however it is equivalent
Ty

with the‘category of y-flat functors on the category AZ T(Y)
3
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consisting of all y-presecntable objects in A (ef. 3.11 and 3.9).

5.7

6.4 Rgfinitioq Let T : B x A——3C be a piflﬂﬁffy.iﬂi Y a set of

morphisms in B . Assume A and C are 1 cally presentable. Then

rankZ(T) denotes the least cardinal & > = (A) such that for every

P

o< I and every N(A)mpresentablq object UcC A the objects T(do,U)

and T(ro,U) are 6-prescntable. For a set M of objects in A

rank, (T) is defined likewise,

If the functors T(do,-) and T(ro,~) preserve colimits for every
o &2 , then by the special adjoint functor theorem they have right ad-

joints 5(do,-) and S(ro,-) and the latter have rank (=85 A.1)=

e

Since by adjointness [T(dc,U),—j [U,S(do,—)} and
LT(rc,U),—] = |U.8(xo,~-)] , it is not difficult to see, that rankZ(T)
is the least regular cardinal & such that & > ﬂ(é) and

WS (do, =) < & > nS(ro,-) for every o¢ I . With this it is not hard

to check the following.

1) Let A be a commutative ring and A a Grathendieck category. Let

’

. p e T s . Y '
T be the bifuncior &A p ModA X Aé Aé y Where Aé is .the

category of A-objects in A . Then

rankz(®A) < sup*(ﬂ(é),w(do),ﬂ(ra)) , where supﬁ( ) denotes the
. oe Xl
least regular cardinal > sup ( ). Likewise 1if A is not commu -

tative and T 1is the bifunctor @ XapA——->A , then

A A A~

rankz(ﬁA) < sup%(w(é),ﬂ(dc),ﬂ(ro),card(A)+) , Where card(A)+
¢ t
denotes the least regular cardinal > card (A)

Mod

2) Let T be the bifunctor & : [Eo,Seté] X [9,§j~—m~%§ as

defined in 2.lo, where X 1is a locally presentable category.
Then rankz(®) is the least regular & > w(X) such that

card(do(U)) < 8§ > card(ro(U)) for every o0cCZIL and every object
Jhat i
U&€ U . To see that noteYihe right adjoint S(do,=-) : z———m+[g,§]

assigns to an object X the functor Uv#rjk (= do(U)~fold pro-
! &sly)

duct of X); and likcwise for S(ro,=)
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6.5 Corollary Let T : B x A—3C be a bifunctor, where A and C

oty -

are locally presentable categories. Let I be a s of morphisms in

fe)
=

B . Assume that T(do,-) and T(ro,-) preserve colimits for every-

CC€ L (resp. limits and o-filtered colimits for some o) . Then AZ i
H

locally presentable and the inclusion A Tuﬁﬁé has a right ad-
¥

S

joint (resp. left adjoint). Moreover i

y = sup(n(ﬁ),)¢l, card(2)+, rankZ(T)> (IEEBA y' = sup(n(é),a)))'

then Ay ¢ is locally y-presentable (resp. y'~presentable) and the
]

right adjoint A—3A_

T (resp. the inclusion A ~—3>A) preserves
Ly —_— e — e

—-z,T

1@

y-filtered colimits (resp. y'-filtered colimits). In the first cas

(i.e. T(do,-) and T(ro,-) cocontinuous), the assertions in 6.2

hold for vy as defined here.

Proof The corollary is a consequence of 3.24, 6.1, 6.2 and 6.4,
6.6 Remark The second case (T(do,~) and T(ro,-) continuous) can al-
so be obtained fron [IS] 8.6 b)., The proofs for 6.5 and [iSJ 8.6 b)

are entirely different.

6.7 The analoguous assertion to 4.8 and 6.2 for y-generated objects

requires stronger hypotheses. They are listed in the following

Theorem Let T : B ¥ A—-C be a bifunctor, whre A and C are lo-

set OfF

v

cally presentable categories. Let %X be a morphisms in B and

assume there is a regular cardinal o ' such that every a-filtered co-

limit of monomorphisms in A is a monomorphism and such that T(do,=-)

and T(ro,-) preserve o-filtered colimits for every o€ I . Let

Y > a be any regular cardinal such that

a) card(Il) <y and A is locally y-generated

b} if U€ A 1is y-generated, then so are T(do,U) and T(ro,U) for

every O¢C L

cl) T(do,-) and T(ro,-) preserve finite limits for every o0& %
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an ssume

Instead of ¢ 1) one

62) in A and € every y-generated object 1is y-presentable.

Then the following assertions hold.

I If Aéféz T and U& A 1is a y-generatéd subobject of A, then:
2
there is a subobject U’ of A containing U such that
U'e AE r and U' 1is y-generated in A
b

" . . _ N . . S . _ ) _
IT An object Xe‘éZ,T 1s y-generated 1in éE,T iff it 1ls y—generated

in A
III An object Xeg ﬁE T is 'the y~filtered colimit of its Y-generated

s — ——

subob]ecti_ig AE,T

IV In the presence of c¢2) ever§ y-genarated object in Ai T is
. 2L il == Z3, R

YoRLesgnLable An A, .

Proof The theorem is an immediate consequence of 3.22 and 6.1 .

6.8 Remarks

a) Assume that the conditions in 6.7 are satisfied except for cl)

and ¢2) and that instead the following hoids.

¢3) In A every object is the y-filtered colimit of its T-pure"

y-generated subobjects (cf. 5.4, 5.5, 5.6 b)).

Then assertion I) can be strengthened as follows.

I' If A€ A and U& A is a y-generated. subobject of A ,

——— Z’T = et

H

then there is a T-pure <y-generated subobject ' U' A

containing U such that U'Eﬁéz T
2

This follows from 6.1 and the proof of 3.22. Instead of using in
3.22 the presentation of an object as the y—-filtered colimit of
its y-generated subobjects one considers the cofinal subsystem of
all T-pure y-generated subobjects; for pre-bialgebras and sub-pre-
bialgebras whose underlying objects in A are y-generated one

: L)
proceeds likewise.
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Note however that a), b) ¢3) do not imply II, III, IV because

the inclusion éZ T_—éé need not preserve monomorphisms.
H]

b) As above in 6.2 not all assumptions on A and C are needed for
I = IV and one can get by as in 6.3 h), Note that there is al-
ways. a cardinal y > a such that 6.7 a), b), ¢ 2) hold. The point

is of course to choose Y as small as possible, cf. also 3.23.

v e s

In order to deal with the situation when X 1s not a set -
which is necessary in order tc consider functors on a small category

U which preserve all existing colimits in U - we have to use purity

with respect to a bifunctor T : B x A-—C . We assume in the follow-

ing that A, B and C are locally presentable, although the existence

of arbitrary colimits is not needed for 6.12 (cf. 6.3b), 6.8b)).

6.9 Definition Let I be a class of morphisms in a category B

Assume that in B every morphism R:B-—B' admits a factorization
into a proper epimorphism 8" : B—yim B and a monomorphism

' : im B——B'. Then 3 denotes the class of those subobjects of

z

ro which are of the form o' : im 06 —= ro .for some oc€3 .

Conditions on B which guarantee the existence of such factorizations
can be found in [\31 1.5, 1.6. Clearly they hold in every locally pre-
sentable category. Note that Ntz is a set provided the codomains

{ro|oe Z} form a set and B is well powered. =

6.lo Let T : B x A——C be a bifunct;r and: ¥ a cléss of morphisms
in B . If T(-,-) preserves proper epimorphisms in the first variable
(resp. takes proper epimorphisms intoc proper monomorphisms in case T
is contravariant in the first variable), then it follows easily from

implies i.e. A . Th
the above that A € AE,T implie Ae'ﬁmz’T , l.e —Z,TC éansT e

converse is Munfortunately'" not true, but the following shows that

A is closed in under T-pure subobjects.

=5, T é-mv,T
4y

*

6.11 Lemma Assuwme that 4 , B and C are locally presentable and that
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T(-,~-) preserves regular epimorphisms and well ordered colimits in

the first variable (resp. takes them into regular monomorphisms and

well ordered limits in case T is contravariant in the first variable).

Let A€ AZ and let 1 : X~-3A be a T-pure monomorphism in A

, T b el

Theq X< AZ,T 1ff X« éIﬂZ,T

Proof We limit ourselves to the first case¢ because the second one is

dual. By [\3}.6;6 b), 1.5 2 morphism in a locally presentable category
is a proper epimorphism iff it is a well ordered colimit of regular
epimorphisms. Hence T(-,-) preserves proper epimorphisms in the first

variable. The assertion now results from the commutative diagram

T(ro,i)

T(ro,¥)

C
A
T(o",X)
T(imo,1)
T(imoyX)
(o, X%) oA ©
T(o',X)
! T(do, i)
T(do,X) =

observing that T(v',X) and T(o',A) are proper epimorphisms, that

T(o,A) is an isomorphism and that T(do,i) is a monomorphism.
.

6.12 Theorem Let A , B and C be locally presentable categories.

Let T : B x A—3C (resp. T : on A ———C) be a bifunctor which
preserves colimits in both variables (resp. limits and for every B&£B
the functors T(B,-) : A—C preserves f-filtered colimits for some 8
depending on B). Let I Dbe a class of morpbisms in B such that
the codomains [ro|oc r} form a set. Then the inclusion AZ,TG—*A

has a right adjoint (resp. left adjoint). In first case (but not in

the second). A, . is locally presentable. Tn more detail let § gffl

ESSS=—— Z y -~ e

be any regular cardinal such that




§ 6 s

') A and C are locally d-noetherian

2) there is a regular Eﬁﬁéiﬂﬂl o < & such that iﬂ A and C

a-filtered colimits of monomorphisms are again monomorphic

3) 8§ > sup {card(M)+, ranky(T), rankM(T), card Guy)+}

where M is a set of objects in B with which T-purity can be tested

(ege w(B)~-presentable objects in . B, cf. 5.6 b) and 5.5; for Iﬂz
and rankﬁ7 (1), rankM(T) see 6.9 and 6.4 respectively). Then A
U4 ‘X - . T

is locally 6-noetherian and the right adjoint A A preserves

e

§-filtered colimits. Moreover an object X(:éZ,T is 8-generated in

éy T iff it is in A , and every morphism f : U—>4A with Ach, T
s, w2, AM A LN sm with 2y,

and U d-generated in A factors through a monomorphism U'SsA in A

such that U'e éE T and U' is S-generated.
b
6.13 Remark The existence of a left adjoint éz T—~+é in the second
5
case (1.e. T : EO)<A\W¢—_>Q) can also be obtained from the main result

of Freyd-Kelly [\Q], One shows that there is & class 0 of morphisms

in A such that A = A 1 and the codomains of Q form a set.
= =5,T =0, (-, -] :

Also the proof given below can easily be extended to locally bounded -
categories in the sense of Freyd-Kelly [iC]. An example for A and I

such that A

AT 1 is not locally presentable can be found in [l?]
2%, [~, - .

8.15.

LN

Proof of 6.12 We first settle the case. T EO XA —C which is

much sippler because the results of § 5 about purity are not needed.
Since T(do,-) and T(ro,-) are continuous for every og¢ 2 , the
category éZ,T is complege and the inclusion AZ’T——>A preserves
limits. In addition every monomorphism in A is trivially T-pure. For
the existence of a left adjoint é—?éz,T it suffices to verify the
solution set condition (cf. Freyd [5]). This means that for every
object X¢€ A there is a small subcategory EX of éZ,T such that

every morphism f : X -—-3A with Aéféx T admits a factorization
, T



§ 6 =-lo-

X

X is ay~generated. Since WZZ is. a set, there is a regular car-

X—3X"'"—A with X'E‘EX . By 2.8 there is a cardinal « such that

dinal B such that w(A) < p > @y and T{ro,-) and T(im o,=-)

preserve RB-filtered colimits for every o€ . By 5.1 there is a car-
dinal y > B such that e(T(ro,U)) < v > €(T(im o,U)) for every

o€ and every y-generated object U& A . Then MX = A(y)n A_ T is.
i - b - —b’ .

a "solution set", where z(y) denotes the full small subcategory of
all y-generated objects in A (cf. 2.8). To see that let f : X-—A

be a morphism with A€A as above. Then by EKSI 6.7 a) the image

5,T

of £ 1is also y-generated and by 6.11 A 1is also in . So

A
/ ?KE N T‘
6.7 a), b), cl) can be applied to nzz and the inclusion im f—A.

Therefore the latter admits a factorization im f£a>X'_£—A such that

X'e éjﬂz’T and X' is y-generated in A . By 6.1l X‘é‘éz,T which
shows that MX is a 'solution set" for X

As for the first case (i.e. T : B x A——C) the inclusion AZDT—fyé
preservas colimits -and éZ,T is cocomplete. Thus by the special ad-
joint functor theorew there is a right adjoint A~ 5éZ,T provided
A has generators. To establish thaL let § be any regular cardinal

z,T

with the propexties 1), 2) and 3) stated in 6.12. We show that

~
A_X_(G)f\ éZ,T =%, T

ted objects in A obviously form a small generating subcategory.

Therefore it suffices to show that every morphism f : X—3A with

Aé‘éE T and €(X) £ 8§ admits a factorization X-—X'-—A such that

?

X'¢ éZ i and X' 1is &-generated in A . This is done in the same
H

p2ttern as above. First by 6.11 AcC A implies A€ A , and

by [i3J 6.7 & im f is 6-generated. In order to apply 6.8 a) to the

inclusion im £52A with respect to vy = & and {ﬁz (not z), it

is a small genevating subcategory of A . The §-genera-~

suffices to verify 6.7 b) and ¢3); the other assumptions in 6.8 follow

trivially from those in 6.12. As for c3) we use 5.2 and the fact
that in A’ .every object is the §-filtered colimit of its S§-generated

subobjects. In 5.2 let éV = C and TV = T(V,-) for every VEM
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Then the hypothesis in 5.2 follow trivially from those in 6.12 ex-
cépt for condition 3) in 5.2. The latter and condition 6.7 b) express
the following. For every Ve&M s every o0& % ° and every S-generated. ob-

ject UEU the inequalities
e(T(V,U)) < &8 and e(T(ro,U)) < § > e(T(im o,U)

hold. To verify them first recall that in A and C the notions
§-generated and S-presentable coincide by assumptiony i.e. E(G) = A(8)
and '§(6) = C(8), cf. 2.8. By the special adjoint functor theorem the
funetors T(V,-), T{ro,-) and T(im o0,-) have right adjoints for
every Vg M and el which we denote with §$(V,-), S(ro,=-) and
.$(im 0.~) respectively. By 2.9 the latter have rank (2.1) and as wen-
tioned in 6.4 the jnequalities rankM(T) < 8§ and . rankhYZ(T) < 8§ im-
ply that the functors $(V,-), S(ro,-) and S$(im o,-) preserve

§-filtered colimits for every V& M and o6¢ f . Hence for every §-gene-

rated object UE A the adjunction isomorphisms

P, n . " A - . ) g v .

I_T(VsU),—} = I:U,S(V,_):’, ]_T(]’.‘U,U),"] = I:U,S(IO,")], [T(lm OsU),"J = I_U’S(lm G,'_)]
yield the desired inequalities e(T(V,U)) < & and i
e(T(ro,U)) < & > e(T(im o0,U)) . With this the assumptions in 6.8 are
verified for vy = § and %ZZ . Thus the inclusicn 1im f— A admits

a factorization im f-—-—X'—3A such that X' 1is a T-pure subobject
of A which belongs to Ap; ¢ end is d-generatéd in A . Then 6.11
Z’

~
implies X'€ A which shows that A(8)n A

L 'is a small generating
H

z,T

subcategory of AZ T Since the inclusion AZ T-9é pPreserves colimits
b 3

and the objects of A(S)n AZ T are d-presentable in A , they are a
, .

fortiori S-presentable in éZ oo whence éz i is locally 68-presentable,
s H B

The last assertion in 6.12 is obviously part of the above construction

~
of generators 1in éz T Since A(8) = A(8) an object Xé?éz T which
3 - b
is S-generated in A is likewise a fortiori 6-gefrated in AZ T For
= Ty
the converse let A< A be any object. Then it follows from the above

23,7
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that A 1is the §~filtered colimit in A of subobjects XiC A

which are §-presentable in A and belong to éZ oo Thus the Xj’s are
%, ]
a fortior! §-presentable ixn éZ,T and A = }%E;Xi holds 1imn éZ,T
If AETAZ T is é-generated in A , then the identity of A admits
s
A

. . c #s .
a factorization A—wéxi~m9A » Whence Xi'--+A for some 1 . Thus A

is 8-presentable in éy T ° Summarizing we cbtain that an object
43

&
A éz,’r By ol = S

locally §-noetherian. With this one c¢an show as in 3.24 a) that the
right adjoint éfnﬁﬁz,T
the prcof of 6.12.

6.14 We now apply 6.2 -~ 6.12 to- the bifunctor

o B [g »5ets) x LH&X] ----- 2X as defined in 2.l¢, where U is a small

category and X is cocomplete. We do not apply them to the bifunctor

is 8-generated in A iff it is <in A and that A is

preserves §-filtered colimits which completes

symbolic hom L—,~] {(cf. 2.10) because the resulting statementsfor
L-continuous functors are, except for size estimatesy; contained in

[331 § 8. Also it is straight forward to deduce the corresponding

size estimates for X-continuous functors from 6.2 and 6.7 a), b), cl1).

functor t t U-—X is k-cocontinuvous iff o & t 1is an isomorphism

for every o€ , in other words [R’KJZ & coincides with the full
b

subcategory CCZ[H,§] cf [l,z] consisting of all I-cocontinuous

functors U-3X . With card(0b U) and card(Mormg) we denote the

cardinality of the set of objects and the set of morphisms of a skele~

ton of U respectively (cf. Schubert [2&] p. 170). Recall that if

is a set and X locally presentable, then rankz(®) exists and is the

least regular cardinal & 2 W(g) such that

card(do(U)) < & » card(ro(U)) for every U€U and every o&€Zi ,

cf. 6.4 and 6.4 2). It might be instructive to show directly how this

condition on & implies n(do @ t) 5 & 2 n(vo & t) for every o€ I -

and every finitely presentable functor tg [g,&] . Since do @& and

Y¢ @ are cocontinuous, it suffices to verify this when t belongs

b}



to a set of regular S-presentable generators. By [i3] 7.2 h) the ge-

neralized representable functers X & [U,~] ! U——X [le form a
- (u,u]
A

set of regular (even dense) generators, where U 1is running through

Ob U and X through O0b(X(§)) (note & 2 (X)) . Since

X @ do(U) = _L_L X

do (U)

]

do @ (x & [U,-])

and likewise ro & (X [U,—]) = i"l X , the conditions
ro(U)
card(do (D)) < 8§ > card(ro(U)) obviously imply

ﬂ(:ld @ (X ®- |:U,~'])>' < .8 };I.w.(ro & (X « [U,—]))

for every oeg I .

6.15 Coroliary Let U be a small category and let % be a class

. A -0 . . .
of morphisms in [Q ,S5ets]] such that the codomains Jrol L}

a set. Let X be a locally presentable category. Then Ccy[g,gj ls

locally prescntable. In more detail, let

> ot +
§ = %up‘{( 1* (X)), s up(card(do(U)) card(ro{U0)) ), card(r) }
SEL
UeU .
if » is a set, resp. let
o , x + B +
' = sup{[ T m(X), sup e(ro), card(ﬁzf) . card(Mor U) }
CET '
if I is a class. (In the latter case it 1, assumed in addition that
X 1is 1oca11y &' ~n09Lher1dn and that there i1s a cardinal o < §' such

that 1in X oa=filtered colimits of monomorphisms are monomorphic.)

Then Ccz[g,§] is locally S-presentable (resp"locallx 6’—noetheri;i).

Moreover a I-cocontinuous functor t : U—>X is S-presentable (resp.

§'—-generated) in Cczfg,g} iff it is S§-presentable (resp. 6'—genera:

ted) in [U,X] . In particular every morphism (resp. monomorphism)

t—>s with se‘CcZ[g,él and t d-presentable (resp. §'-generated)

in [E,é] factors through a morphism (resp. monomorphlbm) t'-——ss such
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that t'c CCZ[E’E] and t' is S-presentable (resp. §'~generated).

Proof If % 1is a set the assertion follows from 6.14, 6.5 and 6.4 (y=8).
lIf I is a class we apply 6.11, 6.12 and 6.4 and revert &' to 6

For this we have to verify the conditions 1)-3) in 6.12. The first two
conditions are obvious. As for 3) note that purity with respect to @
can be tested in“[go,§g£ﬁj with finitely presentable functors; hence

we choose M- = Ob([Hosiets]( K;)) . By [53]37.6 a functor r : U mudoetb

is finitely presentable iff rthere is a cokernel diagram

Loy ==3 Iﬂ [0, )—s

in other words, a finitely presentable functor can be described by a

finite set of morpbisms in U . Since the sef of finite subsets of

Mor (U) has the same cardinality as Mor(U) , this shows that

+ .
card (M) < card Mor(g) 3 whence canrd(M) < & . Since e(ro) < 6

for every o€z , Lh01c is an epimorphism J_] [ ) 1'——9 ro in
1€l
4 ¢ .
[HO,Sets] such that card(IO) < 8§ ., From cald(MorE) < § 1t there-

fore follows that -
§ > card( l [U U. ]) > card(ro(U)) > card(iﬁ o (U))
1(I
for every U¢ U and every o¢ I . Hence rauklﬁ ®) < 8§ by 6.14

: x
(resp. 6.4), In the same way one shows rankM(®) < 8§ . With this con-

ditions 1) = 3) in 6.12 are verified which cémpletes the proof of

6.14 when ¥ 1is a class.

6.16 Colimit preserving functors. Let U Dbe a small category and

let (Uk = lig Uv ) be a class of small colimits in U . Every -
vy k ke K

k€K gives rise to a canornical morphism 9y 11m [— U ] —> [-, U

in [Ho,ﬁets] . Let EK = {ok]kE K} and let X Ee a cocomplete cate-
gory. Then for every functor t and every k€ K there is a canonical

morphism u, .: lim th —_—3 tUk . By adjoininess ¢ and u give

k k k
) k

rise to a commutative diagram

PRI



|_ok ® t, X] [,M\,_,X]
I
\J 1} V
[lim[-—,U‘ 1] « ¢, X] ) ]llm £t X]
_.;__9 \,‘/ ‘“{;) \)k
] ¢
for every X&€ZX . Thus o, @t is anlsomorphism iff u is and the’
category Cc, [ga§] coincides with the category CCK[ﬁ,éj of all
JK f

functors U-—>¥ which preserve the colimits in K . In order to apply
6.15 the codomains of I have to form a set. In order to obtain this

[+ g o
let U be a skeleton of U and é t U—+U an inverse to the in-

clusion I : E—#H {cf. Schubert [?b] 16. 3.4). The resulting class
[+

K of celimits (I°§)Uk = li2(10§)UU in U has the property
"k

- V. cim [
CcKLH,§] = Ccﬁ[ﬂ,zj and the éodomains of I = {oklké.K} form a set
(two colimits in K are considered equal if their index cate egories,

their diagrams and their canonical morphisme coincide). Therefore we

o
can assume without loss of &EEEE?EEEX that K = K .
If K is a set of colimits in U and X locally presentable, then

by 6.15 Cc fg,&] is locally S§-presentable for

§ = sup*{QCI, m(X), sgp(card liﬂrU,UV ], cardlﬁsUk}), card(K)+}
. Ke K s .

e ObiL iy
and a K-cocontinuous functor t : U-—X is d-presentable in
CCK[H,§] iff it is S-presentable in [H’§] , etc., (see 6.15).

Likewise if K is a class of colimits in U and X is a locall

§~neetherian category for some regular cardinal
N N
§ > sup*{zcl, m(X), card(}ﬂfzZ ), card(Mor U) }

K

and 1f 1n addition o—f;ltered Lollm]CG of monom011h13mq are monomor-

— e s gt o ——— e

phic 1n X for some o < 6 , then Cc

U,&} is lovally §-noetherian

2 or sou then Cey] i BPepienid
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etec. (see 6.15). In particular ﬂ(CCK[H,ij) is bounded by
: M +
sup{)cl, m(X), card(2 . U) }

&
The passage from K to K is essential for the above size estji=

mates of ﬂ(CCK[H,&]) . Also given U and K one may find H' and
v v .
K such that CCK[H~§~ = K'[ X] and the latter gives a better

size estimate for §&§ . For instance, let U = p~Ab.Cr. and X = Ab.Gr,

be the category of abelian p-groups and abelian groups respectively and

let K be the class of all colimits in U . Let U'¢cU be the full

subcategory of all finite p-groups and let K' ©be the class of finite
"
colimitsin U' . Then CCKLQ,§]w—:ﬁ CcK|[H‘,§1 , L[ ~%t |U' is an
&
equivalence and card(K') = card (312 5 a ) = Xb = card(Mor U') holds.
g o

Thus by the above the category of cocontinuous functors

P-Ab.Gr. —»Ab.Gr. is locally Au—noetherian. This cannot be improved.
If this category were locally finitely generated, then by [Vﬁ] 7.12
a counteble colimit ¢f monomorphisms would be again a monomorphism.
But this need be so. To show that we use the equivalence

A

p~Ab.Gr. —aCcF[p~Ab.Gr, Ab.Grf] ) X-v9@2X of 6.25 ¢) below, where
o =5

P Ab Gr. denotes the category of p-adic complete abelian groups. Then
.. m P . 2_ p 3 . .. ; .

the colimit of 2/p?2 >%Z/p "2 7Z/p Z-— ... in Ab.Gr. is the Priifer

group Z(pm) whose completion is zero, whence the colimit in

p-Ab.Gr. is zero. This shows in particular that the colimit of the

vertical non-zero monomorphlsms

id d d
®(z/p2) =y @ (2/p2) s w(z/pzy 9.,
. 2
lld P ®p -
v AV
&p 2 @ p- 3. Rp-
oz/pzy -2P) w(z/p 2) 22, e (z/p 1) -2E) ..

in CcK[p~éR.9£., éE'QE'J is zero. (Note that 6.25 c¢) was used to
show that @p- 1is a monomorphism in CcK[p~éR.§£., Ab.Gr.] although

@pp is obviously not pointwise a monomorphism, eg. (Z’/anf);x)p-n = 0.)

Remarks a) The probiem of whether the inclusion.CCK[Q,gjfiﬁg,gl has
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a right adjoint has been arcund for quite a while. Partial results
were stated without proof in Freyd Eﬁ] p. 118/119 and Freyd-
Kelly [!C];R. 170. Recently G.M. Kelly has communicated to me a
simple proof for X = Sets which makes use of the explicit descrip-
tion of colimits in Sets in an elegant way.

b) By [l3] 7.9-a category -é is locally a-presentable iff it is
equivalent with the category of & -continous functors é(af———?§££i.
The question may arise whether locally presentable categories can
also be characterized as categories of set-valued K—éocontinuous
functors (or more generally as Z-cocontinuous functors for some
class % as in 6.15). The answer is negative. Any category of the
form ch[g’ﬁfffj has a smail cogenerating subcétegory (even co-
dense [ ] 3.1) because the category Sets has one ([L3] 4.15)

and the inclusion Ccztg,ﬁgii}iib[g,ﬁgfﬁj has a right adjoint.This
shows that categories of the form' CCZ[E ’§E£EJ constitute only a

very small subclass of the class of locally presentable categories,

6.17 Cosheaves. Lei U be a small category with a pretopology =t ,

-

i.e. with each Us¢ U there is associated a set J(U) of subfunctors
of [—,U] : H?““*EEEE - called covering cribles = such ﬁhat

id[—,U]€ J(U) and for every natural transformation e [—,U']—&[—,U]
and every R&J(U) the inverse image %7—1(R) belougs to J@') .
Recall that a functor t v U—>X 1is called a t-*osheaf on U  with
values in X if for every.triple U€U , R€EJIJ(U) and X€ X the in-

clusion o : R—-%[-,U] induces a bijection

[os [e=ux1] = [-,0], [e=,x)] — [R, [e=, 5]}, ~po

or, what is equivalent by 2.lo = assuming X has colimits - the mor-
phism o ® t : R @ t*-»[—,U] @ t 1is an isomorphism for every o ,
cf. Borel-Moore [3 j, Gray [LE], Kultze [?O]n The full subcategory of

[2,&] consisting of all t-cosheaves is denoted with CshT[g,§] . Let



ZT be the set of all inclusgicns RS —,U] » Wwhere R&€ J(U) and U

runs through a skeleton of U . Then Cc 0,X] = csh_[u,x] . 1f

j b

T
is locally presentable, then CshT[H,§] is

locally S6-presentable

for § = sﬁﬁt{)c . m(X), card(:z )+, sup(card{U,U']} » ete. (see 6.15).
] T U,,U'QQ 4

Likewise if X is locally 6-noetherian and

§ > sup{j@l, m(X), card(ZT)+, card (Mor g)+} and if in addition

a-filtered colimits of monomorphisms are monomorphic in X for some

@ < 6, then Csh [U,X] is locally é-noetherian, etc. (see 6.15).

Remark Let t be a Grothendieck topology on U . Let 14 be a

pre-subtopclogy of v =~ 1i.e. JO(U)C J(U) for Ue U - which gene-

rates T . (ck. [?h] 20. 1.6). Then one can show that

Csh [U,X] = CshT [U,X] aud thus in the above estimate for ﬂ(CshTEE,§j)
T bt == = :

n.

one can therefore replace card(ZT) by card(ET ) which can be
o

much smaller. To see that the cosheaves on U with respect to T,

and <t coincide first note that every t—cosheaf is a Tscosheaf.

For the converse let ET be the closure of L. (cf. 2.10). Then by
< (4]
2,10 every 1, —cosheaf 1is ET ~cocontinuous. Moreover by [13] 2.5
0 p :

Z[ is contained in I . Hence every ZT -cocontinuous functor
[ Tf‘ O

U-—X ig a t-cosheaf,

6.18 Adjoint functors, Let A and B be categories and let

Adj(A,B) be the full subcategory of [é,g] consisting of all

L2
functors A——B admitting a right adjoint. Then Adj(é,é) is equi--
S

valent with the category whose objects are pairs A-E>§——>é of ad- -
joint functors (T = left adjoint) and whose morphisms are pairs

& E LEpTr ux S'—ﬁSd of natural transformationssubject to the usual
compatibility condition. The equivalence is given by the forgetful
functor (T,S)?f9T . Our aim is to show that Adj(A,B) 1is locally

presentable if A and B are, and to give an estimate of
T(Adj(A,B)) in terms of A and B . This is done by identifying

+

Adj(A,B) with a category of T-cocontinuous functors U—> B, where
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U is a small generating subcategory of A

We start out somewhat more generally. Let U be a small category

I be a class of morphisms in fUO3 ets) such that the codo-

e Cpeeeaaia O = ————d i ey —

and 1et

mains {ro|o€ Z} form a set. Recall that Cr[yé,gggfj denotes the

\ ) o : o
category of all ZI-continuous functors U ~—?»Sets and that C [UO,Setsi

2E B

is locally presentable if § 1is a set (ecf. 2.10, 2.11). 1In eiﬁher

case the inclusion I : CZ( Setg]——meU ,bets| has a left adjoint

L : [HO,Sets]-d CE[HO,§§££] by 2.1o0. Let A= CZ[HO,Sets] and let

X be a category with colimits. Then by 2.lo every functor t : U—X

gives rise to an adjoint pair

® c : [U°,sets]-—Xx and X -—[U°,Sets], X~ [t-,x] .

Clearly t 1is f-cocontinuvous iff Lt-,XJ o CZ[EO,Sets] for every

X&X .. Hence £~y t) « 1 induces a functor @ : Ccy[g,g]—~4Adj(é,§)

On the other hand the Yoneda embedding ¥ : HM"Q[QO,Sets] and the

left adjoint L : on,ﬁgEs]-¢C .Sets| give rise to a functor

p [o°
Y1 AdJ(A,X)—3[U,X], T~~TLY .

6.19 Lemma The functor

/

0 : ce [U,X]~Adj(8,X), t~r@ t) - T

is an equivalence and its inverse is ‘. If the representable functors

EqmaSets are X-continuous, then '»(T) = TLY is
ts]— X  for every Te Adj(4,X)

composite u -5 e [E s Set

6.20 Corollary Let A = C [U°

,Sets] with U and I as above and

let X be a locally presentable category. Then Adj(é,&) is locally

W
]

presentable. In p

ticular the category of adjoint pairs between two

locally presentable categories is itself locally presentable.

In more dctall if ) iﬁ a set, then Adj(4,X) i3 locally 6-presen-—

N

+ + 41
table for ¢ = ;gé%{jcl, m(X), sup(card do(U) , card ro(U) Lcard(E) } 5
<5

and a left adjoint T : A-—=X 1is §- presentable in Adj(A,X) %££

TLY @ U—X . fs §-presentable in [U,X] . In addition every natural

————

transformation H-—T with Te Adj(A,B) and HLY 6-presentable in




i
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U, X admits a factorization H—H'—3T such that H' has a right
2 25 o = a g

adjoint and H'LY is 6-presentable in [u,x] , cf. 6.15.

Likewise if I is a class and X is locally 6~noetheriapwfor

§ > SUP{j:I’ T(X), card(ﬂﬁz)+,vcard(Mor g)+} and if in additiqg_

a-filtered colimits of monomorphisms are again monomorphic in X “for

some o < & , then. Adj(A,X) is locally 6—noetheriah, etc. (see 6.15).

Remark If A is a locally presentable category, then the above esti-
mate for 6 vresp. m(Adj(A,X)) depends on. the presentation

Y el . . : ‘ B
A = CZ[E ,Setg] » ¢f. 2.11. The point is of course to choose a presen— -

) . + . + ) +
tation in such a way that sup(card(z) , sup{card do(U) , card ro (U) )}
e YEL

is as small as possible. If the representable functors Eqm+8ets
are I-continuous - which is often the case - then a left adjoint
T A—X is §-presentable in_Adj (P_;,X_) iff its "restriction" on I_]_ is

§-presentable in [E,&] .

Proof of the lemma If the representable functors [—,U] » Lel ,

are I-continuous, then the assertion follows from 6.!8 and the well
known fact (due to Kan[l47]) that the Kan extension
[H,&]“—ﬁAdj([go,EEEEJ, X), t~>t ® 1is’ an equivalence (cf. [i?] § 2).
So we basically have to deal with the. (techmical) complication that
the representable functors need not be L-continuous, Let T : A-—X
be a functor with a right adjoint. The I=-cocontinuity of the functor

t = TLY results from the diagram

it
n

[ro, [v-,15x]] ¥ [ro, 18x]

[rc,[t—,X]]

[ro, [TLY-,X]]

[0, [e-,%]] | [0,15%]

ne

[do, [t-,x]] = [do, [TLY-,X]] [do, [v-,15x]] % [do,15%]

~

where oe¢I , X€X , in which [o,ISX] is & bijection because §X

is I-continuous. We show that there are natural isomorphisms
! v o v . =
(q—@)(t) = t and (@4f)(T) = T . Recall that the closure 3% of ¥

Ll

] . - . o Mo .
-consists of all morphisms & in [g s Sets such that Lp,F] 1s a
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bijection for every Féng[HO,Setsj and that a functor ¢t : U—X is
S~cocontinuous i1ff it is E—cocontinuous (cf. 2.10)., Then for every

U&€ U the canonical morphism Tyt [—,U]-—%&L[“,U] belongs to % - bhe-

cause for every V¥e¢ szgo,Séts] the map
[tg:F] : [[-,v] , ¥] — [1L[-,0] , ¥]

is bijeqtive. (Notg [IL[‘,U], F] = [L[—,U], F] - [E—,U], F].) Hence

for every Ue€ U and every I-cocontinuous functor t ¢ U-—X the
morphism Ty ® t [—,U] & t~_ﬁIL[~,U] D t is an-isomorphism. Since
IL[-,U] ® t = ((@t)'I-L-Y>(U) and the composite
o~ T, @ t
tv = [-,u] gt _Jl—m—‘) L[-,u] ® t
is natural in U , we obtain ¢t = ()« I.L+Y = (H*@)(t) . Second if

T : A—X has a right adjoint S , then so does TL : [Ho,Sets}——9§ "

namely IS . If t = TLY , then by 2.1o0 the right adjoint of & t 1is

the functor X——a[go,ﬁg£i],X‘~“%[TLY—,X] R B§ adjointness the latter
r

is isomorphic with IS . Hence TL & ® t which implies

(@) Ty = BCLY) = §¢e) = @ e)» 1 ¥ TLT ¥ 7

6.21 Generalizations to topological and additive categories. In view

of the work of Wischnewsky E?S], Ertel-Schubetrt [L]J

Wyler [37] and others, the assertions in 6.15%, 6.16, 6.17 and 6.20 can
be gemwralized to the situation, where X is.replaced by a topological
category over a locally presentable category. Note fhat in 6.14, 6.18

and 6.19 it was only assumed that X has colimits. In more detail let
U. be a small category and I . a class of morphisms in [20,53521

such that the codomains {rc]ag‘z} form a set, Moreover let F : g—9§
be an initial structure functor, where X is locally presentable, cf.
Hoffmann [18], Wyler [%9], Wischnewsky [35]. Then by Wischnewsky [35]

2.13, 2.22, 2.23

, ce, [u,¥] — e, [U,X], t~o%-¢
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is again an initial structure functor and by 6.15 CCZ[H’KJ is lo-~
cally presentable. Hence all of Wischnewsky's assertions in [3@] 2.13-
2.24 and elsewhere apply, in particular Cczfi,g] has limits, dense
generators and the jnclusion Ccz[g,gj‘gi[g,g] has a right adjoint, etc.

In particular the functor Adj(CZ[HO,Sets]{ g)-"ﬁfg,gj, T~»TLY , is

full and faithful and has a right adjoint.

-.The assertions in 2.1o0, 2.11, 6.14 -~ 6.2c can also be formulated
in the additive case. For this assume that the categories A,B.. .,
U,X,... are additive (or preadditive) and that all functors are addi-
tive. If the category Sets of sets is replacded by the category Ab.Gr,
of abelian groups and if [E,é], [QSAE'EE'] etc., denote the categories
of additive functors, then there is an additive bifunctor
;I [EO’§£'9£°] X ig,§]f9 X with the same properties as in 2.lo, 2.11
and 6.]4..(Note that in 6.14 the additive gereralized representable
functors are composites of the form X [U,“] H H“—>éh'§£'”“>§ s Where
X@ 1is the left adjoint of [X,-] ¢ X-—Ab.Gr.) . With these modifica-
tions all assertions in 6.14 - 6.20 hold also in the additive case.
If there is danger of confusion we dénote ‘the category of additive
functors U-—X with [g,§]+ in order to distinguish it from the cate-

gOry [U,E] of all functors U-—X .

6.22 Closure properties of Adj (A,B), Whereas- Adj(A,B) is locally pre-

5, s
sentable provided A and B are (6.20), there is no corresponding

assertion for topoi or Grothendieck categories. Likewise if X 1is a

topos or a Grothendieck category, then Ccz[g,zj need not be so, not

~

even when I is given by aGrothendieck topolcgy on U (cf 6.25 ¢)).

-

The following definition is "designed to rectify" this, at least in the
additive case. Tt is motivated by Lazard's [22] characterization of

flat modules as filtered colimits of finitely generated free modules.

6.23 Definition A class ' & of morphisms igii[go

,§ptsl s U ﬁmal},

is called flat if the dodomains {ro|o€ 2} form 2 set and do and
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ro are filtered colimits of representable functors for every oez .

A category A is called flat if there ig a small category U and a

flat class I "of morgbisqé in

i

[U°,sets] such that A ¥ Cy [U°, sets]
In the additive case (6.21) flat classes and flat additive categories

are defined likewise.

.This is obviously somewhat an ad hoc definition and it raises

many questions. We limit ourselves to the following.

6.24 Corollary Let A be a flat category and let ¥ be a flat class

e — — mr——— e —e — — —— —

of morphisns in [U°,Sets] , whre U is a small category. If X is a

topos (resp. a Grothendieck category), then so are Ccz[g,§] and

Adj (A,X)

Likgﬂiﬁg, if A and I are flat additive, then Adj(A,X) and

CCEEE,§J+ are Grothendieck categories, provided X 1is.

Proof We limit ourselves to the non-additive case, the proof for the
additive case is similar. Let X be a topos (resp. a Grothendieck cate-
gory) and let I be a flat class in LHO=§EEEJ . Glearly CCZEE,KJ

is closed in [H’KJ- under colimits. Since do and ro are filtered
colimits of representable functors for every’ o€ and X 1is a topos
(resp. a Grothendieck category), one readily sees that the functors

do & : [H)ﬁj——)ﬁ and ro & : [y)ﬁj———~)§_ preserve finite limits.
Hence CCZ[E’E] is closed in Eg,&] under finite limits and by

6.15 it is locally presentable. If X is a Grothendieck category,
then so6 1is [g,g] and therefore, by the above, tﬁe same holds for
QCZ[E,§] . On Fhe other Pand, if X islg topos, theg gb #sﬁ [E,ﬁ} >

and ‘it follows from the above and Giraud's characterization of topoi

(cf [13] 12.13 a) - d)) that Ccz[g,g] is again a topos.

6.25 Examples df categories Adj(A,X).

6.25 a) Let U be a small category with a pretopology t (resp’. with

. A ) o
a class K Jf colimits). Then by 6.19 the category AdJ(ShT[HO,SetSJ,é)
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of adjoint functors between the category of set valued sheaves on the
site (U,1) and a cocomplete category X is equivalent with the
category CshT[g,§] of T—coshéaves on U with values in X . Likewise
the category Adj(CK[HO,ggﬁgjtﬁ) of adjoint functors between the cate-=
gory of K~limits preserving functors gg—+§g£§ and a cocomplete cate-
gory X is equivalent with the category of K-cocontinuous functors

U-—X .

6.25 b) Grothendieck categories, We give a.description of Adj(A,X)

for Grothendieck categories A and X 1in terms of those objects in
X which are uniquely divisible by all covering right ideals of the

endomorphism ring of a generater‘'in A . We start out somewhat more

!

generally.

Ui . ) 5 i
Let A be a ring and * a set of right ideals in 4L . Let X be a

Grothendieck category and AE the category of left A-objects in X .
~7
An object X{AX is called uniquely divisible by < if for every I€&X

Voo d
the evaluation Ixhxw—ix is an isomorphism . Let dk& denote the

.X consisting of all uniquely k?tdivisible ob--

il

full subcategory of

jects. Dually a module Y& ModA is caliled }?iclosed’(cf. Gabriel [I;l,

- = . (ol - . . o - h . .
Stenstron [ifJ p. 37) if for every I¢¢ the restriction [A,YJ—&LI,YJ

v

is an isomorphism. Let (Mod,)rp’ denote the. . full subcategory of
mEl 2S00 %

- . N’ . .
ModA consisting of all ¢“-closed modules. By 6.2 the inclusion
C a‘ . . N
(Mod Qf——éMod hasAleft adjoint *-loc : Mod

—_— a ‘ ; .
'A)u A .=_ ,(Mod‘A)@; called 1o

A

calization at ér . In particular (ModA)&j is locally &-presentable
o~

for & = suﬁfﬂ(l) . In general V¥ ~loc is not exact unless & is a

1Ed
pretopology, cf. 6.17 and |[30] 22. Let I be the set of all inclu-

sions I CA for IéWﬁﬂ If- {A} denotes the full subcategory of Mod,

2oLy

whose only object is A , then theré are canonical isomorphisms

[{#}°PP,ab.cr.] = Moa, , ¢ [{a}°PP,ab.0x.] = (Mod )y, [{a},x] % X

and Ccz[{A},§J

it

\ﬁhi . Together with the functor % from 6.18 they

give rise to a diagram
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B r opp G4 . G &
4aj(c; [1a}°PP, ab.cx.],%) - > cey [{n},x]
e 4
!
. et e e i e s el i
adj ((tod, )z, x ) 5 > Fx
“and one readily checks by means of 6.19 that the composite ' is the

funetor T'VQ(ngtloc)(A) and that its inverse assigns to an object

A
that Adj{ (Mod,K v, X} is locally S-presentable for
il SN NS D —_= = s —

b4 EAE the restriction of @,X onto (ModAJ%‘ . From 6.20 it follows

1A + Y+
6 = sup{lﬂl,n(g),card(A) ,card (§) } , and a functor T : (MOdA%V““_)E
admitting a right adjoint is S-presentable in Adj((Modeg X> i
= ol by —r
(T~§110c)(A) is 6~presentable in A§ , etc. see 6.15,

Now let A be a Grothendieck category. Let U&e A Dbe a generator and
A = [U,U] its endomerphism ring. Let (£ be the filter of all right
ideals IC A which cover U 1in the sense that U = gzéim Y , where
im vy denotes the image of vy : U--—»U . Then it foilows from -Gabriel-

Popecscu [11] (see also EEG] (6)) that the functor é——»(gggf%g, Aﬁé[",A}
) L

is an equivalence. This together with the above yields that the functhI

Adj (A, X)— @“\x, T ~~>TU
osta PR

N
is an equivalence for every g;othegdieck category X . In addition

Adj(A,X) is locally S8-presentable for

§ = sup{)f], (XD, card(?ﬁ+, card(Af}, etc (see 6.15).

6.25 ¢) 1In the above case Adj(A,X) was described in terms of divi-—

sible objects in X . In the following we give a rather special example

of a Grothendieck category A such that Adj(A,X) can be described
in terms of complete objects in X . The details are somewhat involved

and have nothing to do with what has been done above. Instead they

center around the conditon of Mittag-Leffler.
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Fet R be a commutative ring and KECR an ideal. Let L%-ggiR be the
full subcategory of EBER consisting of all modules A such that every
cyclic submodule (a) is a quotient of R/9:" for some n > I depeﬁ—
ding on a € A . In analogy to the category of abelian p-groups we call
ﬁl—gggR the category of Z.-modules. Clearly,ﬁrggiR is a Grothendieck ca-
tegory with {R,ﬂ;,;RL%,Z,...} as a set of generators, and thus by the
special adjcint functor theorem every cocontintous functor,oa-yggkw——ﬁé

has a right adjoint. In particular the right adjoint of the inclusion

i 0L-ModR——a MEEP assigns to an R-module the largest ,Z%~submodule.
Let X bea Grothendieck cafregory and KR the category of R-objects:
in X . Ap object X# §R is called /»-adic complete if the canonical
. " LV . ' . . Y . .
morphism X~ )éigrx/;@ X 1s an isomorphism, where X 1is the image
\
. ] . v . y

of the evaluation morphism ¢ ERX ————— 2 X and the trausition morphisms

v+l oV . ; : v+l Y i
X/ X——-=>X/J. "X are given by the inclusions & TN S Let,Oa—&R
denote the full subcategory of ER of all /% -adic complete objects.

. . ' ,-/\

Note that even in general the inclusion LE‘&R‘*_ﬁ ER need not have a

left adjoint.

Then the fuwnctors

P

9 ¢ AdJ(2-Modp, X)——3 =X, T---> lim T(R/0Y)
i et — — 4{—.-—._

v
and

e

W L -Xg ——> AdS(L2-Mody,X), X

7 (@pX) - I

are well defined and -inverse equivalences provided either <% is finitely

v . e . ¥ C
generated and R/.z 1s artinian for v > | or , % 1s & principal

ideal generated by a non zero divisor. Moreover the inclusion
. , . ' . 5V
'Oz—éRﬂhj’ﬁR has a left adjoint, namely X~21lim X/4-.° , and
v
Adj(f&—@ggR, &f is 1 cally sup(l?l,ﬂ(é))—presentable (EEERJ locally

— i

. . . v
Sup(}fl,e(g))—generated). Note that if R 1is noetherian, then R/{L
is artinian for vy > 1 iff the associated prime ideals of .0u are

maximal.
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Proof We limit ourselveSto the case X = Ab.Gr. and give an outline

for the modifications in the general case at the end. Note that

A A

ER = ModR and ’ﬁL—ﬁR = éE—Mch

We first show that ¢ and Q are well defined. For % this is obvious

because the inclusion I : AﬁhModR ~—9ModR preserves colimits. As for

 let T : LQ—ESQR‘-aéE'EE' be a functor with a right adjoint. Since
T is additive, for every . -module A the map R——%[TA,TAJ,r~9TrI,
makes TA into a R-mecdule. This gives rise to a factorization of T
through the forgetful functor V : ggﬂ “«9éﬁ.§£. , and thus

QIT) = %ig T(Rﬂaf) is a R-module which is obviously functorial in T
It will §e shown below that %EE'TR/ay is 4p-adic complete.

v
A~ . . )
If XelarModR , then there are canonical 1somorphisms

N : - Ve N . v ~ .
X »xalim X/ X —==3 l}m (R/Qi ®y X) , whence Q¥WX) = X 1is a natural
equivalence in X . The converse - 1i.e. YQ(T) = T for every T
admitting a right adjoint ~ is more involved.
Since every rmmodule is in a canonical way a colimit of copies of

R & R (cf rA“] .5 b)), it follows that every X exl-ModR is a co-

limit of copies of RL@ ® Rﬁ@ for n, m = 1, 2... Hence two colimit

preserving functors F and F' on AB—MQQR are isomorphic iff for

2

every mn > 1 there is an isomorphism F(haq) F'(RA%?) which 1is

natural in R/ﬂ? . We will show that for every cocontinuous functor

T :[Q—ModR—~§AE=§£, and every n > 1 there 1is an isomorphism

gn : T(Rﬁzn) ;;_QRAQH @R 1im TR/af which is natural in RLmP and
v

T and such that the canonical projection gim T(R/@?)-9T(Rhgp)

is the eompoqlte of the canonlcal morphlsm
11m T(R/ﬂ )«-ﬁRL@, % 11m (RL@,) with E_] . The latter implies that
(—v—- h
-éig T(RIEY is” - ad1c ‘complete. Assume £F iéhfiﬁiteiy.generEEed and
5 .
)

let (a
ke In

K bec a set of generators of & . Let f : IR —R  be

. . . . n . .
the homomorphism whose restriction onkthe k-th summand 1s multipli- .

cation with a - For every v > n £ induces a morphism
! L]
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The exact sequence l.l_R -f——} R —)R/ULn—-)O
I

0 0 + . ) .
and the filtration c .1‘3\) lc: ,{,"7:) Covv o nC R fgllve rise to commutative
a,
diagrams
0 0 0
!
| \, |
v == ker fn+i 3 o 3 ker o] TR V] ker fn = %R/&
c dlp, IU P
S O +1 -t n n
(*) oo -.—) JTL- R[672n+1' _;Eﬂ.._".__l._.-) . .__._9 -:I[J.R /Oz',n bl ey _:!:_L R/U?,
n n n
0
Vn+i Y oa+l nv n
n
vy e BT 3 y £ ln — ale = 0
V \)
0 0
0 0 Q
A\ 4 \\'g 4/ qn
M N o 4
Ji.n /0’/7“ . Qrw_f.-'i ,C?.n /L.L’“-t-q .. -,6:}1 Jifbtt ey 07‘“/&"
Wit ‘
) / . . / .. , = 0
A | dne fiet A oA | da g dn
! | J
. L n+1i . \ *
(**) "“_nf\]l /71 3 ._._Pm-p 4. - R/C_Lﬁ:rt-4 N 311, - s T R/m,”“ . . R/G’]_,"‘
Sn+d Srnes-4 $iirg S
: ! J
n n n n
R/:(JZ R/&? (Ex) R/,&& R/OL
L v A\
0 0



where p s & . 5, B .. 4 3 .. , and op . denote the

> 4 n+i n+i

n+i~-1I n+i-|

.)) denote the image

obvious canonical morphisms. Let im(T(ker £

of T(ker-fn+i)f—9T(LL RA%n+l) . It suffices to show that the induced
: I

. ., n .
Ssequences 1n the i1nverse limit

@x#)  0—>lim im(T(ker fn+i))*--—-)<_1_%_tg T(_ll_,lR/&n+l)

slim T /e 0
1 P

L
n

.

n+i . +1
n 1) “-—%%im_T(Rﬁ%n 1

) — R/ — 530
) )

. n
D) ;1m T /o
i
are exact. For then the composite of (x) and (&x»x)

. lim T(f
CJim TRy I n
: "1_"1 T

. ) :
+ .
s lim T(R/MTH

n ;
(_1_ ) /‘R/Db /‘O

is also exact and from the commutative diagram with exact rows

. = i +1 = . ; +1
dlrye, 1inm T(R/G") ——— Lllin T(R/e"Y) === 1in TULRAE"T)
n v n i i~ "D
fo id RS ~im TE .
R N ( k)K(:Ih ! ‘ &l/.-/ 5 n+1
. L. - V. = ez N 1 £ B
R&R Ltm T(R/p ) «— é;m T (R /o )
n + o, v b n
R/ ®, }lE.T(RA% ) T(R/g )
. v
N2 X2
O 0 L
e e
it follows that there is an isomorphism
.En s T(Rﬂ?n);—:;;R/&F.wﬁ }im T(R/a>) ' which is natural in T

v B

“One 'réadily checks that. gﬁ has "the two-properties medHtioned d@bove', ™

. . . n .
as for the naturality in R/~2 note that a homomorphism

g Rﬁnn——%Rkhp can be decomposed into Rﬁnn__ig R /o —5329 R&%m

. . n Tre n .
for some rgR if n > m resp. into Rhmm —5339 R/oz ———> R/ if

m > n , where can denotes the canonical projection. This completes
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the proof modulo the exactness of @#*#) and (3 #a¢)

As for the exactness of (#*¥%) note that by the first assumption on ¢z

. .. . n+i
ker fn+i 18 a submodule of the artinian module &L Ripm . Hence.
i n

the system (ker fﬁ+i) satisfies the condition of Mittag-Leffler.

i1éN

Since T ©preserves epimorphisms the system (T(ker f also

n+i»i€lN
satisfies Mittag~Leffier and thus the same holds for its image -
(im T(ker fn+i))i€WN - Therefore applying the vight exact functor T

to the diagram (%) and passing to the limit vields the exactness of

(#%x%). On the other hand, if 4 = (a) and aecR 1is not a zero divi-

sor, one can chose In = {a“} . Then

ker fn+i = ker ((R/an lR)~———-—)R/ i R) ¥ R/z™ and the morphism
ker fn+i —3ker foai-1 induced by

P_,. (R/an+lR)~—¢(R/an+l_lR) can be identified with

n+i
\Y

R/anR-—E;)R/anR . Since R/a"R _E;L9R/anR is zero for v > n ,
the system (ker fn+i)i€IN satisfies the condition of Mittag-Leffler
trivially and one proceeds as in the first case.

For the exactness of (¥*¥ it suffices to show that the transition

morphisms of the systems

tee > der (i ) -—>ker (T] )= —ker (i) = 0

n+i—~i

b ——-9ker(Tpn+i)-~—+ker(Tp )———9w-~——$ker(Tpn) = T(R/mp)

n+i-1

induced by diagram (##) are epimorphisms., For thé latter this is

obvious because by (»*) it is an epimorphic image of the system

n+i Qn+i-1 n+i-1

T
— T Ty —PRITL Ry )—— o T (™ ™)

whose transition morphism are epimorphic. (Note tnat_ T 1is rlght
exact ) For the. former thlS requires some diagram cha31ng on the

diagram (cf. (ex))
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Mom—— ker T L Y e e = ker (Tj .. ;) ———3-c.
0 N
ey Tz;nﬂln+i) . nqn+i—1) ; T(@n/;%+i-l) N
1€&QLJ? 3
T&kn+i“V€;Hi) Ti i TGpei-1)
%iz:f\ﬂ T;%ﬂhnil) _A_“an*l 1\ , T(RA4P+1 1)_______9 D

For x¢€ ker T(jn+i—l) there is an element Ve T A@n-l) which is

mapped onto x by the epimorphism T(q ). The aim is to find oun

n+i-4

). Since

veE ker T(Jn+i) théh 1s also mapped onté x under T(qn+i4

-T(Jn+1_l)x = 0 , the image ¥ = T(Jn+i)y IlS in the kernel of
vio ‘ .
Tk . ) ¢ TR — 1@ Y L sinee
n+i-—1
n+i+1, n+i Ba+i n+i Ph+i-1 n+i-1
2 I ey Rfn ——  Rin —0

. n+i-=1 n+i
1s exact and T is right exact, there is an element =z e T (% (o7 )

which is mapped by T(Bn+i) onto y . On the other hand the composite

n+i-1 n+1 T(un+i) n, n+i T(qn+i_1) n, n+i-}
T@M TRty B, g R Rt ——ntis 5@t et
is zero, whence the image of y = T(an+])(z) under
T (q S I T(az,n/a;m'l)——w—} T (& /pn i- 1) is also®™ x . But
n+1-=1 . ' .
T(J n+l)(y = T(o n+1)(£) =y = T(Bn+i)(z) =y -y =0 which shows

that y =y - T(an+i)(z) is in ker T(Jn4i) . Hence

‘ker.$(jh+i)-ﬁf%ker.T(j-s ) +is surjective which completes the proof:

n+i-=1

_of the exactness of @***) Note that for the exaaness of @*ﬁﬂ none

““ . L) Fi 2 ‘e EREERET

of the condltlonson A was used.
The generalization to Grothendieck categories is straight forward
and requires only the exactiness of (¥x*#*) and (+%%). The diagram

g
=]

chasing for «(¥%t» can be done in any abelian category and by Roos [2¢1“
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the functor 1lim preserves the exactness of sequences

O——é(A Tk —>(A.). ——3(A."), —>0 in Grothendieck categories

1C N i‘ie N 1 1€ N

provided the transition morphismsof (Ai');f

iemnw @are epimorphic. Thus

the sequence (#*»¥%) is exact without any coadition on 2 . The above
result of Roos also implies that Mittag-Leffler holds in Grothendieck
categories so that the proof for the exactness of (##x) goes thruugh "
without change.

P

It remains to show that the inclusion ZY-ER-—%ﬁR

and that Adj (- Mod. r* X) is locally sup(}a],W(z})—presentable.

has a left adjoint

. N /.\
For § = sup(jfl,w(ﬁ)) the inclusion I :AE5§R——}§R Preserves

§~filtered colimits and in ER §~filtered colimite commute with

6-limits. To see the former let X = lig Xu be a 6-filtered colimit
U
in ER of 4i~adic ccmplete objects XU . Then the composite

lim X <= ]1m(llm }\ /w X ) lim(lin} X /az,lX ) = llm(llm X /,01. lim X )
? u —11—‘) _i_ —u"i M H l U U M

is the canonical ma P from 1lim XU to its 4z-adic completion, whence

u N\
¢ . N . Sy s ’, 4 o 2 - — -
11% Xu 1s £ -adic complete and i?étlnclu51on I : & gR >§R Pre
ho
serves §-filtered colimits. (Notethis holds for 'any ideal <z€R .)
. i . . =
The functor X —~>§P R er?éig X/t3"X has its value in ZQ_§R be -
i
cause
. ; El
Q(XRX) dim X/o0X
i

K - .
is, as shown above, A7-adic complete. Thus by.the universal property
A ; '

of L%E X&» the functor L :/?R—Q%Q—KR s Xfmwl%gknix is left
adjoint to the inclusion T : £2-§R ——%§R . Since T(X) = W(XR) it
- follows from LLU —] [U I- ] s Where U(‘XR rand - w(U) < & , that
0fAXR is locally §- presentable ?hus ?hg ggme-bo}ds“fo;"'
Adj(ﬁl—MOd -;)‘-becausel it is equivalent with égth . In the same
way one can show that Adj(&L—gggR,ﬁ) is lecally sup()fl,ﬂ(z))—

U
generated.



