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Basic Definition: Cotilting Modules

Let R be an associative ring. For any R-module M, we denote by
Prod(M) ⊂ R-Mod the class of all direct summands of products of
copies of M in R-Mod.

Let n > 0 be an integer. An R-module U is said to be n-cotilting if
the following conditions hold:

C1 the injective dimension of the R-module U does not exceed n;

C2 ExtiR(UX ,U) = 0 for any set X and all i > 0;

C3 for some (equivalently, for any) injective generator J of
R-Mod and some finite integer r (equivalently, for r = n)
there exists an exact sequence of R-modules

0 −−→ Ur −−→ Ur−1 −−→ · · · −−→ U0 −−→ J −−→ 0

with Ui ∈ Prod(U).

In particular, an R-module is 0-cotilting if and only if it is
an injective cogenerator of R-Mod.
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Background material: Cotorsion Pairs

Let F and C ⊂ R-Mod be two classes of R-modules. Denote by
F⊥1 ⊂ R-Mod the class of all modules X ∈ R-Mod such that
Ext1

R(F ,X ) = 0 for all F ∈ F , and by ⊥1C ⊂ R-Mod the class of
all modules Y ∈ R-Mod such that Ext1

R(Y ,C ) = 0 for all C ∈ C.

A pair of classes (F , C) is said to be a cotorsion pair if C = F⊥1

and F = ⊥1C.

A cotorsion pair (F , C) is said to be complete if for every module
M ∈ R-Mod there exist short exact sequences

0 −→ C ′ −→ F −→ M −→ 0 (1)

0 −→ M −→ C −→ F ′ −→ 0 (2)

with F , F ′ ∈ F and C , C ′ ∈ C. The short exact sequence (1) is
called a special precover sequence and the short exact sequence (2)
is called a special preenvelope sequence. The sequences (1–2) are
also called the approximation sequences.
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Cotilting Cotorsion Pair

Let S ⊂ R-Mod be a class of R-modules. The cotorsion pair
(F ′, C′) with C′ = S⊥1 and F ′ = ⊥1C′ (so S ⊂ F ′) is said to be
generated by S. The cotorsion pair (F ′′, C′′) with F ′′ = ⊥1S and
C′′ = F ′′⊥1 (so S ⊂ C′′) is said to be cogenerated by S.

Given an R-module M, choose its projective resolution
· · · −→ P1 −→ P0 −→ M −→ 0 and injective coresolution
0 −→ M −→ J0 −→ J1 −→ · · · . Then the image of the morphism
Pi −→ Pi−1 is called the i-th syzygy module of M and denoted by
ΩiM. The image of the morphism J i−1 −→ J i is called the i-th
cosyzygy module of M and denoted by fiM.

Let U be an n-cotilting R-module. The cotilting cotorsion pair
induced by U is defined as the cotorsion pair (F , C) with

F = ⊥>0U = {F ∈ R-Mod | ExtiR(F ,U) = 0 ∀i > 0}.

Equivalently, one can say that (F , C) is the cotorsion pair
cogenerated by all the cosyzygy modules U, f1U, . . . , fn−1U of
the R-module U. All the cotilting cotorsion pairs are complete.
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Description of the Left and Right Cotilting Classes

in terms of Coresolutions and Resolutions

The left class F in the cotilting cotorsion pair (F , C) induced by
an n-cotilting module U is called the n-cotilting class. Both
the classes F and C can be described as follows.

Proposition

The n-cotilting class F consists of all the R-modules F admitting
a coresolution by modules from Prod(U),
0 −→ F −→ U1 −→ U2 −→ U3 −→ · · · . Equivalently, F ∈ F if
and only if an exact sequence of R-modules
0 −→ F −→ U1 −→ U2 −→ · · · −→ Un with U i ∈ Prod(U) exists.

Proposition

The second (right) class C in the n-cotilting cotorsion pair consists
of all the R-modules C admitting a finite resolution of some
length r (equivalently, of length r = n) by modules from Prod(U),
0 −→ Ur −→ Ur−1 −→ · · · −→ U0 −→ C −→ 0 (Ui ∈ Prod(U)).
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Background material: Filtrations and Cofiltrations

Let M be an R-module and α be an ordinal. An α-indexed
filtration of M is a collection of submodules FiM ⊂ M indexed by
the ordinals 0 6 i 6 α such that

F0M = 0, FαM = M;
FjM ⊂ FiM for all 0 6 j 6 i 6 α;
FiM =

⋃
j<i FjM for all limit ordinals i 6 α.

One says that the module M is filtered by the modules
Fi+1M/FiM, 0 6 i < α.

An α-indexed cofiltration of M is a collection of R-modules GiM
indexed by 0 6 i 6 α and surjective R-module morphisms
GiM −→ GjM given for all 0 6 j < i 6 α such that

the triangle diagram GiM −→ GjM −→ GkM is commutative
for all 0 6 k < j < i 6 α;
G0M = 0, GαM = M;
GiM = lim←−j<i

GjM for all limit ordinals i 6 α.

One says that the module M is cofiltered by the modules
ker(Gi+1M → GiM), 0 6 i < α.
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The Šaroch–Trlifaj Description for n = 1

According to the Eklof–Trlifaj theorem (2001), for any set of
R-modules S, the left class F of the cotorsion pair generated by S
can be described as the class of all direct summands of R-modules
filtered by modules from S ∪ {RR}.
No comparable description of the right class C of the cotorsion pair
cogenerated by S in terms of cofiltrations is available in general.
Only one implication is known: all the direct summands of
R-modules cofiltered by modules from S ∪ {J} (where J is any
injective cogenerator of R-Mod) belong to C.

The following recent theorem describes the second (right) class of
any 1-cotilting cotorsion pair in terms of cofiltrations.

Theorem (Šaroch and Trlifaj, 2019)

Let U be a 1-cotilting R-module. Then the right class C of the
induced 1-cotilting cotorsion pair consists of all direct summands C
of the R-modules D admitting a short exact sequence
0 −→ U ′ −→ D −→ J ′ −→ 0 with U ′ ∈ Prod(U), J ′ ∈ Prod(J).
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The Šaroch–Trlifaj Description for n = 1

According to the Eklof–Trlifaj theorem (2001), for any set of
R-modules S, the left class F of the cotorsion pair generated by S
can be described as the class of all direct summands of R-modules
filtered by modules from S ∪ {RR}.
No comparable description of the right class C of the cotorsion pair
cogenerated by S in terms of cofiltrations is available in general.
Only one implication is known: all the direct summands of
R-modules cofiltered by modules from S ∪ {J} (where J is any
injective cogenerator of R-Mod) belong to C.

The following recent theorem describes the second (right) class of
any 1-cotilting cotorsion pair in terms of cofiltrations.
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Dual Bongartz Lemma

The proof of the Šaroch–Trlifaj theorem is a simple application of
the dual Bongartz lemma.

Lemma (“dual Bongartz lemma”)

Let S be an R-module such that Ext1
R(SX ,S) = 0 for all sets X .

Then the cotorsion pair (F , C) cogenerated by S is complete, and
the class C consists of all the direct summands C of R-modules D
admitting a short exact sequence 0 −→ S ′ −→ D −→ J ′ −→ 0
with S ′ ∈ Prod(S) and an injective R-module J ′.

Sketch of proof.

For any R-module M, let X be the underlying set of Ext1
R(M, S).

Then the middle term of 0 −→ SX −→ F −→ M −→ 0 belongs
to F , providing a special precover sequence. A special preenvelope
sequence 0 −→ N −→ D −→ F −→ 0 for any R-module N is then
obtained from the Salce lemma (choose 0→ N → J ′ → M → 0).
When N ∈ C, it follows that N is a direct summand of D.
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The proof of the Šaroch–Trlifaj theorem is a simple application of
the dual Bongartz lemma.

Lemma (“dual Bongartz lemma”)

Let S be an R-module such that Ext1
R(SX ,S) = 0 for all sets X .

Then the cotorsion pair (F , C) cogenerated by S is complete, and
the class C consists of all the direct summands C of R-modules D
admitting a short exact sequence 0 −→ S ′ −→ D −→ J ′ −→ 0
with S ′ ∈ Prod(S) and an injective R-module J ′.

Sketch of proof.

For any R-module M, let X be the underlying set of Ext1
R(M, S).

Then the middle term of 0 −→ SX −→ F −→ M −→ 0 belongs
to F , providing a special precover sequence. A special preenvelope
sequence 0 −→ N −→ D −→ F −→ 0 for any R-module N is then
obtained from the Salce lemma (choose 0→ N → J ′ → M → 0).
When N ∈ C, it follows that N is a direct summand of D.

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 8 / 27



Dual Bongartz Lemma
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admitting a short exact sequence 0 −→ S ′ −→ D −→ J ′ −→ 0
with S ′ ∈ Prod(S) and an injective R-module J ′.

Sketch of proof.

For any R-module M, let X be the underlying set of Ext1
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Then the middle term of 0 −→ SX −→ F −→ M −→ 0 belongs
to F , providing a special precover sequence. A special preenvelope
sequence 0 −→ N −→ D −→ F −→ 0 for any R-module N

is then
obtained from the Salce lemma (choose 0→ N → J ′ → M → 0).
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Historical Remarks on Bongartz’ Lemma

The dual Bongartz lemma is the dual assertion to the “Bongartz
lemma”, which comes from a classical 1981 paper of Bongartz.
The relevant lemma in Bongartz’ paper claimed (in the present-day
terminology) that a finite-dimensional partial tilting module over
a finite-dimensional algebra over a field is a direct summand of
a finite-dimensional tilting module. The related result in infinitely
generated tilting theory requires more complicated assumptions
than in Bongartz’ 1981 paper.

What is now called the “Bongartz lemma”, that is the dual
assertion to the previous slide, was abstracted from the key
technical step in Bongartz’ proof of his lemma and generalized to
infinitely generated modules.
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The Dual n-Bongartz Lemma

Lemma

Let S = {S0,S1, . . . ,Sn} be a collection of n + 1 R-modules such
that S0 = J is an injective cogenerator, and Ext1

R(SX
j ,Si ) = 0 for

all 0 6 i 6 j 6 n and all sets X . Then the cotorsion pair (F , C)
cogenerated by S is complete, and C is the class of all direct
summands of R-modules D admitting a finite cofiltration
D = Gn+1D � GnD � · · ·� G1D � G0D = 0 such that
ker(Gi+1D → GiD) ∈ Prod(Si ) for every 0 6 i 6 n.

Proof.

Let D be the class of all R-modules D admitting a cofiltration as
above. First we will construct a special precover sequence
0 −→ D ′ −→ F −→ M −→ 0 with D ′ ∈ D and F ∈ F for every
R-module M.
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Proof of dual n-Bongartz lemma cont’d.

Put G1F = M. Denote by X1 the underlying set of Ext1
R(M,S1),

and let G2F be the middle term of the related short exact sequence
0 −→ SX1

1 −→ G2F −→ G1F −→ 0. From the long exact sequence

HomR(SX1
1 ,S1) � Ext1

R(G1F ,S1) −→ Ext1
R(G2F , S1) −→

Ext1
R(SX1

1 ,S1) = 0 we see that Ext1
R(G2F , S1) = 0.

Denote by X2 the underlying set of Ext1
R(G2F ,S2), and let G3F be

the middle term of the related short exact sequence
0 −→ SX2

2 −→ G3F −→ G2F −→ 0. Then Ext1
R(G3F ,S1) = 0

since Ext1
R(G2F ,S1) = 0 = Ext1

R(SX2
2 , S1), and Ext1

R(G3F ,S2) = 0

by construction (since Ext1
R(SX2

2 , S2) = 0).

Basically, at the passage from GjF to Gj+1F we kill all elements of
Ext1

R(−,Sj). This creates no new elements in Ext1
R(−,Si ) for i 6 j

due to the Ext1
R -self-orthogonality conditions imposed on

the modules Si .
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Proof of dual n-Bongartz lemma cont’d.

Proceeding in this way until all the modules S1, . . . , Sn have been
taken into account,

we construct an R-module F with
an (n + 1)-step cofiltration
F = Gn+1F � GnF � · · ·� G1F � G0F = 0 such that
ker(Gi+1F → GiF ) = SXi

i for 1 6 i 6 n and G1F = M. We also
have Ext1

R(F , Si ) = 0 for all 0 6 i 6 n, so F ∈ F .

Denoting by D ′ the kernel of the surjective map
F = Gn+1F → G1F = M, we obtain a special precover sequence
0 −→ D ′ −→ F −→ M −→ 0 with D ′ ∈ D and F ∈ F . Here
the R-module D ′ is endowed with a cofiltration G as desired, with
the additional property that G1D

′ = 0.
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Proof of dual n-Bongartz lemma fin’d.

To construct a special preenvelope sequence
0 −→ N −→ D −→ F −→ 0 (with D ∈ D and F ∈ F) for
an R-module N,

choose a set X0 such that N is a submodule in
SX0

0 = JX0 , so there is a short exact sequence

0 −→ N −→ SX0
0 −→ M −→ 0.

Argue as usually in the Salce lemma, using the pullback diagram
for the pair of surjective morphisms SX0

0 −→ M and F −→ M.
Then it is clear from the short exact sequence
0 −→ D ′ −→ D −→ SX0

0 −→ 0 that the R-module D has
a cofiltration of the desired form.

Finally, if N ∈ C, then Ext1
R(F ,N) = 0, so N is a direct summand

of D.
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Cosyzygy Modules of a Cotilting Module

Recall that the cotilting cotorsion pair (F , C) is cogenerated by the
n-cotilting module U and its cosyzygy modules f1U, . . . , fn−1U.
One has Ext1

R((fiU)X ,U) ' Exti+1
R (UX ,U) = 0 for all i > 0 and

all sets X . However, it may well happen that Ext1
R(f1U,f1U) 6= 0.

One observes that if 0 −→ U −→ J0 −→ f1U −→ 0 is a short
exact sequence of R-modules with an injective R-module J0, then
Ext1

R(f1U,f1U) ' Ext2
R(f1U,U) ' Ext2

R(J0,U), and there is no
apparent reason for this Ext group to vanish.

In fact, there is a counterexample due to D’Este (2005). Over any
field k , she constructs a quiver algebra A of global dimension 2,
with 4 vertices, 4 edges, and 2 relations. Then AA is a 2-cotilting
A-module (since A is a finite-dimensional algebra of global
dimension 2), but Ext1

A(f1A,f1A) 6= 0 (for the minimal cosyzygy
module f1A of the free A-module A).

Therefore, the dual n-Bongartz lemma is not applicable to the
sequence of cosyzygy modules fiU of an n-cotilting R-module U,
generally speaking.
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Associated Cotilting Modules and Classes

For every R-module M and integer i > 0, denote by
⊥>iM ⊂ R-Mod the class of all R-modules F such that
ExtnR(F ,M) = 0 for all n > i .

Proposition (Bazzoni)

Let U be an n-cotilting R-module. Then for every 0 6 i 6 n there
exists an (n − i)-cotilting R-module Ui such that ⊥>0Ui = ⊥>iU.
In other words, ⊥>iU is an (n − i)-cotilting class.

In particular, one can take U0 = U, while Un is a 0-cotilting
module, i.e., an injective cogenerator of R-Mod.

The proof of the proposition is based on a theorem and a lemma,
which are formulated below.
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Associated Cotilting Modules and Classes

Theorem (Angeleri Hügel–Coelho, 2001)

Let (F , C) be a cotorsion pair in R-Mod. Then (F , C) is
an m-cotilting cotorsion pair if and only if it is hereditary (i.e.,
F ⊂ ⊥>0C), F is closed under infinite products, and C consists of
modules of injective dimension 6 m.

Lemma (Bazzoni, 2004)

Let U be an n-cotilting R-module. Then for every 0 6 i 6 n
the class of R-modules ⊥>iU is closed under infinite products.

The proposition follows immediately from the theorem and
the lemma.
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Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules

Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U

is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui

= ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU

⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU

= ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

The applicability of the dual n-Bongartz lemma to the sequence of
associated cotilting modules Un = J, Un−1, . . . , U1, U0 = U is
based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(UX

i ,Uj) = 0.

Proof.

In fact, ExtnR(UX
i ,Uj) = 0 for all n > 1, since

UX
i ∈ ⊥>0Ui = ⊥>iU ⊂ ⊥>jU = ⊥>0Uj .

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 17 / 27



Right Cotilting Class Described in terms of Cofiltrations

Lemma 2

The n-cotilting cotorsion pair (F , C) induced by an n-cotilting
module U is cogenerated by the modules U, U1, . . . , Un−1, that is
⊥>0U = ⊥1{U,U1, . . . ,Un−1}.

Proof.

For any i , j > 0 we have ⊥>iUj = ⊥>i+jU, because an R-module F
belongs to ⊥>iUj if and only if the i-th syzygy R-module ΩiF
belongs to ⊥>0Uj , which by the definition of Uj means that ΩiF
belongs to ⊥>jU, which holds if and only if F belongs to ⊥>i+jU.

In particular, it follows that ⊥>1Uj = ⊥>j+1U = ⊥>0Uj+1.

Now one proceeds by decreasing induction in 0 6 j 6 n proving
that ⊥1{Uj , . . . ,Un} = ⊥>0Uj , since ⊥1Uj ∩ ⊥1{Uj+1, . . . ,Un} =
⊥1Uj ∩ ⊥>0Uj+1 = ⊥1Uj ∩ ⊥>1Uj = ⊥>0Uj .
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Right Cotilting Class Described in terms of Cofiltrations

The following theorem is our main result.

Theorem

Let U be an n-cotilting module over an associative ring R, and let
(F , C) be the induced n-cotilting cotorsion pair. Then the class C
consists precisely of all the direct summands C of R-modules D
admitting an (n + 1)-step cofiltration
D = Gn+1D � GnD � · · ·� G1D � G0D = 0 such that
G1D ∈ Prod(J) = Prod(Un), ker(Gi+1D → GiD) ∈ Prod(Un−i )
for every 0 6 i 6 n, and ker(Gn+1D → GnD) ∈ Prod(U).

Proof.

By Lemma 2, the cotorsion pair (F , C) is cogenerated by
the modules Si = Un−i . By Lemma 1, the assumptions of the dual
n-Bongartz lemma are satisfied. Hence the theorem follows as
a particular case of the dual n-Bongartz lemma.
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Dual Setting: Tilting Modules

For any R-module M, denote by Add(M) ⊂ R-Mod the class of all
direct summands of (infinite) direct sums of copies of M in R-Mod.

An R-Module T is said to be n-tilting if the following conditions
hold:

T1 the projective dimension of the R-module T does not
exceed n;

T2 ExtiR(T ,T (X )) = 0 for any set X and all i > 0 (where T (X )

denotes the direct sum of X copies of T );

T3 for some finite integer r (equivalently, for r = n) there exists
an exact sequence of R-modules

0 −−→ R −−→ T 0 −−→ T 1 −−→ · · · −−→ T r −−→ 0

with T i ∈ Add(T ).

In particular, an R-module is 0-tilting if and only if it is
a projective generator of R-Mod.
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Tilting Cotorsion Pair

Let T be an n-tilting R-module. The tilting cotorsion pair induced
by T is the cotorsion pair (F , C) with

C = T⊥>0 = {C ∈ R-Mod | ExtiR(T ,C ) = 0 ∀i > 0}.

Equivalently, one can say that (F , C) is the cotorsion pair
generated by all the syzygy modules T , Ω1T , . . . , Ωn−1T of
the R-module T .

By the Eklof–Trlifaj theorem, any cotorsion pair generated by a set
of modules is complete. In particular, all the tilting cotorsion pairs
are complete.
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Description of the Left and Right Tilting Classes
in terms of Resolutions and Coresolutions

The right class C in the tilting cotorsion pair (F , C) induced by
an n-tilting module T is called the n-tilting class. Both the classes
F and C can be described as follows.

Proposition

The n-tilting class C consists of all the R-modules C admitting
a resolution by modules from Add(T ),
· · · −→ T3 −→ T2 −→ T1 −→ C −→ 0. Equivalently, C ∈ C if and
only if there exists an exact sequence of R-modules
Tn −→ Tn−1 −→ · · · −→ T1 −→ C −→ 0 with Ti ∈ Add(T ).

Proposition

The second (left) class F in the n-tilting cotorsion pair consists of
all the R-modules F admitting a finite coresolution of some
length r (equivalently, of length r = n) by modules from Add(T ),
0 −→ C −→ T 0 −→ T 1 −→ · · · −→ T r −→ 0 (T i ∈ Add(T )).
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The n-Bongartz Lemma

The Eklof–Trlifaj theorem provides the description of the left class
F in an n-tilting cotorsion pair (F , C) as the class of all direct
summands of modules filtered by T , Ω1T , . . . , Ωn−1T , and R.

An approach based on the n-Bongartz lemma leads to a more
concrete description of F in terms of filtrations, in that the shape
of the filtrations involved is more precisely specified. However, one
needs to use the associated tilting modules Ti in place of
the syzygy modules ΩiT .

Lemma (n-Bongartz lemma)

Let S = {S0,S1, . . . ,Sn} be a collection of n + 1 R-modules such

that S0 is a projective generator and Ext1
R(Si ,S

(X )
j ) = 0 for all

0 6 i 6 j 6 n and all sets X . Then the left class F in the
cotorsion pair generated by S is the class of all direct summands of
R-modules G admitting a finite (n + 1)-step filtration
0 = F0G ⊂ F1G ⊂ · · · ⊂ FnG ⊂ Fn+1G = G such that
Fi+1G/FiG ∈ Add(Si ) for every 0 6 i 6 n.
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concrete description of F in terms of filtrations,

in that the shape
of the filtrations involved is more precisely specified. However, one
needs to use the associated tilting modules Ti in place of
the syzygy modules ΩiT .

Lemma (n-Bongartz lemma)

Let S = {S0,S1, . . . ,Sn} be a collection of n + 1 R-modules such

that S0 is a projective generator and Ext1
R(Si ,S

(X )
j ) = 0 for all

0 6 i 6 j 6 n and all sets X . Then the left class F in the
cotorsion pair generated by S is the class of all direct summands of
R-modules G admitting a finite (n + 1)-step filtration
0 = F0G ⊂ F1G ⊂ · · · ⊂ FnG ⊂ Fn+1G = G such that
Fi+1G/FiG ∈ Add(Si ) for every 0 6 i 6 n.
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Associated Tilting Modules and Classes

For every R-module M and integer i > 0, denote by
M⊥>i ⊂ R-Mod the class of all R-modules C such that
ExtnR(M,C ) = 0 for all n > i .

Proposition (Bazzoni–Št’ov́ıček, 2007)

Let T be an n-tilting R-module. Then for every 0 6 i 6 n there
exists an (n − i)-tilting R-module Ti such that T⊥>0

i = T⊥>i . In
other words, T⊥>i is an (n − i)-tilting class.

In particular, one can take T0 = T , while Tn is a 0-tilting module,
i.e., an projective generator of R-Mod.

The proof of the proposition is based on a theorem and a lemma.

Leonid Positselski Cotilting cotorsion pairs and cofiltrations 24 / 27



Associated Tilting Modules and Classes

For every R-module M and integer i > 0, denote by
M⊥>i ⊂ R-Mod

the class of all R-modules C such that
ExtnR(M,C ) = 0 for all n > i .

Proposition (Bazzoni–Št’ov́ıček, 2007)
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Associated Tilting Modules and Classes

Theorem (Angeleri Hügel–Coelho, 2001; Št’ov́ıček–Trlifaj, 2007)

Let (F , C) be a cotorsion pair in R-Mod. Then (F , C) is
an m-tilting cotorsion pair if and only if it is hereditary, C is closed
under infinite direct sums, and F consists of modules of projective
dimension 6 m.

Lemma (Bazzoni, 2004)

Let T be an n-tilting R-module. Then for every 0 6 i 6 n
the class of R-modules T⊥>i is closed under infinite direct sums.
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Left Tilting Class Described in terms of Filtrations
of Specific Shape

The applicability of the n-Bongartz lemma to the sequence of
associated tilting modules S0 = Tn, S1 = Tn−1, . . . , Sn−1 = T1,
Sn = T0 = T is based on two lemmas.

Lemma 1

For all 1 6 i 6 j 6 n and every set X , one has Ext1
R(Tj ,T

(X )
i ) = 0.

Lemma 2

The n-tilting cotorsion pair (F , C) induced by an n-tilting module
T is generated by the modules T , T1, . . . , Tn−1, that is
T⊥>0 = {T ,T1, . . . ,Tn−1}⊥1 .
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Left Tilting Class Described in terms of Filtrations
of Specific Shape

The following theorem is our main result for tilting cotorsion pairs.

Theorem

Let T be an n-tilting module over an associative ring R, and let
(F , C) be the induced n-tilting cotorsion pair. Then the class F
consists precisely of all the direct summands of R-modules G
admitting a finite (n + 1)-step filtration
0 = F0G ⊂ F1G ⊂ · · · ⊂ FnG ⊂ Fn+1G = G such that
Fi+1G/FiG ∈ Add(Tn−i ) for every 0 6 i 6 n.
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