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Overview

Contramodules are an importance piece in a larger puzzle which
can be called “a missing half of algebra” or “a half of homological
algebra that was either overlooked by the classical authors or
forgotten by their followers”.

Some of the missing pieces were defined or hinted at in the 1960’s
and 1970’s, then left undeveloped or completely forgotten. Some
of the pieces were only invented in the 1990’s or 00’s, even in
the 2010’s.
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Overview

The familiar basic elements of (homological) algebra include:

modules and sheaves (sometimes also comodules);

complexes of modules/sheaves and DG-modules;

and derived categories.

The full picture should include:

modules, comodules, and contramodules;

quasi-coherent sheaves and contraherent cosheaves;

curved DG-modules, DG-comodules, and DG-contramodules;

derived, coderived, and contraderived categories;

relative, mixed or intermediate forms: mixtures of modules
with comodules, mixtures of modules with contramodules,
semiderived and pseudo-derived categories, etc.
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Some bits of personal history

Sometime around 1990 I learned about the quadratic duality.
This is the construction that connects the algebra of polynomials
in several variables with the exterior algebra in the dual variables.

I wanted to extend this construction to algebras with
nonhomogeneous quadratic relations, like the universal enveloping
algebra (whose relations have quadratic and linear parts) or the
Clifford algebra (whose relations have quadratic and scalar parts).

It turned out that there is a nonhomogeneous quadratic duality
construction connecting algebras with quadratic-linear relations
with quadratic DG-algebras.

A similar, but more general construction connects algebras with
quadratic-linear-scalar relations with what I called quadratic curved
DG-algebras.
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Curved DG-algebras

A DG-algebra (A, d) is

a graded associative algebra A =
⊕∞

i=−∞ Ai

endowed with an operator d : Ai −→ Ai+1 for all i ∈ Z
satisfying Leibniz rule for the derivative of a product with
signs: d(ab) = d(a)b + (−1)iad(b) if a ∈ Ai , b ∈ Aj

and such that d2 : Ai −→ Ai+2 is the zero map for all i .

For example, for any finite-dimensional Lie algebra g the map
g∗ −→

∧2 g∗ dual to the bracket map [−,−] :
∧2 g −→ g extends

to a differential d on the exterior algebra
∧

g∗ of the vector space
dual to g, endowing

∧
g∗ with a DG-algebra structure

0 −→ k
0−→ g∗ −→

∧2 g∗ −→
∧3 g∗ −→ · · · −→

∧d g∗ −→ 0,

where k is the ground field and d = dim g. This is called
the cohomological Chevalley–Eilenberg complex or
the Chevalley–Eilenberg DG-algebra of g.
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Curved DG-algebras

A curved DG-algebra (CDG-algebra) is

a graded associative algebra B =
⊕∞

i=−∞ B i

endowed with an operator d : B i −→ B i+1, i ∈ Z,
satisfying the Leibniz rule with signs

and with a curvature element h ∈ B2

such that d2(b) = [h, b] for all b ∈ B

and d(h) = 0.

Given an element a ∈ B1, one can transform the differential and
the curvature element of a CDG-algebra B by the rules

d ′(b) = d(b) + [a, b], where [a, b] = ab − (−1)jba for b ∈ B j

and h′ = h + d(a) + a2.

The CDG-algebras (B, d , h) and (B, d ′, h′) are considered to be
isomorphic (the category of CDG-algebras is defined so that they
are). The element a is called a change-of-connection element.
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Curved DG-algebras: Example

Let M be a smooth manifold (or a nonsingular affine algebraic
variety). Then the algebra of differential forms Ω(M) with
the de Rham differential d is a DG-algebra.

Let E be a vector bundle on M and ∇E be a connection in E .
Then there is an induced connection ∇End(E) on the vector bundle
of endomorphisms End(E) = E∗ ⊗ E . This is also a bundle of
associative algebras, so the differential forms on M with
coefficients in End(E) form a graded algebra Ω(M, End(E)).

The graded algebra Ω(M, End(E)) with the de Rham differential
d = d∇End(E)

corresponding to the connection on End(E) and

the curvature element h = h∇E ∈ Ω2(M, End(E)) (equal to
the curvature of the connection ∇E) is a curved DG-algebra.

Changing the connection in E leads to an isomorphic CDG-algebra.
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Homogeneous Quadratic Duality

A quadratic algebra is an associative algebra defined by quadratic
relations between noncommutative variables, like for example

xy − 2yx = 3z2

yz − 2zy = 3x2

zx − 2xz = 3y2

More invariantly, to define a quadratic algebra A one needs to
specify a vector space of generators V and a subspace of quadratic
relations R ⊂ V ⊗ V . Then A is the graded algebra with the
components A0 = k (the ground field), A1 = V , A2 = V⊗2/R, and

An = V⊗n/
∑n−1

i=1 (V⊗i−1 ⊗ R ⊗ V⊗n−i−1).

The quadratic dual algebra A! has the space of generators V ∗ and
the space of relations R⊥ ⊂ V ∗ ⊗ V ∗ (the orthogonal complement
to R ⊂ V ⊗ V in V ∗ ⊗ V ∗ = (V ⊗ V )∗ ).
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Nonhomogeneous Quadratic Duality

Roughly speaking, a nonhomogeneous quadratic algebra is
an associative algebra defined by nonhomogeneous quadratic
relations, like for example

xy − yx = z

yz − zy = x

zx − xz = y

or


x2 = −1

xy + yx = 0

y2 = −1

A delicate point is that not every system of nonhomogeneous
quadratic relations “makes sense”. For example{

xy = y − 1

yx = y

looks fine until one realizes that it implies (xy)x = (y − 1)x
= yx − x = y − x and x(yx) = xy = y − 1, hence x = 1.
Substituting x = 1 into xy = y − 1, one comes to 1 = 0.
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Nonhomogeneous Quadratic Duality

So, for a system of nonhomogeneous quadratic relations to make
sense

, its coefficients must, in turn, themselves satisfy a certain
system of equations, called the self-consistency equations. For
example, the Jacobi identity

[[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0, x , y , z ∈ g

for the bracket of a Lie algebra g is the self-consistency equation
for the system of nonhomogeneous quadratic relations

xy − yx = [x , y ], x , y ∈ g

defining the universal enveloping algebra U(g).
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Nonhomogeneous Quadratic Duality: the Construction

To define a nonhomogeneous quadratic algebra Ã

, one needs to
specify a vector space of generators V and a subspace of
nonhomogeneous quadratic relations R̃ ⊂ V⊗2 ⊕ V ⊕ k . Taking
the projection of the subspace R̃ onto the direct summand V⊗2

one obtains the associated subspace of homogeneous quadratic
relations R ⊂ V⊗2 defining a quadratic graded algebra A.
The subspace R̃ ⊂ V⊗2 ⊕ V ⊕ k can be then described in terms of
two linear maps R −→ V and R −→ k .

Let B = A! be the quadratic dual algebra to A. Then one has
B1 = V ∗ and B2 ∼= R∗. Dualizing the maps R −→ V and R −→ k
defining the linear and the scalar parts of the relations in Ã, one
obtains a linear map d1 : B1 −→ B2 and an element h ∈ B2.
The self-consistency equations on the coefficients of the relations
guarantee that the map d1 extends to a well-defined differential
d : B i −→ B i+1 for all i > 0 satisfying the Leibniz rule with signs,
and that (B, d , h) is a curved DG-algebra.
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The subspace R̃ ⊂ V⊗2 ⊕ V ⊕ k

can be then described in terms of
two linear maps R −→ V and R −→ k .

Let B = A! be the quadratic dual algebra to A. Then one has
B1 = V ∗ and B2 ∼= R∗. Dualizing the maps R −→ V and R −→ k
defining the linear and the scalar parts of the relations in Ã, one
obtains a linear map d1 : B1 −→ B2 and an element h ∈ B2.
The self-consistency equations on the coefficients of the relations
guarantee that the map d1 extends to a well-defined differential
d : B i −→ B i+1 for all i > 0 satisfying the Leibniz rule with signs,
and that (B, d , h) is a curved DG-algebra.
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obtains a linear map d1 : B1 −→ B2 and an element h ∈ B2.
The self-consistency equations on the coefficients of the relations
guarantee that the map d1 extends to a well-defined differential
d : B i −→ B i+1 for all i > 0 satisfying the Leibniz rule with signs,
and that (B, d , h) is a curved DG-algebra.

Leonid Positselski Contramodules: History and Applications 11 / 53



Nonhomogeneous Quadratic Duality: the Construction

To define a nonhomogeneous quadratic algebra Ã, one needs to
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Curved DG-algebras and A∞-algebras

An A∞-algebra (or homotopy associative algebra) is a graded
vector space A =

⊕∞
i=−∞ Ai endowed with a sequence of higher

multiplications mn : A⊗n −→ A[2− n], n > 1, satisfying a certain
sequence of higher associativity equations.

The map d = m1 is the differential, making A a complex,
the map m2 is a (nonassociative) multiplication, and the higher
multiplications mn, n > 3, are a sequence of corrections to
the nonassociativity of m2.

A curved DG-algebra can be thought of as an algebra with m0, m1,
and m2, where m0 = h is the curvature, m1 = d is the differential,
and m2 is the multiplication. The curvature element m0 is
a correction to the failure of the differential m1 to have zero square.

This point of view is due to Getzler and Jones (Illinois
J. Math. 1990), who defined what is now usually called a curved
A∞-algebra (with the operations mn, n > 0).
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Derived Homogeneous Koszul duality

The derived category D(A) of an abelian category A (like, e.g.,
the category of modules over an associative ring, etc.) is
the category of complexes in A up to quasi-isomorphism. Here
a morphism of complexes is called a quasi-isomorphism if it induces
an isomorphism of the cohomology modules/objects. These
definitions go back to Grothendieck and Verdier (1960s).

The classical Bernstein–Gelfand–Gelfand duality (1978) provides
an equivalence between the derived category of finitely-generated
graded modules over the algebra of polynomials Sym(V ) and
the derived category of finite-dimensional graded modules over
the exterior algebra in the dual variables

∧
(V ∗).

In a somewhat more complicated form, this generalizes to
an equivalence between the derived categories of graded modules
over a quadratic algebra A and its quadratic dual algebra A!,
provided that A has the so-called Koszul property.
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Some bits of personal history

Since about 1992 I was thinking about the problem of developing
the derived nonhomogeneous Koszul duality theory. A thematic
example would be the duality between the enveloping algebra U(g)
and the Chevalley–Eilenberg DG-algebra

∧
(g∗). The question was:

How can one recover the derived category of g-modules D(g-mod)
from the DG-algebra

∧
(g∗)?

It is easy to define the derived category of DG-modules
D((A, d)-mod) for any DG-algebra (A, d), but this produces
a wrong category for the above problem. The situation is,
the derived category D((A, d)-mod) only depends on
the quasi-isomorphism class of the DG-algebra (A, d).

In particular, for a semisimple Lie algebra g,
the Chevalley–Eilenberg DG-algebra (

∧
(g∗), d) is formal , i.e., it is

quasi-isomorphic to its cohomology algebra. The cohomology
algebra H∗(g) of a semisimple Lie algebra g contains too little
information about g, and there is no hope of recovering the derived
category D(g-mod) from the algebra H∗(g).
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Derived Nonhomogeneous Koszul Duality

Thus the problem was: How does one define, in a natural way,
an exotic derived category of a DG-algebra (A, d), so that for
the Chevalley–Eilenberg DG-algebra

∧
(g∗) this category is

equivalent to the derived category of g-modules D(g-mod)?

I solved this problem in 1999. It turned out that there is not one,
but two such natural constructions of an exotic derived category,
dual to each other, both producing the derived category D(g-mod)
out of the DG-algebra

∧
(g∗).

I called them the derived categories of the second kind. Starting
from about 2006, I am now calling them the coderived and
the contraderived category.
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Some Bits of History

Between 1962–1966, there was an series of papers published, on
several closely related topics, by S. Eilenberg and J.C. Moore,
including, in particular:

“Limits and spectral sequences”, Topology 1, 1962.

“Foundations of relative homological algebra”, Memoirs of
the American Math. Society 55, 1965.

“Homology and fibrations. I. Coalgebras, cotensor product and
its derived functors”, Commentarii Mathematici Helvetici 40,
1966.

What I would consider as the last paper in this series was written
somewhat later by a different group of authors:

D. Husemoller, J.C. Moore, and J. Stasheff, “Differential
homological algebra and homogeneous spaces”, Journ. of
Pure and Appl. Algebra 5, 1974.
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Some Bits of History

In the first paper in this series

, the authors studied the problem of
convergence of spectral sequences, including the spectral sequences
of unbounded bicomplexes. It was realized that the two spectral
sequences of an unbounded bicomplex both converge (at least in
some weak sense) but, generally speaking, to two different limits.

In the subsequent papers in the series, the authors applied this
understanding to the particular case of the so-called differential
derived functors. This meant Ext or Tor between two DG-modules
(or, as another alternative, Cotor between two DG-comodules —
this was relevant in the context of what is now known as
the Eilenberg–Moore spectral sequence in topology).

In order to construct the differential derived functor, one would
resolve one or both of the DG-(co)modules by a complex of
DG-(co)modules, take the Hom or (co)tensor product, and totalize
the resulting bicomplex by taking direct sums or direct products
along the diagonals.
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Some Bits of History

The key issue was

whether to use infinite direct sums or infinite
products in order to totalize a particular unbounded bicomplex.

In the last paper of the series (by Husemoller, Moore, and
Stasheff), the author discussed what they called differential derived
functors of the first and second kind. The difference between
the two consisted in choosing the direct sums or the direct
products for the totalization.

The basic philosophy was that a DG-module can be thought of in
two ways: as a deformation of its graded module of cohomology,
or as a deformation of its underlying graded module (with the
differentials forgotten). The differential derived functors of the first
kind took a DG-(co)module to be a deformation of its cohomology.
The differential derived functors of the second kind took
a DG-(co)module to be a deformation of itself with the differential
forgotten. This was reflected in the (weak) convergence vs.
divergence of the related spectral sequences.
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Some bits of personal history

Having discovered the solution of the problem of derived
nonhomogeneous Koszul duality in the Spring 1999, I went to the
library in order to search for relevant literature and found this series
of papers by Eilenberg–Moore and Husemoller–Moore–Stasheff.

In particular, I found the classical definitions of the differential
derived functors of the first and second kind. Hence the name
derived categories of the second kind for the exotic derived
categories important for the derived nonhomogeneous Koszul
duality purposes that I had constructed.
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Some bits of personal history

I had already known since mid-90’s

that coalgebras are important
in Koszul duality. When a quadratic algebra A is infinitely
generated, i.e., its space of generators V is infinite-dimensional, its
quadratic dual algebra A! is properly viewed as a coalgebra.

For example, when a Lie algebra g is infinite-dimensional, it makes
little sense to view its cohomological Chevalley–Eilenberg complex∧

(g∗) as an abstract or discrete DG-algebra. One can consider∧
(g∗) as a pro-finite-dimensional topological algebra (“linearly

compact” or “pseudo-compact” algebra). Or, better yet, one can
work with the homological Chevalley–Eilenberg complex

∧
(g)

instead, viewing it as a DG-coalgebra.

Back in the Spring of 1999, I also looked through the 1965
AMS Memoir “Foundations of relative homological algebra” of
Eilenberg and Moore, which I found in the library. It contained
the definitions of two kinds of module objects over a coalgebra:
the comodules and the contramodules.
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Coalgebras, Comodules, and Contramodules

A coassociative coalgebra C over a field k is a vector space
endowed with linear maps µ : C −→ C ⊗ C and ε : C −→ k , called
the comultiplication and counit maps.

The two maps have to satisfy the coassociativity and counitality
equations: the two compositions

C µ−→ C ⊗ C
µ∗
⇒ C ⊗ C ⊗ C

should be equal to each other, and the two compositions

C µ−→ C ⊗ C
ε∗
⇒ C

should be equal to the identity map idC .
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Coalgebras, Comodules, and Contramodules

A left C-comodule M

is a vector space endowed with a linear map
ν : M−→ C ⊗M, called the left coaction map. The coaction map
also has to satisfy the coassociativity and counitality equations:

M ν−→ C ⊗M⇒ C ⊗ C ⊗M

M ν−→ C ⊗M ε∗−→M

A left C-contramodule P is a vector space endowed with a linear
map π : Homk(C,P) −→ P, called the left contraaction map.
The contraaction map has to satisfy the contraassociativity and
contraunitality equations:

Hom(C,Hom(C,P)) = Hom(C ⊗ C, P)⇒ Hom(C,P)
π−→ P

P
ε∗−→ Hom(C,P)

π−→ P
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Coalgebras, Comodules, and Contramodules

Thus the definition of a contramodule is very similar to that of
a comodule, up to duality.

So are their properties.

For any coalgebra C over a field k , left C-comodules form
an abelian category with infinite direct sums and products. The
functors of infinite direct sum are exact and agree with the direct
sums of vector spaces (but the products aren’t and don’t).

Left C-contramodules also form an abelian category with infinite
direct sums and products. The functors of infinite product are
exact and agree with the products of vector spaces (but the direct
sums aren’t and don’t).

The abelian category of left C-comodules has enough injective
objects, but may have no projectives. The abelian category of left
C-contramodules has enough projective objects, but may have
no injectives.
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Some Bits of History

At a conference in Split, Croatia, in September 2007, Tomasz
Brzeziński gave a talk on contramodules. At this talk, he had
a slide titled “A bit of history”, which contained the following
statistics of MathSciNet search hits:

comodules = 797,

contramodules = 3.

The three publications on contramodules that this statistics
referred to were dated 1965 (the Eilenberg–Moore memoir),
1965 (an obscure Mexican paper by Vázquez Garćıa, in Spanish),
and 1970 (a rather remarkable paper by Barr in Math. Zeitschrift).

Eleven years later, the current statistic of MathSciNet search hits
(“Anywhere = . . . ”) is:

comodules = 1323,

contramodules = 14.

Double count and accidental hits excluding, this leads to 11 actual
papers mentioning contramodules (of which 4 are mine). The first
one after 1970 is dated 2009.
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and 1970 (a rather remarkable paper by Barr in Math. Zeitschrift).

Eleven years later, the current statistic of MathSciNet search hits
(“Anywhere = . . . ”) is:

comodules = 1323,

contramodules = 14.

Double count and accidental hits excluding, this leads to 11 actual
papers mentioning contramodules (of which 4 are mine). The first
one after 1970 is dated 2009.

Leonid Positselski Contramodules: History and Applications 24 / 53



Some Bits of History

At a conference in Split, Croatia, in September 2007, Tomasz
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and 1970 (a rather remarkable paper by Barr in Math. Zeitschrift).

Eleven years later, the current statistic of MathSciNet search hits
(“Anywhere = . . . ”) is:

comodules = 1323,

contramodules = 14.

Double count and accidental hits excluding, this leads to 11 actual
papers mentioning contramodules (of which 4 are mine).

The first
one after 1970 is dated 2009.

Leonid Positselski Contramodules: History and Applications 24 / 53



Some Bits of History

At a conference in Split, Croatia, in September 2007, Tomasz
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Some bits of personal history

The semi-infinite homology of some infinite-dimensional Lie
algebras was defined by Feigin in 1984. The same concept was
discovered by physicists, who call it “BRST”.

The problem of defining the semi-infinite homology of associative
algebras was posed by Feigin at his seminar in Moscow sometime
in 1994–95. The first solution was suggested by Arkhipov, who
wrote a series of papers about it between 1996–2002.

Over the years, I tried to understand Arkhipov’s construction, in
order to generalize it and reformulate in more aesthetically
appealing terms. A breakthrough in my understanding came in
the Summer 2000, when I realized that semi-infinite (co)homology
of associative algebraic structures are properly associated with
an algebra object in the tensor category of bicomodules over
a coalgebra. I called such structures semialgebras (meaning “half
algebra and half coalgebra”).
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The semi-infinite homology

(or the semi-infinite Tor spaces) were
assigned to a pair of semimodules, a right one and a left one, over
the semialgebra. Here a “semimodule” meant “half module and
half comodule”.

The semi-infinite cohomology (or the semi-infinite Ext spaces) were
assigned to a left semimodule and a left semicontramodule. Here a
“semicontramodule” meant “half module and half contramodule”.

Thus it turned out that the proper definition of semi-infinite
cohomology of associative algebraic structures required
contramodules. Forgotten for 30 years, and accidentally found in
my library searches in 1999, contramodules found their first uses in
the semi-infinite homological algebra.

Soon I realized that the derived nonhomogeneous Koszul duality
theory, too, should include the derived categories of DG-modules,
the coderived categories of CDG-comodules, and the contraderived
categories of CDG-contramodules.
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Coalgebras, Comodules and Contramodules: an Example

Coalgebras C over a field k can be described in terms of their dual
pro-finite-dimensional topological algebras C∗.

In particular, let C be the coalgebra whose dual topological algebra
C∗ is the algebra of formal power series k[[t]] in one variable.

Explicitly, C is a k-vector space with the basis 1∗, t∗, t2∗, t3∗, . . .
endowed with the comultiplication

µ(tn∗) =
∑

i+j=n t
i ∗ ⊗ t j∗

and the counit

ε(1∗) = 1, ε(tn∗) = 0 for n > 1.
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Coalgebras, Comodules and Contramodules: an Example

Comodules M over this coalgebra C can be described as follows.

The coaction map ν : M−→ C ⊗M has the form

ν(m) =
∑∞

i=0 t
i ∗ ⊗ t im

where t : M−→M is a certain linear operator. Since the sum in
the right-hand side must be finite, it follows that t must be locally
nilpotent, that is for every m ∈M there exists an integer n > 0
such that tnm = 0.

Thus a C-comodule, for the coalgebra C with C∗ = k[[t]], is
the same thing as a t-torsion k[t]-module.
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Coalgebras, Comodules and Contramodules: an Example

For the same coalgebra C, a C-contramodule

is vector space P
endowed with a linear map Homk(C,P) = P[[t]] −→ P.

In other words, this means that a C-contramodule P is

a k-vector space endowed with an infinite summation
operation assigning to any sequence of elements p0, p1,
p2, . . . ∈ P an element denoted formally by

∑∞
n=0 t

npn ∈ P

which must satisfy the axioms of linearity:∑∞
n=0 t

n(apn + bqn) = a
∑∞

n=0 t
npn + b

∑∞
n=0 t

nqn,

unitality:
∑∞

n=0 t
npn = p0 when pi = 0 for all i > 1,

and contraassociativity:∑∞
i=0 t

i
∑∞

j=0 t
jpij =

∑∞
n=0 t

n
∑

i+j=n pij .
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Contramodules over Coalgebras: a Counterexample

For the same coalgebra C, for any C-contramodule P, an element
p ∈ P, and an integer n > 0, one can define
tnp = 1 · 0 + · · ·+ tn−1 · 0 + tnp + tn+1 · 0 + · · · ∈ P.

Then there exists a C-contramodule P and a sequence of
elements p0, p1, p2 . . . ∈ P such that tnpn = 0 for every n > 0,
but

∑∞
n=0 t

npn 6= 0.

In particular, the element
∑∞

n=0 t
npn belongs to tmP for every

m > 0, so the t-adic topology on P is not separated.

Thus the contramodule infinite summation operation cannot be
understood as any kind of limit of finite partial sums. This is
a new concept of infinite sum in mathematics, quite different from
the ones usually studied in analysis.
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Example: Contramodules over the p-Adic Integers

One can view the abelian category of left C-contramodules for
a coalgebra C as assigned to the topological algebra C∗ dual to C,
and then try to extend this assignment to topological rings of more
general nature.

In particular, here is a definition of contramodules over
the topological ring of p-adic integers Zp for a prime number p,
based on the analogy between Zp and k[[t]].
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Example: Contramodules over p-Adic Integers

A Zp-contramodule C is

an abelian group endowed with an infinite summation
operation assigning to any sequence of elements c0, c1,
c2, . . . ∈ C an element denoted by

∑∞
n=0 p

ncn ∈ C

and satisfying the axioms of linearity:∑∞
n=0 p

n(acn + bdn) = a
∑∞

n=0 p
ncn + b

∑∞
n=0 p

ndn,

unitality + compatibility:
∑∞

n=0 p
ncn = c0 + pc1 when ci = 0

for all i > 2,

and contraassociativity:∑∞
i=0 p

i
∑∞

j=0 p
jcij =

∑∞
n=0 p

n
∑

i+j=n cij .
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Some bits of personal history

In Summer 2000 I wrote a series of letters to S. Arkhipov and
R. Bezrukavnikov about the semi-infinite (co)homology of
associative algebras. In Summer 2002 I wrote a second series of
letters, and put them all on the internet (in my blog on
livejournal.com). The last letter in the first series contained an
extensive discussion of contramodules over coalgebras and (what
are now called) semicontramodules over semialgebras. The second
series discussed what are now called the semiderived categories.

The “coderived/contraderived categories” terminology did not
exist in my seminar talks and writings of the first half of 00’s.
I picked it up sometime in 2005–06 from B. Keller’s unpublished
2003 note “Koszul duality and coderived categories (after
K. Lefèvre)”, which is still available from his homepage.
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Some bits of personal history

The above definition of a contramodule over the p-adic integers
I invented sometime in the Summer 2003.

My letters about the semi-infinite (co)homology of associative
algebras were written in transliterated Russian (with Latin letters).
Brzeziński was able to read them, and he refers to them, with
a link to my blog, from a January 2007 version of one of his arXiv
preprints. A 2006 paper of Gaitsgory and Kazhdan referred to
the same material as “private communications”.

The first version of my monograph on semi-infinite homological
algebra appeared on the arXiv in August 2007. The modern
general definition of a contramodule over a topological ring, which
we will discuss below, was invented between 2007–08 and first
appeared in a remark in the June 2008 update of this preprint.
This work was published as a book in September 2010.
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Brzeziński was able to read them, and he refers to them, with
a link to my blog

, from a January 2007 version of one of his arXiv
preprints. A 2006 paper of Gaitsgory and Kazhdan referred to
the same material as “private communications”.

The first version of my monograph on semi-infinite homological
algebra appeared on the arXiv in August 2007. The modern
general definition of a contramodule over a topological ring, which
we will discuss below, was invented between 2007–08 and first
appeared in a remark in the June 2008 update of this preprint.
This work was published as a book in September 2010.

Leonid Positselski Contramodules: History and Applications 34 / 53



Some bits of personal history

The above definition of a contramodule over the p-adic integers
I invented sometime in the Summer 2003.

My letters about the semi-infinite (co)homology of associative
algebras were written in transliterated Russian (with Latin letters).
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Contramodules over Topological Rings

Let R be a complete, separated topological ring with a base of
neighborhoods of zero formed by open right ideals. Then a left
R-contramodule C can be defined as a set endowed with
the following infinite summation operations. For every set X ,
every X -indexed family of elements rx ∈ R converging to zero in
the topology of R, and every X -indexed family of elements cx ∈ C,
an element denoted formally by∑

x∈X rxcx ∈ C

must be specified. Here a family of elements (rx ∈ R)x∈X is said
to converge to zero in R if for every neighborhood of zero U ⊂ R
one has rx ∈ U for all but a finite subset of x ∈ X . These infinite
summation operations must satisfy certain axioms, such as
the contraassociativity and the distributivity∑

x rx
∑

y sx ,ycx ,y =
∑

x ,y (rxsx ,y )cx ,y , rx , sx ,y ∈ R, cx ,y ∈ C,∑
x ,y rx ,ycx =

∑
x(
∑

y rx ,y )cx , rx ,y ∈ R, cx ∈ C.
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Some Bits of History

What was then called cotorsion modules were introduced and
studied from the end of 1950s to the first half of 1970s. The key
authors and publications were

D.K. Harrison, “Infinite abelian groups and homological
methods”, Annals of Math. 69, 1959.

R.J. Nunke, “Modules of extensions over Dedekind rings”,
Illinois Journ. of Math. 3, 1959.

E. Matlis, “Cotorsion modules”, Memoirs of the American
Math. Society 49, 1964.

E. Matlis, “1-dimensional Cohen–Macaulay rings”, Lecture
Notes in Math. 327, Springer, 1973.

From the beginning of 1980s, after the works of L. Salce and
E. Enochs, the word “cotorsion” started to mean something else
(not unrelated, but quite different).
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Some Bits of History

Let R be a commutative ring and S ⊂ R be a multiplicative
subset. Let S−1R be ring R with the elements from S inverted.
For the purposes of this talk, let us say that an R-module C is
Matlis S-cotorsion if HomR(S−1R,C ) = 0 = Ext1

R(S−1R,C ).

This definition captures what Harrison and Matlis meant by
cotorsion modules. It is well-behaved when the R-module S−1R
has projective dimension at most 1.

After the paper

E. Enochs, “Flat covers and flat cotorsion modules”,
Proceedings of the Amer. Math. Soc. 92, 1984

by a cotorsion module people generally mean a left module C over
an associative ring R such that Ext1

R(F ,C ) = 0 for all flat left
R-modules F .

After 1980s, people started to call “Matlis cotorsion” (or “weakly
cotorsion”, which is a better term) the R-modules C such that
Ext1

R(S−1R,C ) = 0 (dropping the condition of Hom vanishing).
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Some Bits of History

In the case of the ring of integers R = Z and a prime number
s = p

, what I call below Matlis s-cotorsion modules were discussed
under the names of Ext-p-complete or weakly p-complete abelian
groups in the topology book and the algebraic geometry paper

A.K. Bousfield, D.M. Kan, “Homotopy limits, completions
and localizations”, Lecture Notes in Math. 304, 1972.
U. Jannsen, “Continuous étale cohomology”, Math.
Annalen 280, 1988.

In the generality of regular maximal ideals in commutative
Noetherian rings, they appear in subsequent topological literature,
such as

M. Hovey, N.P. Strickland, “Morava K -theories and
localization”, Memoirs Amer. Math. Soc. 139, #666, 1999.

In the greater generality of weakly proregular finitely generated
ideals I in commutative rings R, they were studied by A. Yekutieli
and collaborators (since 2010) under the name of cohomologicaly
I -adically complete modules.
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Example: the Adic Topology

Let R be a commutative ring and I ⊂ R be a finitely-generated
ideal. Denote by R the I -adic completion of the ring R, that is
R = lim←−n>1

R/I n, and endow R with the projective limit

( = I -adic) topology. Consider the abelian category R-contra
of contramodules over the topological ring R.

Then one can prove (L.P., 2008–16) that the forgetful functor
R-contra −→ R-mod is fully faithful, so R-contra is a full
subcategory in R-mod.

How to describe this full subcategory? Following the above
terminology, given an element s ∈ R we will say that an R-module
C is Matlis s-cotorsion if it is Matlis S-cotorsion for
the multiplicative subset S = {1, s, s2, s2, . . . }. An R-module C is
Matlis I -cotorsion if it is Matlis s-cotorsion for all s ∈ I . (One can
prove that it suffices to check this condition for any given set of
generators s1, . . . , sm of the ideal I .)
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Example: the Adic Topology

Denote by R-modI -mcot the full subcategory of Matlis I -cotorsion
R-modules in R-mod.

Theorem (L.P., 2008–2012)

Assume that R is Noetherian. Then one has
R-contra = R-modI -mcot ⊂ R-mod.

Theorem (L.P., 2017)

For any finitely generated ideal I in a commutative ring R, one has
R-contra ⊂ R-modI -mcot ⊂ R-mod. For so-called weakly
proregular ideals I , one has R-contra = R-modI -mcot. Generally
speaking, any Matlis I -cotorsion R-module is an extension of
two R-contramodules.
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Some bits of personal history

I first heard the word “cotorsion” from Jan Št’ov́ıček in May 2009,
during a workshop in Paderborn. Several of us participants of
the workshop were sitting together in a classroom and discussing
various mathematics, and I asked the following question, motivated
by my work on semi-infinite homological algebra:

“Consider the exact category of flat modules over a ring. Does it
have enough injective objects?”

Jan answered that it did, that these were called flat cotorsion
modules, that the key result in this connection was called “flat
cover conjecture”, and the name of the key author was Enochs.
These were cotorsion modules in Enochs’ sense, of course.

I first looked into Harrison’s 1959 paper on cotorsion abelian
groups only in 2012, and learned about Matlis’ work on cotorsion
modules as late as in 2015–16.
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from Jan Št’ov́ıček in May 2009,
during a workshop in Paderborn. Several of us participants of
the workshop were sitting together in a classroom and discussing
various mathematics, and I asked the following question, motivated
by my work on semi-infinite homological algebra:

“Consider the exact category of flat modules over a ring. Does it
have enough injective objects?”

Jan answered that it did, that these were called flat cotorsion
modules, that the key result in this connection was called “flat
cover conjecture”, and the name of the key author was Enochs.
These were cotorsion modules in Enochs’ sense, of course.

I first looked into Harrison’s 1959 paper on cotorsion abelian
groups only in 2012, and learned about Matlis’ work on cotorsion
modules as late as in 2015–16.

Leonid Positselski Contramodules: History and Applications 41 / 53



Some bits of personal history

I first heard the word “cotorsion” from Jan Št’ov́ıček in May 2009
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Terminological Conclusion

What Harrison and Matlis called cotorsion modules, and what
some later authors called “weakly” or “cohomologically” complete
modules, from the contemporary point of view are properly
considered as species of contramodules.

What I call here “Matlis S-cotorsion” and “Matlis I -cotorsion
R-modules”, are actually called “S-contramodule R-modules” and
“I -contramodule R-modules” in my papers.
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Some bits of personal history

The notion of a quasi-coherent sheaf over an algebraic variety is
the main technical tool of algebraic geometry. Quasi-coherent
sheaves form an abelian category with exact direct limits, and in
particular exact direct sums, but infinite products of quasi-coherent
sheaves are not well-behaved.

The construction of coderived category makes sense for any
abelian (or exact) category with exact functors of infinite direct
sum. Dually, the contraderived category is well-defined for any
abelian or exact category with exact functors of infinite product.

Since Spring 2009, I wanted to assign to every algebraic variety
a geometric module category similar to but different from
the quasi-coherent sheaves, in that it would have exact functors of
infinite product (but possibly nonexact direct sums).

In Spring 2012 I solved this problem by inventing the definition of
the exact category of contraherent cosheaves, which is assigned to
any algebraic variety and has exact functors of infinite product.
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Quasi-Coherent Sheaves and Contraherent Cosheaves

A nonaffine algebraic variety (or “scheme”) is obtained by gluing
together affine pieces, and both the quasi-coherent sheaves and
the contraherent cosheaves are the result of gluing modules over
the rings of functions over an affine cover of the scheme. How
does the gluing construction work?

Let U be an affine variety/scheme and V ⊂ U be an affine open
subscheme. Let R = O(U) and S = O(V ) be their rings of
functions. Then there is a ring homomorphism (of “restriction of
functions”) R −→ S . In the simplest case of a principal affine open
subscheme, one has S = R[f −1], where f ∈ R is an element.

In a quasi-coherent sheaf M, the modules of sections over U and
V are connected by an isomorphism M(V ) = S ⊗RM(U). In
a contraherent cosheaf P, it is an isomorphism
P[V ] = HomR(S ,P[U]).
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Quasi-Coherent Sheaves and Contraherent Cosheaves

The definition of a quasi-coherent sheaf works nicely, and provides
an abelian category

, because for every affine open subscheme V in
an affine scheme U the ring S = O(V ) is a flat module over
the ring R = O(U).

For the definition of a contraherent cosheaf to work similarly, one
would need S to be a projective R-module. But it is not. This is
the reason why the category of contraherent cosheaves is only
exact, and not abelian.

Thus homological properties of the O(U)-modules O(V ) are very
important in the contraherent cosheaf theory. While not projective,
these modules have much better properties than flat modules in
general. In particular, the projective dimension of the R-module S
never exceeds 1, and there are other properties.

A narrow class of R-modules to which modules like S belong is
called the class of very flat R-modules.
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Some Bits of History

In the contemporary language, a cotorsion pair means a pair of
classes of R-modules (F , C) such that an R-module F belongs to
F if and only if Ext1

R(F ,C ) = 0 for all C ∈ C and vice versa. This
concept was introduced in the paper

L. Salce, “Cotorsion theories for abelian groups”, Symposia
Mathematica XXIII, 1979.

After the paper

P.C. Eklof, J. Trlifaj, “How to make Ext vanish”, Bull. London
Math. Soc. 33, 2001

it gradually became one of the most powerful technical tools in
homological algebra of rings and modules.
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Cotorsion Pairs

A cotorsion pair (F , C) is said to be generated by a class of
modules S if C is the class of all R-modules C such that
Ext1

R(S ,C ) = 0 for all S ∈ S.

It is (essentially) proved in the paper of Eklof and Trlifaj that, for
any set (rather than a proper class) of R-modules S containing
the R-module R, the class F in the cotorsion pair (F , C) generated
by S can be described as follows.

An R-module F belongs to F if and only if it is a direct summand
of an S-filtered R-module G . The latter condition means that
there exists an ordinal α and an increasing filtration Gi of G
indexed by the ordinals 0 6 i 6 α such that every successive
quotient module Gi+1/Gi is isomorphic to a module from S.
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Very Flat Modules and Very Flat Conjecture

Let R be a commutative ring, and let S denote the set of all
R-modules of the form S = R[s−1], where s ∈ R. Let (F , C) be
the cotorsion pair generated by S.

So C is the class of all R-modules such that Ext1
R(R[s−1],C ) = 0

for all s ∈ R, and F is the class of all direct summands of
R-modules filtered by the R-modules R[s−1].

R-modules from F are called very flat, while R-modules from C are
called contraadjusted (which means “adjusted to contraherent
cosheaves”).

Let T be a finitely presented commutative R-algebra, that is,
a quotient ring of a ring of polynomials R[x1, . . . , xm] by a finitely
generated ideal. Assume that T is a flat R-module.

The Very Flat Conjecture (now theorem) claims that T is then
a very flat R-module.
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Some bits of personal history

The Very Flat Conjecture was formulated (for Noetherian rings),
and some particular cases of it were proved, in the 4th,
February 2014 version of my long preprint on contraherent
cosheaves (the first version of which was dated September 2012).

In mid-March 2014 I suddenly landed in Czech Republic for
the first time in my life, just as a tourist, taking unpaid vacations
from my Moscow jobs. I contacted Rosický in Brno and Št’ov́ıček
in Prague, and came to the Department of Algebra of Charles
University. It turned out that Jan Trlifaj was working there, and
that local people had noticed my preprint on contraherent
cosheaves, where the paper of Eklof and Trlifaj was cited.

Soon it was agreed that I would come to Brno and Prague again
as an ECI visitor. There was a masters student in Prague,
Alexander Slávik his name, who was going to start studying very
flat and contraadjusted modules.
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Alexander Slávik his name, who was going to start studying very
flat and contraadjusted modules.

Leonid Positselski Contramodules: History and Applications 49 / 53



Some bits of personal history

The Very Flat Conjecture was formulated (for Noetherian rings),
and some particular cases of it were proved, in the 4th,
February 2014 version of my long preprint on contraherent
cosheaves (the first version of which was dated September 2012).

In mid-March 2014 I suddenly landed in Czech Republic for
the first time in my life, just as a tourist, taking unpaid vacations
from my Moscow jobs. I contacted Rosický in Brno and Št’ov́ıček
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in Prague, and came to the Department of Algebra of Charles
University. It turned out that Jan Trlifaj was working there, and
that local people had noticed my preprint on contraherent
cosheaves, where the paper of Eklof and Trlifaj was cited.

Soon it was agreed that I would come to Brno and Prague again
as an ECI visitor.

There was a masters student in Prague,
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Some Bits of History

The paper of Slávik and Trlifaj on very flat, locally very flat, and
contraadjusted modules was published in Journ. of Pure and
Applied Algebra in 2016.

A proof of the Very Flat Conjecture was found, jointly by Slávik
and me, during my visit to Prague in June 2017. The preprint
appeared on the arXiv in August.

The argument was based on a heavy use of what are above called
Matlis s-cotorsion and Matlis I -cotorsion R-modules (called
the s-contramodule and I -contramodule R-modules in the paper).

Leonid Positselski Contramodules: History and Applications 50 / 53



Some Bits of History
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the s-contramodule and I -contramodule R-modules in the paper).
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Description of Flat Modules

In a companion paper, we obtained the following relatively explicit
description of flat modules over commutative Noetherian rings
with countable spectrum (e.g., countable Noetherian rings).

Theorem (A. Slávik and L.P., 2017)

For any Noetherian commutative ring R with countable spectrum,
there exists a countable collection of countable multiplicative
subsets S1, S2, S3, . . . ⊂ R such that every flat R-module is
a direct summand of an R-module filtered by S−1

j R, j > 1.
When R has finite Krull dimension d, a finite collection of at most
m = 2(d+1)2/4 multiplicative subsets is sufficient.

The proofs of the two assertions of the theorem, while surpisingly
completely different, are both based on a heavy use of Matlis
S-cotorsion R-modules (called S-contramodule R-modules in
the paper).
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Theorem (A. Slávik and L.P., 2017)

For any Noetherian commutative ring R with countable spectrum,
there exists a countable collection of countable multiplicative
subsets S1, S2, S3, . . . ⊂ R such that every flat R-module is
a direct summand of an R-module filtered by S−1

j R, j > 1.
When R has finite Krull dimension d, a finite collection of at most
m = 2(d+1)2/4 multiplicative subsets is sufficient.

The proofs of the two assertions of the theorem, while surpisingly
completely different, are both based on a heavy use of Matlis
S-cotorsion R-modules (called S-contramodule R-modules in
the paper).

Leonid Positselski Contramodules: History and Applications 51 / 53



Description of Flat Modules

In a companion paper, we obtained the following relatively explicit
description of flat modules over commutative Noetherian rings
with countable spectrum (e.g., countable Noetherian rings).
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Theorem (A. Slávik and L.P., 2017)

For any Noetherian commutative ring R with countable spectrum,
there exists a countable collection of countable multiplicative
subsets S1, S2, S3, . . . ⊂ R such that every flat R-module is
a direct summand of an R-module filtered by S−1

j R, j > 1.
When R has finite Krull dimension d, a finite collection of at most
m = 2(d+1)2/4 multiplicative subsets is sufficient.

The proofs of the two assertions of the theorem, while surpisingly
completely different

, are both based on a heavy use of Matlis
S-cotorsion R-modules (called S-contramodule R-modules in
the paper).

Leonid Positselski Contramodules: History and Applications 51 / 53



Description of Flat Modules

In a companion paper, we obtained the following relatively explicit
description of flat modules over commutative Noetherian rings
with countable spectrum (e.g., countable Noetherian rings).
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Flat Ring Epimorphisms of Countable Type

Here is a recent application of contramodules to a presently
somewhat popular area of noncommutative algebra.

Theorem (L.P., 2018)

Let R −→ U be a homomorphism of associative rings such that U
is a flat left R-module and the multiplication map U ⊗R U −→ U
is an isomorphism. Consider the filter G of all right ideals I ⊂ R
such that R/I ⊗R U = 0, and assume that the filter G has
a countable base. Then the left R-module U has projective
dimension at most 1.

The proof is based on a heavy use of contramodules over a certain
topological ring R (namely, the completion of R with respect to
the topology where G is a base of neighborhoods of zero).
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Historical Conclusion

Various species of contramodules fill a big gap in the big picture of
the present-day homological algebra (or even algebra generally).
They interplay with such concepts as curved DG-algebras,
contraderived categories, and contraherent cosheaves. Introduced
originally in a 1965 AMS Memoir of Eilenberg and Moore,
contramodules over coalgebras were completely forgotten for three
decades, until I found them in this memoir in 1999.

Cotorsion abelian groups were introduced by Harrison in 1959,
and cotorsion modules were studied by Matlis in his 1964 AMS
Memoir. This work of Matlis was not forgotten, but his ideas were
not fully developed. It appears that people did not quite know
what to do with cotorsion modules in the sense of Matlis.

The contramodules of Eilenberg–Moore and the cotorsion modules
of Harrison and Matlis are two closely related, sometimes
equivalent concepts. It took me about 15 years, from 1999 to 2012
or even 2015–17, to discover and understand the connection. This
is what made the modern applications possible.
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