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Basic Definitions

Let A be an associative ring and A-Mod the category of left
A-modules. A pair of classes of left A-modules F and C ⊂ A-Mod
is said to be an Ext1-orthogonal pair if Ext1A(F ,C ) = 0 for all
F ∈ F and C ∈ C.

We denote by F⊥1 ⊂ A-Mod the class of all modules X ∈ A-Mod
such that Ext1A(F ,X ) = 0 for all F ∈ F , and by ⊥1C ⊂ A-Mod
the class of all modules Y ∈ A-Mod such that Ext1A(Y ,C ) = 0 for
all C ∈ C. A pair of classes (F , C) is said to be a cotorsion pair if
C = F⊥1 and F = ⊥1C.

Idiosyncratic terminology: a class of left A-modules F is called
resolving if it is closed under extensions and the kernels of
epimorphisms, and every left A-module is a quotient of a module
from F . A class C is called coresolving if it is closed under
extensions and the cokernels of monomorphisms, and every left
A-module is a submodule of a module from C.
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Basic Definitions

Idiosyncratic terminology: an Ext1-orthogonal pair of classes
(F , C) is said to admit approximation sequences

if for every
module M ∈ A-Mod there exist short exact sequences

0 −→ C ′ −→ F −→ M −→ 0 (1)

0 −→ M −→ C −→ F ′ −→ 0 (2)

with F , F ′ ∈ F and C , C ′ ∈ C.

The short exact sequence (1) is called a special precover sequence
and the short exact sequence (2) is called a special preenvelope
sequence.

Lemma (Salce, 1979)

Assume that every left A-module is a quotient module of a module
from F and a submodule of a module from C. Assume further that
both the classes F and C are closed under extensions. Then
the pair (F , C) admits special precover sequences if and only if it
admits special preenvelope sequences.
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Basic Definitions

A cotorsion pair (F , C) is called complete

if it admits
approximation sequences.

For any class of left A-modules B ⊂ A-Mod, we denote by
B⊕ ⊂ A-Mod the class of all direct summands of A-modules
from B.

Lemma (“direct summand lemma”)

Let (F , C) be an Ext1-orthogonal pair of classes admitting
approximation sequences. Then the pair of classes (F⊕, C⊕) is
a complete cotorsion pair.

A cotorsion pair (F , C) is called hereditary if any one of
the following equivalent conditions holds:

the class F is resolving (i.e., closed under kers of epis);

the class C is coresolving (i.e., closed under cokers of monos);

Ext2A(F ,C ) = 0 for all F ∈ F , C ∈ C;

ExtnA(F ,C ) = 0 for all F ∈ F , C ∈ C, and n > 1.
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approximation sequences. Then the pair of classes (F⊕, C⊕) is
a complete cotorsion pair.

A cotorsion pair (F , C) is called hereditary if any one of
the following equivalent conditions holds:

the class F is resolving (i.e., closed under kers of epis);

the class C is coresolving (i.e., closed under cokers of monos);

Ext2A(F ,C ) = 0 for all F ∈ F , C ∈ C;

ExtnA(F ,C ) = 0 for all F ∈ F , C ∈ C, and n > 1.
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Basic Definitions

Let F ⊂ A-Mod be a resolving class.

A left A-module M is said to
have F-resolution dimension 6 k if there exists an exact sequence
of left A-modules

0 −→ Fk −→ Fk−1 −→ · · · −→ F0 −→ M −→ 0

with Fi ∈ F for all i = 0, . . . , k .

Lemma

Let M be a left A-module of F-resolution dimension 6 k, and let
0 −→ Gk −→ Gk−1 −→ · · · −→ G0 −→ M −→ 0 be an exact
sequence with Gi ∈ F for all 0 6 i 6 k − 1. Then Gk ∈ F .

Lemma

Choose k > 0, and consider the class F(k) of all left A-modules of
F-resolution dimension 6 k. Then the class F(k) is resolving.

The definition of the C-coresolution dimension for a coresolving
class C ⊂ A-Mod is dual, and it has similar/dual properties.
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Basic Definitions

Let M be an A-module and α be an ordinal.

An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M

is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α

such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S)

the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F

such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α.

We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be an A-module and α be an ordinal. An α-filtration of M
is a collection of submodules FiM ⊂ M indexed by the ordinals
0 6 i 6 α such that

F0M = 0, FαM = M;

FjM ⊂ FiM for all 0 6 j 6 i 6 α;

FiM =
⋃

j<i FjM for all limit ordinals i 6 α.

We say that the module M is α-filtered by the modules
Fi+1M/FiM, 0 6 i < α.

Given a class of left A-modules S, we denote by Filα(S) the class
of all left A-modules M admitting an α-filtration F such that
Fi+1M/FiM ∈ S for all 0 6 i < α. We denote by Fil(S) the union
of the classes Filα(S) taken over all the ordinals α.

Lemma (Eklof)

For any class of left A-modules S, one has Fil(S)⊥1 = S⊥1 .

Leonid Positselski Cotorsion pairs in the relative context 6 / 35



Basic Definitions

Let M be a left A-module and α be an ordinal.

An α-cofiltration
of M is a collection of left A-modules GiM indexed by 0 6 i 6 α
and surjective A-module morphisms GiM −→ GjM given for all
0 6 j < i 6 α such that

the triangle diagram GiM −→ GjM −→ GkM is commutative
for all 0 6 k < j < i 6 α;

G0M = 0, GαM = M;

GiM = lim←−j<i
GjM for all limit ordinals i 6 α.

We say that the module M is α-cofiltered by the modules
ker(Gi+1M → GiM), 0 6 i < α.

Let T be a class of left A-modules. The notation Cof(T ) and
Cofα(T ) stands for the classes of all modules cofiltered or
α-cofiltered by T , similarly to the filtered modules above.

Lemma (Lukas or “dual Eklof”)

For any class of left A-modules T , one has ⊥1Cof(T ) = ⊥1T .
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Fundamental Result

Let S and T be two classes of left A-modules. A cotorsion pair
(F , C) in A-Mod is said to be generated by S if C = S⊥1 . (F , C)
is said to be cogenerated by T if F = ⊥1T .

Theorem (Eklof–Trlifaj, 2001)

Let S be a set (rather than a class) of left A-modules. Then
(a) the cotorsion pair (F , C) generated by S is complete;
(b) the class F can be described as F = Fil(S ∪ {AA})⊕.

The proof is based on a version of the small object argument.
Since modules are usually not cosmall, the dual version of this
argument does not work for modules, and in fact it is known that
the dual assertion to the Eklof–Trlifaj theorem is not true.

More precisely, it is consistent with ZFC+GCH that the cotorsion
pair cogenerated by T = {Z} in Z-Mod is not complete.
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Posing the Problem

Let R −→ A be a homomorphism of associative rings, and let
(F , C) be a complete cotorsion pair in R-Mod. Let FA be the class
of all left A-modules whose underlying R-modules belong to F .

Questions:

1 Is FA the left part of a cotorsion pair (FA, CA) in A-Mod ?

2 Assuming a cotorsion pair (FA, CA) exists, is it complete?

3 Assuming a cotorsion pair (FA, CA) exists, can the class CA be
explicitly described?
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Answering Question 1

Proposition

Let (F , C) be a cotorsion pair in R-Mod, and let R −→ A and FA

be as above. Then a cotorsion pair (FA, CA) in A-Mod exists if
and only if the left R-module A belongs to F .

Proof of “Only if”.

For any cotorsion pair in A-Mod, all projective left A-modules
must belong to the left class. Now AA ∈ FA means RA ∈ F .

Proof of “If”.

Suppose that the cotorsion pair (F , C) is cogenerated by a class
T ⊂ R-Mod, that is F = ⊥1T . One can always take T = C.
Let HomR(A, T ) denote the class of all left A-modules
HomR(A,T ) with T ∈ T . Then we claim that (FA, CA) is
the cotorsion pair cogenerated by HomR(A, T ), that is
FA = ⊥1HomR(A, T ).
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Homological Formulas

Lemma

Let R −→ A be a ring homomorphism and n > 1 be an integer.
Then (a) for any left R-module S such that TorRi (A,S) = 0 for
1 6 i 6 n, and for any left A-module C, one has
ExtnA(A⊗R S , C ) ' ExtnR(S ,C );

(b) for any left R-module T such that ExtiR(A,T ) = 0 for
1 6 i 6 n, and for any left A-module F , one has
ExtnA(F ,HomR(A,T )) ' ExtnR(F ,T ).

Proof of part (b).

If 0 −→ I 0 −→ I 1 −→ · · · is an injective coresolution of the
R-module T , then 0 −→ HomR(A, I 0) −→ · · · −→ HomR(A, I n+1)
is an initial fragment of an injective coresolution of the A-module
HomR(A,T ). This fragment can be extended to a full injective
resolution and used to compute ExtnR(F ,HomR(A,T )).
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Answering Question 1

End of proof of the “If” implication.

We have Ext1R(A,T ) = 0 for all T ∈ T , since RA ∈ F . By
Lemma (b) for n = 1, it follows that for any left A-module F we
have Ext1A(F ,HomR(A,T )) ' Ext1R(F ,T ).

So any one of these two Ext group vanishes if and only if the other
one does.
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Answering Question 2

Proposition

Let (F , C) be a (complete) cotorsion pair in R-Mod generated by
a set S. Assume that RA ∈ F . Then the cotorsion pair (FA, CA) is
also generated by some set SA, hence also complete.

Proof.

By the Eklof–Trlifaj theorem, the class F can be described as the
class of all direct summands of R-modules filtered by S ∪ {RR},
that is F = Fil(S ∪ {RR})⊕. It follows that F is deconstructible,
i.e., there exists a set S ′ such that F = Fil(S ′). Using the Hill
lemma, one shows that the class FA is deconstructible, too; so
FA = Fil(SA) for some set of left A-modules SA. By assumption,
we have AA ∈ FA. Applying the Eklof–Trlifaj theorem again, one
can conclude that (FA, CA) is generated by SA and complete.
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i.e., there exists a set S ′ such that F = Fil(S ′). Using the Hill
lemma, one shows that the class FA is deconstructible, too; so
FA = Fil(SA) for some set of left A-modules SA.

By assumption,
we have AA ∈ FA. Applying the Eklof–Trlifaj theorem again, one
can conclude that (FA, CA) is generated by SA and complete.
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Answering Question 3

We have seen that the cotorsion pair (FA, CA) is cogenerated by
HomR(A, C). It follows that HomR(A, C) ⊂ CA, and consequently
also Cof(HomR(A, C))⊕ ⊂ CA.

The main part of this talk starts at this point. Under various
assumptions, admittedly rather restrictive, we will prove that
CA = Cof(HomR(A, C))⊕. In fact, depending on the specific
assumptions, we will show that CA = Cofβ(HomR(A, C))⊕ for
some rather small ordinal β, such as β < ω, or β = ω, or
β < ω + ω. Here ω denotes the ordinal of natural numbers
(the smallest infinite ordinal).

The following technical assumption will be used throughout:

(††) The class F is preserved by the functor HomR(A,−). In other
words, for any left R-module F ∈ F , the underlying R-module
of the left A-module HomR(A,F ) belongs to F .
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Finite F -resolution dimension case

Proposition

Let F and C ⊂ R-Mod be an Ext1-orthogonal pair of classes
admitting approximation sequences. Assume that RA ∈ F and
the condition (††) holds. Assume further that the class F is
resolving in R-Mod and the F-resolution dimension of any left
R-module is 6 k, where k is a finite integer. Then
the Ext1-orthogonal pair of classes FA and Cofk+1(HomR(A, C))
⊂ A-Mod admits approximation sequences as well.

In fact, we will show by explicit construction that the pair of
classes FA and Cofk(HomR(A, C)) ⊂ A-Mod admits special
precover sequences. Then, following the proof of the Salce lemma,
we will produce special preenvelope sequences for the pair of
classes FA and Cofk+1(HomR(A, C)).
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Lemma

Let F and C ⊂ R-Mod be an Ext1-orthogonal pair of classes
admitting approximation sequences.

Assume that RA ∈ F and
the condition (††) holds. Let M be a left R-module of
F-resolution dimension 6 d. Then the F-resolution dimension of
the left R-module HomR(A,M) also does not exceed d.

Proof.

Choose a special precover sequence for M, then a special precover
sequence for the kernel, etc. Proceeding in this way, we obtain
an exact sequence 0 −→ Cd −→ Fd−1 −→ · · · −→ F1 −→
F0 −→ M −→ 0, where Fi ∈ F for all 0 6 i 6 d − 1, Cd ∈ C,
and the image Ci of the morphism Fi −→ Fi−1 belongs to C for
all 1 6 i 6 d − 1. Since the F-resolution dimension of M is 6 d ,
it follows that Cd ∈ F . As A ∈ ⊥1C and (††) is assumed, applying
HomR(A,−) to our exact sequence produces a resolution of
HomR(A,M) by modules from F , of length d .
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Finite F -resolution dimension case

Proof of Proposition.

Let M be a left A-module. Then there is a natural (adjunction) left
A-module morphism νM : M −→ HomR(A,M) given by the formula
νM(m)(a) = am for all m ∈ M and a ∈ A. The map νM is always
injective, and as a morphism of left R-modules it is split injective.
In fact, the map φM : HomR(A,M) −→ M given by φM(f ) = f (1)
for all f ∈ HomR(A,M) is R-linear and satisfies φM ◦ νM = idM .

Let 0 −→ C ′(M) −→ F (M) −→ M −→ 0 be a special precover
sequence for the underlying left R-module of M; so C ′(M) ∈ C and
F (M) ∈ F ⊂ R-Mod. Since A ∈ ⊥1C, the coinduced A-module
map HomR(A,F (M)) −→ HomR(A,M) is surjective. Denote by
Q(M) the pullback of the pair of morphisms M −→ HomR(A,M)
and HomR(A,F (M)) −→ HomR(A,M) in A-Mod.
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Finite F -resolution dimension case

We get a commutative diagram of A-module morphisms, where all
the three-term sequences are short exact:

M // HomR(A,M) // HomR(A,M)/M

Q(M)

OO

// HomR(A,F (M))

OO

// HomR(A,M)/M

HomR(A,C ′(M))

OO

HomR(A,C ′(M))

OO
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Finite F -resolution dimension case

Proof of Proposition cont’d.

Let rdF N denote the F-resolution dimension of a left R-module N.
The claim is that rdF Q(M) < rdF M whenever 0 < rdF M <∞.

Indeed, rdF HomR(A,M) 6 rdF M by the lemma. Since the short
exact sequence

0 −→ M −→ HomR(A,M) −→ HomR(A,M)/M −→ 0

splits over R, it follows that rdF HomR(A,M)/M 6 rdF M. From
the short exact sequence

0 −→ Q(M) −→ HomR(A,F (M)) −→ HomR(A,M)/M −→ 0

we conclude that rdF Q(M) < rdF (M), since
HomR(A,F (M)) ∈ F by (††).
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Finite F -resolution dimension case

Proof of Proposition cont’d.

To every left A-module M, we have assigned a surjective morphism
of left A-modules Q(M) −→ M.

Now we iterate this construction,
producing a sequence of surjective A-module maps

M ←− Q(M)←− Q(Q(M))←− · · · ←− Qk(M).

Since rdF Q(M) 6 k by assumption, we have Qk(M) ∈ F .

From the commutative diagram above, we see that
ker(Q(M)→ M) = HomR(A,C ′(M)). Thus the kernel of the map
Qk(M) −→ M is cofiltered by HomR(A,C ′(M)),
HomR(A,C ′(Q(M))), . . . , HomR(A,C ′(Qk−1(M))). So
ker(Qk(M)→ M) ∈ Cofk(HomR(A, C)), as desired.
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Finite F -resolution dimension case

Proof of Proposition fin’d.

The construction above provides the special precover sequences for
the pair of classes FA and Cofk(HomR(A, C)) ⊂ A-Mod.

The special preenvelope sequences for the pair of classes FA and
Cofk+1(HomR(A, C)) are produced from these using
(the construction from the proof of) the Salce lemma and the fact
that any A-module can be embedded into an A-module from
HomR(A, C) (since any R-module can be embedded into
an R-module from C).
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Finite F -resolution dimension case

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA ∈ F and the condition (††) holds. Assume further
that the F-resolution dimension of any left R-module does not
exceed k, where k > 0 is a finite integer. Then the pair of classes
FA and Cofk+1(HomR(A, C))⊕ is a hereditary complete cotorsion
pair in A-Mod.

Proof.

Follows from Proposition and the direct summand lemma.

Corollary

In the assumptions of the theorem, one has
F⊥1
A = Cofk+1(HomR(A, C))⊕. In particular, it follows that

Cof(HomR(A, C))⊕ = Cofk+1(HomR(A, C))⊕.
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The case when F is closed under products

Proposition

Let F and C ⊂ R-Mod be an Ext1-orthogonal pair of classes
admitting approximation sequences. Assume that RA ∈ F and
the condition (††) holds. Assume further that the class F is closed
under the kernels of surjective morphisms and countable products
in R-Mod. Then the Ext1-orthogonal pair of classes FA and
Cofω(HomR(A, C)) admits approximation sequences as well.

As in the previous proof, we will show by explicit construction that
the pair of classes FA and Cofω(HomR(A, C)) ⊂ A-Mod admits
special precover sequences. Then the construction of the Salce
lemma will provide the special preenvelope sequences for the same
pair of classes.
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The case when F is closed under products

Proof of Proposition.

Let M be a left A-module.We use the construction of
the surjective left A-module morphism Q(M) −→ M from
the previous proof, but now we iterate it over the ordinal ω

M ←− Q(M)←− Q(Q(M))←− · · · ←− Qn(M)←− · · ·

and consider the projective limit lim←−n
Qn(M).

The kernel of the surjective morphism lim←−n
Qn(M) −→ M is

ω-cofiltered by HomR(A,C ′(M)), HomR(A,C ′(Q(M))), . . . ,
HomR(A,C ′(Qn(M))), . . . So this kernel belongs to
Cofω(HomR(A, C)).

Let us show that lim←−n
Qn(M) ∈ FA. Look on the diagram from

the previous proof again.
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M // HomR(A,M)
uu // HomR(A,M)/M

Q(M)

OO

// HomR(A,F (M))

kk
OO

// HomR(A,M)/M

HomR(A,C ′(M))

OO

HomR(A,C ′(M))

OO

The injective morphism of A-modules νM : M −→ HomR(A,M)
admits an R-linear retraction φM : HomR(A,M) −→ M.
Therefore, the morphism of left A-modules Q(M) −→ M, viewed
as a morphism of left R-modules, factors through HomR(A,F (M)).

The dashed arrows show R-module maps between A-modules.
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The case when F is closed under products

Proof of Proposition cont’d.

So the projective system of left A-module morphisms
M ←− Q(M)←− Q(Q(M))←− · · · ←− Qn(M)←− · · · is
mutually cofinal with the projective system of left R-module
morphisms HomR(A,F (M))←− HomR(A,F (Q(M)))←−
· · · ←− HomR(A,F (Qn(M)))←− · · · .

Hence the derived projective limit lim←−
1
n

HomR(A,F (Qn(M)))

vanishes, lim←−
1
n

HomR(A,F (Qn(M))) = lim←−
1
n
Qn(M) = 0, since

the maps Qn(M) −→ Qn−1(M) are surjective.
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The case when F is closed under products

Proof of Proposition fin’d.

Thererefore, we have a short exact sequence of left R-modules

0 −−→ lim←−n
HomR(A,F (Qn(M)))

−−→
∏∞

n=0
HomR(A,F (Qn(M))))

−−→
∏∞

n=0
HomR(A,F (Qn(M)))) −−→ 0.

Since HomR(A,F (Qn(M))) ∈ F by (††), and the class F is closed
under countable products and the kernels of surjective morphisms
by assumption, it follows that lim←−n

HomR(A,F (Qn(M))) ∈ F .

As the underlying R-module of the A-module lim←−n
Qn(M) is

isomorphic to lim←−n
HomR(A,F (Qn(M))), we can conclude that

lim←−n
Qn(M) ∈ FA, as desired. This finishes the construction of

the special precover sequences. The rest is the Salce lemma.
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The case when F is closed under products

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA ∈ F and the condition (††) holds. Assume further
that the class F is closed under countable products in R-Mod.
Then the pair of classes FA and Cofω(HomR(A, C))⊕ is
a hereditary complete cotorsion pair in A-Mod.

Corollary

In the assumptions of the theorem, one has
F⊥1
A = Cofω(HomR(A, C))⊕. In particular, it follows that

Cof(HomR(A, C))⊕ = Cofω(HomR(A, C))⊕.
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Combined result

Proposition

Let F and C ⊂ R-Mod be an Ext1-orthogonal pair of classes
admitting approximation sequences. Assume that RA ∈ F and
the condition (††) holds. Assume further that the class F is
resolving in R-Mod and the F-resolution dimension of any
countable product of modules from F does not exceed a fixed
finite integer k. Then the Ext1-orthogonal pair of classes FA and
Cofω+k(HomR(A, C)) ⊂ A-Mod admits approximation sequences.

Proof.

Let M be a left A-module. In order to construct a special precover
sequence for M, we start from the projective system of left
A-modules

M ←− Q(M)←− Q(Q(M))←− · · · ←− Qn(M)←− · · ·

indexed by the ordinal ω.
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Combined result

Proof of Proposition cont’d.

Put N = lim←−n
Qn(M). As we have seen, the underlying R-module

of N is isomorphic to lim←−n
HomR(A,F (Qn(M))). Furthermore, we

have a short exact sequence of left R-modules

0 −−→ lim←−n
HomR(A,F (Qn(M)))

−−→
∏∞

n=0
HomR(A,F (Qn(M))))

−−→
∏∞

n=0
HomR(A,F (Qn(M)))) −−→ 0.

The left R-modules HomR(A,F (Qn(M))) belong to F by (††),
hence the left R-module

∏∞
n=0 HomR(A,F (Qn(M)))) has

F-resolution dimension 6 k by assumption.

As the class of all left R-modules of F-resolution dimension 6 k is
resolving by lemma, it follows that the F-resolution dimension of
lim←−n

HomR(A,F (Qn(M))) ' N does not exceed k.
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Combined result

Proof of Proposition fin’d.

Now we make a further sequence of k iterations, producing
surjective A-module morphisms

N ←− Q(N)←− Q(Q(N))←− · · · ←− Qk(N).

Following the above argument, applying Q lowers the F-resolution
dimension, hence Qk(N) ∈ FA.

Finally, we have surjective A-module maps
Qk(N) −→ N = lim←−n

Qn(M) −→ M. The kernel of the map

Qk(N) −→ N belongs to Cofk(HomR(A, C)) and the kernel of
the map lim←−n

Qn(M) −→ M belongs to Cofω(HomR(A, C)).

Thus the kernel of composition Qk(N) −→ M belongs to
Cofω+k(HomR(A, C)).
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Combined result

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA ∈ F and the condition (††) holds. Assume further
that the F-resolution dimension of any countable product of
modules from F does not exceed a fixed finite integer k. Then
the pair of classes FA and Cofω+k(HomR(A, C))⊕ is a hereditary
complete cotorsion pair in A-Mod.

Corollary

In the assumptions of the theorem, one has
F⊥1
A = Cofω+k(HomR(A, C))⊕. In particular, it follows that

Cof(HomR(A, C))⊕ = Cofω+k(HomR(A, C))⊕.
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that the F-resolution dimension of any countable product of
modules from F does not exceed a fixed finite integer k. Then
the pair of classes FA and Cofω+k(HomR(A, C))⊕ is a hereditary
complete cotorsion pair in A-Mod.
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Dual results

The dual results to the above three theorems are also provable
using the dual constructions, but they are less surprising given
the Eklof–Trlivaj theorem.

Let (F , C) be a cotorsion pair in R-Mod. Denote by CA the class
of all left A-modules whose underlying left R-modules belong to C.
Then there exists a cotorsion pair (FA, CA) in A-Mod if and only if
the left R-module A+ = HomZ(A,Q/Z) belongs to C. If this is
the case (which we assume in the sequel) then the cotorsion pair
(FA, CA) is generated by the class A⊗R F of all left A-modules of
the form A⊗R F with F ∈ F .

If the cotorsion pair (F , C) is generated by a class of left
R-modules S, then the cotorsion pair (FA, CA) is generated by the
class SA = A⊗R S. In particular, if (F ,C ) is generated by a set S,
then (FA, CA) is generated by the set SA. Hence (FA, CA) is
complete and FA = Fil(SA ∪ {AA})⊕.
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Dual results

Our approach does not need the assumption that (F , C) is
generated by a set

, but it uses other rather restrictive assumptions,
most importantly

(†) The class C is preserved by the functor A⊗R −. In other
words, for any left R-module C ∈ C, the underlying R-module
of the left A-module A⊗R C belongs to C.

Using various specific assumptions on top of (†), our approach
allows to describe FA as the class of all direct summands of
β-filtered modules for small ordinals β. In particular:

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA

+ ∈ C and the condition (†) holds. Assume further
that the C-coresolution dimension of any countable direct sum of
modules from C does not exceed a fixed finite integer k. Then
the pair of classes Filω+k(A⊗R F)⊕ and CA is a hereditary
complete cotorsion pair in A-Mod.
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allows to describe FA as the class of all direct summands of
β-filtered modules for small ordinals β. In particular:

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA

+ ∈ C and the condition (†) holds.

Assume further
that the C-coresolution dimension of any countable direct sum of
modules from C does not exceed a fixed finite integer k. Then
the pair of classes Filω+k(A⊗R F)⊕ and CA is a hereditary
complete cotorsion pair in A-Mod.
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Dual results

Under more restrictive assumptions one can say more:

Theorem

Let (F , C) be a hereditary complete cotorsion pair in R-Mod.
Assume that RA

+ ∈ C and the condition (†) holds. Assume further
that the class C is closed under countable direct sums in R-Mod.
Then the pair of classes Filω(A⊗R F)⊕ and CA is a hereditary
complete cotorsion pair in A-Mod.

Theorem
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Assume that RA
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that the C-coresolution dimension of any left R-module does not
exceed k. Then the pair of classes Filk+1(A⊗R F)⊕ and CA is
a hereditary complete cotorsion pair in A-Mod.
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