Derived adically complete modules and complexes

Leonid Positselski - IM AV ČR

Algebra seminar, Charles Univ., Prague (via Zoom)

March 23, 2020

The setting

Throughout this talk, R is a commutative ring, and $I \subset R$ is a finitely generated ideal.

Torsion modules

There is one category of *I*-torsion *R*-modules. An *R*-module *M* is *I*-torsion if for every $s \in I$, $m \in M$ there exists $n \geqslant 1$ such that $s^n m = 0$ in M.

 $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{tors}}$ is a coreflective subcategory (in fact, a hereditary pretorsion class) in $R ext{-}\mathrm{Mod}$ and a Grothendieck abelian category.

The coreflector $\Gamma_I \colon R\operatorname{-Mod} \longrightarrow R\operatorname{-Mod}_{I\operatorname{-tors}}$ assigns to an $R\operatorname{-module} M$ its maximal $I\operatorname{-torsion}$ submodule $\Gamma_I(M) \subset M$.

Dual analogue of torsion modules?

There are three categories of \approx *I*-adically complete *R*-modules.

$$R\text{-}\mathrm{Mod}^{\mathrm{sep}}_{I\text{-}\mathrm{ctra}}\subset R\text{-}\mathrm{Mod}^{\mathrm{qs}}_{I\text{-}\mathrm{ctra}}\subset R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{ctra}}\subset R\text{-}\mathrm{Mod}$$

Where $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}^{\mathrm{sep}} = R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{secom}}$ is the category of $I ext{-}\mathrm{adically}$ separated & complete $R ext{-}\mathrm{modules}$ (= separated $I ext{-}\mathrm{contramodules}$).

 $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}$ is the category of $I ext{-}\mathrm{contramodule}$ $R ext{-}\mathrm{modules}$.

 $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}^{\mathrm{qs}}$ is the category of quotseparated $I ext{-}\mathrm{contramodule}$ $R ext{-}\mathrm{modules}$.

All full subcategories in each other. All reflective in R- Mod (and in each other). All locally \aleph_1 -presentable categories.

 $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{secom}}$ is not abelian. $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}^{\mathrm{qs}}$ and $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}$ are abelian categories (closed under kernels and cokernels in $R ext{-}\mathrm{Mod}$).

I-adic completion functor

$$\Lambda_I \colon R\operatorname{-Mod} \longrightarrow R\operatorname{-Mod}, \ \Lambda_I(C) = \varprojlim_{n \geqslant 1} C/I^nC.$$

Completion morphism $\ell_{I,C} \colon C \longrightarrow \Lambda_I(C)$. An R-module C is called I-adically separated if $\ell_{I,C}$ is injective, and C is called I-adically complete if $\ell_{I,C}$ is surjective.

 Λ_I is the reflector onto $R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{secom}} \subset R\text{-}\mathrm{Mod}$.

 Λ_I is neither left nor right exact (in fact, not exact in the middle; but it takes epimorphisms to epimorphisms).

Explanation for nonexactness: Λ_I is the composition of right exact functor $(C \longmapsto C/I^nC)_{n=1}^{\infty}$ and left exact \varprojlim .

 $R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{secom}}$ not abelian; not closed under cokers of monos, nor under extensions in $R ext{-}\mathrm{Mod}$.

What can one do? Replace Λ_I by a better-behaved derived functor.

Classical counterexample (A.-M. Simon, A. Yekutieli, ...)

Take $R = \mathbb{Z}$ and I = (p), where p is a prime number. Let $C \subset \prod_{n=0}^{\infty} \mathbb{Z}_p$ denote the group of all sequences of p-adic integers u_0, u_1, u_2, \ldots converging to zero in the topology of \mathbb{Z}_p .

Let $D \subset C$ denote the group of all sequences of p-adic integers of the form $v_0, pv_1, p^2v_2, \ldots$, where $v_n \in \mathbb{Z}_p$. Let $E \subset D$ be the subgroup of all sequences $u_n = p^n v_n$ such that $v_n \to 0$ in \mathbb{Z}_p as $n \to \infty$. So $D \simeq \prod_{n=0}^{\infty} \mathbb{Z}_p$ and $E \simeq C$.

All the three groups C, D, E are (p)-adically separated and complete. So are the quotient groups C/D and D/E. But the quotient group C/E is not (p)-adically separated (though still (p)-adically complete). In fact, one has $\bigcap_{n\geqslant 1} p^n(C/E) = D/E$, so $\Lambda_{(p)}(C/E) = C/D$.

Applying $\Lambda_{(p)}$ to the short exact sequence

 $0\longrightarrow E\longrightarrow C\longrightarrow C/E\longrightarrow 0$, one obtains the sequence

 $0 \longrightarrow E \longrightarrow C \longrightarrow C/D \longrightarrow 0$, which is not exact in the middle.

The inclusion $E \longrightarrow C$, viewed as a morphism in $\mathbb{Z}\text{-}\mathrm{Mod}_{(p)\text{-}\mathrm{secom}}$, violates the abelian category axiom.

Idealistic approach (terminology of [Yek20])

$$\mathbb{L}\Lambda_I : \mathrm{D}(R\operatorname{-Mod}) \longrightarrow \mathrm{D}(R\operatorname{-Mod})$$

Constructed by applying Λ_I termwise to homotopy projective complexes of R-modules (homotopy flat is enough).

In particular,
$$C \in R\text{-Mod} \rightsquigarrow \mathbb{L}_n \Lambda_I(C) = H_n \mathbb{L} \Lambda_I(C)$$
.

 $\mathbb{L}_0 \Lambda_I \neq \Lambda_I$, because Λ_I is not right exact.

$$\mathbb{L}_0 \Lambda_I$$
 is the reflector onto $R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{ctra}}^\mathrm{qs} =$

$$\{\operatorname{\mathsf{coker}}_{R\operatorname{\mathsf{-Mod}}}(f\colon C\to D)\mid C,D\in R\operatorname{\mathsf{-Mod}}_{I\operatorname{\mathsf{-secom}}}\}.$$

Functor $\mathbb{L}_0\Lambda_I$ is right exact. Category $R\operatorname{-Mod}_{I\operatorname{-ctra}}^{\operatorname{qs}}$ is abelian (closed under kernels and cokernels in $R\operatorname{-Mod}$).

Derived functor $\mathbb{L}\Lambda_I$ can be also defined as $\mathbb{L}(\mathbb{L}_0\Lambda_I)$. So one can use $\mathbb{L}_0\Lambda_I$ as an improved version of Λ_I . But there is also another such improved version, denoted by Δ_I .

Sequential approach (terminology of [Yek20])

Assume first that $I = (s) \subset R$ is a principal ideal.

Use $C^{\bullet} \longmapsto \operatorname{Tot}(C^{\bullet} \xrightarrow{s^{n}} C^{\bullet})$ as a derived functor of $C \longmapsto C/s^{n}C$ and $\mathbb{R}\varprojlim_{n\geqslant 1} \operatorname{Tot}(C^{\bullet} \xrightarrow{s^{n}} C^{\bullet})$ as a derived functor of s-adic completion. Here the projective system is

$$\begin{array}{ccc}
C^{\bullet} & \xrightarrow{s^{n}} & C^{\bullet} \\
\downarrow^{s} & & \downarrow^{1} \\
C^{\bullet} & \xrightarrow{s^{n-1}} & C^{\bullet}
\end{array}$$

Then one has $\mathbb{R}\varprojlim_{n\geqslant 1}\operatorname{Tot}(C^{\bullet}\stackrel{s^n}{\longrightarrow} C^{\bullet})=\mathbb{R}\operatorname{Hom}_R(K_{\infty}^{\vee}(R;s),C^{\bullet}),$ where $K_{\infty}^{\vee}(R;s)=(\underset{0}{R}\longrightarrow\underset{1}{R}[s^{-1}])=\varinjlim_{n\geqslant 1}(R\stackrel{s^n}{\longrightarrow} R)$ is the "infinite dual Koszul complex".

Generally, suppose $I=(s_1,\ldots,s_m)\subset R$. For brevity, let **s** denote the sequence s_1,\ldots,s_m . Put

$$K_{\infty}^{\vee}(R;\mathbf{s})=(R\to R[s_1^{-1}])\otimes_R\cdots\otimes_R(R\to R[s_m^{-1}]).$$

So $K_{\infty}^{\vee}(R;\mathbf{s})$ is a bounded complex of flat R-modules sitting in the cohomological degrees $0,\ldots,m$. Up to quasi-isomorphism, the complex $K_{\infty}^{\vee}(R;\mathbf{s})$ is determined by (the radical of) the ideal I, and does not depend on the generators s_1,\ldots,s_m .

Use $C^{\bullet} \longmapsto \mathbb{R} \operatorname{Hom}_{R}(K_{\infty}^{\vee}(R; \mathbf{s}), C^{\bullet})$ as the derived functor of *I*-adic completion. In particular, $C \in R\operatorname{-Mod} \leadsto$

$$\Delta_I(C) = H_0 \mathbb{R} \operatorname{Hom}_R(K_{\infty}^{\vee}(R; \mathbf{s}), C).$$

 $\Delta_I \colon R\operatorname{-Mod} \longrightarrow R\operatorname{-Mod}$ is the reflector onto $R\operatorname{-Mod}_{I\operatorname{-ctra}} = \{C \in R\operatorname{-Mod} \mid \operatorname{Ext}_R^{0,1}(R[s^{-1}],C) = 0 \ \forall s \in I\}$ (it suffices to check this condition for $s = s_1, \ldots, s_m$).

The functor Δ_I is right exact by construction. The category of I-contramodule R-modules R- $\mathrm{Mod}_{I\text{-}\mathrm{ctra}}$ is abelian (closed under kernels, cokernels, and extensions in R- Mod).

Sequential vs. idealistic: comparison

Sequential approach "ignores" the ring R and only cares about s_1, \ldots, s_m (still does not depend on the choice of a sequence s for a fixed ideal $I \subset R$).

Idealistic approach is sensitive to R (because what are projective or flat R-modules, or homotopy projective/flat complexes of R-modules, depends very much on R).

If $R' \subset R$ is a subring containing s_1, \ldots, s_m , and $I' \subset R'$ is the ideal generated by s_1, \ldots, s_m , then sequential functors for $I \subset R$ and for $I' \subset R'$ agree. Idealistic ones don't.

Separated and quotseparated contramodules

All *I*-adically separated and complete *R*-modules are *I*-contramodules. All *I*-contramodules are *I*-adically complete, but they don't need to be *I*-adically separated.

Hence "I-adically separated and complete R-modules" = "(I-adically) separated I-contramodule R-modules".

A better definition of $R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{ctra}}^{\mathrm{qs}}$: an $I\text{-}\mathrm{contramodule}$ is quotiseparated if it is a quotient of a separated $I\text{-}\mathrm{contramodule}$.

Lemma

Any I-contramodule R-module is an extension of two quotseparated I-contramodule R-modules.

Sketch of proof.

For any R-module C, one has $0 \to K \longrightarrow \Delta_I(C) \longrightarrow \Lambda_I(C) \to 0$, where K is a quotseparated I-contramodule. In particular, if C is an I-contramodule, then $\Delta_I(C) = C$, so C is an extension of one quotseparated and one separated I-contramodule.

Separated and quotseparated contramodules

The properties of an R-module to be (1) an I-contramodule, or (2) a separated I-contramodule – are not sensitive to the ring R.

Let $R' \subset R$ be a subring containing s_1, \ldots, s_m and $I' \subset R'$ be the ideal generated by s_1, \ldots, s_m .

Then an R-module is an I-contramodule if and only if it is an I'-contramodule R'-module. An R-module is a separated I-contramodule if and only if it is a separated I'-contramodule R'-module.

The property of an R-module to be (3) a quotseparated I-contramodule — is sensitive to the ring R. Choose R' as above to be Noetherian (e.g., generated by s_1, \ldots, s_m over \mathbb{Z}). Then all I'-contramodule R'-modules are quotseparated.

So any *I*-contramodule can be made quotseparated by restricting the ring (replacing it by a subring).

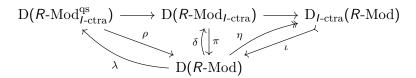
Overview of derived complete complexes

There are three reasonable triangulated categories of \approx derived *I*-adically complete complexes of *R*-modules.

 $D(R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}^{qs})$ and $D(R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}})$ are the derived categories of the respective abelian categories.

 $D_{I-ctra}(R-Mod)$ is the full subcategory in D(R-Mod) consisting of all complexes with I-contramodule cohomology modules.

There is a diagram of triangulated functors



Here straight arrows form a commutative diagram. The curvilinear arrows show left adjoint functors.

Derived completion functors

The sequential derived completion functor

$$\mathbb{R}\operatorname{\mathsf{Hom}}_R(\mathsf{K}^\vee_\infty(R;\mathbf{s}),-)\colon \mathrm{D}(R\operatorname{\!-Mod})\longrightarrow \mathrm{D}(R\operatorname{\!-Mod})$$

is the composition of two adjoint functors $\mathbb{R}\operatorname{Hom}_R(K_\infty^\vee(R;\mathbf{s}),-)=\iota\circ\eta$. It is the reflector onto the full subcategory $\operatorname{D}_{I\operatorname{-ctra}}(R\operatorname{-Mod})\subset\operatorname{D}(R\operatorname{-Mod})$. Hence the sequential derived completion functor is idempotent.

The idealistic derived completion functor

$$\mathbb{L}\Lambda_I : D(R\operatorname{-Mod}) \longrightarrow D(R\operatorname{-Mod})$$

is the composition of two adjoint functors $\mathbb{L}\Lambda_I = \rho \circ \lambda$. The point is that applying Λ_I to every term of a homotopy flat complex of R-modules produces a complex in R- $\mathrm{Mod}_{I\text{-secom}}^{qs} \subset R$ - $\mathrm{Mod}_{I\text{-ctra}}^{qs}$, which is an object of $\mathrm{D}(R\text{-}\mathrm{Mod}_{I\text{-ctra}}^{qs})$.

Overview of derived complete complexed cont'd

The terminology of [Yek20]: $C^{\bullet} \in D(R\operatorname{-Mod})$ is called derived $I\operatorname{-adically}$ complete in the idealistic sense if the natural morphism $C^{\bullet} \longrightarrow \mathbb{L}\Lambda_{I}(C^{\bullet})$ is an isomorphism.

 $C^{\bullet} \in \mathrm{D}(R\operatorname{-Mod})$ is called derived *I*-adically complete in the sequential sense if the natural morphism $C^{\bullet} \longrightarrow \mathbb{R}\operatorname{Hom}_R(K_{\infty}^{\vee}(R;\mathbf{s}),C^{\bullet})$ is an isomorphism.

The full subcategory of derived complete complexes in the sequential sense is $D_{l\text{-ctra}}(R\text{-Mod}) \subset D(R\text{-Mod})$.

The full subcategory of derived complete complexes in the idealistic sense is always contained in $D_{I-ctra}(R-Mod)$. This full subcategory seems to be too small in general.

"Idealistic is not realistic" or "not reasonable". Or "should be properly understood". $D(R-\text{Mod}_{I-\text{ctra}}^{qs})$ is a good replacement of the category of derived I-adically complete complexes in the idealistic sense, but it is not a full subcategory in D(R-Mod).

Key technical condition: Weak proregularity

For a single element $s \in R$, the Koszul complex K(R; s) is the two-term complex $R \xrightarrow{s} R$. For a sequence of elements $s_1, \ldots, s_m \in R$, the Koszul complex is

$$K(R; \mathbf{s}) = K(R; s_1) \otimes_R \cdots \otimes_R K(R; s_m).$$

Given $n \ge 1$, denote by \mathbf{s}^n the sequence s_1^n, \ldots, s_m^n . When n varies, the Koszul complexes $K(R; \mathbf{s}^n)$ form a projective system.

A finitely generated ideal $I \subset R$ is said to be weakly proregular if, for every i < 0, the projective system of homology modules $(H^i(K(R; \mathbf{s}^n)))_{n \ge 1}$ is pro-zero (= "trivial Mittag-Leffler").

Here a projective system of abelian groups $(E_n)_{n\geqslant 1}$ is said to be pro-zero if for every $j\geqslant 1$ there exists k>j such that the transition map $E_k\longrightarrow E_j$ vanishes.

The weak proregularity property only depends on (the radical of) the ideal I, and not on a particular set of its generators s.

Overview of derived complete complexed cont'd

When the ideal I is weakly proregular, the sequential and idealistic approaches agree. In the above diagram

$$D(R\operatorname{-Mod}_{I\operatorname{-ctra}}^{\operatorname{qs}}) \longrightarrow D(R\operatorname{-Mod}_{I\operatorname{-ctra}}) \xrightarrow{\rho} D_{I\operatorname{-ctra}}(R\operatorname{-Mod})$$

$$\downarrow^{\rho} \downarrow^{\delta} \downarrow^{\pi} \downarrow^{\eta} \downarrow^{\iota}$$

$$D(R\operatorname{-Mod})$$

both the horizontal arrows are triangulated equivalences. So one has

$$\rho = \pi = \iota, \qquad \lambda = \delta = \eta$$

and also

$$R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}^{\mathrm{qs}} = R ext{-}\mathrm{Mod}_{I ext{-}\mathrm{ctra}}, \qquad \mathbb{L}_0\Lambda_I = \Delta_I$$

as well as

$$\mathbb{L}\Lambda_I = \mathbb{R} \operatorname{Hom}_R(K_{\infty}^{\vee}(R; \mathbf{s}), -).$$

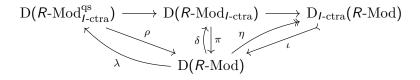
When the ideal I is not weakly proregular, one has that

- ullet the functor ho is not fully faithful;
- the complex \mathbb{R} Hom $_R(\mathcal{K}_{\infty}^{\vee}(R;\mathbf{s}),R^{(\omega)})$ is derived *I*-adically complete in the sequential, but not in the idealistic sense;
- even the R-module $\Lambda_I(R^{(\omega)})$, viewed as a complex of R-modules, is derived I-adically complete in the sequential, but not in the idealistic sense.

Here $R^{(\omega)} = \bigoplus_{i=0}^{\infty} R$ is the free R-module with a countable set of generators. The R-module $\Lambda_I(R^{(\omega)})$ is sometimes called the module of decaying functions $\omega \longrightarrow \Lambda_I(R)$.

It follows (from the last item in the list) that the functor $\mathbb{L}\Lambda_I \colon \mathrm{D}(R\operatorname{-Mod}) \longrightarrow \mathrm{D}(R\operatorname{-Mod})$ is not idempotent. In fact, the complex $\mathbb{L}\Lambda_I(\mathbb{L}\Lambda_I(R^{(\omega)})) = \mathbb{L}\Lambda_I(\Lambda_I(R^{(\omega)}))$ has a nonzero cohomology module in some nonzero (negative) cohomological degree.

Let us return once more to the diagram



The weak proregularity condition for $I = (s_1, \dots, s_m) \subset R$ splits into 2m pieces. The 1st piece is responsible for

$$\begin{split} R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{ctra}}^{\mathrm{qs}} &= R\text{-}\mathrm{Mod}_{I\text{-}\mathrm{ctra}}, \\ \mathbb{L}_0 \Lambda_I &= \Delta_I, \qquad \lambda = \delta, \qquad \rho = \pi. \end{split}$$

The remaining 2m-1 pieces are responsible for

$$D(R\text{-Mod}_{I\text{-ctra}}) \simeq D_{I\text{-ctra}}(R\text{-Mod}),$$

 $\delta = n, \qquad \pi = \iota.$

Details on weak proregularity

For any R-modules M and C, there are natural morphisms in D(R-Mod)

$$\Gamma_I(M) \longrightarrow K_\infty^\vee(R; \mathbf{s}) \otimes_R M;$$
 (1)

$$\mathbb{R}\operatorname{Hom}_{R}(K_{\infty}^{\vee}(R;\mathbf{s}),C)\longrightarrow \Lambda_{I}(C). \tag{2}$$

The morphism (1) is an isomorphism on H^0 . Taking H^0 of the morphism (2), one obtains the natural surjective morphism $b_{I,C} : \Delta_I(C) \longrightarrow \Lambda_I(C)$ (mentioned above in the proof of Lemma).

$\mathsf{Theorem}$

The following conditions are equivalent:

- the ideal I ⊂ R is weakly proregular;
- for every injective R-module J and i > 0 one has $H^i(K_\infty^\vee(R;\mathbf{s}) \otimes_R J) = 0$ (equivalently, the morphism (1) is a quasi-isomorphism for M = J);
- the morphism (2) is a quasi-isomorphism for $C = R^{(\omega)}$.

The infinite dual Koszul complex is the direct limit of finite dual Koszul complexes, $K_{\infty}^{\vee}(R;\mathbf{s}) = \varinjlim_{n} \operatorname{Hom}_{R}(K(R;\mathbf{s}^{n}),R)$. Hence for any R-module C and every $-m \leqslant q \leqslant 0$ there is a short exact seq.

$$0 \longrightarrow \varprojlim_{n\geqslant 1}^{1} H^{q-1}(K(R; \mathbf{s}^{n}) \otimes_{R} C)$$

$$\longrightarrow H^{q} \mathbb{R} \operatorname{Hom}_{R}(K_{\infty}^{\vee}(R; \mathbf{s}), C)$$

$$\longrightarrow \varprojlim_{n\geqslant 1} H^{q}(K(R; \mathbf{s}^{n}) \otimes_{R} C) \longrightarrow 0.$$

For q = 0, the middle term is $\Delta_I(C)$ and the rightmost term is $\Lambda_I(C)$. The proof of the above Theorem is partly based on

Proposition

The ideal $I \subset R$ is weakly proregular iff $\forall k = -1, ..., -m$ two conditions hold:

$$\lim_{n \geq 1} H^k(K(R; \mathbf{s}^n)) = 0.$$

These are the above-mentioned "2m pieces of weak proregularity". The "1st piece" is (i) for k=-1.

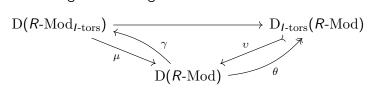
Derived torsion complexes

There are two reasonable triangulated categories of \approx derived *I*-torsion complexes.

 $D(R-Mod_{I-tors})$ is the derived category of the abelian category of I-torsion R-modules.

 $D_{I-tors}(R-Mod)$ is the full subcategory in D(R-Mod) consisting of all complexes with I-torsion cohomology modules.

There is a diagram of triangulated functors



Here straight arrows form a commutative triangular diagram. The curvilinear arrows show right adjoint functors. The arrow with a tail shows a fully faithful functor. The arrow with two heads shows a Verdier quotient functor.

Derived torsion functors

The sequential derived torsion functor is

$$K_{\infty}^{\vee}(R; \mathbf{s}) \otimes_{R} - : \mathrm{D}(R\operatorname{-Mod}) \longrightarrow \mathrm{D}(R\operatorname{-Mod}).$$

It is the composition of two adjoint functors $K_{\infty}^{\vee}(R;\mathbf{s})\otimes_{R} -= \upsilon\circ\theta$. This is the reflector onto the full subcategory $\mathrm{D}_{I\text{-}\mathrm{tors}}(R\text{-}\mathrm{Mod})\subset\mathrm{D}(R\text{-}\mathrm{Mod})$. Hence the sequential derived torsion functor is idempotent.

The idealistic derived torsion functor

$$\mathbb{R}\Gamma_I : D(R\operatorname{-Mod}) \longrightarrow D(R\operatorname{-Mod})$$

is constructed by applying Γ_I termwise to homotopy injective complexes of R-modules. This functor is the composition of two adjoint functors $\mathbb{R}\Gamma_I = \mu \circ \gamma$.

Derived torsion complexes cont'd

The terminology of [Yek20]: $M^{\bullet} \in D(R\operatorname{-Mod})$ is called derived I-torsion in the idealistic sense if the natural morphism $\mathbb{R}\Gamma_I(M^{\bullet}) \longrightarrow M^{\bullet}$ is an isomorphism.

 $M^{\bullet} \in \mathrm{D}(R\operatorname{-Mod})$ is called derived *I*-torsion in the sequential sense if the natural morphism $K_{\infty}^{\vee}(R;\mathbf{s}) \otimes_{R} M^{\bullet} \longrightarrow M^{\bullet}$ is an isomorphism.

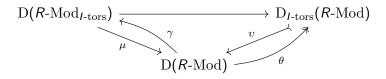
The full subcategory of derived torsion complexes in the sequential sense is $D_{I-tors}(R-Mod) \subset D(R-Mod)$.

The full subcategory of derived torsion complexes in the idealistic sense is always contained in $D_{I-tors}(R-Mod)$. This full subcategory seems to be too small in general.

"Idealistic is not realistic", or "should be properly understood". $D(R\operatorname{-Mod}_{I\operatorname{-tors}})$ is a good replacement of the category of derived $I\operatorname{-tors}$ in the idealistic sense, but it is not a full subcategory in $D(R\operatorname{-Mod})$.

Derived torsion complexes cont'd

When the ideal $I \subset R$ is weakly proregular, the sequential and idealistic approaches agree. In the above diagram



the horizontal arrow is a triangulated equivalence. So one has

$$\mu = \upsilon \quad \text{and} \quad \gamma = \theta$$

as well as

$$\mathbb{R}\Gamma_I = K_{\infty}^{\vee}(R; \mathbf{s}) \otimes_R -.$$

When the ideal I is not weakly proregular, one has that

- ullet the functor μ is not fully faithful;
- there exists an injective R-module J for which the complex $K_{\infty}^{\vee}(R;\mathbf{s})\otimes_{R}J$ is not derived I-torsion in the idealistic sense (though $K_{\infty}^{\vee}(R;\mathbf{s})\otimes_{R}M^{\bullet}$ is derived I-torsion in the sequential sense for all $M^{\bullet}\in \mathrm{D}(R\mathrm{-Mod})$);
- there even exists an injective R-module J for which the R-module $\Gamma_I(J)$, viewed as a complex of R-modules, is not derived I-torsion in the idealistic sense (though any complex of I-torsion R-modules is derived I-torsion in the sequential sense).

It follows from the second item that the functor $\mathbb{R}\Gamma_I \colon \mathrm{D}(R\operatorname{-Mod}) \longrightarrow \mathrm{D}(R\operatorname{-Mod})$ is not idempotent. In fact, the complex $\mathbb{R}\Gamma_I(\mathbb{R}\Gamma_I(J)) = \mathbb{R}\Gamma_I(\Gamma_I(J))$ has a nonzero cohomology module in some nonzero (positive) cohomological degree.

Final Questions and Conclusion

All ideals in Noetherian commutative rings are weakly proregular. The following questions, therefore, apply to non-Noetherian commutative rings R.

Given an arbitrary finitely generated ideal $I \subset R$,

- can one come up with an example of a complex of R-modules that is derived I-adically complete in the idealistic sense?
 Does there exist such a nonzero complex, generally speaking?
- dually, can one come up with an example of a complex of R-modules that is derived I-torsion in the idealistic sense?
 Does there exist such a nonzero complex?

The categories $D(R\operatorname{-Mod}_{I\operatorname{-ctra}}^{\operatorname{qs}})$ and $D(R\operatorname{-Mod}_{I\operatorname{-tors}})$ aren't full subcategories in $D(R\operatorname{-Mod})$, when I is not weakly proregular. The advantage of considering them as the proper versions of the idealistic derived complete/torsion categories lies in the fact that they contain the objects one wants them to contain.

- J. P. C. Greenlees, J. P. May. Derived functors of *I*-adic completion and local homology. *Journ. of Algebra* **149**, #2, p. 438–453, 1992.
- P. Schenzel. Proregular sequences, local cohomology, and completion. *Math. Scand.* **92**, #2, p. 161–180, 2003.
- A.-M. Simon. Approximations of complete modules by complete big Cohen–Macaulay modules over a Cohen–Macaulay local ring. *Algebras and Representation Theory* **12**, #2–5, p. 385–400, 2009.
- A. Yekutieli. On flatness and completion for infinitely generated modules over noetherian rings. *Communicat. in Algebra* **39**, #11, p. 4221–4245, 2011. arXiv:0902.4378 [math.AC]
- M. Kashiwara, P. Schapira. Deformation quantization modules. *Astérisque* **345**, Soc. Math. de France, 2012, vi+147 pp. arXiv:1003.3304 [math.AG]

- A. Beilinson. *p*-adic periods and derived de Rham cohomology. *Journ. of the Amer. Math. Soc.* **25**, #3, p. 715–738, 2012.
- B. Bhatt, P. Scholze. The pro-étale topology for schemes. Electronic preprint arXiv:1309.1198 [math.AG].
- M. Porta, L. Shaul, A. Yekutieli. On the homology of completion and torsion. *Algebras and Represent. Theory* 17, #1, p. 31–67, 2014. arXiv:1010.4386 [math.AC]. Erratum in *Algebras and Represent. Theory* 18, #5, p. 1401–1405, 2015. arXiv:1506.07765 [math.AC]
- L. Positselski. Dedualizing complexes and MGM duality. *Journ.* of Pure and Appl. Algebra **220**, #12, p. 3866–3909, 2016. arXiv:1503.05523 [math.CT]
- L. Positselski. Contraadjusted modules, contramodules, and reduced cotorsion modules. *Moscow Math. Journ.* **17**, #3, p. 385–455, 2017. arXiv:1605.03934 [math.CT]

- L. Positselski. Abelian right perpendicular subcategories in module categories. Electronic preprint arXiv:1705.04960 [math.CT].
- A. Yekutieli. Flatness and completion revisited. *Algebras and Represent. Theory* **21**, #4, p. 717-736, 2018. arXiv:1606.01832 [math.AC]
- M. Hrbek, J. Šťovíček. Tilting classes over commutative rings. Forum Math. 32, #1, p. 235–267, 2020. arXiv:1701.05534 [math.AC]
- A. Yekutieli. Weak proregularity, derived completion, adic flatness, and prisms. Electronic preprint arXiv:2002.04901 [math.AC].
- L. Positselski. Remarks on derived complete modules and complexes. Electronic preprint arXiv:2002.12331 [math.AC].