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Introduction

Topological vector spaces, such as Banach spaces or locally convex
spaces over the topological/normed fields of real or complex
numbers, are a central concept in functional analysis.

Topological tensor products of topological vector spaces in
functional analysis were studied by Grothendieck in 1950’s.

The topological vector spaces with linear topology form the most
“algebraic” class of topological vector spaces.

Topological vector spaces with linear topology can be considered
over an arbitrary field k. The field k is viewed as endowed with
the discrete topology.

The categories of topological abelian groups or topological vector
spaces are rarely abelian. Constructing and using exact category
structures (in Quillen’s sense) in order to develop homological
topological algebra or homological functional analysis is an old
idea, going back to the 1960’s–70’s.
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Part I

Topological Algebra
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Topological Vectors Spaces with Linear Topology

We fix once and for all a ground field k , and endow it with
the discrete topology. A topological vector space V is a k-vector
space endowed with a topological space structure such that
the summation map +: V × V −→ V is continuous (as a function
of two variables) and the homothety map a ∗ : V −→ V is
continuous for every a ∈ k.

A topological vector space V is said to have a linear topology if
open vector subspaces form a base of neighborhoods of zero in V .
Any filter of vector subspaces in a vector space V defines a linear
topology on V in which the open subspaces are the ones belonging
to the filter.

In the rest of this talk, all “topological vector spaces” will be
presumed to have linear topology. The abbreviation “VSLT” means
a “(topological) vector space with linear topology”.
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Subspaces and Quotients of VSLTs

Let V be a topological vector space. Given a vector subspace
K ⊂ V , the induced topology on K is defined by the rule that
the open subspaces in K are the intersections K ∩ U, where U
ranges over the open subspaces in V .

An injective linear map of topological vector spaces i : K −→ V is
a closed continuous map if and only if i(K ) is a closed subspace in
V and the topology of K is induced from the topology of V via i .

Given a surjective map of vector spaces p : V −→ C , the quotient
topology on C is defined by the rule that the open subspaces in C
are the images p(U) of the open subspaces U ⊂ V .

A surjective linear map of topological vector spaces p : V −→ C is
an open continuous map if and only if the topology of C is
the quotient topology of the topology of V .
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Given a surjective map of vector spaces p : V −→ C , the quotient
topology on C is defined by the rule that

the open subspaces in C
are the images p(U) of the open subspaces U ⊂ V .
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Products and Coproducts of VSLTs

Let {Vi}i∈I be a family of topological vector spaces. Then the
product topology on the product

∏
i∈I Vi is defined by the following

rule. A base of neighborhoods of zero in
∏

i∈I Vi is formed by the
vector subspaces

∏
j∈J Uj ×

∏
s∈I\J Vs , where J ⊂ I is an arbitrary

finite subset of indices and Uj ⊂ Vj are open subspaces.

More generally, given a projective system of topological vector
spaces (Vγ)γ∈Γ indexed by a poset Γ, the projective limit topology
on lim←−γ∈Γ

Vγ is the induced topology on lim←−γ∈Γ
Vγ ⊂

∏
γ∈Γ Vγ ,

where
∏

γ∈Γ Vγ is endowed with the product topology.

The coproduct topology on the direct sum
⊕

i∈I Vi is defined by
the rule that a subspace U ⊂

⊕
i∈I Vi is open if and only if

the intersection Vi ∩ U is an open subspace in Vi for every i ∈ I .
Equivalently, a base of neighborhoods of zero in

⊕
i∈I Vi is formed

by the subspaces
⊕

i∈I Ui , where Ui ⊂ Vi are arbitrary open
subspaces.
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Separated and Complete VSLTs

The completion of a topological vector space V is defined as the
projective limit of its discrete quotient spaces V̂= lim←−U⊂V V /U,
where U ranges over the open subspaces in V . There is a natural
linear map λV : V −→ V ,̂ called the completion map.

A topological vector space V is called separated (or Hausdorff) if
the map λV is injective, and V is called complete if λV is
surjective.

The completion topology on V̂ is the projective limit topology of
discrete vector spaces V /U. Equivalently, the open subspaces in
V̂ are the kernels of the projection maps V̂−→ V /U.

So there is a natural bijection between the open subspaces in V
and in V = V ,̂ assigning to an open subspace U ⊂ V the kernel
U of the projection map V̂−→ V /U. Conversely, to an open
subspace U ⊂ V its full preimage λ−1

V (U) ⊂ V is assigned.
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Complete and Separated Subspaces and Quotients

Let V be a topological vector space and K ⊂ V be a subspace.
Then the quotient space V /K is separated in the quotient
topology if and only if K is a closed subspace in V .

Lemma

Let V be a complete, separated topological vector space and
K ⊂ V be a vector subspace, endowed with the induced topology.
Then the completion of K with its completion topology is naturally
isomorphic to the closure of K in V with its induced topology,
K̂' KV. In particular, K is complete if and only if it is closed
in V.
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Complete and Separated Products and Coproducts

Let (Vi )i∈I be a family of topological vector spaces.

Lemma

(a) If the topological vector spaces Vi are separated, then
the product

∏
i∈I Vi is separated in the product topology.

(b) If the topological vector spaces Vi are complete, then
the product

∏
i∈I Vi is complete in the product topology.

More generally, the projective limit of a diagram of separated
(resp., complete) topological vector spaces is separated (resp.,
complete) in the projective limit topology.

Lemma

(a) If the topological vector spaces Vi are separated, then
the direct sum

⊕
i∈I Vi is separated in the coproduct topology.

(b) If the topological vector spaces Vi are complete, then
the direct sum

⊕
i∈I Vi is complete in the coproduct topology.
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Countably Based VSLTs

Proposition

Let V be a topological vector space and U ⊂ V be a vector
subspace, endowed with the induced topology. Let W be
a complete, separated topological vector space with a countable
base of neighborhoods of zero. Then any continuous linear map
U −→W can be extended to a continuous linear map V −→W.

Corollary

Let V be a topological vector space and K ⊂ V be a vector
subspace. Suppose that the topological vector space K is complete
and separated, and has a countable base of neighborhoods of zero.
Then the inclusion map K −→ V makes K a direct summand of V .

Lemma

Let (Vi )
∞
i=1 be a countable family of nondiscrete, separated

topological vector spaces. Then the direct sum
⊕∞

i=1 Vi with
its coproduct topology does not have a countable base of
neighborhoods of zero.
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Main Counterexample: Formulation

Let V be a complete, separated topological vector space and
K ⊂ V be a closed subspace. Then the quotient space V/K is
separated in the quotient topology, but it need not be complete.

Relevant counterexamples are known in functional analysis,
at least, since the 1950’s. A counterexample which works for
topological vector spaces with linear topology can be found in
the book [Kelly, Namioka “Linear topological spaces”, 1963–76,
Problem 20D]. A very general construction of counterexamples can
be found in the book [Arnautov, Glavatsky, Mikhalev “Introduction
to the theory of topological rings and modules”, 1996,
Theorem 4.1.48]. The following assertion is its particular case.

Main Counterexample (Arnautov et al.)

For any separated topological vector space C there exists
a complete, separated topological vector space A(C ) with a closed
subspace K(C ) ⊂ A(C ) such that the quotient space A(C )/K(C )
is isomorphic to C as a topological vector space.
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Main Counterexample: Discussion

Let A be a complete, separated topological vector space and K ⊂ A
be a closed subspace. What does it mean that the quotient space
C = A/K is complete (or not complete) in the quotient topology?

The topological vector space C is separated, since K is a closed
subspace in A. Consider the completion C = C .̂ Then the
question is about surjectivity of the natural map A −→ C. This
map can be interpreted as the natural map of projective limits

A = lim←−U⊂AA/U −−→ lim←−K⊂W⊂AA/W = C.

Here U ranges over all the open subspaces in A, while W ranges
over all the open subspaces in A containing K.

The problem, therefore, consists in the following. Let
(āW ∈ A/W)K⊂W⊂A be a compatible system of vectors in
the quotient spaces A/W. Can one extend it to a compatible
system of vectors (āU ∈ A/U)U⊂A in the quotient spaces A/U ?

The counterexamples show that, in general, this cannot be done.
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Main Counterexample: Construction

Let (Vi )i∈I be a family of topological vector spaces. Besides the
product topology on

∏
i∈I Vi , the vector space

∏
i∈I Vi can be also

endowed with the box topology. A base of neighborhoods of zero
in the box topology is formed by the subspaces

∏
i∈I Ui ⊂

∏
i∈I Vi ,

where Ui ⊂ Vi are arbitrary open subspaces.

The coproduct topology on
⊕

i∈I Vi ⊂
∏

i∈I Vi is induced from
the box topology on the product.

Lemma

(a) If the topological vector spaces Vi are separated, then
the product

∏
i∈I Vi is separated in the box topology.

(b) If the topological vector spaces Vi are complete, then
the product

∏
i∈I Vi is complete in the box topology.
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Main Counterexample: Construction Cont’d

The construction of the counterexamples uses a modified version
of the box (or coproduct) topology.

The box topology is finer than
the product topology, and the modified box topology is finer still.

The modified box topology on the product of topological vector
spaces

∏
i∈I Vi is defined as follows. A base of neighborhoods of

zero in the modified box topology is formed by the vector
subspaces

∏
j∈J{0} ×

∏
s∈I\J Us , where J ranges over the finite

subsets of I and Us ⊂ Vs , s ∈ I \ J, are arbitrary open subspaces.

In particular, if the set I is finite, then the modified box topology
on
∏

i∈I Vi is discrete.

Lemma

For any family of topological vector spaces Vi , the product∏
i∈I Vi is a complete, separated topological vector space in

the modified box topology.
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Main Counterexample: Construction Fin’d

Construction of the Main Counterexample.

Let C be a separated topological vector space. Choose an infinite
set I , and consider the direct sum AI (C ) = C (I ) =

⊕
i∈I C ,

endowed with the modified coproduct topology. Let Σ: C (I ) −→ C
be the summation map.

One can easily see that Σ is continuous. In fact, the map Σ is even
continuous in the coproduct topology on C (I ), which is coarser
than the modified coproduct topology.

When the set I is infinite, the map Σ is also open. Indeed, for any
choice of a finite subset J ⊂ I and open subspaces Us ⊂ C ,
s ∈ I \ J, the subspace Σ

(⊕
j∈J{0} ⊕

⊕
s∈I\J Us

)
=
∑

s∈I\J Us is
open in C . Thus the topology of C is the quotient topology of
the modified coproduct topology on C (I ).
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Zero-Convergent Families of Vectors

Let V be a complete, separated topological vector space. A family
of vectors (vx ∈ V)x∈X indexed by some set X is said to converge
to zero in the topology of V if, for every open subspace U ⊂ V,
the set {x ∈ X | vx /∈ U} is finite.

Fix a set of indices X . Then the X -indexed zero-convergent
families of elements in V form a vector subspace in
VX =

∏
x∈X V, which we denote by V[[X ]] ⊂ VX . The vector

space V[[X ]] can be computed as the projective limit

V[[X ]] = lim←−U⊂V(V/U)[X ],

where U ranges over all the open subspaces in V, while
A[X ] = A(X ) =

⊕
x∈X A is a notation for the direct sum of

X copies of a (discrete) vector space A.

We endow the vector space V[[X ]] with the topology of projective
limit of discrete vector spaces (V/U)[X ]. So V[[X ]] is a complete,
separated topological vector space.
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Strongly Surjective Maps

A continuous linear map of complete, separated topological vector
spaces f : V −→ C is said to be strongly surjective if any
zero-convergent family of vectors in C can be lifted to a
zero-convergent family of vectors in V. In other words, this means
that the map f [[X ]] : V[[X ]] −→ C[[X ]] is surjective for all sets X .

A surjective continuous open map need not be strongly surjective.

Counterexample

For any separated topological vector space C and any infinite set I ,
consider the topological vector space AI (C ) = C (I ) with
the modified coproduct topology. It is claimed that there exist no
infinite families of nonzero vectors in AI (C ) converging to zero in
the modified coproduct topology.

Let C be a complete, separated topological vector space where
an infinite zero-convergent family of nonzero vectors does exist.
Then it follows that the summation map Σ: AI (C) −→ C is
continuous, surjective, and open, but not strongly surjective.
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Tensor Product Topologies

Let V and W be topological vector spaces (with linear topologies).
How can one define a topology on the tensor product V ⊗k W ?

Beilinson discovered that there are three natural tensor product
topologies. Two topological tensor products, denoted by ⊗∗ and
⊗!, are associative and commutative; they are the polar cases.
The third construction is intermediate between these two. It is
associative, but not commutative; so it is denoted by a notation
with an arrow (

←⊗ or ⊗←).

Two of three Beilinson’s topologies have “näıve” versions, which
were introduced and briefly discussed by Beilinson and Drinfeld in
the book [“Chiral Algebras”, AMS, 2004, Section 2.7.7]. In the
subsequent paper [“Remarks on topological algebras”, Moscow
Math. Journ. 2008], Beilinson defines the non-näıve (correct)
topologies and suggests to discard the näıve ones.
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topologies and suggests to discard the näıve ones.
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topologies and suggests to discard the näıve ones.
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were introduced and briefly discussed by Beilinson and Drinfeld in
the book [“Chiral Algebras”, AMS, 2004, Section 2.7.7]. In the
subsequent paper [“Remarks on topological algebras”, Moscow
Math. Journ. 2008], Beilinson defines the non-näıve (correct)
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topologies and suggests to discard the näıve ones.
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Tensor Product Topologies: Näıve Definitions

Let V and W be topological vector spaces. The two näıve
constructions of topologies on V ⊗k W are

1 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗ Q ⊂ V ⊗k W , where P ⊂ V and Q ⊂W
are open subspaces.

2 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗W + V ⊗ Q ⊂ V ⊗k W , where P ⊂ V
and Q ⊂W are open subspaces.

Why are these constructions näıve? The second one is actually
OK, and it defines what we will call the topological vector space
V ⊗! W . What is the problem with the first one?

Consider the particular case when the topological vector space V is
discrete. Then the first construction defines a discrete topology on
V ⊗k W (as one can take P = 0). Now observe that the map

V ×W −−→ V ⊗k W , (v ,w) 7−→ v ⊗ w

is not continuous (as a function of two variables) with respect to
the first topology on V ⊗k W . This is not good.
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Why are these constructions näıve? The second one is actually
OK, and it defines what we will call the topological vector space
V ⊗! W . What is the problem with the first one?

Consider the particular case when the topological vector space V is
discrete. Then the first construction defines a discrete topology on
V ⊗k W (as one can take P = 0). Now observe that the map

V ×W −−→ V ⊗k W , (v ,w) 7−→ v ⊗ w

is not continuous (as a function of two variables) with respect to
the first topology on V ⊗k W . This is not good.

Leonid Positselski Topological vector spaces with linear topology 20 / 57



Tensor Product Topologies: Näıve Definitions

Let V and W be topological vector spaces. The two näıve
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constructions of topologies on V ⊗k W are

1 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗ Q ⊂ V ⊗k W , where P ⊂ V and Q ⊂W
are open subspaces.

2 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces

P ⊗W + V ⊗ Q ⊂ V ⊗k W , where P ⊂ V
and Q ⊂W are open subspaces.
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constructions of topologies on V ⊗k W are

1 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗ Q ⊂ V ⊗k W , where P ⊂ V and Q ⊂W
are open subspaces.

2 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗W + V ⊗ Q ⊂ V ⊗k W , where P ⊂ V
and Q ⊂W are open subspaces.
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constructions of topologies on V ⊗k W are

1 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗ Q ⊂ V ⊗k W , where P ⊂ V and Q ⊂W
are open subspaces.

2 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces P ⊗W + V ⊗ Q ⊂ V ⊗k W , where P ⊂ V
and Q ⊂W are open subspaces.
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Tensor Product Topologies: Näıve Definitions

The näıve definition of the noncommutative topological tensor
product is

3 Let a base of neighborhoods of zero in V ⊗k W consist of all
the subspaces of the form P ⊗W ⊂ V ⊗k W , where P ⊂ V
is an open subspace.

In addition to the above-mentioned discontinuity problem, this
definition is also strange in that it only uses the topology of V and
ignores the topology of W .

Nevertheless, it is helpful to keep this naive version of
the ←-topology in mind. It gives a good first approximation to
the correct definition and illustrates some of its properties (viz.,
strong dependence of the first argument’s topology and weak
dependence on the second one’s).
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Tensor Product Topologies: Proper Definitions

Denote by V ⊗←W the vector space V ⊗k W with the following
topology. A vector subspace E ⊂ V ⊗←W is open if and only if
two conditions hold:

there exists an open subspace P ⊂ V such that P ⊗W ⊂ E ;

for every vector v ∈ V , there exists an open subspace
Qv ⊂W such that v ⊗ Qv ⊂ E .

Denote by V ⊗∗W the vector space V ⊗k W with the following
topology. A vector subspace E ⊂ V ⊗∗W is open if and only if
three conditions hold:

there exist open subspaces P ⊂ V and Q ⊂W such that
P ⊗ Q ⊂ E ;

for every vector v ∈ V , there exists an open subspace
Qv ⊂W such that v ⊗ Qv ⊂ E ;

for every vector w ∈W , there exists an open subspace
Pw ⊂ V such that Pw ⊗ w ⊂ E .
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Tensor Product Topologies: Functional Analysis Analogy

From the three tensor product topologies, the ∗-topology is
the finest one. The !-topology is the coarsest one, and
the ←-topology is in between.

The ∗-topology on the tensor product of topological vector spaces
with linear topologies is an analogue of what is called
the projective tensor product of Banach spaces or locally convex
spaces in functional analysis.

The !-topology on the tensor product of VSLTs is an analogue of
the injective tensor product of Banach spaces or locally convex
spaces.

These tensor product operations in functional analysis were studied
by Grothendieck in 1950’s.
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Tensor Product Topologies: Universal Properties

The definition of the ∗-topology looks complicated, but it has
a very natural universal property. Let U, V , and W be topological
vector spaces, and let φ : V ×W −→ U be a bilinear map. Let
φ⊗ : V ⊗k W −→ U be the related map from the tensor product.

Then the map φ is continuous (as a function of two variables) if
and only if the map φ⊗ : V ⊗∗W −→ U is continuous.

Let A be an associative algebra over k whose underlying vector
space is endowed with a linear topology. Then A is a topological
algebra (i.e., its multiplication map m : A× A −→ A is continuous)
if and only if the map m⊗ : A⊗∗ A −→ A is continuous.

Next, A is a topological algebra with a base of neighborhoods of
zero consisting of open right ideals if and only if the map
m⊗ : A⊗← A −→ A is continuous. A is a topological algebra with
a base of neighborhoods of zero consisting of open two-sided ideals
if and only if the map m⊗ : A⊗! A −→ A is continuous.

These are observations from Beilinson’s 2008 paper.
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Good Properties of the Tensor Product Topologies

Lemma

Let f : V −→ C and g : W −→ D be continuous linear maps of
topological vector spaces. Then, for any symbol ? = ∗, ←, or !,
(a) f ⊗ g : V ⊗? W −→ C ⊗? D is a continuous map of topological
vector spaces;
(b) If f and g are surjective open maps, then f ⊗ g is also
a (surjective) open map.

Lemma

Let V and W be topological vector spaces, and let K ⊂ V and
L ⊂W be vector subspaces. Then, for any ? = ∗, ←, or !,
(a) the induced topology on K ⊗k L ⊂ V ⊗? W coincides with
the topology of K ⊗? L;
(b) if K is dense in V and L is dense in W , then K ⊗k L is dense
in V ⊗? W.
(c) if K is closed in V and L is closed in W , then K ⊗k L is closed
in V ⊗? W.
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Completed Tensor Products

If V and W are separated VSLTs, then their tensor products
V ⊗? W are separated as well. But the tensor products of complete
VSLTs need not be complete; so one has to take their completions.

For any complete, separated topological vector spaces V and W

and any symbol ? = ∗, ←, or !, we denote by V ⊗̂?
W

the completion of the topological vector space V⊗? W.

Example

Let V and W be profinite-dimensional (linearly compact)
topological vector spaces, i.e., projective limits of
finite-dimensional discrete vector spaces endowed with
the projective limit topologies. Then all the three topologies on
the tensor product V⊗k W coincide. Assuming that both V
and W are infinite-dimensional, the topological vector space
V⊗∗W = V⊗←W = V⊗! W is incomplete. Its completion

V ⊗̂∗W = V ⊗̂←W = V ⊗̂!
W is the usual completed tensor

product of linearly compact topological vector spaces.
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Examples of Topological Tensor Products

1. Let V be a discrete vector space, and let W be a complete,
separated topological vector space. Let I be a set indexing a basis
in V. Then the ∗-topology and the ←-topology on V⊗k W
coincide, and the topology of V⊗∗W = V⊗←W is the
coproduct topology of W(I ) =

⊕
i∈I W.

It follows that the topological vector space V⊗∗W = V⊗←W is
complete, so V⊗∗W = V⊗←W = W(I ) = V ⊗̂∗W = V ⊗̂←W.

2. Let V be a complete, separated topological vector space, and let
W be a discrete vector space. Let X be a set indexing a basis
in W. Then the ←-topology and the !-topology on V⊗k W
coincide. A topology base in V⊗←W = V(X ) = V[X ] = V⊗! W
is formed by the vector subspaces U[X ] ⊂ V[X ], where U ranges
over the open subspaces of V.

It follows that the related completed tensor products are

V ⊗̂←W = lim←−U⊂V(V/U)[X ] = V[[X ]] = V ⊗̂!
W.
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Bad Properties of Topological Tensor Products

Corollary

The class of (complete, separated) topological vector spaces with
a countable base of neighborhoods of zero is not preserved by
the tensor products ⊗̂∗ or ⊗̂←.

In fact, even the tensor products V ⊗̂∗ − and V ⊗̂← − with
a countably-dimensional discrete vector space V lead outside of
the class of VSLTs with a countable base of neighborhoods of zero.

Corollary

For any complete, separated topological vector space C where
some infinite family of nonzero vectors converges to zero, there
exists a surjective open (continuous linear) map of complete,
separated topological vector spaces A −→ C which the completed

tensor product functors − ⊗̂←W and − ⊗̂!
W (with

a countably-dimensional discrete vector space W) take to
a nonsurjective map.
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Part II

Exact Category Structures
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Axioms of Exact Category

An exact category E is an additive category endowed with a class
of short exact sequences (or conflations) E ′ −→ E −→ E ′′

satisfying the following axioms Ex0–Ex3.

A morphism E ′ −→ E appearing in some short exact sequence
E ′ −→ E −→ E ′′ is called an admissible monomorphism (or
inflation), and a morphism E −→ E ′′ apearing in some short exact
sequence is called an admissible epimorphism (or deflation).

Ex0: The short sequence 0 −→ 0 −→ 0 is exact. Any short
sequence isomorphic to a short exact sequence is exact.

Ex1: Any short exact sequence E ′
i−→ E

p−→ E ′′ is
a kernel-cokernel pair, i.e., the morphism i is a kernel of
the morphism p and the morphism p is a cokernel of
the morphism i .
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Axioms of Exact Category Cont’d

Ex2(a): For any admissible monomorphism i : E ′ −→ E and any
morphism f : E ′ −→ F ′, a pushout square on the diagram

E ′
i //

f
��

E

g

��

p
// E ′′

F ′
j
// F

>>

exists, and the morphism j : F ′ −→ F is an admissible
monomorphism. Simply put, admissible monomorphisms are
preserved by pushouts.

If E ′ −→ E −→ E ′′ is a short exact sequence, then it follows from
Ex0–Ex1 and Ex2(a) that F ′ −→ F −→ E ′′ is a short exact
sequence, too. Conversely, assuming Ex0–Ex1, the axiom Ex2(a)
can be equivalently reformulated by saying that any short exact
sequence E ′ −→ E −→ E ′′ and a morphism E ′ −→ F ′ can be
included into a commutative diagram as above with a short exact
sequence F ′ −→ F −→ E ′′. The square is then a pushout square.
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Axioms of Exact Category Cont’d

Ex2(b): Dually, for any admissible epimorphism p : E −→ E ′′ and any
morphism f : F ′′ −→ E ′′,

a pullback square on the diagram

E ′
i //

��

E
p
// E ′′

F
q
//

g

OO

F ′′

f

OO

exists, and the morphism q : F −→ F ′′ is an admissible
epimorphism. Simply put, admissible epimorphisms are
preserved by pullbacks.

If E ′ −→ E −→ E ′′ is a short exact sequence, then it follows from
Ex0–Ex1 and Ex2(b) that E ′ −→ F −→ F ′′ is a short exact
sequence, too.

The axiom Ex2 is Ex2(a) + Ex2(b).

Leonid Positselski Topological vector spaces with linear topology 32 / 57



Axioms of Exact Category Cont’d

Ex2(b): Dually, for any admissible epimorphism p : E −→ E ′′ and any
morphism f : F ′′ −→ E ′′, a pullback square on the diagram

E ′
i //

��

E
p
// E ′′

F
q
//

g

OO

F ′′

f

OO

exists,

and the morphism q : F −→ F ′′ is an admissible
epimorphism. Simply put, admissible epimorphisms are
preserved by pullbacks.

If E ′ −→ E −→ E ′′ is a short exact sequence, then it follows from
Ex0–Ex1 and Ex2(b) that E ′ −→ F −→ F ′′ is a short exact
sequence, too.

The axiom Ex2 is Ex2(a) + Ex2(b).

Leonid Positselski Topological vector spaces with linear topology 32 / 57



Axioms of Exact Category Cont’d

Ex2(b): Dually, for any admissible epimorphism p : E −→ E ′′ and any
morphism f : F ′′ −→ E ′′, a pullback square on the diagram

E ′
i //

��

E
p
// E ′′

F
q
//

g

OO

F ′′

f

OO

exists, and the morphism q : F −→ F ′′ is an admissible
epimorphism.

Simply put, admissible epimorphisms are
preserved by pullbacks.

If E ′ −→ E −→ E ′′ is a short exact sequence, then it follows from
Ex0–Ex1 and Ex2(b) that E ′ −→ F −→ F ′′ is a short exact
sequence, too.

The axiom Ex2 is Ex2(a) + Ex2(b).

Leonid Positselski Topological vector spaces with linear topology 32 / 57



Axioms of Exact Category Cont’d

Ex2(b): Dually, for any admissible epimorphism p : E −→ E ′′ and any
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Weak Idempotent-Completeness

An additive category E is called idempotent-complete if any
idempotent endomorphism e : A −→ A of an object A ∈ E comes
from a direct sum decomposition A = B ⊕ C in E.

An additive category E is called weakly idempotent-complete if any
pair of morphisms i : B −→ A and p : A −→ B with p ◦ i = idB

comes from a direct sum decomposition A = B ⊕ C .

For example, the category of even-dimensional finite-dimensional
vector spaces is weakly idempotent-complete, but not
idempotent-complete. The category of vector spaces of dimension
different from 1 (or from 1, 2, and 3) is additive, but not weakly
idempotent-complete.

The assumption of (at least) weak idempotent-completeness
simplifies the exact category theory considerably.
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Axioms of Exact Category Cont’d

For a class of short exact sequences satisfying Ex0–Ex1 in a weakly
idempotent-complete additive category E,

axiom Ex2 is equivalent
to the conjuction of the following three conditions:

Ex2’(a): If a composition fg is an admissible monomorphism, then g is
an admissible monomorphism.

Ex2’(b): If a composition fg is an admissible epimorphism, then f is
an admissible epimorphism.

Ex2’(c): If in the commutative diagram

E ′ //

  

E //

��

E ′′

F

>>

both E ′ −→ E −→ E ′′ and E ′ −→ F −→ E ′′ is are short
exact sequences, then E −→ F is an isomorphism.

Any one of the axioms Ex2(a) or Ex2(b) implies Ex2’(c).
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Axioms of Exact Category Fin’d

For any class of short exact sequences satisfying Ex0–Ex2 in
an additive category E, the following two conditions are equivalent
to each other:

Ex3(a): Every composition of two admissible monomorphisms is
an admissible monomorphism.

Ex3(b): Every composition of two admissible epimorphisms is
an admissible epimorphism.

The axiom Ex3 is Ex3(a) or Ex3(b).

This is the end of the list of exact category axioms Ex0–Ex3.
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Quasi-Abelian Categories

Quasi-abelian categories form the class of additive categories
closest to the abelian ones.

Let A be an additive category in which all morphisms have kernels
and cokernels (such categories are sometimes called preabelian).

We will say that a morphism in A is a kernel if it is the kernel of
some morphism in A. Similarly, a morphism in A is a cokernel if it
is a the cokernel of some morphism in A. Any kernel is the kernel
of its cokernel, and any cokernel is the cokernel of its kernel.

The category A is called quasi-abelian if the class of all short
sequences satisfying Ex1 (i.e., all the kernel-cokernel pairs) is
an exact category structure on A. This holds if and only if
the class of all kernel-cokernel pairs satisfies Ex2. In other words,
A is quasi-abelian if and only if the class of all kernels in A is
stable under pushouts and the class of all cokernels in A is stable
under pullbacks.
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Semi-Abelian Categories

Let A be an additive category with kernels and cokernels, and let
f : A −→ B be a morphism in A. Let K be the kernel of f and C
be the cokernel of f . Denote by coim(f ) the cokernel of
the morphism K −→ A, and by im(f ) the kernel of the morphism
B −→ C . Then there is a natural morphism coim(f ) −→ im(f )
appearing in the textbook definition of an abelian category.

The category A is called semi-abelian if, for any morphism f in A,
the morphism coim(f ) −→ im(f ) is both a monomorphism and
an epimorphism.

Quasi-abelianity is a stronger property than semi-abelianity: any
quasi-abelian category is semi-abelian. The question whether
the converse holds came to be known as Raikov’s conjecture (with
the reference to 1969 and 1976 papers of Raikov). Both analytic
and algebraic counterexamples to Raikov’s conjecture have been
found between 2005–2012.
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Semi-Abelian Categories

Proposition

For any additive category A with kernels and cokernels,
the following four conditions are equivalent:

1 for any morphism f in A, the natural morphism
coim(f ) −→ im(f ) is an epimorphism;

2 the composition of any two kernels is a kernel;

3 if the composition fg is a kernel, then g is a kernel;

4 any pushout of a kernel is a monomorphism.

A category satisfying the equivalent conditions of the proposition is
called right semi-abelian. An additive category with kernels and
cokernels in which any pushout of a kernel is a kernel is called right
quasi-abelian. So any right quasi-abelian category is right
semi-abelian. The left semi-abelianity and left quasi-abelianity are
the dual properties. Quasi-abelianity = right + left quasi-abelianity
(and similarly for semi-abelianity).
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Semi-Abelian and Quasi-Abelian Categories

Proposition

An additive category A with kernels and cokernels is quasi-abelian
if and only if two conditions hold:

1 A is semi-abelian;

2 for any commutative diagram

A′ //

��

A //

��

A′′

B

>>

in which both the sequences A′ −→ A −→ A′′ and
A′ −→ B −→ A′′ are kernel-cokernel pairs, the morphism
A −→ B is an isomorphism.

If A is either left or right quasi-abelian, then condition (2) is
satisfied. Thus any right quasi-abelian, left semi-abelian category
is quasi-abelian, and similarly any left quasi-abelian, right
semi-abelian category.
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Semi-Abelian and Quasi-Abelian Categories

Here is perhaps the simplest algebraic example of a semi-abelian,
but not quasi-abelian category

(i.e., a simple counterexample to
Raikov’s conjecture).

A is the category of morphisms of vector spaces a : V1 −→ V2 with
the following additional datum. In the vector space im(a), a vector
subspace V ⊂ im(a) is chosen. Let us denote the objects of A by
(V1

a−→
V

V2). Morphisms in A are morphisms of morphisms (i.e.,

commutative squares) such that the induced morphism of
the images takes the chosen subspace into the chosen subspace.
The diagram

(0
0−→
0

k) //

$$

(k
id−→
0

k) //

��

(k
0−→
0

0)

(k
id−→
k

k)

::

shows that condition (2) is not satisfied for A.
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Mistake in Beilinson’s Paper

On the first page of Beilinson’s 2008 paper [Moscow Math. J. 8,
#1], it is claimed that (in our notation introduced below):

“The category of [complete, separated] topological vector spaces
Topsck is quasi-abelian [...]. In particular, it is naturally an exact
category: the admissible monomorphisms are closed embeddings,
the admissible epimorphisms are open surjections.”

These assertions are not true, as we will now see. The category
Topsck is not quasi-abelian, and it does not have an exact category
structure in which all closed embeddings are admissible
monomorphisms. (Though an exact category structure in which
the admissible epimorphisms are the open surjections does
actually exist on Topsck .)

The important observation that the categories of incomplete
topological vector spaces are quasi-abelian, while the categories
complete ones aren’t, goes back (at least) to F. Prosmans
[“Derived categories for functional analysis”, 2000], who worked in
the context of locally convex topologies.
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Additive Categories of Topological Vector Spaces

Denote by Topk the category of topological vector spaces (with
linear topology) over a field k . The morphisms in Topk are
the continuous linear maps. Let Topsk ⊂ Topk denote the full
subcategory of separated VSLTs, and let Topsck ⊂ Topsk be the full
subcategory of complete, separated VSLTs.

The functor of forgetting the topology Topk −→ Vectk preserves
all kernels and cokernels, as well as all products and coproducts
(hence all limits and colimits).

The kernel K of a morphism f : V −→W in Topk is the kernel of
f in the category of vector spaces Vectk , endowed with the induced
topology as a subspace in V . The cokernel of f is the cokernel of f
in Vectk , endowed with the quotient topology as a quotient space
of W . The products and coproducts are as per the discussion of
the product and coproduct topologies in the beginning of this talk.
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subcategory of separated VSLTs, and let Topsck ⊂ Topsk be the full
subcategory of complete, separated VSLTs.

The functor of forgetting the topology Topk −→ Vectk preserves
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(hence all limits and colimits).

The kernel K of a morphism f : V −→W in Topk is the kernel of
f in the category of vector spaces Vectk , endowed with the induced
topology as a subspace in V . The cokernel of f is the cokernel of f
in Vectk , endowed with the quotient topology as a quotient space
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Additive Categories of Topological Vector Spaces

The full subcategories Topsk and Topsck

are closed under kernels and
products (as well as coproducts) in Topk . So the kernels, products
(hence all limits), and coproducts in the three categories agree.

Moreover, the full subcategories Topsk and Topsck are reflective in
Topk , i.e., the inclusion functors Topsk −→ Topk and
Topsck −→ Topk have left adjoint functors (the reflectors). The
reflector Topk −→ Topsk takes a topological vector space U to its
quotient space U/{0}U by the closure of the zero subspace in U,
endowed with the quotient topology. The reflector Topk −→ Topsck
takes a topological vector space U to its completion U .̂

The cokernel of a morphism f : V −→W in Topsk is the quotient
space W /f (V )W of W by the closure of the subspace f (V ) ⊂W ,
endowed with the quotient topology. The cokernel of a morphism
f : V −→W in Topsck is the completion C = Ĉ of the quotient
space C = W/f (V). Here C = W/f (V) is endowed with the
quotient topology and C = Ĉ with the completion topology.
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space C = W/f (V). Here C = W/f (V) is endowed with the
quotient topology and C = Ĉ with the completion topology.

Leonid Positselski Topological vector spaces with linear topology 43 / 57



Additive Categories of Topological Vector Spaces

The full subcategories Topsk and Topsck are closed under kernels and
products (as well as coproducts) in Topk . So the kernels, products
(hence all limits), and coproducts in the three categories agree.

Moreover, the full subcategories Topsk and Topsck are reflective in
Topk , i.e., the inclusion functors Topsk −→ Topk and
Topsck −→ Topk have left adjoint functors (the reflectors). The
reflector Topk −→ Topsk takes a topological vector space U to its
quotient space U/{0}U by the closure of the zero subspace in U,
endowed with the quotient topology. The reflector Topk −→ Topsck
takes a topological vector space U to its completion U .̂

The cokernel of a morphism f : V −→W in Topsk is the quotient
space W /f (V )W of W by the closure of the subspace f (V ) ⊂W ,
endowed with the quotient topology. The cokernel of a morphism
f : V −→W in Topsck is the completion C = Ĉ of the quotient
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quotient topology and C = Ĉ with the completion topology.

Leonid Positselski Topological vector spaces with linear topology 43 / 57



Additive Categories of Topological Vector Spaces

The full subcategories Topsk and Topsck are closed under kernels and
products (as well as coproducts) in Topk . So the kernels, products
(hence all limits), and coproducts in the three categories agree.

Moreover, the full subcategories Topsk and Topsck are reflective in
Topk , i.e., the inclusion functors Topsk −→ Topk and
Topsck −→ Topk have left adjoint functors (the reflectors). The
reflector Topk −→ Topsk takes a topological vector space U to its
quotient space U/{0}U by the closure of the zero subspace in U,
endowed with the quotient topology. The reflector Topk −→ Topsck

takes a topological vector space U to its completion U .̂

The cokernel of a morphism f : V −→W in Topsk is the quotient
space W /f (V )W of W by the closure of the subspace f (V ) ⊂W ,
endowed with the quotient topology. The cokernel of a morphism
f : V −→W in Topsck is the completion C = Ĉ of the quotient
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Exactness Properties of Categories of VSLTs

The category of topological vector spaces Topk and the category
of separated (Hausdorff) topological vector spaces Topsk are
quasi-abelian. But the category of complete, separated topological
vector spaces Topsck is not quasi-abelian. In fact, it is right but
not left quasi-abelian.

Here is the counterexample. Let C be any separated, but
incomplete topological vector space. As we have seen, there exists
a complete, separated topological vector space A with a closed
subspace K ⊂ A such that A/K ' C . Let C = Ĉ be

the completion of C . Then 0 −→ K
i−→ A

p−→ C −→ 0 is
a kernel-cokernel pair in Topsck (where p : A −→ C is
the composition A −→ C −→ C). The morphism p : A −→ C is
a cokernel, hence an epimorphism in Topsck , but it is
not a surjective map.
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Exactness Properties of Complete, Separated VSLTs

Let x ∈ C \ C be a vector in the complement, and let kx be
the one-dimensional vector space spanned by x , endowed with
the discrete topology. Let f : kx −→ C be the inclusion map.
Taking the pullback of p by f , we obtain the diagram

K
i //

��

A
p
// C

K
q=0
//

g=i

OO

kx

f

OO

Since the images of p and f in C only intersect at zero,
the pullback q : K −→ kx of a cokernel p : A −→ C is the zero
map. The zero map q = 0 is not even an epimorphism. Thus
the category of complete, separated topological vector spaces
Topsck is not left quasi-abelian (and not even left semi-abelian).

Moreover, there does not exist an exact category structure on
Topsck in which the closed embedding i : K −→ A would be
an admissible monomorphism.
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Maximal Exact Category Structure

According to Rump’s paper [“On the maximal exact category
structure of an additive category”, 2011], every additive category
has a maximal exact category structure. This means a class of
short exact sequences satisfying Ex0–Ex3 which contains any other
class of short exact sequences satisfying Ex0–Ex3.

For a weakly idempotent-complete additive category A,
the maximal exact category structure has a rather simple
description, which is convenient to work with [Sieg–Wegner,
“Maximal exact structures on additive categories”, 2011; Crivei,
“Maximal exact structures on additive categories revisited”, 2012].
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Maximal Exact Category Structure

Let A be a weakly idempotent-complete additive category.

A morphism i : K −→ A in A is called a semi-stable kernel if all
pushouts of i exist, and they are kernels in A. Dually, a morphism
p : A −→ C is called a semi-stable cokernel if all pullbacks of p
exist, and they are cokernels in A. Clearly, any semi-stable kernel
has a cokernel, and any semi-stable cokernel has a kernel.

A kernel-cokernel pair K
i−→ A

p−→ C in A is said to be stable if
i is a semi-stable kernel and p is a semi-stable cokernel.

Proposition (Sieg–Wegner, Crivei)

For any weakly idempotent-complete additive category A, the class
of all stable kernel-cokernel pairs K −→ A −→ C is an exact
category structure on A. It is the maximal exact category structure
on A.
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Maximal Exact Category Structure

A morphism i in A is said to be a stable kernel

if i is a semi-stable
kernel and the cokernel of i is a semi-stable cokernel. Dually, p is
a stable cokernel if p is a semi-stable cokernel and the kernel of p
is a semi-stable kernel.

It follows from the proposition that, in the maximal exact structure
on A, the admissible monomorphisms are the stable kernels and
the admissible epimorphisms are the stable cokernels.

Now let A be a right quasi-abelian category. Then all kernels in A
are semi-stable, hence all semi-stable cokernels in A are stable.
The short exact sequences in the maximal exact category structure

are the kernel-cokernels pairs K
i−→ A

p−→ C in which p is
a semi-stable cokernel.
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Maximal Exact Structure on Complete, Sep’d VSLTs

We have seen that nonsurjective cokernels in Vectsck are not
semi-stable. One can check that all surjective cokernels are
semi-stable.

So in the maximal exact structure on Vectsck :

the admissible epimorphisms are the open surjective
(continuous linear) maps;

the admissible monomorphisms ( = the stable kernels) are
the closed embeddings i : K −→ A for which the quotient
space A/i(K) is complete in the quotient topology;

the short exact sequences (stable kernel-cokernel pairs)
0 −→ K −→ A −→ C −→ 0 are the kernel-cokernel pairs
in Topsck which remain kernel-cokernel pairs in Topsk (or
equivalently in Topk or in Vectk).
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Mistake in Beilinson’s Paper II

On the second page of Beilinson’s 2008 paper, after the definitions
of three (completed) tensor product operations, there is an

“Exercise. The tensor products are exact.”

Let us give a relevant definition: an additive functor between exact
categories F : E′ −→ E′′ is said to be exact if it takes short exact
sequences (conflations) in E′ to short exact sequences (conflations)
in E′′.

It appears that Beilinson’s intended meaning was “the completed
tensor products are exact functors in the quasi-abelian exact
structure on Topsck ” (which does not exist, as we have seen). Next
we will see that in the maximal exact structure on Topsck , at least
two of the three tensor products are not exact, either. However,
these functors can be thought of as being “exact” in some other
sense.
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Exactness Properties of Uncompleted Tensor Products

Let V be a topological vector space. Let FV denote one of
the topological tensor product functors

V ⊗∗ − : Topk −−→ Topk

V ⊗← − : Topk −−→ Topk

−⊗← V : Topk −−→ Topk

V ⊗! − : Topk −−→ Topk

Then it follows from the above good properties of the tensor
product topologies that the functor FV preserves kernels and
cokernels in Topk . Hence FV : Topk −→ Topk is an exact functor
between exact categories in the quasi-abelian exact structure, i.e.,
it takes kernel-cokernel pairs to kernel-cokernel pairs.
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cokernels in Topk . Hence FV : Topk −→ Topk is an exact functor
between exact categories in the quasi-abelian exact structure, i.e.,
it takes kernel-cokernel pairs to kernel-cokernel pairs.
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Exactness Properties of Uncompleted Tensor Products

Let V be a separated topological vector space.

Let F s
V denote one

of the topological tensor product functors (the restriction of FV to
Topsk ⊂ Topk)

V ⊗∗ − : Topsk −−→ Topsk

V ⊗← − : Topsk −−→ Topsk

−⊗← V : Topsk −−→ Topsk

V ⊗! − : Topsk −−→ Topsk

Then the functor F s
V preserves kernels and cokernels in Topsk .

Hence F s
V : Topsk −→ Topsk is also an exact functor between exact

categories in the quasi-abelian exact structure on Topsk .
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Exactness Properties of Completed Tensor Products

Let W be a complete, separated topological vector space. Let F sc
W

denote one of the completed topological tensor product functors

W ⊗̂∗ − : Topsck −−→ Topsck

W ⊗̂← − : Topsck −−→ Topsck

− ⊗̂←W : Topsck −−→ Topsck

W ⊗̂! − : Topsck −−→ Topsck

Then the functor F sc
W preserves cokernels in Topsck . We do not

know whether it preserves kernels, generally speaking.

We do know that the functor F sc
W : Topsck −→ Topsck takes

kernel-cokernel pairs to kernel-cokernel pairs. However, the class of
all kernel-cokernel pairs is not well-behaved in Topsck (not preserved
by the pullbacks), as we have seen.
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Exactness Properties of Completed Tensor Products

The class of all stable kernel-cokernel pairs in Topsck is better
behaved

(forming the maximal exact category structure), but it is
not preserved by the functors F sc

W, generally speaking.

The problem is with the functors − ⊗̂!
W and − ⊗̂←W, where W

is a discrete vector space. According to the discussion above, we

have V ⊗̂!
W ' V ⊗̂←W ' V[[X ]] for any V ∈ Topsck , where X is

a set indexing a basis in W.

For any topological vector space C ∈ Topsck , there exists a stable
kernel-cokernel pair 0 −→ K −→ A −→ C −→ 0 in Topsck such that
no infinite family of nonzero elements converges to zero in A. If
there exists an infinite family of nonzero elements converging to
zero in C, then the induced map A[[X ]] −→ C[[X ]] is not
surjective, so the kernel-cokernel pair
0 −→ K[[X ]] −→ A[[X ]] −→ C[[X ]] −→ 0 in Topsck is not stable.

Thus the functors − ⊗̂!
W and − ⊗̂←W are not exact in

the maximal exact category structure on Topsck .
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Conclusions

One can modify or restrict the maximal exact category structure
on Topsck by imposing the condition of preservation of exactness by
the tensor products. In particular, in the strong exact structure on
Topsck the admissible epimorphisms are the strongly surjective open
maps.

Restricting the class of short exact sequences (possibly) even
further, one arrives to the tensor-refined exact structure, which is
maximal among the exact structures on Topsck in which the tensor
product functors are exact. We know very little about this exact
structure beyond its existence and uniqueness.
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Conclusions

The general feeling is that the categories of incomplete VSLTs
have good exactness properties,

while the restriction to
the complete VSLTs destroys such good properties. However, it is
the complete, separated topological vector spaces that are
the main object of interest. Perhaps the conclusion should be that
the language of exact categories does not provide the most suitable
category-theoretic point of view on topological algebra.

One possible alternative might be to work with the quasi-abelian
category Topk or Topsk of (separated or nonseparated) incomplete
VSLTs, with the exact functors of uncompleted tensor products
defined on it. Endow this category with the class of weak
equivalences consisting of all the morphisms which become
isomorphisms after the completion. Inverting such weak
equivalences produces the category Topsck .
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