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The title of this talk could be

Doubly infinite tilting theory

or

Infinitely generated Wakamatsu tilting theory.

This means the theory of infinitely generated (co)tilting
modules/objects of infinite projective and injective dimension
(i. e., infinitely generated n-tilting theory for n =∞).
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How many abelian categories are there?

More than one would expect.

Associative ring R 7−→ abelian category of R-modules R-Mod.
Has a projective generator and an injective cogenerator.

How does one produce abelian categories having only a projective
generator, or only an injective cogenerator?

Let C be an additive category and M ∈ C an object.
How does one produce an abelian category out of this datum?

Näıve approach: (C,M) 7−→ S-Mod, where S = EndC(M)op

(The notation means: S acts in M ∈ C on the right, and we
consider the category of left S-modules).
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How many abelian categories are there?

Two dual, less näıve approaches:

Suppose coproducts exist in C, and denote by AddC(M) ⊂ C
the full subcategory formed by the direct summands of coproducts
of copies of M.

Claim: There exists a unique abelian category B with enough
projectives such that Bproj ' AddC(M).

Suppose products exist in C, and denote by ProdC(M) ⊂ C
the full subcategory formed by the direct summands of products of
copies of M.

Claim*: There exists a unique abelian category A with enough
injectives such that Ainj ' ProdC(M).
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Two dual, less näıve approaches:

Suppose coproducts exist in C, and denote by AddC(M) ⊂ C
the full subcategory formed by the direct summands of coproducts
of copies of M.

Claim: There exists a unique abelian category B with enough
projectives such that Bproj ' AddC(M).

Suppose products exist in C,

and denote by ProdC(M) ⊂ C
the full subcategory formed by the direct summands of products of
copies of M.

Claim*: There exists a unique abelian category A with enough
injectives such that Ainj ' ProdC(M).

Leonid Positselski Infinity-Tilting Theory 4 / 24



How many abelian categories are there?

Two dual, less näıve approaches:
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How many abelian categories are there?

Construction 1: B is the category of all coherent (finitely
presented) functors AddC(M)op −→ Ab,

which is abelian because
AddC(M) has weak kernels.

Construction 2: Let T : Sets −→ Sets be the functor taking a set
X to the set HomC(M,M(X )). Then the functor T is a monad on
the category of sets. One can construct B as the category of all
algebras/modules over this monad.

Remark: Generally, the category of algebras/modules over a monad
T : Sets −→ Sets is abelian if and only if it is additive. A monad T
is called additive if this is the case. Cocomplete abelian categories
B with a fixed projective generator P correspond bijectively to
additive monads on the category of sets.
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How many abelian categories are there?

Example 1. Let C = R-Mod, R an associative ring.

Then B is
the category of contramodules over the topological ring
S = EndR(M)op.

The topology on S: a base of neighborhoods of zero is formed by
the annihilators of finitely-generated submodules in M.

B = S-Contra is the category of left S-modules endowed with
the operations of infinite summation with the coefficients —
zero-converging families of elements in S.

Example 2. Let R = Z and M = Z[p−1]/Z. Then S = Zp is
the topological ring of p-adic integers.

B = Zp-Contra is equivalent to the full subcategory in Ab
consisting of all the abelian groups B such that
HomZ(Z[p−1],B) = 0 = Ext1

Z(Z[p−1],B).
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zero-converging families of elements in S.

Example 2. Let R = Z and M = Z[p−1]/Z. Then S = Zp is
the topological ring of p-adic integers.

B = Zp-Contra is equivalent to the full subcategory in Ab
consisting of all the abelian groups B such that
HomZ(Z[p−1],B) = 0 = Ext1

Z(Z[p−1],B).
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How many abelian categories are there?

Example 3. Let C = R-Mod, M a pure-injective R-module.

Then
A is a Grothendieck abelian category.

[Herzog–Št’ov́ıček, 2014.]

Notation and terminology: B = σM(C) and A = πM(C).

Assuming that M ∈ C is a “tilting object” in one sense or another,
one can call B the abelian category tilted from C at M.

Assuming that M ∈ C is a “cotilting object” in some sense, one
can call A the abelian category cotilted from C at M.
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When are σ and π two inverse operations?

Let A be an abelian category with products and an injective
cogenerator J ∈ A. Then coproducts exist and are exact in A.

An object T ∈ A is called weakly tilting if ExtiA(T ,T (X )) = 0 for
all sets X and i > 0.

Let T ∈ A be a weakly tilting object. The full subcategory
Emax(T ) ⊂ A consists of all the objects E ∈ A such that

ExtiA(T ,E ) = 0 for all i > 0;

there exists an exact sequence

· · · −−→ T (X2) −−→ T (X1) −−→ T (X0) −−→ E −−→ 0

in A, which remains exact after applying the functor
HomA(T ,−).
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When are σ and π two inverse operations?

Lemma

The full subcategory Emax(T ) ⊂ A is closed under

extensions,

cokernels of monomorphisms,

kernels of those epimorphisms that remain epimorphisms after
applying HomA(T ,−),

and direct summands.

The object T ∈ A is called ∞-tilting (or Wakamatsu tilting) if
Ainj ⊂ Emax(T ).
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When are σ and π two inverse operations?

The dual definition:

Let B be an abelian category with coproducts and a projective
generator P ∈ B. Then products exist and are exact in B.

An object W ∈ B is called weakly cotilting if ExtiB(W X ,W ) = 0
for all sets X and i > 0.

Let W ∈ B be a weakly cotilting object. The full subcategory
Fmax(W ) ⊂ B is constructed in the way dual to the above
construction of the full subcategory Emax(T ) ⊂ A.

The object W ∈ B is called ∞-cotilting (or Wakamatsu cotilting)
if Bproj ⊂ Fmax(W ).
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Tilting-cotilting correspondence

From now on, all our abelian categories will be complete and
cocomplete. The abelian category A is assumed to have
an injective cogenerator, and the abelian category B is assumed to
have a projective generator.

Theorem

There is a one-to-one correspondence between abelian categories A
with an injective cogenerator J and an ∞-tilting object T ∈ A,
and abelian categories B with a projective generator P and
an ∞-cotilting object W ∈ B. The correspondence assigns to
a category A the category B = σT (A), and to a category B
the category A = πW (B).
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Tilting-cotilting correspondence: the construction

Let A be an abelian category with an injective cogenerator J and
an ∞-tilting object T ∈ A.

Put B = σT (A), so AddA(T ) ' Bproj. Let P ∈ Bproj be
the object corresponding to T ∈ Add(T ); then P is a projective
generator of the abelian category B.

The embedding functor Bproj ' AddA(T ) −→ A can be uniquely
extended to a right exact functor Φ: B −→ A.

The embedding functor AddA(T ) ' Bproj −→ B can be extended
to a left exact functor Ψ: A −→ B right adjoint to Φ.

Set W = Ψ(J) ∈ B.
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Tilting-cotilting correspondence

The functors Φ and Ψ restrict to an equivalence of exact categories

Ψ: Emax(T ) ' Fmax(W ) :Φ.

If the projective dimension pdA(T ) and the injective dimension
idB(W ) are both finite, then they agree, pdA(T ) = n = idB(W ).

In this case, the object T ∈ A is called n-tilting, and the object
W ∈ B is called n-cotilting.
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Tilting-cotilting correspondence

An ∞-tilting pair (T ,E) in A consists of an object T ∈ A and
a full subcategory E ⊂ A such that

Ainj ⊂ E;

AddA(T ) ⊂ E;

ExtiA(T ,E ) = 0 for all E ∈ E and i > 0;

E is closed under the cokernels of monomorphisms and
extensions in A;

every AddA(T )-precover of an object of E is an epimorphism
in A with the kernel belonging to E.

An object T ∈ A is ∞-tilting if and only if it is a part of some
∞-tilting pair (T ,E) in A.

In this case, all such ∞-tilting pairs (T ,E) with the fixed object T
form a complete lattice with respect to inclusion of the full
subcategories E ⊂ A.
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An object T ∈ A is ∞-tilting if and only if it is a part of some
∞-tilting pair (T ,E) in A.

In this case, all such ∞-tilting pairs (T ,E) with the fixed object T
form a complete lattice with respect to inclusion of the full
subcategories E ⊂ A.
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Tilting-cotilting correspondence

In particular, (T , Emax(T )),

with the full subcategory
Emax(T ) ⊂ A constructed above, is the maximal ∞-tilting pair for
an ∞-tilting object T ∈ A.

There is also the minimal ∞-tilting pair (T , Emin(T )).

This means that, for any ∞-tilting pair (T ,E), one has
Emin(T ) ⊂ E ⊂ Emax(T ).
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Tilting-cotilting correspondence

The definition of an ∞-cotilting pair (W ,F) in B is dual to that of
an ∞-tilting pair.

There is a one-to-one correspondence between ∞-tilting pairs
(T ,E) in abelian categories A and ∞-cotilting pairs (W ,F) in
abelian categories B provided by the rules

B = σT (A), and conversely, A = πW (B);

P = Ψ(T ) and W = Ψ(J), and conversely,
J = Φ(W ) and T = Φ(P);

F = Ψ(E), and conversely, E = Φ(F).
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∞-tilting derived equivalence

The equivalence of derived categories D(E) ' D(F) induced by
the equivalence of exact categories

Ψ: E ' F :Φ

can be thought of as an equivalence of exotic derived categories of
the abelian categories A and B.

When T is n-tilting and W is n-cotilting, one has

D(A) ' D(Emax) ' D(Fmax) ' D(B).

In the ∞-tilting (Wakamatsu) situation, it helps to assume that
E is closed under coproducts in A and F is closed under products
in B. But we start without this assumption.
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(Co)tilting t-structures

Let D>0(E) ⊂ D(E) be the full subcategory consisting of all
the complexes 0 −→ E 0 −→ E 1 −→ · · · with E i ∈ E.

Let D60
A (E) ⊂ D(E) be the full subcategory consisting of all

the complexes E • with E i ∈ E such that H i
A(E •) = 0 for i > 0.

Then (D60
A (E),D>0(E)) is a t-structure on D(E) with the heart A.

Dually one constructs the t-structure (D60(F),D>0
B (F)) on D(F)

with the heart B.

Thus we have two t-structures on the triangulated category
D(E) = D(F) with the hearts A and B.
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Coderived and Contraderived Categories

Let E be an exact category with exact coproducts. Then
the coderived category Dco(E) is the triangulated quotient category

Dco(E) = Hot(E)/Acyclco(E),

where Acyclco(E) is the minimal triangulated subcategory in
Hot(E) containing the totalizations of short exact sequences of
complexes in E and closed under coproducts.

Let F be an exact category with exact products. Then
the contraderived category Dctr(F) is the triangulated quotient
category

Dctr(F) = Hot(F)/Acyclctr(F),

where Acyclctr(F) is the minimal triangulated subcategory in
Hot(F) containing the totalizations of short exact sequences of
complexes in F and closed under products.
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∞-tilting derived equivalence

Let (T ,E) be a tilting pair in an abelian category A

and (W ,F)
be the corresponding cotilting pair in an abelian category B.

Suppose E is closed under coproducts in A and F is closed under
products in B.

Then the embedding functors E −→ A and F −→ B induce
triangulated equivalences

Dco(E) ' Dco(A) and Dctr(F) ' Dctr(B)

(since E is coresolving & closed under coproducts in A, and F is
resolving & closed under products in B).
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∞-tilting derived equivalence

Hence the commutative diagram of triangulated functors

(in fact,
Verdier quotient functors) and a triangulated equivalence

Dco(A) Dctr(B)

D(E) D(F)

D(A) D(B)

���� ����
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∞-tilting derived equivalence

So, generally speaking, there is a derived equivalence between A
and B on some intermediate level

between the co/contraderived
and the conventional derived categories.

There may be many (co)tilting pairs for a given (co)tilting object
in an abelian category. When the exact subcategory E ⊂ A or
F ⊂ B is enlarged, the derived category D(E) or D(F) gets
deflated (comes closer to the conventional derived category).

In other words, the larger the exact subcategory E or F,
the smaller the derived category D(E) or D(F).
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Example: locally Noetherian category

Let A be a locally Noetherian Grothendieck abelian category, and
let J ∈ A be an injective object such that AddA(J) = Ainj.

Then T = J is an ∞-tilting object in A. Emax(T ) ⊂ A is the full
subcategory of Gorenstein injective objects.

Set B = σT (A). Then Ainj is closed under coproducts in A, and
Bproj is closed under products in B. The additive categories Ainj

and Bproj are equivalent.

(T = J, E = Ainj) is a minimal ∞-tilting pair in A. (W = P,
F = Bproj) is the corresponding minimal ∞-cotilting pair in B.

The related derived equivalence is

Dco(A) ' Hot(Ainj) = Hot(Bproj) ' Dctr(B).
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Example: Gorenstein locally Noetherian category

Let us say that a locally Noetherian Grothendieck category A is
n-Gorenstein if the object T = J as above is n-tilting.

(Equivalently, all injective objects in A have projective
dimension 6 n and A has a generator of finite injective dimension.)

Suppose A is n-Gorenstein. Then there are triangulated
equivalences

D(A) ' D(Emax) = D(Fmax) ' D(B).

Furthermore, there is a commutative diagram of triangulated
equivalences and Verdier quotient functors

D(Emin) Dco(A) Dctr(B) D(Fmin)

D(Emax) D(A) D(B) D(Fmax)

���� ����
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