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Infinitely generated Wakamatsu tilting theory.

This means the theory of infinitely generated (co)tilting
modules/objects of infinite projective and injective dimension
(i. e., infinitely generated n-tilting theory for n = o).

Joint work with Jan St’ovigek:

L. Positselski, J. St'ovitek. The tilting-cotilting correspondence.
arXiv:1710.02230

L. Positselski, J. St'ovitek. oo-tilting theory. arXiv:1711.06169
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Let C be an additive category and M € C an object.
How does one produce an abelian category out of this datum?

Naive approach: (C, M) — S-Mod, where S = End¢(M)°P

(The notation means: S acts in M € C on the right, and we
consider the category of left S-modules).
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presented) functors Addc(M)°P — Ab, which is abelian because
Addc(M) has weak kernels.

Construction 2: Let T : Sets — Sets be the functor taking a set
X to the set Homg(M, M(X)). Then the functor T is a monad on
the category of sets. One can construct B as the category of all
algebras/modules over this monad.

Remark: Generally, the category of algebras/modules over a monad
T: Sets — Sets is abelian if and only if it is additive. A monad T
is called additive if this is the case. Cocomplete abelian categories
B with a fixed projective generator P correspond bijectively to
additive monads on the category of sets.
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The topology on &: a base of neighborhoods of zero is formed by
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B = G-Contra is the category of left G-modules endowed with
the operations of infinite summation with the coefficients —
zero-converging families of elements in &.

Example 2. Let R =7 and M = Z[p~!]/Z. Then & =Z, is
the topological ring of p-adic integers.

B = Z,-Contra is equivalent to the full subcategory in Ab
consisting of all the abelian groups B such that
Homy(Z[p~], B) = 0 = Extl(Z[p""], B).
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Emax(T) C A consists of all the objects E € A such that
o Ext)(T,E) =0 forall i >0;
@ there exists an exact sequence

Xo)
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Homa (T, —).
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generator P € B. Then products exist and are exact in B.

An object W € B is called weakly cotilting if Exty(WX, W) =0
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Let W € B be a weakly cotilting object. The full subcategory
Frax(W) C B is constructed in the way dual to the above
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Let A be an abelian category with an injective cogenerator J and
an oo-tilting object T € A.

Put B=07(A), so Adda(T) =~ Bproj. Let P € Bpyoj be
the object corresponding to T € Add(T); then P is a projective
generator of the abelian category B.

The embedding functor Bproj ~ Adda(T) — A can be uniquely
extended to a right exact functor : B — A.

The embedding functor Adda(T) =~ Bproj — B can be extended
to a left exact functor W: A — B right adjoint to ¢.

Set W = V(J) € B. O
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V: Bnax(T) = Frax(W) : 0.

If the projective dimension pd,(T) and the injective dimension
idg(W) are both finite, then they agree, pd(T) = n = idg(W).

In this case, the object T € A is called n-tilting, and the object
W € B is called n-cotilting.
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e Adda(T) C E;

o Exty(T,E)=0forall E€Eandi>0;

o E is closed under the cokernels of monomorphisms and
extensions in A;

@ every Adda(T)-precover of an object of E is an epimorphism
in A with the kernel belonging to E.

An object T € A is oo-tilting if and only if it is a part of some
oo-tilting pair (T,E) in A.

In this case, all such co-tilting pairs (T, E) with the fixed object T
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In particular, (T, Enax(T)), with the full subcategory
Emax(T) C A constructed above, is the maximal co-tilting pair for
an oo-tilting object T € A.

There is also the minimal oo-tilting pair (T, Emin(T)).

This means that, for any oco-tilting pair (T, E), one has
Enin(T) CE C Enax(T).
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The definition of an oo-cotilting pair (W, F) in B is dual to that of
an oo-tilting pair.

There is a one-to-one correspondence between oco-tilting pairs
(T,E) in abelian categories A and co-cotilting pairs (W, F) in
abelian categories B provided by the rules

e B=o7(A), and conversely, A = my/(B);

e P=WVY(T)and W = W(J), and conversely,
J=&(W) and T = &(P);

o F = W(E), and conversely, E = ¢(F).
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When T is n-tilting and W is n-cotilting, one has

D(A) ~ D(Enax) =~ D(Fax) ~ D(B).
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DCO(A) Dctr(B)
D(E) D(F)
D(A) D(B)
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So, generally speaking, there is a derived equivalence between A
and B on some intermediate level between the co/contraderived
and the conventional derived categories.

There may be many (co)tilting pairs for a given (co)tilting object
in an abelian category. When the exact subcategory E C A or

F C B is enlarged, the derived category D(E) or D(F) gets
deflated (comes closer to the conventional derived category).

In other words, the larger the exact subcategory E or F,
the smaller the derived category D(E) or D(F).
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Let A be a locally Noetherian Grothendieck abelian category, and
let J € A be an injective object such that Adda(J) = Aiy;.

Then T = Jis an oo-tilting object in A. Epax(T) C A is the full
subcategory of Gorenstein injective objects.

Set B =o07(A). Then Ajy; is closed under coproducts in A, and
Bproj is closed under products in B. The additive categories Ajy;
and By,,; are equivalent.

(T = J, E = Ayyj) is a minimal oo-tilting pair in A. (W = P,
F = Bp,roj) is the corresponding minimal oo-cotilting pair in B.

The related derived equivalence is

D(A) ~ Hot(Ainj) = Hot(Bpyroj) ~ D (B).
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Example: Gorenstein locally Noetherian category

Let us say that a locally Noetherian Grothendieck category A is
n-Gorenstein if the object T = J as above is n-tilting.

(Equivalently, all injective objects in A have projective
dimension < n and A has a generator of finite injective dimension.)

Suppose A is n-Gorenstein. Then there are triangulated
equivalences

D(A) ~ D(Emax) = D(Fax) ~ D(B).

Furthermore, there is a commutative diagram of triangulated
equivalences and Verdier quotient functors

D(Emin) = D*(A) == D*'(B) =— D(Fuin)
D(Emax) — D(A) - D(B) - D(Fmax)
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