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Graded algebras

Let k be a fixed ground field. A positively graded algebra A over k
is a graded vector space A =

⊕∞
n=0 An with an associative

multiplication Ai ⊗k Aj −→ Ai+j such that A0 = k · 1 is
a one-dimensional vector space spanned by the unit element. We
will assume all our graded algebras to have finite-dimensional
components, dimAn <∞ ∀ n.

The Hilbert series of a graded algebra A is the formal power series

A(z) =
∑∞

n=0
(dimk An)zn.

The free graded algebra (or tensor algebra) generated by a vector
space V is the graded algebra T (V ) with the components
Tn(V ) = V⊗n = V ⊗k V ⊗k · · · ⊗k V (n factors).
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Quadratic algebras

A graded algebra A is said to be generated by A1 if the natural
graded algebra map π : T (A1) −→ A is surjective. A graded
algebra A is quadratic if the kernel ideal J of the map π is
generated by elements of degree 2, that is J = (R) ⊂ T (A1),
where R = J ∩ (A1 ⊗k A1).

A quadratic algebra A is determined by its degree-one component
V = A1 and an arbitrary vector subspace R ⊂ V ⊗k V . The
degree-n component of the quadratic algebra A = T (V )/(R) is
then computable as

An = V⊗n
/∑n−1

i=1
V⊗i−1 ⊗k R ⊗k V

⊗n−i−1.

The dual quadratic algebra B = A! has the space of generators
B1 = V ∗ and the subspace of quadratic relations R⊥ ⊂ V ∗ ⊗k V

∗,
where R⊥ is the orthogonal complement to R with respect to
the natural identification (V ⊗k V )∗ ∼= V ∗ ⊗k V

∗.
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Graded Tor and Ext

Given a graded algebra A and a graded A-module M, a projective
resolution of the A-module M can be chosen so that it consists of
graded A-modules and has homogeneous differentials. Therefore,
for any graded right A-module M and graded left A-module N,
the vector space TorA(N,M) is naturally bigraded,

TorAi (N,M) =
⊕

j
TorAi ,j(N,M),

where i is the usual homological grading of the Tor, while j is
the internal grading induced by the grading of A, M, and N. In
particular, for a positively graded algebra A one has

TorAi (k , k) =
⊕

j>i
TorAi ,j(k , k),

where k is endowed with the trivial left and right A-module
structures. The story of the bigraded Ext is a bit more
complicated, but still for the trivial left A-module k one has

ExtiA(k, k) =
∏

j>i
Exti ,jA (k, k).
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Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗

for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k)

, and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k).

So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if

TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic.

It is computable as
follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows.

Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A

, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A.

So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A.

Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Low-degree and diagonal cohomology

There is a natural isomorphism of vector spaces
Exti ,jA (k , k) ∼= TorAi ,j(k , k)∗ for any positively graded algebra A and
integers i , j .

For any positively graded algebra A, the graded vector space of
minimal generators of A is isomorphic to TorA1 (k , k), and
the graded space of minimal relations in A is TorA2 (k , k). So
a graded algebra A is quadratic if and only if TorA1,j(k, k) = 0 for

all j > 1 and TorA2,j(k, k) = 0 for all j > 2.

For any positively graded algebra A, the graded algebra of diagonal
cohomology

⊕∞
n=0 Extn,nA (k , k) is quadratic. It is computable as

follows. Denote by qA the “quadratic part” of A, that is the
quadratic algebra generated by A1 and defined by those quadratic
relations which hold in A. So qA is the universal quadratic algebra
endowed with a graded algebra morphism qA −→ A. Then one has⊕∞

n=0
Extn,nA (k , k) ∼= (qA)!.

Leonid Positselski Koszul algebras and random sequences 5 / 28



Koszul algebras

A positively graded algebra A is called Koszul if TorAi ,j(k , k) = 0 for
all i 6= j . In particular, all Koszul algebras are quadratic.

For a quadratic algebra A, the first nontrivial Koszulity condition
appears in the internal degree 4:

TorA3,4(k , k) = 0,

then there are two conditions in the internal degree 5:

TorA3,5(k, k) = 0 = TorA4,5(k , k) = 0, etc.

A quadratic algebra A is Koszul if and only if the dual quadratic
algebra A! is Koszul, and if and only if the opposite algebra Aop is
Koszul.

For a Koszul algebra A, one has Ext∗A(k , k) ∼= A!. Computing
the Euler characteristic (of, say, the bar-complex), one obtains
a formula connecting the Hilbert series of A and A!:

A(z)A!(−z) = 1.
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Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space.

A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections.

A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive

if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds.

A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive

if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive.

A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds.

A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive

and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributive lattices

Let W be a vector space. A lattice of subspaces in W is a set of
subspaces closed under finite sums and intersections. A lattice Λ of
subspaces in W is said to be distributive if for all X , Y , Z ∈ Λ the
distributivity identity

(X + Y ) ∩ Z = X ∩ Z + Y ∩ Z

holds. A collection of subspaces X1, . . . , Xn−1 in W is said to be
distributive if the lattice of subspaces in W generated by X1, . . . ,
Xn−1 is distributive.

Any pair of subspaces A, B ⊂W is distributive. A triple of
subspaces A, B, C ⊂W is distributive if and only if the equation
(A + B) ∩ C = A ∩ C + B ∩ C holds. A quadruple of subspaces A,
B, C , D ⊂W is distributive if and only if every its proper subset is
distributive and two equations hold:

(A + B + C ) ∩ D = A ∩ D + B ∩ D + C ∩ D,

(A + B) ∩ C ∩ D = A ∩ C ∩ D + B ∩ C ∩ D.

Leonid Positselski Koszul algebras and random sequences 7 / 28



Distributing basises

A collection of subspaces X1, . . . , Xn−1 in a vector space W is
distributive if and only if it is a direct sum of collections of
subspaces in one-dimensional vector spaces. Equivalently, this
means that there exists a basic Ω = {wα} in W such that Xi is
spanned by Xi ∩ Ω for every i = 1, . . . , n − 1.

Koszulity and distributivity

Theorem (J. Backelin, Ph.D. Thesis, ’81)

A quadratic algebra A = T (V )/(R), where R ⊂ V ⊗k V , is Koszul
if and only if for every n > 1 the collection of subspaces

X
(n)
i = V⊗i−1 ⊗k R ⊗k V

⊗n−i−1, i = 1, . . . , n − 1

is distributive in the vector space W (n) = V⊗n.

In particular, for n = 4 the triple of subspaces R ⊗k V ⊗k V ,
V ⊗k R ⊗k V , V ⊗k V ⊗k R ⊂ V⊗4 should be distributive, etc.
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Examples: Monomial algebras

Let S be an oriented graph with m vertices, that is a subset
S ⊂ {1, . . . ,m}2. The noncommutative quadratic monomial
algebra A corresponding to S is the quadratic algebra with
generators x1, . . . , xm and relations xixj = 0 for all (i , j) /∈ S .
Oriented paths of length n (passing through n vertices) in S form
a basis of the component An. The noncommutative quadratic
monomial algebras are Koszul.

Let T be an unoriented graph with m vertices, that is a subset
T ⊂ {1, . . . ,m}2

/
(Z/2). The commutative quadratic monomial

algebra A corresponding to T is the quotient algebra of the
polynomial algebra k[x1, . . . , xm] by the relations xixj = 0 for all
{i , j} /∈ T . If T contains no loops, then full subgraphs on
n vertices in T form a basis of the component An. The
commutative quadratic monomial algebras are Koszul, too.
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Hilbert series of quadratic algebras

The Hilbert series of quadratic algebras can be very complicated.
The following family of quadratic algebras Aλ with 3 generators x ,
y , z and 3 relations 

xz = xy ,

zx = yx ,

zy = λyz , λ ∈ k∗

has an infinite number of different Hilbert series, depending on
whether the parameter λ is a root of unity and its primitive degree.
Indeed, one computes that

xyn+1x = xzynx = λnxynzx = λnxyn+1x ,

hence xyn+1x = 0 whenever λn 6= 1. So the “size” of the algebra
depends on whether λ is a root of unity, and of what degree.
The algebra Aλ is Koszul if and only if λ is not a root of unity.
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Hilbert series of quadratic algebras

Let F be a system of polynomial Diophantine equations in
nonnegative integer variables x1, . . . , xl with the coefficients in k .
Let f (z) =

∑∞
n=0 fnz

n be the formal power series with
the coefficient fn equal to the number of solutions of F with
x1 + · · ·+ xl = n. Then there exists a quadratic algebra A,
constructed in a straightforward manner from the system of
equations F , with the number of generators m and the number of
relations r depending on the “size” of F in a simple way, such that

A(z)−1 = 1−mz + rz2 − z3f (z).

The algebra A has global dimension at most 3, and

dimk TorA3,3+n(k , k) = fn.

The algebra A is Koszul if and only if F has no nonzero solutions.
So computing the Hilbert series and Tor spaces of quadratic
algebras is about as easy as solving Diophantine equations.
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Hilbert series of Koszul algebras

The previous examples (due to Fröberg–Gulliksen–Löfwall, 1986)
show that it is algorithmically unsolvable to determine whether
a given quadratic algebra A is Koszul. But if you already know
that A is Koszul, then computing the Hilbert series A(z) becomes
a better-behaved problem, at least in some sense.

Theorem (Polishchuk–P., 1992–2005)

The set of Hilbert series of Koszul algebras with m generators over
a fixed field k is finite, of the cardinality not exceeding mm4

if
m > 2. The set of all Hilbert series of Koszul algebras with m
generators over all fields (of all characteristics) is also finite.
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show that it is algorithmically unsolvable to determine whether
a given quadratic algebra A is Koszul.

But if you already know
that A is Koszul, then computing the Hilbert series A(z) becomes
a better-behaved problem, at least in some sense.

Theorem (Polishchuk–P., 1992–2005)

The set of Hilbert series of Koszul algebras with m generators over
a fixed field k is finite, of the cardinality not exceeding mm4

if
m > 2. The set of all Hilbert series of Koszul algebras with m
generators over all fields (of all characteristics) is also finite.

Leonid Positselski Koszul algebras and random sequences 12 / 28



Hilbert series of Koszul algebras

The previous examples (due to Fröberg–Gulliksen–Löfwall, 1986)
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Vague idea of proof: Deformation theory

The point is that deformations of a Koszul algebra A are controlled
by its component A3 of degree 3, because obstructions to flat
deformations lie in the Hochschild cohomology space HH3(A,A).
The A⊗k A

op-module A is Koszul, so the Tor space
TorA⊗kA

op

3 (k,A), describing the 3rd component of the minimal
projective resolution of this graded module, is concentrated in
the internal degree j = 3.

Quadratic algebras A with dimk A1 = m and dimk A2 = s form
an algebraic variety (a Grassmannian) Qm,s . Quadratic algebras
with fixed dimA3 = u form a locally closed subvariety
Qm,s,u ⊂ Qm,s . A result going back to Drinfeld (1986) tells that
the Koszul algebras in Qm,s,u form a countable intersection of open
subvarieties, and their Hilbert series is locally constant there. So
the number of Koszul Hilbert series in Qm,s,u does not exceed
the number of irreducible components.
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Rationality conjecture

The following conjecture I very much wanted to prove in
the beginning of 1990’s:

Conjecture

For any Koszul algebra A, the Hilbert series A(z) is a rational
function, that is, a fraction of two polynomials in z.

This conjecture is confirmed by the facts that the Hilbert series of
quadratic monomial algebras are many and varied, but all of them
are rational.

Put an = dimAn. There are no algebraic depencies between
the numbers an, but I discovered that they satisfy a huge system of
polynomial inequalities, starting as

an > 0, aiaj − ai+j > 0,

aiajak − ai+jak − aiaj+k + ai+j+k > 0

for all i , j , k > 1, etc.
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Meromorphic continuation problem

Then I decided that the problem had an analytic flavor. I wanted
to prove, at least, that the series A(z) defines a meromorphic
function in the whole complex plane.

Several years later, I learned that it would be sufficient.

Theorem (E. Borel, 1894)

Let f (z) =
∑∞

n=0 fnz
n be a formal power series with integer

coefficients. Assume that f defines a meromorphic function in
the circle |z | < ρ of a radius ρ > 1. Then f is a fraction of two
polynomials.

In the meantime, we were able to prove the following theorem.
Obviously, for any graded algebra A generated by A1, one has
dimAn 6 (dimA1)n for all n > 0. So the power series A(z) is
holomorphic for |z | < 1/m if m = dimA1.
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Meromorphic continuation theorem

Theorem (Polishchuk–P., 1993–2005)

Let A be a Koszul algebra with dimk A1 = m. Then the power
series A(z) defines a meromorphic function in the circle |z | < 2/m.
In fact, one has A(z) 6= −1 for |z | < 2/m, so the power series
(1 + A(z))−1 is holomorphic for |z | < 2/m.

Why is it so? Introduce a variable y = mz/2. Then the claim is
that the coefficients hn of the power series∑∞

n=1
hny

n =
1− A(2y/m)

1 + A(2y/m)

satisfy −1 6 hn 6 1 for all n > 1. The explanation is that
the numbers hn are, essentially, probabilities of certain events
related to the algebra A. More precisely, the numbers
0 6 (1 + hn)/2 6 1 are probabilities of events.
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Basic Concepts of Probability

Let Ω be a set. A σ-algebra of subsets F in Ω is a nonempty set of
subsets closed under countable unions, countable intersections, and
complements. A probability measure on F is a countably additive
measure P : F −→ [0, 1] ⊂ R such that P(Ω) = 1. A probability
space is a triple (Ω,F ,P), where F is a σ-algebra of subsets in Ω
and P is a probability measure on F . A subset in Ω is measurable
if it belongs to F . Measurable subsets are interpreted as events.

If T is a topological space, then the Borel σ-algebra of subsets in
T is the σ-algebra generated by the open subsets. Borel subsets
are the subsets belonging to the Borel σ-algebra.

A function f : Ω −→ T is measurable if the preimages of open
subsets are measurable, or equivalently, the preimages of Borel
subsets are measurable.

A random sequence (ξi )i∈Z with values in T is a sequence of
measurable functions ξi : Ω −→ T defined on some probability
space Ω.
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Random sequences

When considering a random sequence (ξi ), we are only interested
in probabilities of events associated with this random sequence.

Let Ω′ be another set with a σ-algebra of subsets F ′, and let
R : Ω −→ Ω′ be a map such that the preimages of subsets
belonging to F ′ under R belong to F . Suppose that the functions
ξi : Ω −→ T factor through R, leading to functions ξ′i : Ω′ −→ T .
Define a probability measure P ′ on F ′ as the push-forward of
the measure P on F . Then the random sequence (ξ′i ) on Ω′ is
considered to be equivalent to the random sequence (ξi ) on Ω.

Consider the topological space TZ with the product topology, and
endow with the σ-algebra of Borel subsets B. Consider the map
Ξ = (ξi )i∈Z : Ω −→ TZ. Then, up to the above equivalence,
a random sequence (ξi )i∈Z is described by the push-forward
D = Ξ∗(P) of the probability measure P on F with respect to the
map Ξ. So D : B −→ [0, 1] is a Borel probability measure on TZ

describing a random sequence (ξi )i∈Z with values in T .
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Random sequences

Assume for simplicity that T is a discrete finite set.

Denote by B0

the standard topology base of the product topology on TZ

consisting of the cylinder subsets

{(ti )i∈Z ∈ TZ | (ti1 , . . . , tin) ∈ U}, i1, . . . , in ∈ Z, U ⊂ T {i1,...,in}.

Then any finitely-additive measure P0 : B0 −→ [0, 1] with
P0(TZ) = 1 can be uniquely extended to a probability measure
P : B −→ [0, 1] on TZ. In other words, in order to define a random
sequence (ξi )i∈Z, it suffices to specify, in a compatible way,
the probabilities of events depending on finite subsets of
the variables ξi only.

We are interested in random 0-1-sequences, so T = {0, 1}. We
will also assume that (ξi )i∈Z is stationary , that is, for every k ∈ Z,
the sequence (ξk+i )i∈Z is equivalent to (ξi )i∈Z:

P{ξ1 = t1, . . . , ξn = tn} = P{ξk+1 = t1, . . . , ξk+n = tn}.
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Stationary random 0-1 sequences

A stationary random sequence 0-1 sequence (ξi )i∈Z is uniquely
determined by the collection of numbers

0 6 [t1, . . . , tn] = P{ξ1 = t1, . . . , ξn = tn} 6 1,

n > 0, ti ∈ {0, 1}, which has to satisfy the equations [ ] = 1 and

[0, t1, . . . , tn] + [1, t1, . . . , tn] = [t1, . . . , tn]

= [t1, . . . , tn, 0] + [t1, . . . , tn, 1].

Let us introduce the following starred notation:

[s1, . . . , sk−1, ∗, sk+1, . . . , sn]

= [s1, . . . , sk−1, 0, sk+1, . . . , sn] + [s1, . . . , sk−1, 1, sk+1, . . . , sn],

where si ∈ {0, 1, ∗}. So the usage of the starred notation means
that we fix the values of ξi for some positions 1 6 i 6 n, while
leaving them to be arbitrary in the remaining positions; and
compute the probability.
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In the starred notation, the above consistency equation takes
the form [∗, t1, . . . , tn] = [t1, . . . , tn] = [t1, . . . , tn, ∗].

One-dependent random sequences

The famous Markov property in stochastic processes says that
“the future is independent of the past if the present is known”.
One-dependence is the opposite of Markovianness. It says that
the future is independent of the past if nothing is known about
the present.

This means the equation

P{ξ−k = t−k , . . . , ξ−1 = t−1, ξ1 = t1, . . . , ξl = tl}
= P{ξ−k = t−k , . . . , ξ−1 = t−1} · P{ξ1 = t1, . . . , ξl = tl},

for probabilities; or, in the bracket and star notation,

[t−k , . . . , t−1, ∗, t1, . . . , tl ] = [t−k , . . . , t−1] · [t1, . . . , tl ].
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One-dependent stationary 0-1 sequences

Theorem

A stationary one-dependent random 0-1 sequence (ξi )i∈Z is
uniquely determined by the sequence of real numbers

α2 = [1], α3 = [11], . . . , αn = [1n−1], . . . .

All the other probabilities like [t1, . . . , tn] are computable as
polynomials in α2, α3, . . .

Example of computation: [1010] =
[1 ∗ 1∗]− [111∗]− [1 ∗ 11] + [1111] =
[1][1]− [111]− [1][11] + [1111] = α2

2 − α4 − α2α3 + α5.

The sequence of real numbers (0 6 αn 6 1)n>2 has to satisfy
the system of polynomial inequalities

[t1, . . . , tn] > 0 for all t1, . . . , tn ∈ {0, 1}, n > 1.
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Koszul algebras and one-dependent sequences

Theorem (P., 1993–2005)

For any Koszul algebra A, there exists a (unique) stationary
one-dependent random 0-1 sequence (ξi )i∈Z with the parameters

[1n−1] = αn = an/a
n
1, where an = dimk An.

Here is the idea of the construction. For any fin.-dim. vector space
W and a subspace X ⊂W , the fraction 0 6 (dimX )/(dimW ) 6 1
is interpreted as the probability of an event.

For any distributive collection of subspaces X1, . . . , Xn−1 ⊂W ,
choose a distributing basis Ω in W and consider it as a probability
space with the full σ-algebra of measurable subsets F = 2Ω and
the uniform probability measure P({w}) = 1/(dimW ) for every
w ∈ Ω. Put ξi (w) = 0 if w ∈ Xi and ξi (w) = 1 otherwise, for
every w ∈ Ω and 1 6 i 6 n − 1. We obtain a finite random 0-1
sequence (ξ1, . . . , ξn−1).
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Given a Koszul algebra A

, we construct, for every n > 1, a finite
random 0-1 sequence (ξ1, . . . , ξn−1) in such a way that these
sequences agree when n varies. This will define the probabilities
[t1, . . . , tn−1] for all ti ∈ {0, 1} and n > 1, which is sufficient.

Put V = A1 and W (n) = V⊗n. Consider the collection of n − 1
subspaces X

(n)
i = V⊗i−1 ⊗k R ⊗k V

⊗n−i−1 ⊂W (n), i = 1, . . . ,
n − 1, where R ⊂ V ⊗k V is the space of quadratic relations in A.
The above construction defines the desired random 0-1 sequence
(ξ1, . . . , ξn−1).

It remains to check the equations for consistency and
one-dependence: [t1, . . . , tk−1, ∗, tk+1, . . . , tk+l−1] =
[t1, . . . , tk−1] · [tk+1, . . . , tk+l−1]. These hold, essentially, for
the following reason.
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Sketch of proof of the theorem cont’d.

Consider the sequence of subspaces X
(k+l)
1 , . . . , X

(k+l)
k+l−1 ⊂ V⊗k+l

,

and drop X
(k+l)
k out of this sequence. Then the vector space

V⊗k+l decomposes as the tensor product V⊗k ⊗k V
⊗l ,

V ⊗k · · · ⊗k V = (V ⊗k · · · ⊗k V )⊗k (V ⊗k · · · ⊗k V ),

and the remaining collection of k + l − 2 subspaces in V⊗k+l arises
from k − 1 subspaces in V⊗k and l − 1 subspaces in V⊗l .

This kind of “tensor independence” of X
(k+l)
1 , . . . , X

(k+l)
k−1 from

X
(k+l)
k+1 , . . . , X

(k+l)
k+l−1 implies the probabilistic independence of

(ξ1, . . . , ξk−1) from (ξk+1, . . . , ξk+l−1).

Remark

For the one-dependent sequence corresponding to a Koszul algebra
A, one also has [0n−1] = a!

n/a
n
1, where a!

n = dimk A
!
n.
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and the remaining collection of k + l − 2 subspaces in V⊗k+l arises
from k − 1 subspaces in V⊗k and l − 1 subspaces in V⊗l .

This kind of “tensor independence” of X
(k+l)
1 , . . . , X

(k+l)
k−1 from

X
(k+l)
k+1 , . . . , X

(k+l)
k+l−1 implies the probabilistic independence of

(ξ1, . . . , ξk−1) from (ξk+1, . . . , ξk+l−1).

Remark

For the one-dependent sequence corresponding to a Koszul algebra
A, one also has [0n−1] = a!

n/a
n
1, where a!

n = dimk A
!
n.
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Sketch of proof of the meromorphic continuation theorem.

Let A be a Koszul algebra with dimk A1 = m. We want to show
that the function (1 + A(z))−1 is holomorphic for |z | < 2/m.

Recall the variable change y = mz/2 and the formula∑∞

n=1
hny

n =
1− A(2y/m)

1 + A(2y/m)
.

We want to show that −1 6 hn 6 1. For this purpose, one
computes that hn is the following probability of a “±1 event”:

(−1)nhn = P
{∑n−1

i=1
ξi is even

}
− P

{∑n−1

i=1
ξi is odd

}
.
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Two-block factor sequences

A simple and straightforward way in which one-dependent random
sequences arise in probability theory is called the two-block factor
construction. Let

. . . , η−1, η0, η1, η2, . . . : Ω −→ [0, 1]

be a sequence of independent random variables, taking values (let
us say) in the interval [0, 1] ⊂ R. Since we are interested in
stationary sequences, we shall also assume that ηi are identically
distributed. Let f : [0, 1]2 −→ {0, 1} be a Borel measurable
function of two variables. Put

ξi = f (ηi , ηi+1) : Ω −→ {0, 1}, i ∈ Z.

Then (ξi )i∈Z is a stationary one-dependent random 0-1 sequence,
called a “two-block factor”.

Algebraically, two-block factor random sequences as above arise
from noncommutative quadratic monomial algebras.
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Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences

satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.

This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic

of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature

(largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)

that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited.

The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



Conclusion

It has been established in the probability literature that
the probabilities αn = [1n−1] for two-block factor sequences satisfy
stricter inequalities than for one-dependent sequences generally.
This story was also considered as a part of the wider topic of “Bell
inequalities” in quantum mechanics.

However, the present understanding of (either of) these systems of
inequalities remains very limited.

Likewise, it has been established in the algebraic literature (largely
or even exclusively by computer-assisted search and classification)
that there exist Hilbert series of Koszul algebras that cannot be
obtained as Hilbert series of quadratic monomial algebras.

But the present understanding of the Hilbert series of Koszul
algebras remains very limited. The rationality conjecture is still
wide open.

Leonid Positselski Koszul algebras and random sequences 28 / 28



E. Borel. Sur une application d’un théorème de M. Hadamard.
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