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J. Šaroch. Approximations and Mittag-Leffler conditions —
the tools. Israel Journ. of Math. 226, p. 737–756, 2018.
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J. Šaroch. Approximations and Mittag-Leffler conditions —
the tools. Israel Journ. of Math. 226, p. 737–756, 2018.
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Background: Precovers and Covers

Let A be a category and T ⊂ A be a class of objects. A morphism
p : T −→ M in A is said to be a T -precover (of M) if T ∈ T and
every morphism p′ : T ′ −→ M with T ′ ∈ T factors through p (i.e.,
there exists a morphism f : T ′ −→ T such that p′ = pf ).

A morphism p : T −→ M is said to be a T -cover if it is
a T -precover and every endomorphism f : T −→ T for which
pf = p is an isomorphism (i.e., f is invertible).

A class of objects T in a category A is said to be precovering
(resp., covering) if every object of A has a T -precover (resp.,
cover).
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Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring

and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules.

Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits.

Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Module Categories

Theorem (Enochs, 1981)

Let A be an associative ring and T ⊂ A = A-Mod be a class of
left A-modules. Assume that T is precovering and closed under
filtered colimits. Then T is covering.

Conjecture (Enochs, late 1990’s)

Every covering class in A = A-Mod is closed under filtered colimits.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 4 / 26



Covers in Locally Presentable Abelian Categories

Theorem (J. Rosický & L.P., 2015)

Let A be a locally presentable category and T ⊂ A be a class of
objects. Assume that T is precovering and closed under filtered
colimits. Then T is covering.

Main Conjecture

Let B be a locally presentable abelian category with enough
projective objects. Then the class of all projective objects in B is
covering if and only if it is closed under filtered colimits.

Notice that in an abelian category with enough projective objects
the class of projective objects is always precovering (any
epimorphism with a projective domain is a precover). Hence
the “if” assertion of the conjecture follows from the theorem.

The “only if” assertion is the nontrivial part of the conjecture.
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Let A be a locally presentable category and T ⊂ A be a class of
objects. Assume that T is precovering and closed under filtered
colimits. Then T is covering.

Main Conjecture

Let B be a locally presentable abelian category with enough
projective objects. Then the class of all projective objects in B is
covering if and only if it is closed under filtered colimits.

Notice that in an abelian category with enough projective objects
the class of projective objects is always precovering (any
epimorphism with a projective domain is a precover). Hence
the “if” assertion of the conjecture follows from the theorem.

The “only if” assertion is the nontrivial part of the conjecture.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 5 / 26



Covers in Locally Presentable Abelian Categories

Theorem (J. Rosický & L.P., 2015)
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Left Perfect Rings

Main Conjecture is true for the categories of modules over
associative rings B = R-Mod. This is a classical result:

Theorem (Bass, 1960)

The following conditions are equivalent for an associative ring R:

i all flat left R-modules have projective covers;

ii all left R-modules have projective covers;

iii all flat left R-modules are projective.

Associative rings R satisfying these equivalent conditions are called
left perfect.

Since for any ring R the flat R-modules are precisely the filtered
colimits of projective modules, Main Conjecture holds for module
categories in view of the equivalence (ii)⇐⇒ (iii).
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Overview

The idea of our approach to proving (some particular cases of)
the Enochs conjecture is to first prove Main Conjecture for
the categories of contramodules over certain topological rings, by
partly deducing it from Bass’ results about left perfect rings and
partly arguing along the lines of Bass’ arguments, extending them
from the module to the contramodule case.

Then we deduce particular cases of the Enochs conjecture from
particular cases of Main Conjecture, using what might be called
a “generalized tilting” technology.

Now let us have a little further discussion of Bass’ results before
proceeding to explain their generalization to contramodules and
the application to the Enochs conjecture.
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Bass Flat Modules

A Bass flat left R-module B is a filtered colimit of a chain of free
left R-modules with one generator, indexed by the ordinal ω of
nonnegative integers:

B = lim−→ (R
∗a1−−→ R

∗a2−−→ R
∗a2−−→ · · · ),

where an ∈ R and ∗a : R −→ R denotes the operator of right
multiplication with a.

Theorem (Bass, 1960 – cont’d)

The following conditions are also equivalent to the above three
conditions for an associative ring R:

i[ all Bass flat left R-modules have projective covers;

iii[ all Bass flat left R-modules are projective.
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T-Nilpotent Ideals

A ring without unit J is said to be left T-nilpotent if for every
sequence of elements a1, a2, . . . ∈ J there exists m > 1 such that
a1a2 · · · am = 0.

Theorem (Bass, 1960 – fin’d)

The following condition is also equivalent to the above:

iv the Jacobson radical H of the ring R is left T-nilpotent, and
the quotient ring R/H is semisimple Artinian.

The following “T-nilpotent Nakayama lemma” explains
the importance of the T-nilpotency condition.

Lemma (Bass, 1960)

a J is left T-nilpotent if and only if for every nonzero right
J-module N there exists 0 6= x ∈ N such that xJ = 0.

b If J is left T-nilpotent, then for any nonzero left J-module M
one has JM  M.
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Contramodules over Topological Rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

For any set X , denote by R[[X ]] the set of all infinite formal linear
combinations

∑
x∈X rxx of elements of X with the coefficients

forming a family converging to zero in the topology of R, i.e., for
any neighborhood of zero U ⊂ R the set {x | rx /∈ U} must be
finite.

It follows from the conditions on the topology of R that there is
a well-defined “opening of parentheses” map

φX : R[[R[[X ]]]] −−→ R[[X ]]

performing infinite summations in the conventional sense of
the topology of R to compute the coefficients. There is also
the obvious “point measure” map εX : X −→ R[[X ]]. The natural
transformations φ and ε define the structure of a monad on
the functor X 7−→ R[[X ]] : Sets −→ Sets.
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Contramodules over Topological Rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

A left contramodule over the topological ring R is
an algebra/module over the monad X 7−→ R[[X ]] on Sets, that is

a set C

endowed with a contraaction map π : R[[C]] −→ C

satisfying the contraassociativity equation π ◦R[[π]] = π ◦ φC

R[[R[[C]]]] ⇒ R[[C]] −→ C

and the contraunitality equation π ◦ εC = idC

C −→ R[[C]] −→ C.

The composition of the contraaction map π : R[[C]] −→ C with
the obvious embedding R[C] −→ R[[C]] defines the underlying left
R-module structure on every left R-contramodule.
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Contramodules over Topological Rings

For any set X , the set R[[X ]] has a natural left R-contramodule
structure

with the contraaction map
π = φX : R[[R[[X ]]] −→ R[[X ]]. The left R-contramodule R[[X ]]
is called the free left R-contramodule generated by the set X .

The category of left R-contramodules is abelian with exact
functors of infinite products and enough projective objects, which
are the direct summands of the free R-contramodules R[[X ]].
The forgetful functor R-Contra −→ R-Mod is exact and preserves
infinite products.

Let λ be the cardinality of a base of neighborhoods of zero in R.
Then the category R-Contra is λ+-locally presentable. The free
R-contramodule with one generator R = R[[∗]] is
a λ+-presentable projective generator of R-Contra.
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Contratensor Product & Flat Contramodules

A right R-module N is called discrete if the action map
N ×R −→ N is continuous in the given topology of R and
the discrete topology of N, i.e., if the annihilator of any element
of N is an open right ideal in R.

The contratensor product of a discrete right R-module N and
a left R-contramodule C is an abelian group N �R C constructed
as the cokernel of (the difference of) two natural maps

N ⊗Z R[[C]] ⇒ N ⊗Z C,

one of which is induced by the left contraaction map π and
the other one by the discrete right action of R in N.

A left R-contramodule C is called flat if −�R C is an exact functor
Discr-R −→ Ab. All projective left R-contramodules are flat.

The class of flat R-contramodules is closed under filtered colimits
in R-Contra, so all filtered colimits of projective R-contramodules
are flat. It is not known whether the converse is true.
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Flat Covers in Contramodule Categories (a Digression)

Theorem (J. Rosický & L.P., 2015)

Let R be a complete, separated topological ring with a countable
base of neighborhoods of zero consisting of open right ideals. Then
the class of flat left R-contramodules is covering in R-Contra.

It is not known whether this theorem remains true without
the countability assumption. It would be sufficient to show that
the class of flat left R-contramodules is precovering.
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Bass Flat Contramodules

A Bass flat left R-contramodule B is a filtered colimit of a chain
of free left R-contramodules with one generator, indexed by ω:

B = lim−→ (R
∗a1−−→ R

∗a2−−→ R
∗a2−−→ · · · ), an ∈ R.

Lemma

Let R be complete, separated topological ring with a base of
neighborhoods of zero consisting of open right ideals. Assume
that all Bass flat left R-contramodules have projective covers
in R-Contra. Let I ⊂ R be an open two-sided ideal. Then
the discrete quotient ring R/I is left perfect.

Idea of proof.

Define a reduction functor R-Contra −→ R/I-Mod, show that it
takes projectives to projectives and projective covers to projective
covers. Observe that every Bass flat left R/I-module is the image
of a Bass flat left R-contramodule with respect to this functor.
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Topologically T-nilpotent Ideals

A topological ring without unit J is said to be topologically left
T-nilpotent if for every sequence of elements a1, a2, . . . ∈ J
the sequence of elements a1, a1a2, a1a2a3, . . . , a1a2 · · · am, . . .
converges to zero in J.

Lemma (“Topologically left T-nilpotent Nakayama”)

Let R be a complete, separated topological ring with a base of
neighborhoods of zero consisting of open right ideals, and let
J ⊂ R be a closed two-sided ideal. Then

a J is topologically left T-nilpotent if and only if for every
nonzero discrete right R-module N there exists 0 6= x ∈ N
such that xJ = 0.

b If J is topologically left T-nilpotent, then for any nonzero left
R-contramodule C the composition J[[C]] −→ R[[C]]

π−→ C is
not surjective.
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Strongly Closed Subgroups

The notion of a topological group (with a base of neighborhoods
of zero formed by subgroups) seems to be a bit problematic, in
that it is impossible to prove certain natural properties, in general.
So one has to impose them as assumptions.

Let A be a topological group and B ⊂ A be a closed subgroup.
The subgroup B is said to be strongly closed in A if the following
two conditions hold:

the quotient group A/B is complete in the quotient topology;

for any set X , the induced map A[[X ]] −→ (A/B)[[X ]] is
surjective, that is any X -indexed family of elements
converging to zero in A/B can be lifted to an X -indexed
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Pro-Perfect Topological Rings

It is not clear what should be meant by a left pro-perfect
topological ring. The obvious definition “the topological limit of
a filtered diagram of discrete left perfect rings and surjective maps
between them” is both too restrictive and too general. The next
theorem lists the conditions which allow to prove what we want.

Theorem

Let R be a complete, separated topological ring with a base of
neighborhoods of zero formed by open right ideals, and let H ⊂ R
be a strongly closed two-sided ideal. Suppose that

the ideal H is topologically left T-nilpotent; and

the quotient ring S = R/H is isomorphic, as a topological
ring, to the topological product of a family of discrete simple
Artinian rings (Sγ)γ∈Γ.

Then all flat left R-contramodules are projective, and all left
R-contramodules have projective covers.
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Four Special Classes of Topological Rings

To prove our main results, we will have to assume that
the (separated and complete) topological associative ring R
satisfies one of the following conditions: either

a R is commutative; or
b R has a countable base of neighborhoods of zero consisting of

open two-sided ideals; or
c R has a base of neighborhoods of zero consisting of open

two-sided ideals, and R has only a finite number of
semisimple Artinian discrete quotient rings.

More generally, R may belong to the following wider class of
topological rings (d) containing the classes (a-c):

d R has a base of neighborhoods of zero consisting of open
right ideals, and there is a topologically left T-tilpotent
strongly closed two-sided ideal K ⊂ R such that the quotient
ring R/K is isomorphic, as a topological ring, to the
topological product of a family of topological rings (Tδ)δ∈∆,
each of which satisfies one of the conditions (a-c).
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Main Theorem

Main Theorem

Let R be a topological associative ring satisfying one of
the conditions (a), (b), (c), or (d). Then the following conditions
are equivalent:

i[ all Bass flat left R-contramodules have projective covers;

ii all left R-contramodules have projective covers;

iii all flat left R-contramodules are projective;

iv all the discrete quotient rings of R are left perfect;

v R has a topologically left T-nilpotent strongly closed
two-sided ideal H such that R/H is isomorphic to
the topological product of discrete simple Artinian rings.

The assumption of one of the conditions (a), (b), (c) or (d) is
needed in order to deduce (v) from (iv).
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Generalized Tilting Theory
(from a joint work with J. Št’ov́ıček)

Let A be an associative ring and M be a left A-module. Denote by
Add(M) the full subcategory in A-Mod consisting of all the direct
summands of direct sums of copies of M.

Let R = HomA(M,M)op denote the opposite ring to the ring of
endomorphisms of the A-module M (so R acts in M on the right).
Endow R with the topology in which annihilators of finitely
generated submodules of M form a base of neighborhoods of zero.
Then R is a complete, separated topological ring in which open
right ideals form a base of neighborhoods of zero.

The category Add(M) is naturally equivalent to the full
subcategory of projective objects in R-Contra. This equivalence
extends to a pair of adjoint functors Ψ: A-Mod� R-Contra :Φ,
with the right adjoint functor Ψ assigning to any left A-module N
the abelian group HomA(M,N), which has a natural left
R-contramodule structure.
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Let A be an associative ring and M be a left A-module. Denote by
Add(M) the full subcategory in A-Mod consisting of all the direct
summands of direct sums of copies of M.

Let R = HomA(M,M)op denote the opposite ring to the ring of
endomorphisms of the A-module M

(so R acts in M on the right).
Endow R with the topology in which annihilators of finitely
generated submodules of M form a base of neighborhoods of zero.
Then R is a complete, separated topological ring in which open
right ideals form a base of neighborhoods of zero.

The category Add(M) is naturally equivalent to the full
subcategory of projective objects in R-Contra. This equivalence
extends to a pair of adjoint functors Ψ: A-Mod� R-Contra :Φ,
with the right adjoint functor Ψ assigning to any left A-module N
the abelian group HomA(M,N), which has a natural left
R-contramodule structure.

Leonid Positselski Covers, Direct Limits, and Pro-Perfect Topol. Rings 21 / 26



Generalized Tilting Theory
(from a joint work with J. Št’ov́ıček)
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Abstract Corresponding Classes

(from a paper of A. Frankild and P. Jørgensen, 2002)

Let A and B be two categories and

Ψ: A� B :Φ

be a pair of adjoint functors between them.

Let E ⊂ A be the full subcategory of all objects E ∈ A for which
the adjunction morphism Φ(Ψ(E )) −→ E is an isomorphism.

Let F ⊂ B be the full subcategory of all objects F ∈ B for which
the adjunction morphism F −→ Ψ(Φ(F )) is an isomorphism.

Then the restrictions of the functors Φ and Ψ are mutually inverse
equivalences between the categories E and F ,

Ψ|E : E ∼= F :Φ|F .
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Telescope Hom Exactness Condition

Let A be an associative ring and M be a left A-module. Let f1,
f2, . . . be a sequence of A-module morphisms fn : M −→ M.
An M-Bass A-module is a left A-module of the form

N = lim−→ (M
f1−−→ M

f2−−→ M
f3−−→ · · · ).

So there is a natural (telescope) short exact sequence of A-modules

0 −−→
⊕∞

n=1 M −−→
⊕∞

n=1 M −−→ N −−→ 0.

We will say that an A-module M satisfies the telescope Hom
exactness condition (THEC) if, for any f1, f2, . . . , this short exact
sequence remains exact after applying the functor HomA(M,−).

The following classes of A-modules satisfy THEC:

all Σ-rigid modules M, i.e., left A-modules for which
Ext1

A(M,M(ω)) = 0;

all self-pure-projective modules M, i.e., A-modules for which
the functor HomA(M,−) preserves exactness of pure exact
sequences 0 −→ K −→ M(ω) −→ L −→ 0, K , L ∈ A-Mod.
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Projective Covers of Bass Contramodules

Lemma

Let M be a left A-module satisfying THEC, and let
R = HomA(M,M)op be its topological ring of endomorphisms.
Assume that every M-Bass left A-module has an Add(M)-cover.
Then any Bass flat left R-contramodule has a projective cover.

Proof.

Consider the pair of adjoint functors Ψ: A-Mod� R-Contra :Φ,
and let E ⊂ A-Mod and F ⊂ R-Contra be the two corresponding
classes of objects under this adjoint pair (so Ψ: E ∼= F :Φ).
Fix a sequence of A-module maps f1, f2, . . . : M −→ M, or, which
is the same, a sequence of elements a1, a2, . . . ∈ R. Let N and B
be the related M-Bass A-module and Bass flat R-contramodule.
One always has N = Φ(B). If M satisfies THEC, then one also has
B = Ψ(N), essentially because the functor Ψ can be computed as
HomA(M,−). Hence N ∈ E and B ∈ F , and it follows that Ψ
takes any Add(M)-cover of N to a projective cover of B.
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Filtered Colimits of Modules from Add(M)

Lemma

Let M be a left A-module, and let R = HomA(M,M)op be its
topological ring of endomorphisms. Assume that the class of
projective left R-contramodules is closed under filtered colimits in
R-Contra (e.g., all flat left R-contramodules are projective). Then
the class Add(M) is closed under filtered colimits in A-Mod.

Proof.

Since the functors Φ and Ψ restrict to mutually inverse
equivalences

Ψ: Add(M) ∼= R-Contraproj :Φ,

any filtered diagram in Add(M) can be obtained by applying Φ to
a filtered diagram in R-Contraproj. It remains to observe that
the functor Φ preserves colimits, since it is a left adjoint.
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Main Corollary (the Application to the Enochs conjecture)

Corollary

Let A be an associative ring and M be a left A-module satisfying
the telescope Hom exactness condition. Let R = HomA(M,M)op

be the topological ring of endomorphisms of M. Suppose that R
belongs to one of the special classes of topological rings (a), (b),
(c), or (d) (e.g., R is commutative). Assume that every M-Bass
left A-module has an Add(M)-cover. Then the class of left
A-modules Add(M) is closed under filtered colimits in A-Mod.

Proof.

Follows from Main Theorem and the two previous lemmas.

Remark

If Main Conjecture were known to be true, one could drop
the assumption of one of the conditions (a-d) in the formulation of
the Corollary. The THEC assumption would still be needed.
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left A-module has an Add(M)-cover.

Then the class of left
A-modules Add(M) is closed under filtered colimits in A-Mod.

Proof.

Follows from Main Theorem and the two previous lemmas.

Remark

If Main Conjecture were known to be true, one could drop
the assumption of one of the conditions (a-d) in the formulation of
the Corollary. The THEC assumption would still be needed.
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