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Introduction: Semi-Infinite Set Theory

A semi-infinite structure on a set S is the datum of a subset
S+ ⊂ S defined up to adjoining or removing a finite number of
elements from S . The subset S+ ⊂ S , as well any other subset
S+′ ⊂ S for which the symmetric difference
(S+ ∪ S+′) \ (S+ ∩ S+′) is finite, is called a semi-infinite subset in
S , while the complement S \ S+ is called a co-semi-infinite subset.

Given a field k and a set S with a semi-infinite structure, one can
construct a topological k-vector space

VS ,S+ =
⊕

t∈S\S+
kt ⊕

∏
s∈S+

ks

which remains unchanged when one removes a finite number of
elements from S+ or adjoins to S+ a finite number of elements
from S . The set S is a topological basis in the natural topology
on VS ,S+ . Topological vector spaces of this form are called locally
linearly compact, or Tate vector spaces.
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Introduction: Semi-Infinite Linear Algebra

More precisely, a complete, separated topological k-vector space is
called linearly compact (or “pseudocompact”, or
“pro-finite-dimensional”) if it has a base of neighborhoods of zero
consisting of vector subspaces of finite codimension. A topological
vector space is called locally linearly compact if it has a linearly
compact open subspace.

The standard example of a set with a semi-infinite structure is the
set of all integers S = Z with the semi-infinite subset of positive
integers S+ = Z>0. The related topological vector space VS,S+ is
the vector space of Laurent formal power series VS ,S+ = k((t)).
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Introduction: Semi-Infinite Geometry

Semi-infinite geometry can be informally defined as a study of
geometric shapes with local coordinates indexed by sets with
semi-infinite structure. For a semi-infinite variety Y with local
coordinates ys indexed by a set S with a semi-infinite subset
S+ ⊂ S , it makes sense to assume that, for every point p ∈ Y ,
the set of all indices s ∈ S such that ys(p) 6= 0 is contained in
some semi-infinite subset S+′ ⊂ S (depending on the point p).

The standard example of a semi-infinite algebraic variety is
the underlying affine algebraic variety Y of the vector space of
Laurent formal power series k((t)). Let us write f (t) =

∑
n∈Z ynt

n

for a generic element f (t) ∈ k((t)). Then yn, n ∈ Z is a global
coordinate system on Y , indexed by the set S = Z with the
standard semi-infinite structure. The condition above is satisfied:
for every f ∈ k((t)), the set of all n ∈ Z such that yn 6= 0 is at
most semi-infinite, i. e., it is contained in the union of S+ = Z>0

with a finite set of nonpositive integers.
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Introduction: Summary for the Standard Example

Continuing with the standard example, consider the ring of
polynomials R = k[. . . , y−2, y−1, y0, y1, y2, . . . ] in the doubly
infinite sequence of variables yn, n ∈ Z. Let us say that
an R-module M is torsion if for every m ∈ M there exists ` < 0
such that ynm = 0 for all n < `. Alternatively, one can think of
torsion R-modules as of discrete modules over the topological ring

R = lim←−`<0
k[y`, . . . , y−1, y0, y1, y2, . . . ]

of functions on k((t)) = {
∑

n∈Z ynt
n | yn = 0 for n� 0 }.

The category A = R-Modtors of torsion R-modules is abelian. The
aim of this talk is to explain how to define a certain exotic derived
category of the abelian category A, called the semiderived category
of torsion R-modules and denoted Dsi(A), so that Dsi(A) is
naturally a tensor triangulated category. The tensor product
operation ♦ on Dsi(A) is called the semitensor product.
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Introduction: Summary for the Standard Example

The triangulated category Dsi(A) is constructed

as the
triangulated Verdier quotient category of the cochain homotopy
category K(A) of unbounded complexes in A by a certain thick
subcategory Acsi(A); so Dsi(A) = K(A)/Acsi(A).

The thick (in fact, localizing) subcategory of complexes to be
killed Acsi(A) ⊂ K(A) is properly contained in the full subcategory
Ac(A) ⊂ K(A) of acyclic complexes in A, that is
Acsi(A) ( Ac(A).

So some acyclic complexes in the abelian category A represent
nonzero objects in the semiderived category. In particular, the unit
object of the tensor structure on Dsi(A) turns out to be an acyclic
complex in this example.
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Introduction: Semi-Infinite Exterior Forms

Consider the topological vector space V = k((t)), and let
(ei = t i )i∈Z be the standard topological basis in it. We would like
to define a Z-graded (or rather, (∞/2 + Z)-graded) vector space

of semi-infinite exterior forms
∧∞/2+∗(V ) consisting of infinite

wedge products like

e0 ∧ e1 ∧ e2 ∧ e3 ∧ · · · (∗)

One can delete a finite number ei ’s with i ≥ 0 from the wedge
product (∗) and adjoin a finite number of ej ’s with j < 0,

obtaining other basis vectors of
∧∞/2+∗(V ).

Let the basis vector (∗) have grading ∞/2 + 0. Then deleting m
vectors ei from the wedge product (∗) and adjoining n new vectors
ej instead produces an infinite wedge product representing a basis

vector of
∧∞/2+∗(V ) having grading ∞/2 + n −m.
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Introduction: Semi-Infinite Exterior Forms

One would like to define the graded vector space
∧∞/2+∗(V ) in

a more invariant way,

not depending on the choice of a basis in V .
But there is a problem: if both the expressions

e0 ∧ e1 ∧ e2 ∧ e3 ∧ · · ·

and
2e0 ∧ 2e1 ∧ 2e2 ∧ 2e3 ∧ · · ·

represent some vectors in
∧∞/2+∗(V ), then these two vectors

should naturally differ by multiplication with a scalar, but the
scalar is undefined.

Similarly, one can write

e1 ∧ e0 ∧ e3 ∧ e2 ∧ e5 ∧ e4 ∧ e7 ∧ e6 ∧ · · · ,

which should differ from e0 ∧ e1 ∧ e2 ∧ · · · by a ±1 sign, but it is
impossible to say whether it should be 1 or −1.
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Introduction: Semi-Infinite Exterior Forms

It turns out that the projectivization of the vector space∧∞/2+∗(V )

is well-defined for any locally linearly compact
k-vector space V . Choosing a linearly compact open subspace
W ⊂ V , one can construct a well-defined graded vector space of

semi-infinite forms
∧∞/2+∗

W (V ).

Changing W by W ′, one has a natural isomorphism∧∞/2+∗
W ′ (V ) '

∧∞/2+d+∗(W )⊗k D, where d ∈ Z is an integer
(“relative dimension”) and D is a one-dimensional k-vector space
(“relative determinant”).

Specifically, the construction is∧∞/2+∗
W (V ) = lim−→U⊂W

∧∗(V /U)⊗k
∧dimk W /U(W /U)∗,

where the direct limit is taken over all open subspaces U ⊂W .
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Introduction: Summary for the Standard Example Fin’d

Returning to the semitensor product operation on the semiderived
category Dsi(R-Modtors), consider the one-dimensional
R-module k with the zero action of all the variables yi .

Then the semitensor product k♦ k in Dsi(R-Modtors) is the doubly

unbounded complex of R-modules
∧∞/2+∗(k((t))) with the zero

action of the variables yi and zero differential,

k ♦ k '
∧∞/2+∗

(k((t))).

The dimensional shifts and determinantal twists arise from certain
choices one has to make when defining the semitensor product
operation on Dsi(R-Modtors).
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Examples: Derived Category of Modules

Let us list some simpler examples which fit into the general theory
as special cases.

Example 1

Let B be a commutative ring. Then the unbounded derived
category of B-modules D(B-Mod) is a tensor triangulated
category with respect to the operation ⊗L

B of left derived tensor
product of complexes of B-modules. The unbounded left derived
tensor product is constructed using homotopy flat or homotopy
projective resolutions of complexes of B-modules. The B-module
B is the unit object of this tensor structure.
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Examples: Derived Category of Torsion Abelian Groups

Example 2a

Let A = Z-Modtors be the abelian category of torsion abelian
groups. The abelian category A has a natural monoidal structure
with the unit object Q/Z. The torsion product operation providing
this monoidal structure can be defined as A T©Q/Z B = TorZ1 (A,B).

The torsion product is a left exact functor. The right derived
functor of torsion product T©R

Q/Z, constructed using injective
coresolutions, makes the derived category of torsion abelian groups
D(A) a tensor triangulated category.

The tensor triangulated category D(A) can be embedded into
the derived category of abelian groups D(Z-Mod) with the shifted
tensor product operation (A,B) 7−→ (A⊗L

Z B)[−1], as a tensor
triangulated subcategory with its own unit object. The unit object
Z[1] of the monoidal structure (A,B) 7−→ (A⊗L

Z B)[−1] on
D(Z-Mod) is different from the unit object Q/Z of D(Z-Modtors).
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Examples: Derived Category of Torsion k[x ]-Modules

This example is similar to the previous one.

Example 2b

Let k[x ] be the ring of polynomials in one variable x over a field k.
Let us say that a k[x ]-module M is x-torsion if for every m ∈ M
there exists n ≥ 1 such that xnm = 0.

Let A = k[x ]-Modx-tors be the abelian category of x-torsion
k[x ]-modules. The abelian category A has a natural monoidal
structure with the Prüfer module Px = k[x , x−1]/k[x ] being the
unit object. The torsion product operation providing this monoidal

structure can be defined as M T©Px
N = Tor

k[x]
1 (M,N).

Once again, the torsion product is a left exact functor. The right
derived functor of torsion product T©R

Px
, constructed using injective

coresolutions, makes the derived category of x-torsion
k[x ]-modules D(A) a tensor triangulated category.
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structure with the Prüfer module Px = k[x , x−1]/k[x ] being the
unit object. The torsion product operation providing this monoidal

structure can be defined as M T©Px
N = Tor

k[x]
1 (M,N).

Once again, the torsion product is a left exact functor. The right
derived functor of torsion product T©R

Px
, constructed using injective

coresolutions, makes the derived category of x-torsion
k[x ]-modules D(A) a tensor triangulated category.

Leonid Positselski Semi-infinite algebraic geometry 13 / 52



Examples: Derived Category of Torsion k[x ]-Modules

This example is similar to the previous one.

Example 2b

Let k[x ] be the ring of polynomials in one variable x over a field k.
Let us say that a k[x ]-module M is x-torsion if for every m ∈ M
there exists n ≥ 1 such that xnm = 0.

Let A = k[x ]-Modx-tors be the abelian category of x-torsion
k[x ]-modules. The abelian category A has a natural monoidal
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Examples: Coderived Category of Comodules

The category of x-torsion k[x ]-modules is otherwise known as the
category of comodules over the coalgebra C dual to the topological
algebra of Taylor formal power series k[[x ]]. The coalgebra C is
defined explicitly as the k-vector space with the basis 1∗, x∗, x2∗,
x3∗, . . . , the comultiplication µ(xn∗) =

∑
p+q=n x

p∗ ⊗ xq∗, and
the counit ε(1∗) = 1, ε(xn∗) = 0 for n > 0.

Example 2b can be generalized to arbitrary cocommutative
coalgebras over a field.

Example 3

Let C be a coassociative, cocommutative, counital coalgebra over
a field k. Then the abelian category of C -comodules C -Comod
has a natural monoidal structure with the unit object C . The
cotensor product operation providing this monoidal structure is
defined as follows: the cotensor product M �C N of two comodules
M and N is the kernel of the difference of two natural maps
M ⊗k N ⇒ M ⊗k C ⊗k N induced by the coaction of C in M, N.
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Examples: Coderived Category of Comodules

Example 3 cont’d

The coderived category of C -comodules

is simplest defined as
the homotopy category of unbounded complexes of injective
C -comodules, Dco(C -Comod) = K(C -Comodinj). But this is not
enough: one wants to be able to assign a coderived category object
to an arbitrary complex of C -comodules.

A complex of C -comodules A• is said to be coacyclic if the
complex HomC (A•, J•) is acyclic for every complex of injective
C -comodules J•. The coderived category can be then defined as
the quotient category Dco(C -Comod) =
K(C -Comod)/Acco(C -Comod) of the homotopy category by
the localizing subcategory of coacyclic complexes.

One can show that the composition of triangulated functors
K(C -Comodinj) −→ K(C -Comod) −→
K(C -Comod)/Acco(C -Comod) is a triangulated equivalence. This
is the coderived category of C -comodules.
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Examples: Coderived Category of Comodules

Example 3 fin’d

The definition of the coderived category of C -comodules, as per
the previous slide,

is valid for any coassociative coalgebra C over
a field k.

When the coalgebra C is cocommutative, one can define the right
derived cotensor product operation on the coderived category
Dco(C -Comod) by taking the cotensor products of complexes of
injective C -comodules. In fact, for any complex of injective
C -comodules J• and any coacyclic complex of C -comodules A•,
the complex of C -comodules C • �C A• is coacyclic. So it suffices
to replace only one of the two complexes of C -comodules by
a complex of injectives before taking their cotensor product.

The coderived category of C -comodules Dco(C -Comod), endowed
with the derived cotensor product functor �R

C , becomes a tensor
triangulated category. The C -comodule C is the unit object.
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Examples: Noetherian Scheme with a Dualizing Complex

Example 4

Let X be a Noetherian scheme. The coderived category of
quasi-coherent sheaves on X is simplest defined as the homotopy
category of unbounded complexes of injective quasi-coherent
sheaves, Dco(X -Qcoh) = K(X -Qcohinj). Once again, one wants to
be able to assign a coderived category object to an arbitrary
complex of quasi-coherent sheaves. Hence the next definition.

A complex of quasi-coherent sheaves A• is said to be coacyclic if
the complex of abelian groups HomX (A•,J •) is acyclic for every
complex of injective quasi-coherent sheaves J •. The coderived
category can be alternatively defined as the quotient category
Dco(X -Qcoh) = K(X -Qcoh)/Acco(X -Qcoh) of the homotopy
category by the localizing subcategory of coacyclic complexes.
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Examples: Noetherian Scheme with a Dualizing Complex

Example 4 cont’d

One can show that the composition of triangulated functors
K(X -Qcohinj) −→ K(X -Qcoh) −→ K(X -Qcoh)/Acco(X -Qcoh)

is
a triangulated equivalence. This is the coderived category of
quasi-coherent sheaves on X .

A complex of injective quasi-coherent sheaves D• on X is called
a dualizing complex if:

i D• is homotopy equivalent to a bounded complex of injective
quasi-coherent sheaves;

ii the cohomology sheaves of D• are coherent sheaves;

iii the natural morphism of complexes of sheaves of OX -modules
OX −→ HomOX

(D•,D•) is a quasi-isomorphism of complexes
of sheaves of OX -modules.
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Examples: Noetherian Scheme with a Dualizing Complex

Given a scheme X , one can consider the exact category X -Qcohfl

of flat quasi-coherent sheaves on X .

As to any exact category,
one can assign to X -Qcohfl its unbounded derived category
D(X -Qcohfl). The triangulated category D(X -Qcohfl) is the
quotient category of K(X -Qcohfl) by the localizing subcategory of
acyclic complexes of flat sheaves with flat sheaves of cocycles.

Theorem (Murfet ’07)

Let X be a semi-separated Noetherian scheme with a dualizing
complex D•. Then there is a natural triangulated equivalence
D(X -Qcohfl) ' Dco(X -Qcoh) depending on D•.

To a complex of flat sheaves F•, the complex of injective sheaves
D• ⊗OX

F• is assigned. To a complex of injective sheaves J •,
the complex of flat quasi-coherent sheaves HomX -qc(D•,J •) is
assigned. Here HomX -qc denotes the quasi-coherent internal Hom
of quasi-coherent sheaves, which can be constructed by applying
the coherator functor to the sheaf of OX -modules HomOX

.
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Examples: Noetherian Scheme with a Dualizing Complex

Example 4 cont’d

On any scheme X , the derived category of flat quasi-coherent
sheaves D(X -Qcohfl) is a tensor triangulated category

with respect
to the tensor product functor ⊗OX

.

On a semi-separated Noetherian scheme X with a dualizing
complex D•, one can transfer the tensor structure of D(X -Qcohfl)
along the triangulated equivalence D(X -Qcohfl) ' Dco(X -Qcoh).
This makes the coderived category Dco(X -Qcoh) a tensor
triangulated category with the unit object D•.

The resulting operation on Dco(X -Qcoh) is called the cotensor
product and denoted by �D• . So Dco(X -Qcoh) is a tensor
triangulated category with respect to the cotensor product over D•.
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Examples: Noetherian Scheme with a Dualizing Complex

Example 4 fin’d

Explicitly, let M• and N • be two complexes in X -Qcoh,

and let
M• −→ J • and N • −→ K• be two morphisms with coacyclic
cones, where J •, K• ∈ K(X -Qcohinj). Then the three complexes

M• ⊗OX
HomX -qc(D•,K•),

HomX -qc(D•,J •)⊗OX
N •,

D• ⊗OX
HomX -qc(D•,J •)⊗OX

HomX -qc(D•,K•)

are naturally isomorphic as objects of Dco(X -Qcoh).

The three complexes above represent the coderived category object
M• �D• N • ∈ Dco(X -Qcoh).
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Posing the Problem

We are interested in a common generalization of Examples 1–4.

To be more precise, first of all we want a common generalization of
Examples 2–4 (torsion modules, comodules, and coderived
categories) to the context of ind-Noetherian ind-schemes X with
a dualizing complex D•.

Secondly, we want to mount Example 1 (derived category of
modules over a commutative ring) on top of the common
generalization of Examples 2–4.

For this purpose, we will consider a flat affine morphism of
ind-schemes π : Y −→ X, where X is an ind-Noetherian
ind-scheme with a dualizing complex D• = D•X. The fibers of π are
arbitrary affine schemes.

In the language of the introduction above, one can say that
the coordinates along X are indexed by a co-semi-infinite subset
S− of the set of all coordinates S on Y, while the coordinates
along the fiber of π are indexed by a semi-infinite subset S+ ⊂ S .
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Posing the Problem

The semiderived category Dsi
X(Y-Tors) of quasi-coherent torsion

sheaves on Y (relative to X)

is a mixture of the coderived category
along the base X and the conventional unbounded derived category
along the fibers.

The desired operation of semitensor product on Dsi
X(Y-Tors) is

a mixture of the cotensor product along X and the conventional
derived tensor product along the fibers.

The semiderived category Dsi
X(Y-Tors) with the semitensor product

operation on it is a tensor triangulated category. The pullback
(inverse image) π∗D•X on Y of the dualizing complex D•X on X is
the unit object of this tensor structure, which is denoted by ♦π∗D•X .
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Ind-Schemes

From now on, all schemes in this talk are presumed to be
quasi-compact and quasi-separated. Then one can define
an ind-scheme simply as an ind-object in the category of schemes.

So an ind-scheme X = “lim−→”
γ∈Γ

Xγ is represented by a directed

diagram of schemes (Xγ)γ∈Γ indexed by a directed poset Γ.
The set of morphisms Mor(Y,X) in the category of ind-schemes is
defined by the rule

Mor(“lim−→”
δ∈∆

Yδ, “lim−→”
γ∈Γ

Xγ) = lim←−δ∈∆
lim−→γ∈Γ

Mor(Yδ,Xγ).

So any morphism from a scheme Y to an ind-scheme “lim−→”
γ∈Γ

Xγ
factorizes through one of the schemes Xγ .

An ind-scheme X is said to be strict if it can be represented by
a direct system X = “lim−→”

γ∈Γ
Xγ such that all the morphisms

Xβ −→ Xγ , β < γ ∈ Γ, are closed immersions. We will assume all
our ind-schemes to be strict.
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Ind-Schemes

A morphism of ind-schemes π : Y −→ X is said to be affine

if,
for any scheme T and any morphism T −→ X, the ind-scheme
T ×X Y is actually a scheme and the morphism of schemes
T ×X Y −→ T is affine. Similarly, the morphism π is said to be
flat if, for any scheme T and morphism T −→ X, the pullback
T ×X Y is actually a scheme and the morphism of schemes
T ×X Y −→ T is flat.

We will be interested in flat affine morphisms of schemes
π : Y −→ X. Any such morphism can be represented by a diagram
of flat affine morphisms of schemes πγ : Yγ −→ Xγ indexed by
a directed poset Γ; so π = “lim−→”

γ∈Γ
πγ . Moreover, one can have

Yγ = Xγ ×X Y.

An ind-scheme X is said to be ind-Noetherian if it can be
represented by a direct system of Noetherian schemes (Xγ)γ∈Γ.
Similarly, X is said to be ind-semi-separated if it can be
represented by a direct system of semi-separated schemes Xγ .
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Quasi-Coherent Torsion Sheaves

There are two notions of quasi-coherent sheaves on ind-schemes:
quasi-coherent torsion sheaves and pro-quasi-coherent pro-sheaves.

Quasi-coherent torsion sheaves are a kind of sheaves M on
an ind-scheme X = “lim−→”

γ∈Γ
Xγ such that every local section of M

is supported in one of the closed subschemes Xγ ⊂ X. Under mild
assumptions on X, quasi-coherent torsion sheaves form
a Grothendieck abelian category X-Tors; but working with it
involves a subtlety which I will try to explain by example.

Suppose that we want to construct the category of torsion abelian
groups, but we do not know what an abelian group is. All we have
are the categories of Z/mZ-modules for m ≥ 2.
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assumptions on X, quasi-coherent torsion sheaves form
a Grothendieck abelian category X-Tors; but working with it
involves a subtlety which I will try to explain by example.

Suppose that we want to construct the category of torsion abelian
groups, but we do not know what an abelian group is. All we have
are the categories of Z/mZ-modules for m ≥ 2.
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Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m.

So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA

together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions?

The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact.

It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact.

So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,

embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”.

The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification”

of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Quasi-Coherent Torsion Sheaves

Then we can describe an arbitrary torsion abelian group A in terms
of its subgroups mA of elements annihilated by m. So we say that
a torsion abelian group A is a collection of Z/mZ-modules mA
together with embeddings mA −→ nA for all m | n, satisfying
suitable conditions.

What conditions? The main condition is that mA must be precisely
the whole subgroup of elements annihilated by m in nA.

The subtlety is that the functor assigning to a torsion abelian
group A its subgroup mA is not exact. It is only left exact. So, if
one defines the category of torsion abelian groups in this way, then
constructing cokernels in this category becomes a nontrivial task.

So one has to develop some kind of “sheafification” theory,
embedding the desired category of “sheaves” into a larger ambient
category of “presheaves”. The cokernel of a morphism of “sheaves”
is then constructed as the “sheafification” of the cokernel of
the same morphism taken in the category of “presheaves”.

Leonid Positselski Semi-infinite algebraic geometry 27 / 52



Reasonable Ind-Schemes

A closed immersion of schemes i : Z −→ X is said to be reasonable
if the sheaf of ideals of Z in X (i. e., the kernel of the morphism
OX −→ i∗OZ ) is finitely generated as a quasi-coherent sheaf on X .
An ind-scheme X is said to be reasonable if it can be represented
by a direct system of reasonable closed immersions of schemes.

Any ind-Noetherian ind-scheme is reasonable. Any ind-scheme flat
or affine over a reasonable ind-scheme is reasonable.

Leonid Positselski Semi-infinite algebraic geometry 28 / 52
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Quasi-Coherent Torsion Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme represented by

a direct system of reasonable closed immersions iβγ : Xβ −→ Xγ ,
β < γ ∈ Γ.

A quasi-coherent torsion sheaf M on X can be defined
as a set of data assigning

i to every index γ ∈ Γ a quasi-coherent sheaf Mγ on Xγ and

ii to every pair of indices β < γ ∈ Γ a morphism
iβγ∗Mβ −→Mγ of quasi-coherent sheaves on Xγ

such that

iii the corresponding morphism Mβ −→ i !βγMγ is
an isomorphism for every β < γ ∈ Γ and

iv the triangular diagram iαγ∗Mα −→ iβγ∗Mβ −→Mγ is
commutative for every triple of indices α < β < γ ∈ Γ.

Due to the isomorphism condition (iii), the category X-Tors of
quasi-coherent torsion sheaves on X does not depend on the choice
of a direct system of reasonable closed immersions (Xγ)γ∈Γ

representing a given reasonable ind-scheme X.
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Pro-Quasi-Coherent Pro-Sheaves

The definition of a pro-quasi-coherent pro-sheaf on an ind-scheme
X is technically simpler than that of a quasi-coherent torsion sheaf,
but the resulting additive category is usually not abelian. One
needs to impose some flatness condition on one’s
pro-quasi-coherent pro-sheaves in order to obtain a well-behaved
exact subcategory in the poorly behaved ambient category of
arbitrary pro-quasi-coherent pro-sheaves.

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf P on X is defined as a set of data assigning
i to every index γ ∈ Γ a quasi-coherent sheaf Pγ on Xγ and
ii to every pair of indices β < γ ∈ Γ a morphism Pγ −→ iβγ∗P

β

of quasi-coherent sheaves on Xγ
such that

iii the corresponding morphism i∗βγP
γ −→ Pβ is an isomorphism

for every β < γ ∈ Γ and
iv the triangular diagrams Pγ −→ iβγ∗P

β −→ iαγ∗P
α are

commutative.
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Pro-Quasi-Coherent Pro-Sheaves

Due to the isomorphism condition (iii),

the category X-Pro of
pro-quasi-coherent pro-sheaves on X does not depend on the
choice of a direct system of closed immersions (Xγ)γ∈Γ

representing a given ind-scheme X.

The category of pro-quasi-coherent pro-sheaves X-Pro is naturally
a monoidal category with respect to the tensor product operation
given by the obvious rule (P⊗X Q)γ = Pγ ⊗OXγ

Qγ . Essentially,
this works because the inverse image functors i∗ preserve tensor
products of quasi-coherent sheaves. The “pro-structure pro-sheaf”
OX with the components (OX)γ = OXγ is the unit object of this
monoidal structure.

The category of quasi-coherent torsion sheaves X-Tors is naturally
a module category over the monoidal category X-Pro. For any
M ∈ X-Tors and P ∈ X-Pro, one considers the Γ-system N given
by the obvious rule Nγ = Pγ ⊗OXγ

Mγ . Then the quasi-coherent

torsion sheaf P⊗X M is constructed as P⊗X M = N+.
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Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,

the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined,

and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.

For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,

the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined,

and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.

The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,

the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗,

and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !,

whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme

and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion.

Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Direct and Inverse Images (Brief Summary)

For any affine morphism of reasonable ind-schemes f : Y −→ X,
the direct image functors f∗ : Y-Tors −→ X-Tors and
f∗ : Y-Pro −→ X-Pro can be defined, and the former one is exact.
For any flat morphism of reasonable ind-schemes f : Y −→ X,
the inverse image functors f ∗ : X-Tors −→ Y-Tors and
f ∗ : X-Pro −→ Y-Pro can be defined, and the former one is exact.
The assumptions on f actually can be relaxed, but these special
cases are sufficient for the purposes of this talk.

For any closed immersion of reasonable ind-schemes i : Z −→ X,
the functor of inverse image with supports i ! : X-Tors −→ Z-Tors
can be defined.

The functor f ∗ is left adjoint to the functor f∗, and the functor i∗ is
left adjoint to the functor i !, whenever both are defined.

Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme and iγ : Xγ −→ X

be the natural closed immersion. Then one has i∗γP = Pγ and

i !γM = Mγ for all P ∈ X-Pro and M ∈ X-Tors.

Leonid Positselski Semi-infinite algebraic geometry 33 / 52



Dualizing Complexes on Ind-Noetherian Ind-Schemes

Let X = “lim−→”
γ∈Γ

Xγ be an ind-Noetherian ind-scheme. Then

a complex of injective quasi-coherent torsion sheaves
D• ∈ K(X-Torsinj) is said to be a dualizing complex if, for every
index γ ∈ Γ, the complex of injective quasi-coherent sheaves
D•γ = i !γD

• is a dualizing complex on Xγ .

One can check that this condition on a complex of injective
quasi-coherent torsion sheaves on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

Notice that, by definition, a dualizing complex D• is an object of
the homotopy category of unbounded complexes of injective
quasi-coherent torsion sheaves on X. Another name for this
category is the coderived category of quasi-coherent torsion
sheaves, Dco(X-Tors) = K(X-Torsinj). A dualizing complex on
an ind-scheme cannot be viewed as an object of the conventional
derived category D(X-Tors).
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Dualizing Complexes on Ind-Noetherian Ind-Schemes

Example

Let us consider the ind-Noetherian (“negative”) half of our
standard example. Specifically, let X = “lim−→”̀≤0

X`, where

X` = Spec k[x`, . . . , x−1]. So X0 = Speck is a point,
X−1 = Speck[x−1] is an affine line, X−2 = Spec k[x−2, x−1] is
an affine plane, etc. The closed immersions
X0 −→ X−1 −→ X−2 −→ · · · are the most obvious inclusions of
coordinate hyperplanes.

What is a dualizing complex on X ? To construct such a dualizing
complex D•, one needs to specify a dualizing complex D•` on every
scheme X` in such a way that, denoting by i` : X` −→ X`−1

the coordinate closed immersion, one would have a homotopy
equivalence D•` ' i !`D•`−1 for every ` ≤ 0.
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Dualizing Complexes on Ind-Noetherian Ind-Schemes

Example fin’d

Any dualizing complex on X`

is homotopy equivalent to an
injective coresolution of the structure sheaf OX` shifted to some
cohomological degree. The condition D•` ' i !`D•`−1 means that if
the only cohomology sheaf of the complex D•` sits in cohomological
degree n, then the only cohomology sheaf of the complex D•`−1 sits
in the cohomological degree n − 1.

For example, if the complex D•0 is quasi-isomorphic to OX0 , then
the complex D•` is quasi-isomorphic to OX0 [−`] for every ` ≤ 0.

As ` tends to −∞, the only cohomology sheaf of the complex D•`
moves to ever higher negative cohomological degrees and, in
the direct limit, disappears at the cohomological degree −∞.
Consequently, the dualizing complex of quasi-coherent torsion
sheaves D• on the ind-scheme X is acyclic.
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Coderived Category of Quasi-Coherent Torsion Sheaves

Let X be an ind-Noetherian ind-scheme. As above, a complex of
quasi-coherent torsion sheaves A • ∈ K(X-Tors) is said to be
coacyclic if, for every complex of injective quasi-coherent torsion
sheaves J • ∈ K(X-Torsinj), the complex of abelian groups
HomX(A •,J •) is acyclic. The coderived category Dco(X-Tors) is
defined as the triangulated Verdier quotient category

Dco(X-Tors) = K(X-Tors)/Acco(X-Tors)

of the homotopy category K(X-Tors) by the localizing subcategory
of coacyclic complexes.

One can show that the composition of triangulated functors
K(X-Torsinj) −→ K(X-Tors) −→ Dco(X-Tors) is a triangulated
equivalence. So, in particular, a dualizing complex D• on X is
naturally viewed as an object of Dco(X-Tors).
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Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme.

A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat

if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ.

One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure.

A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat

if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0

is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat

is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro.

The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Flat Pro-Quasi-Coherent Pro-Sheaves

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme. A pro-quasi-coherent

pro-sheaf F on X is said to be flat if the quasi-coherent sheaf Fγ

on Xγ is flat for every γ ∈ Γ. One can check that this condition on
a pro-quasi-coherent pro-sheaf on X does not depend on the choice
of a direct system (Xγ)γ∈Γ representing X.

The additive category X-Flat of flat pro-quasi-coherent pro-sheaves
on X has a natural exact category structure. A short sequence of
flat pro-quasi-coherent pro-sheaves 0 −→ F −→ G −→ H −→ 0 is
said to be admissible exact in X-Flat if the short sequence of
quasi-coherent sheaves 0 −→ Fγ −→ Gγ −→ Hγ −→ 0 is exact in
the abelian category Xγ-Qcoh for every γ ∈ Γ.

The full subcategory of flat pro-quasi-coherent pro-sheaves X-Flat
is a monoidal subcategory in the monoidal category of
pro-quasi-coherent pro-sheaves X-Pro. The tensor product functor
⊗X is exact in X-Flat.

Leonid Positselski Semi-infinite algebraic geometry 38 / 52



Absolute Covariant Serre-Grothendieck Duality

Theorem

Let X be an ind-semi-separated ind-Noetherian ind-scheme with
a dualizing complex D•. Then there is a natural equivalence of
triangulated categories

Dco(X-Tors) ' D(X-Flat),

where D(X-Flat) is the conventional unbounded derived category
of the exact category X-Flat of flat pro-quasi-coherent pro-sheaves.

The functor D(X-Flat) −→ Dco(X-Tors) is given by the rule
F• 7−→ D• ⊗X F•, where ⊗X denotes the action of the monoidal
category X-Flat in the module category X-Tors.

The inverse functor Dco(X-Tors) −→ D(X-Flat) is denoted by
RHomX-qc(D•,−). It is a right derived functor constructed by
applying a certain quasi-coherent internal Hom-type functor
HomX-qc(D•,−) to complexes of injective torsion sheaves.
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The Cotensor Product

For any ind-scheme X, the tensor product of flat
pro-quasi-coherent pro-sheaves induces a well-defined tensor
product functor on the derived category D(X-Flat),

⊗X : D(X-Flat)×D(X-Flat) −−→ D(X-Flat).

For an ind-Noetherian ind-scheme X, the coderived category
Dco(X-Tors) is a triangulated module category over the
triangulated tensor category D(X-Flat),

⊗X : D(X-Flat)×Dco(X-Tors) −−→ Dco(X-Tors).

Now, given an ind-semi-separated ind-Noetherian ind-scheme X
with a dualizing complex D•, one can transfer the tensor
triangulated structure of D(X-Flat) along the triangulated
equivalence D(X-Flat) ' Dco(X-Tors). The resulting operation on
coderived category is called the cotensor product and denoted by

�D• : Dco(X-Tors)×Dco(X-Tors) −−→ Dco(X-Tors).
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The Cotensor Product

Explicitly, let M • and N • be two complexes in X-Tors,

and let
M • −→J • and N • −→ K • be two morphisms with coacyclic
cones, where J •, K • ∈ K(X-Torsinj). Then the three complexes

M • ⊗X HomX-qc(D•,K •),

HomX-qc(D•,J •)⊗X N •,

D• ⊗X

(
HomX-qc(D•,J •)⊗X HomX-qc(D•,K •)

)
are naturally isomorphic as objects of Dco(X-Tors).

These three complexes represent the coderived category object
M • �D• N • ∈ Dco(X-Tors). The coderived category Dco(X-Tors)
endowed with the cotensor product operation �D• becomes
a tensor triangulated category. The dualizing complex
D• ∈ Dco(X-Tors) is the unit object of this tensor structure.
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Semiderived Category

Now let us turn to the relative setting of a flat affine morphism of
ind-schemes π : Y −→ X. Recall that if X = “lim−→”

γ∈Γ
Xγ , then

Y = “lim−→”
γ∈Γ

Yγ , where Yγ = Xγ ×X Y. Moreover,

π = “lim−→”
γ∈Γ

πγ , where πγ : Yγ −→ Xγ are flat affine morphisms of

schemes.

Assume that X is ind-Noetherian. The semiderived category
Dsi

X(Y-Tors) of quasi-coherent torsion sheaves on Y relative to X
is defined as the triangulated Verdier quotient category of
K(Y-Tors) by the thick subcategory of all complexes
A • ∈ K(Y-Tors) such that the complex π∗A • of quasi-coherent
torsion sheaves on X is coacyclic.

Informally, the semiderived category Dsi
X(Y-Tors) is a mixture of

the coderived category along the base ind-scheme X and
the conventional unbounded derived category along the fibers of
the morphism π : Y −→ X.
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Semiderived Category

The direct image functor π∗ : K(Y-Tors) −→ K(X-Tors) takes
coacyclic complexes to coacyclic complexes.

It also preserves and
reflects the conventional acyclicity of complexes. Consequently, the
semiderived category is an intermediate Verdier quotient category
between the coderived and the conventional derived category. In
other words, there are natural Verdier quotient functors

Dco(Y-Tors) � Dsi
X(Y-Tors) � D(Y-Tors).

When the morphism π : Y −→ X is an isomorphism, i. e., Y = X,
the semiderived category coincides with the coderived category:
Dsi

X(X-Tors) = Dco(X-Tors).

If the homological dimension of the category X-Tors is finite (e. g.,
X = X is a regular scheme of finite Krull dimension), then
the semiderived category coincides with the derived category:
Dsi

X(Y-Tors) = D(Y-Tors).
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Semiderived Category

A quasi-coherent torsion sheaf K on Y is said to be X-injective

if
its direct image π∗K is an injective quasi-coherent torsion sheaf
on X. The full subcategory of X-injective quasi-coherent torsion
sheaves Y-TorsX-inj inherits an exact category structure from the
ambient abelian category Y-Tors.

For any ind-Noetherian ind-scheme X and any flat affine morphism
of ind-schemes π : Y −→ X, the composition of triangulated
functors

K(Y-TorsX-inj) −−→ K(Y-Tors) −−→ Dsi
X(Y-Tors)

induces a triangulated equivalence D(Y-TorsX-inj) ' Dsi
X(Y-Tors).

Here D(Y-TorsX-inj) is the conventional unbounded derived
category of the exact category Y-TorsX-inj.
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Pro-Sheaves Flat over the Base

A pro-quasi-coherent pro-sheaf G on Y is said to be X-flat if
the pro-quasi-coherent pro-sheaf π∗G on X is flat.

Just as the additive category X-Flat of flat pro-quasi-coherent
pro-sheaves on X, the additive category YX-Flat of X-flat
pro-quasi-coherent pro-sheaves on Y has a natural exact category
stucture. A short sequence of X-flat pro-quasi-coherent
pro-sheaves 0 −→ F −→ G −→ H −→ 0 is said to be admissible
exact in YX-Flat if the short sequence of flat pro-quasi-coherent
pro-sheaves 0 −→ π∗F −→ π∗G −→ π∗H −→ 0 on X is admissible
exact in X-Flat.

For any flat pro-quasi-coherent pro-sheaf F on Y and any X-flat
pro-quasi-coherent pro-sheaf G on Y, the tensor product F⊗Y G
is an X-flat pro-quasi-coherent pro-sheaf on Y. So there is a tensor
product functor

⊗Y : Y-Flat×YX-Flat −→ YX-Flat.
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Relative Covariant Serre-Grothendieck Duality

Theorem

Let X be an ind-semi-separated ind-Noetherian ind-scheme with
a dualizing complex D•, and let π : Y −→ X be a flat affine
morphism of ind-schemes. Then there is a natural equivalence of
triangulated categories

Dsi
X(Y-Tors) ' D(YX-Flat),

where D(YX-Flat) is the conventional unbounded derived category
of the exact category YX-Flat of X-flat pro-quasi-coherent
pro-sheaves on Y.

The functor D(YX-Flat) −→ Dsi
X(Y-Tors) is given by the rule

G• 7−→ (π∗D•)⊗Y G•. The inverse functor
Dsi

X(Y-Tors) −→ D(YX-Flat) is denoted by RHomY-qc(π∗D•,−).
It is a right derived functor constructed by applying a certain
quasi-coherent internal Hom-type functor HomY-qc(π∗D•,−) to
complexes of X-injective quasi-coherent torsion sheaves on Y.
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The Semitensor Product

Let π : Y −→ X be a flat affine morphism of ind-schemes. First we
need to construct the left derived functor of tensor product of
X-flat pro-quasi-coherent pro-sheaves on Y,

⊗Y,L : D(YX-Flat)×D(YX-Flat) −−→ D(YX-Flat).

X-flat pro-quasi-coherent pro-sheaves on Y are only flat along X,
but need not be flat along the fibers of π, so their tensor product
has to be derived.

For this purpose, we use relative bar-resolutions for the morphism
π : Y −→ X. Given a complex of X-flat pro-quasi-coherent
pro-sheaves G• on Y, consider the bar bicomplex

· · · −→ π∗π∗π
∗π∗π

∗π∗G• −→ π∗π∗π
∗π∗G

• −→ π∗π∗G
• −→ 0

and denote by Bar•π(G•) its totalization constructed by taking
coproducts along the diagonals.
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The Semitensor Product

Then Bar•π(G•) is a complex of flat pro-quasi-coherent
pro-sheaves on Y

isomorphic to G• in D(YX-Flat) and adjusted to
the tensor product ⊗Y.

For any two complexes F• and G• ∈ K(YX-Flat), the three
complexes

Bar•π(F•)⊗Y G•,

F• ⊗Y Bar•π(G•),

Bar•π(F•)⊗Y Bar•π(G•)

are naturally isomorphic in D(YX-Flat). These three complexes
represent the desired derived tensor product object F• ⊗Y,L G• in
D(YX-Flat).
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The Semitensor Product

Similarly, assuming X to be ind-Noetherian, one constructs the left
derived functor of tensor product of X-flat pro-quasi-coherent
pro-sheaves and quasi-coherent torsion sheaves on Y,

⊗L
Y : D(YX-Flat)×Dsi

X(Y-Tors) −−→ Dsi
X(Y-Tors).

Given two complexes G• ∈ K(YX-Flat) and M • ∈ K(Y-Tors),
one needs to either replace G• by its bar-resolution Bar•π(G•), or
replace M • by its bar-resolution Bar•π(M •), or both. Then
the three complexes

Bar•π(G•)⊗Y M •,

G• ⊗Y Bar•π(M •),

Bar•π(G•)⊗Y Bar•π(M •)

are naturally isomorphic in Dsi
X(Y-Tors). These three complexes

represent the derived tensor product object G• ⊗L
Y M • in

Dsi
X(Y-Tors).
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The Semitensor Product

For any flat affine morphism of ind-schemes π : Y −→ X,
the derived category D(YX-Flat) is a tensor triangulated category

with respect to the left derived tensor product functor ⊗Y,L.
Assuming X to be ind-Noetherian, the semiderived category
Dsi

X(Y-Tors) is a triangulated module category over D(YX-Flat)
with respect to the left derived tensor product functor ⊗L

Y.

Now, given an ind-semi-separated ind-Noetherian ind-scheme X
with a dualizing complex D•X and a flat affine morphism of
ind-schemes π : Y −→ X, one can transfer the tensor triangulated
structure of D(YX-Flat) along the triangulated equivalence
D(YX-Flat) ' Dsi

X(Y-Tors). The resulting operation on
the semiderived category is called the semitensor product and
denoted by

♦π∗D•X : Dsi
X(Y-Tors)×Dsi

X(Y-Tors) −−→ Dsi
X(Y-Tors).
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The Semitensor Product

Explicitly, let M • and N • be two complexes in Y-Tors,

and let
M • −→J • and N • −→ K • be two morphisms whose cones
become coacyclic after applying π∗, while J •,
K • ∈ K(Y-TorsX-inj). Then the three complexes

M • ⊗L
Y HomY-qc(π∗D•X,K

•),

HomY-qc(π∗D•X,J
•)⊗L

Y N •,

π∗D•X ⊗Y

(
HomY-qc(π∗D•X,J

•)⊗Y,L HomY-qc(π∗D•X,K
•)
)

are naturally isomorphic as objects of Dsi
X(Y-Tors).

These three complexes represent the semiderived category object
M • ♦π∗D•X N • ∈ Dsi

X(Y-Tors). The semiderived category

Dsi
X(Y-Tors) endowed with the semitensor product operation

♦π∗D•X is a tensor triangulated category. The inverse image of

the dualizing complex π∗D•X ∈ Dsi
X(Y-Tors) is the unit object of

this tensor structure.
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The Semitensor Product: Conclusion

The semitensor product operation ♦π∗D•X on the semiderived

category Dsi
X(Y-Tors) is “semi-infinite” in that it produces doubly

unbounded complexes as outputs even when given bounded
complexes as inputs.

We have seen this in the introductory part of this talk, where,
in the standard example of Dsi(R-Modtors), for
R = lim←−`<0

k[y`, . . . , y−1, y0, y1, y2, . . . ], we had

k ♦ k '
∧∞/2+∗

(k((t))),

which is a doubly unbounded, Z-graded or (∞/2 + Z)-graded
complex.
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