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Introduction

Homological algebra is the technical heart of the algebraic part of
contemporary mathematics (including ring and module theory,
algebraic and differential geometry, algebraic number theory, etc.)

In algebraic topology, the homology groups formalize the idea of
measuring how many holes of various dimensions does a given
topological space have.

To illustrate how it works, I will consider the example of
the two-dimensional torus T 2. Topologically, it is the Cartesian
product of two one-dimensional circles S1 × S1.

Let me emphasize that we are interested in the surface of the torus
and not in its interior.
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Introduction: Homology of two-dimensional torus

Let me sketch a simplified definition of the dimension 1 homology
group of the torus, avoiding all technical details.

Elements of the homology group H1(T 2) are equivalence classes of
oriented closed curves on the torus (possibly consisting of several
connected components). Such oriented closed curves are called
1-cycles. Draw the picture . . .

Up to equivalence, a 1-cycle on the torus is determined by a pair of
integers (m, n): the number of rotations in the lateral direction
(i. e., along the equator) and the number of rotations in
the longitudinal direction (i. e., along the meridian). The sign of
the integer depends on the direction of the rotation.

When a cycle has several connected components, one takes
the sum of the related pairs of integers in the group of pairs Z2.
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Introduction: Homology of two-dimensional torus

I have vagulely explained the assertion that the degree 1 homology
group of the torus

is isomorphic to the group of pairs of integers,

H1(T 2) ' Z2.

If b and c are two 1-cycles on the torus, one can deform them
slightly so as to make them intersect properly. Then one can
compute the number of the intersection points in b ∩ c with signs
depending on the orientations. Draw the picture . . .

This produces a nondegenerate skew-symmetric bilinear form
(symplectic form)

H1(T 2)× H1(T 2) −→ Z

called the intersection pairing.
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Introduction: Homology of two-dimensional torus

A 0-cycle on T 2 is a formal linear combination of points (with
integer coefficients).

Since the torus is arcwise connected, two
0-cycles b and c on T 2 are equivalent if and only if the sum of
the coefficients in a is equal to the sum of the coefficients in b.
So the degree 0 homology group of the torus is isomorphic to Z,

H0(T 2) ' Z.

The degree 2 homology group of T 2 is also isomorphic to Z,

H2(T 2) ' Z.

The whole torus is a 2-cycle representing a generator of H2(T 2).

As the torus is two-dimensional, its homology groups in
degrees ≥ 3 vanish,

H3(T 2) = H4(T 2) = · · · = 0.
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Introduction: Posing the Problem
(of Semi-Infinite Algebraic Topology)

We would like to replace the 2-dimensional torus T 2 with an
infinite-dimensional, and moreover, a “doubly infinite-dimensional”
topological space/manifold Y . So the directions along Y would be
indexed by an infinite set S roughly divided into the “positive” and
“negative” halves.

Then we would like to consider cycles in Y represented by singular
subvarieties W ⊂ Y spread along the “positive” directions. Such
cycles up to a suitable equivalence would form a doubly unbounded
sequence of semi-infinite homology groups denoted by

H∞/2+n(Y ), n ∈ Z.

Here the notation presumes that if the set Z has ∞ elements and
its subset Z≥0 has ∞/2 elements, then the set Z≥1 has ∞/2− 1
elements, while the set Z≥−1 has ∞/2 + 1 elements. The set
{−2,−1} ∪ Z≥1 also has ∞/2 + 1 elements, etc.
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Introduction: Posing the Problem
(of Semi-Infinite Algebraic Topology)

One might also want to have a sequence of homology groups
formed by cycles spread in the “negative” directions along Y .

These might be denoted H∞−∞/2+n(Y ), n ∈ Z. The homology
groups formed by cycles spread in both the positive and negative
directions would be then denoted H∞−m(Y ), m ≥ 0.

Intersecting the “positive” and “negative” semi-infinite cycles, one
would construct a pairing

H∞/2+n(Y )× H∞−∞/2−n(Y ) −→ Z.

Intersecting the semi-infinite cycles with cycles going in both kinds
of directions might provide multiplication maps

H∞/2+n(Y )× H∞−m(Y ) −→ H∞/2+n−m(Y ),

etc.
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Time to Admit It: Fake Introduction

The preceding part of this talk might be titled “Fake introduction”
or “Introduction to a Dream”. Its aim is to provide some bits of
relevant geometric intuition, not to introduce a real, presently
existing subject.

Semi-infinite algebraic topology does not exist. To the best of my
knowledge, noone was able to develop such a theory yet.

The actual content of my book [Pos23] on which this talk is based
is quite different. Still, my work is inspired by the kind of
geometric intuition described above.
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Actual History

The term “semi-infinite” was introduced in a 1984 paper of
Boris Feigin, where he defined the semi-infinite homology of
certain “doubly infinite-dimensional” Lie algebras (specifically,
Kac–Moody and Virasoro). These are Lie algebras with an
unbounded grading by (both the positive and negative) integers,
g =

⊕
n∈Z gn, with finite-dimensional grading components gn.

The definitive treatment of the semi-infinite homology of Lie
algebras was given by Beilinson and Drinfeld in a 2000 manuscript.
It was published in their 2004 book.

Around 1993-95, I participated in a seminar run by Feigin for his
graduate students. The problem of defining the semi-infinite
(co)homology of associative algebras was posed there.

Feigin also shared with us his vision of semi-infinite geometry and
topology. This made a deep impression on me.
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algebras was given by Beilinson and Drinfeld in a 2000 manuscript.
It was published in their 2004 book.

Around 1993-95, I participated in a seminar run by Feigin for his
graduate students. The problem of defining the semi-infinite
(co)homology of associative algebras was posed there.

Feigin also shared with us his vision of semi-infinite geometry and
topology. This made a deep impression on me.
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Actual History

The first definition of semi-infinite homology and cohomology of
associative algebras was proposed by Arkhipov in 1996–97.

A version of Arkhipov’s definition was suggested by Sevostyanov
in 2000–01. A completely different approach was initiated by
Bezrukavnikov in 2000.

My work on semi-infinite (co)homology of associative algebras
started in 2000 and took many years to ripen. I wrote some letters
to Arkhipov and Bezrukavnikov outlining my point of view in 2000,
and then a second series of letters in 2002. My arXiv preprint on
the topic only appeared in 2007. In 2010, it was published as
a book [Pos10].

One of the main results of [Pos10], contained in an appendix
written jointly with Arkhipov, was a comparison theorem
establishing that my version of the semi-infinite homology of
associative algebras agrees with Feigin’s and Beilinson–Drinfeld’s
semi-infinite homology of Lie algebras in a suitable setting.
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Actual History

In a more geometric context, the semi-infinite flag manifolds and
semi-infinite Grassmannians

were introduced by Feigin and Frenkel
in 1990. These are infinite-dimensional algebraic varieties acted
upon by infinite-dimensional algebraic groups with orbits of infinite
dimension and infinite codimension in the ambient variety. They
are natural objects of interest in geometric representation theory.

In my work, a program of Semi-Infinite Algebraic Geometry was
outlined in 2015–17 in the introduction to the paper [Pos17].
The aim was to suggest a setting in infinite-dimensional algebraic
geometry where a semi-infinite homology theory (and other
features of semi-infinite homological algebra known from
the book [Pos10]) could be constructed.

This program was partially realized in my 2021–23 book [Pos23].
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Introduction Cont’d: Semi-Infinite Set Theory

A semi-infinite structure on a set S is the datum of a subset
S+ ⊂ S defined up to adjoining or removing a finite number of
elements from S .

The subset S+ ⊂ S , as well any other subset S+′ ⊂ S for which
the symmetric difference (S+ ∪ S+′) \ (S+ ∩ S+′) is finite, is called
a semi-infinite subset in S . The complements to semi-infinite
subsets, like S− = S \ S+, are called co-semi-infinite subsets.

The cardinalities of semi-infinite subsets in S are defined by
the rules |S+| =∞/2 and

|S+′| =∞/2 + |S+′ \ S+| − |S+ \ S+′|.

So the cardinality of a semi-infinite subset S+′ ⊂ S is
an expression of the form ∞/2 + n, with n ∈ Z.
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Introduction Cont’d: Semi-Infinite Linear Algebra

Given a field k and a set S with a semi-infinite structure, one can
construct a topological k-vector space

VS ,S+ =
⊕

t∈S\S+
kt ⊕

∏
s∈S+

ks.

Specifically, the elements of VS,S+ are the formal expressions

v =
∑

s∈S
ass, as ∈ k

where the coefficient as is arbitrary for elements s ∈ S+, but at
may be only nonzero for a finite number of elements t ∈ S \ S+.

The vector space VS ,S+ remains unchanged when one removes
a finite number of elements from S+ or adjoins to S+ a finite
number of elements from S . The set S is a topological basis in
the natural topology on VS,S+ .
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Introduction Cont’d: Semi-Infinite Linear Algebra

Topological vector spaces of the form VS ,S+ are called locally
linearly compact, or Tate vector spaces.

More precisely, a complete, separated topological k-vector space is
called linearly compact (or “pseudocompact”, or
“pro-finite-dimensional”) if it has a base of neighborhoods of zero
consisting of vector subspaces of finite codimension. A topological
vector space is called locally linearly compact if it has a linearly
compact open subspace.

The standard example of a set with a semi-infinite structure is
the set of all integers S = Z with the semi-infinite subset of
nonnegative integers S+ = Z≥0. The related topological vector
space VS ,S+ is the vector space of Laurent formal power series
VS ,S+ = k((t)).
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Introduction Cont’d: Semi-Infinite Geometry

Semi-infinite geometry can be informally defined as a study of
geometric shapes with local coordinates indexed by sets with
semi-infinite structure. For a semi-infinite variety Y with local
coordinates ys indexed by a set S with a semi-infinite subset
S+ ⊂ S , it makes sense to assume that, for every point p ∈ Y ,
the set of all indices s ∈ S such that ys(p) 6= 0 is contained in
some semi-infinite subset S+′ ⊂ S (depending on the point p).

The standard example of a semi-infinite algebraic variety is
the underlying affine algebraic variety Y of the vector space of
Laurent formal power series k((t)). Let us write f (t) =

∑
n∈Z ynt

n

for a generic element f (t) ∈ k((t)). Then yn, n ∈ Z is a global
coordinate system on Y , indexed by the set S = Z with the
standard semi-infinite structure. The condition above is satisfied:
for every f ∈ k((t)), the set of all n ∈ Z such that yn 6= 0 is at
most semi-infinite, i. e., it is contained in the union of S+ = Z≥0

with a finite set of negative integers.
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The standard example of a semi-infinite algebraic variety is
the underlying affine algebraic variety Y of the vector space of
Laurent formal power series k((t)). Let us write f (t) =

∑
n∈Z ynt

n

for a generic element f (t) ∈ k((t)). Then yn, n ∈ Z is a global
coordinate system on Y , indexed by the set S = Z with the
standard semi-infinite structure. The condition above is satisfied:
for every f ∈ k((t)), the set of all n ∈ Z such that yn 6= 0 is at
most semi-infinite,

i. e., it is contained in the union of S+ = Z≥0

with a finite set of negative integers.
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Introduction Cont’d: Semi-Infinite Geometry

Affine algebraic varities over an algebraically closed field k

are
defined as the zero sets of systems of polynomial equations
f1(x1, . . . , xm) = 0, . . . , fn(x1, . . . , xm) = 0. These are the closed
subvarieties in the m-dimensional affine space Am

k .

One can define a semi-infinite closed subvariety or a semi-infinite
algebraic cycle W in the space of Laurent series Y = k((t)) as
the zero sets of systems of polynomial equations

y−`−1 = y−`−2 = y−`−3 = · · · = 0,

f1(y−`, y−`+1, . . . , y0, y1, . . . , ym) = 0, · · · ,
fn(y−`, y−`+1, . . . , y0, y1, . . . , ym) = 0, n ≥ 0,

where ` and m ∈ Z≥0 depend on W . So all the coordinates with
large negative numbers are equated to zero, and in addition a finite
number of polynomial equations are imposed on the coordinates
with intermediate numbers. No equations are imposed on
the coordinates with large positive numbers.
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Introduction Fin’d: Semi-Infinite Geometry

Considering semi-infinite algebraic cycles in Y up to a suitable
equivalence

, and intersecting them with algebraic cycles of finite
codimension in Y (also viewed up to a suitable equivalence),
one might have a kind of semi-infinite intersection theory in
infinite-dimensional algebraic geometry. This would be a (presently
nonexistent) algebro-geometric counterpart of the nonexistent
algebraic topology of semi-infinite cycles discussed above.

The actually existing theory developed in [Pos23] considers a flat
affine morphism of infinite-dimensional varieties π : Y −→ X .
The typical/standard example is

π : k((t)) −→ k((t))/k[[t]],

where k[[t]] is the vector subspace of formal Taylor power series
in the vector space k((t)) of formal Laurent power series.
The quotient space k((t))/k[[t]] is the space of “Laurent tails”.
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Summary for the Standard Example

For the rest of this talk, I switch to the algebraic language.

Continuing with the standard example, consider the ring of
polynomials B = k[. . . , y−2, y−1, y0, y1, y2, . . . ] in the doubly
infinite sequence of variables yn, n ∈ Z. Let us say that
a B-module M is torsion if for every m ∈ M there exists ` ≥ 0
such that ynm = 0 for all n < −`. No restrictions are imposed on
the action of the variables yn, n ≥ 0, in the module M.

Alternatively, one can think of torsion B-modules as of discrete
modules over the complete topological ring

B = lim←−`<0
k[y`, . . . , y−1, y0, y1, y2, . . . ]

of functions on k((t)) = {
∑

n∈Z ynt
n | yn = 0 for n� 0 }.

Here the ring B can be also constructed as the completion of
the polynomial ring B with respect to the ring topology with
a base of neighborhoods of zero formed by the ideals J` generated
by y−`−1, y−`−2, . . . , where ` ≥ 0.
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Summary for the Standard Example

The category B = B-Mod tors of torsion B-modules is abelian.

In
the rest of this talk, my aim is to explain how to define a certain
exotic derived category of the abelian category B, called the
semiderived category of torsion B-modules and denoted Dsi (B).

The semiderived category, first defined in the book [Pos10], is
the key technical concept and the main innovation in my approach
to semi-infinite algebra and geometry. It plays a central role in
both the books [Pos10] and [Pos23].

The main result of [Pos23] is the construction of a tensor
(monoidal) structure on the semiderived category Dsi

X (Y ) assigned
to a flat affine morphism π : Y −→ X . The tensor product
operation ♦ on Dsi

X (Y ) is called the semitensor product. So, in
particular, in our example Dsi (B) is naturally a tensor triangulated
category.
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Summary for the Standard Example

The triangulated category Dsi (B) is constructed

as the
triangulated Verdier quotient category of the chain homotopy
category K(B) of unbounded complexes in B by a certain thick
subcategory Acsi (B); so Dsi (B) = K(B)/Acsi (B).

The thick subcategory of complexes to be killed Acsi (B) ⊂ K(B)
is properly contained in the full subcategory Ac(B) ⊂ K(B) of
acyclic complexes in B, that is Acsi (B) ( Ac(B).

So some acyclic complexes in the abelian category B represent
nonzero objects in the semiderived category. In particular, the unit
object of the tensor structure on Dsi (B) turns out to be an acyclic
complex in this example.

Consider the one-dimensional B-module k with the zero action of
all the variables yi . Then the semitensor product k ♦ k in Dsi (B) is
a complex of B-modules with a doubly unbounded sequence of
nonzero homology modules. In this sense, the semitensor product
♦ can be viewed as a semi-infinite homology theory.

Leonid Positselski Semi-infinite algebraic geometry 20 / 26
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What is the semiderived category?

Let me start with the conventional derived category. Given a ring
R, one considers sequences of R-modules and homomorphisms of
R-modules

· · · −→ M2
d2−→ M1

d1−→ M0
d0−→ M−1 −→ · · ·

such that the composition of every pair of successive maps is zero,
dndn+1 = 0 for every n ∈ Z. Such sequences of modules and
homomorphisms M• are called complexes of R-modules.

The equation dndn+1 = 0 is equivalent to the condition that the
image of the map dn+1 is contained in the kernel of the map dn.
The quotient R-module Hn(M•) = Ker(dn)/ Im(dn+1) is called
the degree n homology module of M•.

A complex M• such that Hn(M•) = 0 (i. e., Ker(dn) = Im(dn+1))
for all n ∈ Z is said to be acyclic.
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What is the semiderived category?

In homological algebra, one considers complexes and
homomorphisms of complexes up to various equivalence relations.

A (homo)morphism of complexes f• : M• −→ N• is a commutative
diagram of homomorphisms of modules

· · · // M1
dM

1 //

f1
��

M0
dM

0 //

f0
��

M−1
//

f−1

��

// · · ·

· · · // N1
dN

1 // N0
dN

0 // N−1
// · · ·

A morphism of complexes f• : M• −→ N• is said to be homotopic
to zero if there exists a sequence of module maps
hn : Mn −→ Nn+1 such that fn = dN

n+1hn + hn−1d
M
n for all n ∈ Z,

· · · // M1
// M0

//

h0

}}

M−1
//

h−1

||

// · · ·

· · · // N1
// N0

// N−1
// · · ·
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What is the semiderived category?

Two homomorphisms of complexes f•, g• : M• −→ N• are said to
be (chain) homotopic

if their difference f• − g• is homotopic to
zero. The chain homotopy is the most elementary type of
equivalence relation on complexes and morphisms of complexes.
The category of complexes of R-modules with morphisms up to
chain homotopy is called the homotopy category K(R-Mod).

More powerful equivalence relations on complexes are classified by
the full subcategories in K(R-Mod) consisting of all the
complexes which this equivalence relation turns into zero objects.
For example, a morphism of complexes f• : M• −→ N• is called
a quasi-isomorphism if the induced morphism of the homology
modules Hn(f•) : Hn(M•) −→ Hn(N•) is an isomorphism for all n.

The category of complexes up to quasi-isomorphism is called
the derived category D(R-Mod). The related class of annihilated
objects Ac(R-Mod) consists of all the acyclic complexes.
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What is the semiderived category?

An R-module J is called injective

if, for every R-module M and
a submodule N ⊂ M, every R-module homomorphism N −→ J
can be extended to an R-module homomorphism M −→ J.

A complex M• is called bounded below if Mn = 0 for all n� 0,

· · · −→ 0 −→ 0 −→ Mm −→ Mm−1 −→ Mm−2 −→ · · ·
A bounded below complex of R-modules M• is acyclic if and only
if for any (arbitrary or bounded below) complex of injective
R-modules J•, every morphism of complexes M• −→ J• is
homotopic to zero.

For unbounded complexes of R-modules M• this is no longer true.
The thematic example is the ring of dual numbers R = k[ε]/(ε2)
and the complex of R-modules

· · · −→ R
ε∗−→ R

ε∗−→ R −→ · · ·
This is an acyclic complex of injective R-modules, but its identity
endomorphism is not homotopic to zero.
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What is the semiderived category?

An (unbounded) complex of R-modules M• is called coacyclic if

,
for every complex of injective R-modules J•, any morphism of
complexes M• −→ J• is homotopic to zero. Any coacyclic complex
of modules is acyclic, but the converse need not be the case. For
example, the complex of modules over the ring of dual numbers
written above is acyclic, but not coacyclic.

Notice that the property of a complex of R-modules M• to be
acyclic only depends on M• as a complex of abelian groups. But
the property of M• to be coacyclic does depend of the R-module
structures on the components of M•.

The class of all coacyclic complexes is denoted by
Acco(R-Mod) ⊂ K(R-Mod). The equivalence relation on
complexes of R-modules killing all the coacyclic complexes and
only them is called the co-quasi-isomorphism. The category of
complexes of R-modules up to co-quasi-isomorphism is called
the coderived category Dco(R-Mod).
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What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ].

Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).
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What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0.

Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules.

Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic

if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules.

This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A

, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them

is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism.

The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism

is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B).

This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



What is the semiderived category?

Finally we return to the torsion modules over the ring
B = k[. . . , y−2, y−1, y0, y1, y2, . . . ]. Consider the subring
A = k[. . . , y−2, y−1] ⊂ B spanned by the variables yn with negative
numbers n < 0. Let A denote the abelian category of torsion
A-modules. Then there is a forgetful functor B −→ A (forgetting
the action of yn with n ≥ 0).

A complex of torsion B-modules M• is called semicoacyclic if M• is
coacyclic as a complex of torsion A-modules. This means, for every
complex of injective objects J• in the category A, every morphism
of complexes of A-modules M• −→ J• must be homotopic to zero.

The equivalence relation on the complexes of torsion B-modules
killing all the semicoacyclic complexes and only them is called
the semi-co-quasi-isomorphism. The category of complexes of
torsion B-modules up to semi-co-quasi-isomorphism is called
the semiderived category Dsi (B) = Dsi

A(B). This is the main object
of study in the book [Pos23] (for this standard example).

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



S. M. Arkhipov. Semi-infinite cohomology of associative
algebras and bar-duality. Internat. Math. Research Notices
1997, #17, p. 833–863. arXiv:q-alg/9602013

S. Arkhipov. Semi-infinite cohomology of quantum groups II.
Topics in quantum groups and finite-type invariants, p. 3–42,
Amer. Math. Soc. Translations, Ser. 2 185, AMS, Providence,
RI, 1998. arXiv:q-alg/9610020

A. Beilinson, V. Drinfeld. Quantization of Hitchin’s integrable
system and Hecke eigensheaves. February 2000. Available from
http://www.math.utexas.edu/~benzvi/Langlands.html

or
http://math.uchicago.edu/~drinfeld/langlands.html

A. Beilinson, V. Drinfeld. Chiral algebras. AMS Colloquium
Publications, 51. AMS, Providence, RI, 2004.

Leonid Positselski Semi-infinite algebraic geometry 26 / 26



R. Bezrukavnikov, L. Positselski. On semi-infinite cohomology
of finite-dimensional graded algebras. Compositio Math. 146,
#2, pp. 480–496, 2010. arXiv:0803.3252 [math.QA]

B. L. Feigin. The semi-infinite homology of Kac-Moody and
Virasoro Lie algebras. Russian Math. Surveys 39, #2,
p. 155–156, 1984.

B. L. Feigin, E. V. Frenkel. Affine Kac-Moody algebras and
semi-infinite flag manifolds. Comm. Math. Phys. 128, #1,
p. 161–189, 1990.

A. Sevostyanov. Semi-infinite cohomology and Hecke algebras.
Advances Math. 159, #1, p. 83–141, 2001.
arXiv:math.RA/0004139

L. Positselski. Homological algebra of semimodules and
semicontramodules: Semi-infinite homological algebra of
associative algebraic structures. Appendix C in collaboration
with D. Rumynin; Appendix D in collaboration with
S. Arkhipov. Monografie Matematyczne vol. 70,

Leonid Positselski Semi-infinite algebraic geometry 26 / 26
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