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In the most general terms:

Semi-infinite homological algebra = homological theory of
mathematical objects of “semi-infinite nature”.

Semi-infinite algebraic geometry = semi-infinite homological
algebra of “doubly” infinite-dimensional algebraic varieties.

We will come to more specific definitions shortly.
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Semi-infinite mathematical objects =

objects that can be viewed as extending in both a “positive”
and a “negative” direction

with some natural “zero position” in between

(perhaps defined up to a finite movement).

The roles of the “positive” and the “negative” variables are
not symmetric, in that the “positive” coordinates are grouped
together in some sense.

The most basic example of a semi-infinite mathematical object is
the field of formal Laurent power series k((z)) over a ground
field k , and many more complicated examples are constructed on
the basis of this simplest example.

The field k((z)) can be viewed as the field of functions on
the punctured formal disc Spec k((z)) = Spec k[[z ]] \ {0}.
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Examples

Semi-infinite algebraic object:

the Lie algebra of vector fields on the punctured formal disc
k((z))d/dz

with its subalgebra zk[[z ]]d/dz ⊂ k((z))d/dz of vector fields
that extend to and vanish at the origin.

Semi-infinite geometric object:

the vector space k((z)), viewed as an infinite-dimensional
affine space (a “doubly infinite-dimensional” space),

fibered over its quotient space k((z))/k[[z ]], also viewed as
an infinite-dimensional affine space,

with infinite-dimensional affine fibers isomorphic to k[[z ]].

More generally, if G is an affine algebraic group over a field k , then
the fibration G (k((z))) −→ G (k((z)))/G (k[[z ]]) can be viewed as
a semi-infinite object in algebraic geometry.
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Semi-infinite homological algebra =

homological algebra in the semiderived categories of modules
(comodules, and contramodules),

where the semiderived category =

derived category of the second kind (the coderived or
the contraderived category) along the subalgebra,

derived category of the first kind (the conventional derived
category) in the direction complementary to the subalgebra.

Semi-infinite algebraic geometry =

homological algebra in the semiderived categories of
quasi-coherent sheaves and contraherent cosheaves,

where the semiderived category =

derived category of the second kind (the coderived or
the contraderived category) along the base of the fibration,

derived category of the first kind (the conventional derived
category) along the fibers.
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Derived categories of the first and second kind

Classical homological algebra:
two hypercohomology spectral sequences

Let F : A −→ B be a right exact functor between abelian
categories (assume that A has enough injectives).
Let 0 −→ C 0 −→ C 1 −→ C 2 −→ · · · be a complex in A.
Then there are two spectral sequences converging to the same limit

′Epq
2 = RpF (HqC •) =⇒ Hp+q(C •);

′′Epq
2 = Hp(RqF (C •)) =⇒ Hp+q(C •).

For unbounded complexes C •, the two spectral sequences converge
(perhaps in some weak sense) to two different limits. The same
problem occurs for (even totally finite-dimensional) DG-modules.

Hence differential derived functors of the first and the second kind
[Eilenberg–Moore ’62 — Husemoller–Moore–Stasheff ’74].
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Derived categories of the first and second kind

Classical homological algebra

Let A be an abelian category with enough projectives and
injectives.

Then the derived category of complexes over A
bounded above or below can be alternatively described as

D+(A) = Hot+(A)/Acycl+(A) ' Hot+(Ainj);

D−(A) = Hot−(A)/Acycl−(A) ' Hot−(Aproj).

Not true for unbounded complexes.

Example: let Λ = k[ε]/(ε2) be the exterior algebra in one variable
(the ring of dual numbers) over a field k . Then

· · · ε−−→ Λ
ε−−→ Λ

ε−−→ Λ
ε−−→ · · ·

is an unbounded complex of projective, injective Λ-modules.
It is acyclic, but not contractible.
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Derived Categories of the First and Second Kind

The complex

· · · ε−−→ Λ
ε−−→ Λ

ε−−→ Λ
ε−−→ · · ·

of modules over Λ = k[ε]/(ε2) can be dealt with as

representing a zero object in the derived category,

not “projective” or “injective” (not suitable for computing
the derived functors)

—

derived category of the first kind (conventional)

“projective” and/or “injective” (adjusted for computing
the derived functors),

representing a nontrivial object in the derived category

—

derived category of the second kind (exotic)
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Derived categories of the first and second kind

Theories of the first kind feature:

equivalence relation on complexes simply described

(being a quasi-isomorphism only depends on the underlying
complexes of abelian groups, not on the module structure)

complicated descriptions of categories of resolutions
(homotopy projective, homotopy injective complexes)

[Bernstein, Spaltenstein, Keller, . . . ’88 – ]

Theories of the second kind feature:

categories of resolutions simply described
(depending only on the underlying graded module structure,
irrespective of the differentials on complexes)

complicated descriptions of equivalence relations on complexes
(more delicate than the conventional quasi-isomorphism)

[Hinich, Lefèvre-Hasegawa, Krause, L.P., H. Becker, . . . ’98 – ]
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[Hinich, Lefèvre-Hasegawa, Krause, L.P., H. Becker, . . . ’98 – ]

Leonid Positselski Semi-infinite Algebraic Geometry 9 / 58



Derived categories of the first and second kind

Theories of the first kind feature:

equivalence relation on complexes simply described
(being a quasi-isomorphism only depends on the underlying
complexes of abelian groups, not on the module structure)

complicated descriptions of categories of resolutions
(homotopy projective, homotopy injective complexes)

[Bernstein, Spaltenstein, Keller, . . . ’88 – ]

Theories of the second kind feature:

categories of resolutions simply described
(depending only on the underlying graded module structure,
irrespective of the differentials on complexes)

complicated descriptions of equivalence relations on complexes
(more delicate than the conventional quasi-isomorphism)
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Derived categories of the first and second kind

Philosophical conclusion:

in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind

on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R

, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A

is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category)

along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A

and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category)

along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Derived categories of the first and second kind

Philosophical conclusion: in theories of the first kind,
a complex is viewed as a deformation of its cohomology.

In theories of the second kind, a complex is viewed as
a deformation of itself endowed with the zero differential.

Classical homological algebra is the realm in which there is
no difference between the theories of the first and the second kind.

There is a natural way to build derived categories of the first and
second kind on top of one another.

Given a ring R with a subring A ⊂ R, the semiderived category of
R-modules relative to A is a mixture of

a derived category of the second kind (the coderived or
the contraderived category) along the variables from A and

the derived category of the first kind (the conventional derived
category) along the complementary variables from R.

Leonid Positselski Semi-infinite Algebraic Geometry 10 / 58



Conventional derived category

Let E be an exact category (in the sense of Quillen).

Assume for
simplicity that E contains the images of its idempotent
endomorphisms. A complex C • in E is called acyclic if it is
composed of short exact sequences:

· · · C−1 C 0 C 1 · · ·

Z 0 Z 1

// //

�� ��

//

�� ��

//

??

??

??

??

Denote by Hot(E) the homotopy category of (unbounded)
complexes in E and by Acycl(E) its full subcategory consisting of
acyclic complexes.

The triangulated quotient category D(E) = Hot(E)/Acycl(E) is
called the derived category of an exact category E .
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Coderived and contraderived categories

Let E be an exact category. Suppose
0 −→ K • −→ L• −→ M• −→ 0 is a short exact sequence of
complexes in E :

0 0 0 0

· · · K−1 K 0 K 1 K 2 · · ·

· · · L−1 L0 L1 L2 · · ·

· · · M−1 M0 M1 M2 · · ·

0 0 0 0

�� �� �� ��

//

��

//

��

//

�� ∂

//
d

��

//

//

��

//

�� ∂

//
d

��

//

��

//

//

��

//
d

��

//

��

//

��

//

Form the total complex Tot(K • → L• → M•) by taking direct
sums along the diagonals, with the differential D = ∂ ± d .
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Coderived and Contraderived Categories

A complex C • in E is called absolutely acyclic

if it belongs to
the minimal thick subcategory of the homotopy category Hot(E)
containing the complexes Tot(K • → L• → M•) for all the short
exact sequences 0 −→ K • −→ L• −→ M• −→ 0 of complexes in E :

Acyclabs(E) = 〈Tot(K • → L• → M•)〉 ⊂ Hot(E).

The triangulated quotient category Dabs(E) = Hot(E)/Acyclabs(E)
is called the absolute derived category of an exact category E .

The absolute derived category Dabs(E) is defined for any
exact category E .

The coderived category Dco(E) is defined for any exact
category E with exact functors of infinite direct sum.

The contraderived category Dctr(E) is defined for any exact
category E with exact functors of infinite product.
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Coderived and Contraderived Categories

A complex C • in E is called coacyclic

if it belongs to the minimal
triangulated subcategory of the homotopy category Hot(E)
containing the complexes Tot(K • → L• → M•) and closed under
infinite direct sums:

Acyclco(E) = 〈Tot(K • → L• → M•)〉⊕ ⊂ Hot(E).

A complex in E is called contraacyclic if it belongs to the minimal
triangulated subcategory of Hot(E) containing the complexes
Tot(K • → L• → M•) and closed under infinite products:

Acyclctr(E) = 〈Tot(K • → L• → M•)〉Π ⊂ Hot(E).
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Coderived and contraderived categories

The triangulated quotient category

Dco(E) = Hot(E)/Acyclco(E)

is called the coderived category of an exact category E .

The quotient category

Dctr(E) = Hot(E)/Acyclctr(E)

is called the contraderived category of an exact category E .

Any coacyclic complex is acyclic, and any contraacyclic complex is
acyclic, but the converse is not generally true. So the conventional
derived category D(E) is a quotient category of both Dco(E) and
Dctr(E) (whenever the latter are defined).

In an exact category E of finite homological dimension, any acyclic
complex is absolutely acyclic (hence also co- and contraacyclic).
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Coderived and contraderived categories

Example: the acyclic complex · · · ε−→ Λ
ε−→ Λ

ε−→ Λ
ε−→ · · · of

modules over the algebra of dual numbers Λ = k[ε]/(ε2)

is neither
coacyclic, nor contraacyclic.

Let us decompose this complex in two halves. The acyclic complex
of Λ-modules

· · · ε−→ Λ
ε−→ Λ

ε−→ Λ� k → 0

is contraacyclic, but not coacyclic.

The acyclic complex of Λ-modules

0→ k � Λ
ε−→ Λ

ε−→ Λ
ε−→ · · ·

is coacyclic, but not contraacyclic.
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Coderived and contraderived categories

Consider the following two conditions on an exact category E :

(∗) There are enough injective objects in E , and countable direct
sums of injective objects have finite injective dimension.

(∗∗) There are enough projective objects in E , and countable
products of projective objects have finite projective dimension.

Theorem

(a) For any exact category E satisfying (∗), the natural functor
from the homotopy category of complexes of injective objects in E
to the coderived category of E is a triangulated equivalence,

Hot(Einj) ' Dco(E).

(b) For any exact category E satisfying (∗∗), the natural functor
from the homotopy category of complexes of projective objects in
E to the contraderived category of E is a triangulated equivalence,

Hot(Eproj) ' Dctr(E).
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Hot(Einj) ' Dco(E).

(b) For any exact category E satisfying (∗∗), the natural functor
from the homotopy category of complexes of projective objects in
E to the contraderived category of E is a triangulated equivalence,

Hot(Eproj) ' Dctr(E).
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Semiderived Categories

Let E −→ A be an exact functor between exact categories

,
thought of as a “forgetful” functor. (We will assume the infinite
direct sums or infinite products in E and A to be exact and
preserved by the functor E −→ A as needed.)

The semicoderived category of the exact category E relative to
the exact category A is defined as the quotient category of the
homotopy category Hot(E) by the triangulated subcategory of
complexes that are coacyclic in A

Dsico
A (E) = Hot(E)/Acyclco

A (E).

The semicontraderived category of E relative to A is the quotient
category of the homotopy category Hot(E) by the triangulated
subcategory of complexes that are contraacyclic in A

Dsictr
A (E) = Hot(E)/Acyclctr

A (E).
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Semiderived categories

In particular, let R be an (associative) ring with a subring A.

Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules.

Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒

acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups

⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A

and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semiderived categories

In particular, let R be an (associative) ring with a subring A. Then
there is the exact forgetful functor R-mod −→ A-mod between
the abelian categories of modules. Denote the corresponding
semiderived categories by Dsico

A (R-mod) and Dsictr
A (R-mod).

When A = R, one has

Dsico
R (R-mod) = Dco(R-mod)

Dsictr
R (R-mod) = Dctr(R-mod).

When A is a field or A = Z, one has

Dsico
Z (R-mod) = D(R-mod) = Dsictr

Z (R-mod).

For a complex of R-modules is acyclic ⇐⇒ acyclic as a complex of
abelian groups ⇐⇒ co/contraacyclic as complex of abelian groups.

So the semiderived category is indeed a mixture of
the co/contraderived category along A and the conventional
derived category in the direction of R relative to A.

Leonid Positselski Semi-infinite Algebraic Geometry 19 / 58



Semi-infinite algebraic varieties

A semi-infinite algebraic variety is a morphism of ind-schemes or
ind-stacks Y −→ X

with, approximately, the following properties:

Y is a large and complicated ind-scheme or ind-stack;

X is built up in a complicated way from small affine pieces:
something like an ind-Noetherian or ind-coherent ind-scheme
or ind-stack with a dualizing complex;

the morphism Y −→ X is locally well-behaved: at least flat,
or perhaps very flat;

the fibers of the morphism Y −→ X are built up in a simple
way from large affine pieces: might be arbitrary affine
schemes, or quasi-compact semi-separated schemes, or
weakly proregular formal schemes.
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Example: semi-infinite algebraic variety

Consider the example of the fibration k((z)) −→ k((z))/k[[z ]].

The fiber k[[z ]] = {a0 + a1z + a2z
2 + · · · } is the set of k-points of

the infinite-dimensional affine scheme

Spec k[a0, a1, a2, . . . , an, . . . ].

The base k((z))/k[[z ]] =
⋃

n t
−nk[[z ]]/k[[z ]]] is the set of k-points

of the ind-Noetherian ind-affine ind-scheme

lim−→n
Spec k[a−n, . . . , a−2, a−1].

Can be viewed as the “ind-spectrum” of the pro-Noetherian
topological ring A = lim←−n

k[a−n, . . . , a−2, a−1].

The total space k((z)) =
⋃

n t
−nk[[z ]] is the set of k-points of

the ind-affine ind-scheme

lim−→n
Spec k[a−n, . . . , a−1, a0, a1, . . . ].
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Semi-infinite algebraic geometry

The homological formalism of semi-infinite algebraic geometry is
supposed to feature:

the geometric derived semico-semicontra correpondence, i.e.,
a triangulated equivalence between the semiderived categories
of quasi-coherent torsion sheaves and contraherent cosheaves
of contramodules on Y relative to X:

Dsico
X (Y-qcoh) ' Dsictr

X (Y-ctrh);

the “semi-infinite quasi-coherent Tor functor”, or the
double-sided derived functor of semitensor product of
quasi-coherent torsion sheaves on Y, which means a mixture
of the cotensor product along X and the conventional tensor
product along the fibers;
the double-sided derived functor of semihomomorphisms from
quasi-coherent sheaves to contraherent cosheaves on Y,
transformed by the semico-semicontra correspondence into
the conventional quasi-coherent internal RHom.
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Known particular cases

The geometric derived semico-semicontra correspondence has been
worked out in the following cases:

theory on the fiber: equivalence of the conventional derived
categories of quasi-coherent sheaves and contraherent
cosheaves on Y over X = {∗}, where
Y is a quasi-compact semi-separated scheme;
Y is a Noetherian scheme;
Y is a weakly proregular (e.g., Noetherian) affine formal
scheme;

theory on the base: equivalence between the coderived
category of quasi-coherent sheaves and the contraderived
category of contraherent cosheaves on Y = X, where
X is a Noetherian scheme with a dualizing complex;
X is a semi-separated Noetherian stack with a dualizing
complex;
X is an ind-affine ind-Noetherian ind-scheme with a dualizing
complex;
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Known particular cases

relative situation:

equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules

for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA

,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Known particular cases

relative situation: equivalence between the semicoderived
and the semicontraderived category of modules
for a flat morphism of affine schemes SpecR −→ SpecA,
where A is a coherent ring with a dualizing complex.

These results can be found in:

“Contraherent cosheaves”, arXiv:1209.2995, Sections 4, 5,
Appendices B, C, D (schemes, stacks, ind-affine ind-schemes)

“Dedualizing complexes and MGM duality”,
arXiv:1503.05523 (weakly proregular affine formal schemes)

“Coherent rings, fp-injective modules, dualizing complexes,
and covariant Serre-Grothendieck duality”,
arXiv:1504.00700 (overview; relative situation)

Leonid Positselski Semi-infinite Algebraic Geometry 24 / 58



Contraherent cosheaves

Let X be a scheme.

A quasi-coherent sheaf M on X =
a rule assigning

an OX (U)-module M(U) to every affine open subscheme
U ⊂ X

and an isomorphism of OX (V )-modules
M(V ) ' OX (V )⊗OX (U)M(U) to every pair of embedded
affine open subschemes V ⊂ U ⊂ X

satisfying a compatibility equation for every triple of
embedded affine open subschemes W ⊂ V ⊂ U ⊂ X .

This definition works well (provides an abelian category of
quasi-coherent sheaves X -qcoh) because OX (V ) is always a flat
OX (U)-module.
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Contraherent cosheaves

A contraherent cosheaf P on X =

a rule assigning

an OX (U)-module P[U] to every affine open subscheme
U ⊂ X

and an isomorphism of OX (V )-modules
P[V ] ' HomOX (U)(OX (V ),P[U]) to every pair of embedded
affine open subschemes V ⊂ U ⊂ X ,

where in addition one has Ext1
OX (U)(OX (V ),P[U]) = 0 for all

affine V ⊂ U ⊂ X

and a compatibility equation for every triple of embedded
affine open subschemes W ⊂ V ⊂ U ⊂ X is satisfied.

Here it is important that OX (V ) is not a projective OX (U)-module
in general, but it always has projective dimension at most 1.

This definition works well enough to provide an exact category of
contraherent cosheaves X -ctrh on X .
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OX (U)(OX (V ),P[U]) = 0 for all

affine V ⊂ U ⊂ X

and a compatibility equation for every triple of embedded
affine open subschemes W ⊂ V ⊂ U ⊂ X is satisfied.

Here it is important that OX (V ) is not a projective OX (U)-module
in general, but it always has projective dimension at most 1.

This definition works well enough to provide an exact category of
contraherent cosheaves X -ctrh on X .
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Contraherent cosheaves

The category X -qcoh of quasi-coherent sheaves on a scheme X

is
an abelian category with exact functors of infinite direct sum.

Therefore, in addition to the derived category D(X -qcoh),
the coderived category Dco(X -qcoh) is well defined for it.

The category X -ctrh of contraherent cosheaves on a scheme X is
an exact category with exact functors of infinite product.

Therefore, in addition to the derived category D(X -ctrh),
the contraderived category Dctr(X -ctrh) is well defined for it.

The abelian category X -qcoh always has enough injective objects.
When the scheme X is quasi-compact and semi-separated, or
Noetherian of finite Krull dimension, the exact category X -ctrh
has enough projective objects.
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Example: equivalence on the fiber

Theorem

Let X be a quasi-compact semi-separated scheme, or a Noetherian
scheme of finite Krull dimension.

Then there is a natural equivalence of triangulated categories

D(X -qcoh) ' D(X -ctrh).

Moreover, there are also equivalences of bounded derived categories

D?(X -qcoh) ' D?(X -ctrh)

for any symbol ? = +, −, or b.

For a quasi-compact semi-separated scheme X , there is also
an equivalence of absolute derived categories

Dabs(X -qcoh) ' Dabs(X -ctrh).
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Example: equivalence on the base

Let X be a Noetherian scheme. Recall that a dualizing complex
D•X on X is a complex of quasi-coherent sheaves satisfying the
following conditions:

D•X is a finite complex of injective quasi-coherent sheaves;

the cohomology sheaves Hi (D•X ) are coherent;

the natural map OX −→ HomX -qc(D•X ,D•X ) is
a quasi-isomorphism, where HomX -qc denotes the
quasi-coherent internal Hom of quasi-coherent sheaves on X .

In particular, if A is a Noetherian commutative ring, then
a dualizing complex of A-modules D•A is the same thing as
a dualizing complex of quasi-coherent sheaves on SpecA.
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In particular, if A is a Noetherian commutative ring, then
a dualizing complex of A-modules D•A is the same thing as
a dualizing complex of quasi-coherent sheaves on SpecA.
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Example: equivalence on the base

Proposition

For any Noetherian commutative ring A of finite Krull dimension,
the natural functors provide triangulated equivalences

Hot(A-modinj) ' Dco(A-mod);

Hot(A-modproj) ' Dabs(A-modflat) ' Dctr(A-mod).

Theorem

The choice of a dualizing complex D•A for a Noetherian
commutative ring A induces an equivalence of triangulated
categories Dco(A-mod) ' Dctr(A-mod).

Here the equivalence is provided by the derived functors
M• 7−→ RHomA(D•A,M

•) and P• 7−→ D•A ⊗L
A P•.

[Jørgensen, Krause, Iyengar–Krause ’05–’06]
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Example: equivalence on the base

Proposition

For any locally Noetherian scheme X , the natural functor provides
a triangulated equivalence

Hot(X -qcohinj) ' Dco(X -qcoh).

For any semi-separated Noetherian scheme X of finite Krull
dimension, one has

Dabs(X -qcohflat) = Dco(X -qcohflat) = D(X -qcohflat).

Theorem

The choice of a dualizing complex D•X for a semi-separated
Noetherian scheme X induces an equivalence of triangulated
categories Dco(X -qcoh) ' Dabs(X -qcohflat).

Here the equivalence is provided by the functors
M• 7−→ RHomX -qc(D•X ,M•) and F• 7−→ D•X ⊗OX

F•.
[Neeman, Murfet ’07–’08]
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Example: equivalence on the base

A contraherent cosheaf P on a scheme X is called locally injective

if the OX (U)-module P[U] is injective for every affine open
subscheme U ⊂ X . The exact category of locally injective
contraherent cosheaves on X is denoted by X -ctrhlin.

Locally injective contraherent cosheaves are dual-analogous to flat
quasi-coherent sheaves.

Proposition

For any Noetherian scheme X of finite Krull dimension, the natural
functor provides a triangulated equivalence

Hot(X -ctrhproj) ' Dctr(X -ctrh).

For any quasi-compact semi-separated scheme X , one has

Dabs(X -ctrhlin) = Dctr(X -ctrhlin) = D(X -ctrhlin).
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Example: equivalence on the base

Theorem

The choice of a dualizing complex D•X for a semi-separated
Noetherian scheme X

provides a commutative diagram of
triangulated equivalences

Dco(X -qcoh) Dabs(X -qcohflat)

Dabs(X -ctrhlin) Dctr(X -ctrh)

The vertical equivalences do not depend on the choice of D•X ;
the horizontal and diagonal ones do.

Theorem

The choice of a dualizing complex D•X for a Noetherian scheme X
induces a triangulated equivalence Dco(X -qcoh) ' Dctr(X -ctrh).
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Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations,

understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations

subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms.

Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,

but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”.

For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,

but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,

but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,

and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects,

but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.

Leonid Positselski Semi-infinite Algebraic Geometry 34 / 58



Contramodules over topological rings

Fancy definition of (conventional) modules over a discrete ring R:

to any set X one assigns the set R[X ] of all formal linear
combinations of elements of X with coefficients in R;

the functor X 7−→ R[X ] is a monad on the category of sets

with the “parentheses opening” map φX : R[R[X ]] −→ R[X ]

and the “point measure” map εX : X −→ R[X ];

define left R-modules as algebras/modules over this monad
on Sets, that is

a left R-module M is a set

endowed with a map of sets m : R[M] −→ M

satisfying the associativity equation m ◦ R[m] = m ◦ φM

R[R[M]]⇒ R[M] −→ M

and the unity equation m ◦ εX = idM

M −→ R[M] −→ M.
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Contramodules over topological rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

For any set X , denote by R[[X ]] the set of all infinite formal linear
combinations

∑
x∈X rxx of elements of X with the coefficients

forming a family converging to zero in the topology of R, i.e., for
any neiborhood of zero U ⊂ R the set {x | rx /∈ U} must be finite.

It follows from the conditions on the topology of R that there is
a well-defined “parentheses opening” map

φX : R[[R[[X ]]]] −−→ R[[X ]]

performing infinite summations in the conventional sense of
the topology of R to compute the coefficients. There is also
the obvious “point measure” map εX : X −→ R[[X ]]. The natural
transformations φ and ε define the structure of a monad on
the functor X 7−→ R[[X ]] : Sets −→ Sets.
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Contramodules over Topological Rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

A left contramodule over the topological ring R is
an algebra/module over the monad X 7−→ R[[X ]] on Sets, that is

a set P

endowed with a contraaction map π : R[[P]] −→ P

satisfying the contraassociativity equation π ◦R[[π]] = π ◦φP

R[[R[[P]]]] ⇒ R[[P]] −→ P

and the unity equation π ◦ εP = idP

P −→ R[P] −→ P.

The composition of the contraaction map π : R[[P]] −→ P with
the obvious embedding R[P] −→ R[[P]] defines the underlying
left R-module structure on every left R-contramodule.
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R[[R[[P]]]] ⇒ R[[P]] −→ P

and the unity equation π ◦ εP = idP

P −→ R[P] −→ P.

The composition of the contraaction map π : R[[P]] −→ P with
the obvious embedding R[P] −→ R[[P]] defines the underlying
left R-module structure on every left R-contramodule.
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Contramodules over topological rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

Then the category of left R-contramodules is abelian with exact
functors of infinite product and enough projectives (which are
the direct summands of the free R-contramodules R[[X ]]).
The forgetful functor R-contra −→ R-mod is exact and preserves
infinite products.

A right R-module N is called discrete if the action map
N ×R −→ N is continuous in the given topology of R and
the discrete topology of N , i.e., if the annihilator of any element of
N is open in R. The category of discrete R-modules is abelian
with exact functors of infinite direct sum and enough injectives.

For any discrete right R-module N and any abelian group U,
the left R-module HomZ(N ,U) has a natural left R-contramodule
structure.
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Contramodules over topological rings

Example: let R = Z` be the ring of `-adic integers. A discrete
Z`-module is just an `∞-torsion abelian group.

A Z`-contramodule P is

an abelian group endowed with an infinite summation
operation assigning to any sequence of elements p0, p1,
p2, . . . ∈ P an element denoted by

∑∞
n=0 `

npn ∈ P

and satisfying the axioms of linearity:∑∞
n=0 `

n(apn + bqn) = a
∑∞

n=0 `
npn + b

∑∞
n=0 `

nqn,

unitality + compatibility:
∑∞

n=0 `
npn = p0 + `p1 when pi = 0

for all i > 2,

and contraassociativity:∑∞
i=0 `

i
∑∞

j=0 `
jpij =

∑∞
n=0 `

n
∑

i+j=n pij .
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Contramodules over topological rings

Nakayama’s lemma:

let R be a topological ring (complete and
separated, with open right ideals forming a base of neighborhoods
of zero), and let m ⊂ R be an ideal that is topologically nilpotent,
i.e., for any neighborhood of zero U ⊂ R there exists an integer
n > 1 such that mn ⊂ U.

Let P be a nonzero left R-contramodule. Then the contraaction
map m[[P]] −→ P is not surjective.

Let R be a Noetherian commutative ring with an ideal I ⊂ R
generated by some elements s1, . . . , sm ∈ R, and let R = RÎ be
the I -adic completion of R (endowed with the I -adic topology).

Then the forgetful functor R-contra −→ R-mod is fully faithful
and its image consists of all the modules P ∈ R-mod such that
Ext∗R(R[s−1

j ],P) = 0 for all j = 1, . . . , m.

In particular, Z`-contramodules = weakly `-complete
(Ext-`-complete) abelian groups [Bousfield–Kan ’72, Jannsen ’88].

Leonid Positselski Semi-infinite Algebraic Geometry 40 / 58



Contramodules over topological rings

Nakayama’s lemma: let R be a topological ring (complete and
separated, with open right ideals forming a base of neighborhoods
of zero)

, and let m ⊂ R be an ideal that is topologically nilpotent,
i.e., for any neighborhood of zero U ⊂ R there exists an integer
n > 1 such that mn ⊂ U.

Let P be a nonzero left R-contramodule. Then the contraaction
map m[[P]] −→ P is not surjective.

Let R be a Noetherian commutative ring with an ideal I ⊂ R
generated by some elements s1, . . . , sm ∈ R, and let R = RÎ be
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the I -adic completion of R

(endowed with the I -adic topology).

Then the forgetful functor R-contra −→ R-mod is fully faithful
and its image consists of all the modules P ∈ R-mod such that
Ext∗R(R[s−1

j ],P) = 0 for all j = 1, . . . , m.

In particular, Z`-contramodules = weakly `-complete
(Ext-`-complete) abelian groups [Bousfield–Kan ’72, Jannsen ’88].

Leonid Positselski Semi-infinite Algebraic Geometry 40 / 58



Contramodules over topological rings

Nakayama’s lemma: let R be a topological ring (complete and
separated, with open right ideals forming a base of neighborhoods
of zero), and let m ⊂ R be an ideal that is topologically nilpotent,
i.e., for any neighborhood of zero U ⊂ R there exists an integer
n > 1 such that mn ⊂ U.

Let P be a nonzero left R-contramodule. Then the contraaction
map m[[P]] −→ P is not surjective.

Let R be a Noetherian commutative ring with an ideal I ⊂ R
generated by some elements s1, . . . , sm ∈ R, and let R = RÎ be
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Contramodules over Commutative Ring with an Ideal

Let R be a commutative ring and I ⊂ R be an ideal. An R-module
M is said to be I -torsion if for any s ∈ I and m ∈ M there exists
n ∈ N such that snm = 0.

An abelian group P with an additive operator s : P −→ P is said
to be an s-contramodule if for any sequence p0, p1, p2, . . . ∈ P
the infinite system of nonhomogeneous linear equations

qn = sqn+1 + pn for all n > 0

has a unique solution q0, q1, q2, . . . ∈ P.

The infinite summation operation with s-power coefficients in P is
defined by the rule

∞∑
n=0

snpn = q0.
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Contramodules over commutative ring with an ideal

Conversely, given an additive, associative, and unital s-power
infinite summation operation

(pn)∞n=0 7−→
∞∑
n=0

snpn

in P one can uniquely solve the system of equations
qn = sqn+1 + pn by setting

qn =
∞∑
i=0

s ipn+i .

A module P over a commutative ring R with an element s ∈ R is
an s-contramodule (i.e., a contramodule with respect to the
operator of multiplication with s) if and only if
ExtiR(R[s−1],P) = 0 for i = 0 and 1. (Notice that the R-module
R[s−1] has projective dimension at most 1.)
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Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I .

An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule

if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j .

This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod

is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums.

So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum

and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra

is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod.

So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product

and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over Commutative Ring with an Ideal

Let I ⊂ R be an ideal and sj ∈ R be a set of generators for I . An
R-module P is called an I -contramodule if it is an sj -contramodule
for every j . This property does not depend on the choice of a set
of generators sj , and only depends on the radical

√
I ⊂ R of I .

The full subcategory of I -torsion R-modules R-modI -tors ⊂ R-mod
is closed under the passages to submodules, quotient modules,
extensions, and infinite direct sums. So R-modI -tors is an abelian
category with exact functors of infinite direct sum and its
embedding R-modI -tors −→ R-mod is an exact functor preserving
infinite direct sums.

The full subcategory of I -contramodule R-modules R-modI -ctra is
closed under the kernels and cokernels of morphisms, extensions,
and infinite products in R-mod. So R-modI -ctra is an abelian
category with exact functors of infinite product and its embedding
R-modI -tors −→ R-mod is an exact functor preserving products.

Leonid Positselski Semi-infinite Algebraic Geometry 43 / 58



Contramodules over commutative ring with an ideal

I -torsion R-modules are the same thing as

quasi-coherent sheaves
on SpecR vanishing in the restriction to the open subset
U = SpecR \ Spec(R/I ).

I -contramodule R-modules are closely related to contraherent
cosheaves on SpecR vanishing in the restriction to the open subset
U = SpecR \ Spec(R/I ).

More precisely, a contraherent cosheaf P on SpecR vanishing in
the restriction to U is the same thing as an I -contramodule
R-module P satisfying the additional condition
Ext1

R(R[s−1],P) = 0 for all s ∈ R (or for all s ∈ R \ I ).
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Example: equivalence on the fiber

From now on we assume the ideal I to be finitely generated.

Let
s1, . . . , sm ∈ R be a set of generators for I . We will denote the
sequence s1, . . . , sm ∈ R by a single letter s.

For any R-module M, consider the following augmented Čech
complex C •s (M)

M −−→
m⊕
j=1

M[s−1
j ] −−→

⊕
j ′<j ′′

M[s−1
j ′ , s

−1
j ′′ ]

−−→ · · · −−→ M[s−1
1 , . . . , s−1

m ].

One has C •s (M) ' C •s (R)⊗R M and

C •s (R) ' C •{s1}(R)⊗R · · · ⊗R C •{sm}(R),

where C •{sj}(R) is the two-term complex R −→ R[s−1
j ].
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Example: equivalence on the fiber

The two-term complex C •{sj}(R) = (R → R[s−1
j ]) is the inductive

limit

of two-term complexes of free R-modules with one generator
K •(R, snj ) = (R → s−nj R). The dual (Koszul) complexes
K•(R, s

n
j ) = HomR(K •(R, snj ),R) form a projective system.

Set
K•(R, s

n) = K•(R, s
n
1 )⊗R · · · ⊗R K•(R, s

n
m),

where sn denotes the sequence sn1 , . . . , snm. The Koszul complexes
K•(R, sn) form a projective system as well, and consequently so do
their cohomology modules.

A projective system of abelian groups U1 ←− U2 ←− U3 ←− · · · is
said to be pro-zero if for every k > 1 there exists n > k such that
the composition of maps Uk ←− · · · ←− Un vanishes.
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n) = K•(R, s
n
1 )⊗R · · · ⊗R K•(R, s

n
m),

where sn denotes the sequence sn1 , . . . , snm. The Koszul complexes
K•(R, sn) form a projective system as well, and consequently so do
their cohomology modules.

A projective system of abelian groups U1 ←− U2 ←− U3 ←− · · · is
said to be pro-zero if for every k > 1 there exists n > k such that
the composition of maps Uk ←− · · · ←− Un vanishes.
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Example: Equivalence on the Fiber

A finite sequence of elements s1, . . . , sm in a commutative ring R
is said to be weakly proregular

if either of the following equivalent
conditions holds:

one has H iC •s (J) = 0 for any injective R-module J and all
i > 0, or

the projective system HiK•(R, s
n) is pro-zero for every i > 0.

The weak proregularity property of a sequence of generators s of
a finitely generated ideal I ⊂ R only depends on the ideal

√
I ⊂ R

and not on the chosen generators. Hence the notion of a weakly
proregular finitely generated ideal I ⊂ R.

Any regular sequence of elements in a commutative ring is weakly
proregular. Any finite sequence of elements in a Noetherian
commutative ring is weakly proregular.

[Schenzel, Porta–Shaul–Yekutieli, ’03–’14]
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Example: equivalence on the fiber

Theorem

Let R be a commutative ring

and I ⊂ R be a weakly proregular
finitely generated ideal. Then there is a triangulated equivalence
between the derived categories of the abelian categories of
I -torsion and I -contramodule R-modules

D?(R-modI -tors) ' D?(R-modI -ctra)

for every symbol ? = b, +, −, ∅, or abs.

Without the weak proregularity assumption, for any finitely
generated ideal I in a commutative ring R there is an equivalence
between the full subcategories in D?(R-mod) consisting of
complexes with I -torsion and I -contramodule cohomology modules

D?
I -tors(R-mod) ' D?

I -ctra(R-mod), ? = b, +, −, or ∅.

[MGM Duality: Matlis, Greenlees–May, Dwyer–Greenlees,
Porta–Shaul–Yekutieli, L.P., ’78–’15]
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Example: equivalence on the base

Let A0 ←− A1 ←− A2 ←− · · · be a projective system of
Noetherian commutative rings and surjective morphisms between
them.

Consider the projective limit A = lim←−n
An, and endow it with

the projective limit topology.

For any A-contramodule P, denote by Pn the maximal quotient
A-contramodule of P whose A-contramodule structure comes from
an An-module structure. An A-contramodule P is called flat if

the An-module Pn is flat for every n > 0, and

the natural map P −→ lim←−n
Pn is an isomorphism.

The class A-contraflat of flat A-contramodules is closed under
extensions, infinite products, and the passage to the kernels of
surjective morphisms in A-contra, so in particular A-contraflat

inherits an exact category structure from A-contra.

Denote by A-discr the abelian category of discrete A-modules.
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Example: equivalence on the base

Let B −→ A be a surjective morphism of Noetherian commutative
rings.

Then for any dualizing complex D•B for the ring B,
the maximal subcomplex of A-modules HomB(A,D•B) in D•B
is a dualizing complex for the ring A.

Let us say that dualizing complexes D•A and D•B for the rings A and
B are compatible if a homotopy equivalence of complexes of
injective A-modules

D•A ' HomB(A,D•B)

is fixed.
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Example: equivalence on the base

Let A = lim←−n
An be a commutative pro-Noetherian ring (as above).

Proposition

The natural functors provide triangulated equivalences

Hot(A-discrinj) ' Dco(A-discr);

Dctr(A-contraflat) ' Dctr(A-contra).

When the Krull dimensions of the rings An are uniformly bounded,
one has Hot(A-contraproj) ' Dabs(A-contraflat) '
Dctr(A-contra). This is not necessary for the following theorem.

Theorem

Any compatible system D•A of choices of dualizing complexes D•An

for the Noetherian rings An, n > 0, induces an equivalence of
triangulated categories

Dco(A-discr) ' Dctr(A-contra).
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To repeat:

On the fiber, one has an equivalence between the conventional
derived categories (sometimes also between the absolute
derived categories).

On the base, one has an equivalence between the coderived
category and the contraderived category. One needs
a dualizing complex on the base.

The reason for the base and the fiber being this way comes from
the definition of the semiderived category, which turns out to be
the co/contraderived category along the subring and
the conventional derived category in the complementary direction
of the ambient ring relative to the subring.
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Example: equivalence in the relative situation

Let A be a coherent commutative ring such that fp-injective
A-modules have finite injective dimension (e.g., this is so if
all ideals in A are at most countably generated).

A bounded complex of fp-injective A-modules D•A with finitely
presented cohomology A-modules is called a dualizing complex
for A if the natural map A −→ HomD(A-mod)(D•A,D

•
A[∗]) is

an isomorphism.

Let A −→ R be a homomorphism of commutative rings such that
R is a flat A-module.

Theorem

The choice of a dualizing complex D•A for the coherent ring A
induces an equivalence between the two semiderived categories of
R-modules relative to A,

Dsico
A (R-mod) ' Dsictr

A (R-mod).
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Example: cotensor product along the base

How to define a tensor structure on the category of torsion abelian
groups so that Q/Z would be the unit object?

For finite abelian groups M and N, set

M � N = HomZ(HomZ(M,Q/Z)⊗Z HomZ(N,Q/Z), Q/Z).

Then pass to the inductive limit for infinite torsion abelian groups.

Alternatively, use covariant duality instead of contravariant one.
For injective torsion abelian groups M and N, set

M � N = HomZ(Q/Z,M)⊗Z N ' M ⊗Z HomZ(Q/Z,N).

Then take the right derived functor.
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Example: cotensor product along the base

Let X be a semi-separated Noetherian scheme with a dualizing
complex D•X .

The derived cotensor product �D•X of complexes of
quasi-coherent sheaves on X is a tensor structure on the coderived
category Dco(X -qcoh) with the unit object D•X ∈ Dco(X -qcoh).

For bounded-below complexes of injective quasi-coherent sheaves
with coherent cohomology sheaves M• and N • on X , one has

M• �D•X N
• =

HomX -qc(HomX -qc(M•,D•X )⊗OX
HomX -qc(N •,D•X ), D•X ).

For any two complexes of injective quasi-coherent sheaves M• and
N • on X , one has

M• �D•X N
• =

HomX -qc(D•X ,M•)⊗OX
N • 'M• ⊗OX

HomX -qc(D•X ,N •)
' D•X ⊗OX

HomX -qc(D•X ,M•)⊗OX
HomX -qc(D•X ,N •).
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Example: cotensor product along the base

Let X be an algebraic variety (separated scheme of finite type) over
a field k .

Denote the diagonal morphism by ∆: X −→ X ×k X
and the projection to the point by p : X −→ Spec k .

For any morphism f : X −→ Y of varieties over k , denote by f !

the Hartshorne–Deligne extraordinary inverse image, which is
in fact well-defined as a functor between the coderived categories

f ! : Dco(Y -qcoh) −−→ Dco(X -qcoh).

In particular, for any dualizing complex D•Y on Y , the complex
f !D•Y is a dualizing complex on X . So we can set D•X = p!OSpec k .

Then for any two complexes of quasi-coherent sheaves M• and
N • on X one has

M• �D•X N
• = ∆!(M• �k N •),

where �k denotes the external tensor product functor, so
M• �k N • is a complex of quasi-coherent sheaves on X ×k X .
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This operation of

derived cotensor product of complexes of quasi-coherent
(torsion) sheaves along the base X

should be somehow mixed with

the conventional derived tensor product of complexes of
quasi-coherent sheaves along the fibers

in order to obtain

the double-sided derived functor of semitensor product of
complexes of quasi-coherent (torsion) sheaves on the total
scheme Y.

The double-sided derived semitensor product operation should
provide a tensor structure on the semiderived category of
quasi-coherent torsion sheaves Dsico

X (Y-qcoh) with the unit object
π∗D•X, where π : Y −→ X denotes the fibration morphism.
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To conclude:

The fibers are glued in a simple way from large affine pieces.

The base is glued in a complicated way from small affine
pieces (and endowed with a dualizing complex).

The reason for the base and the fibers being like that is because

The conventional derived category is well-behaved for modules
over an arbitrary ring, and by the way of generalization for
(co)sheaves on infinite-dimensional quasi-compact
semi-separated schemes.

The co/contraderived category is well-behaved for
co/contramodules over a coalgebra, and by the way of
generalization for (co)sheaves on finite-dimensional stacks
and ind-Noetherian ind-schemes. (A coalgebra is a dualizing
complex over itself.)

The example of the fibration k((z)) −→ k((z))/k[[z ]] comes as
an afterthought.
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