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Curvature invariants in type- N spacetimes
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Abstract. Scalar curvature invariants are studied in type-N solutions of the vacuum Einstein
equations with, in general, a non-vanishing cosmological constant3. Zeroth-order invariants,
which include only the metric and Weyl (Riemann) tensor, either vanish or are constants
depending on3. All higher-order invariants containing covariant derivatives of the Weyl
(Riemann) tensor are also shown to be trivial if a type-N spacetime admits a non-expanding
and non-twisting null geodesic congruence.

However, in the case of expanding type-N spacetimes we discover a non-vanishing scalar
invariant, which is quartic in the second derivatives of the Riemann tensor.

We use this invariant to demonstrate that both the linearized and third-order type-N twisting
solutions recently discussed in literature contain singularities at large distances and thus cannot
describe radiation fields outside bounded sources.

PACS numbers: 0420, 0430

1. Introduction

The Petrov algebraic classification of the Weyl tensor and the asymptotic forms of radiative
fields of spatially bounded sources (the peeling theorem) demonstrate that solutions of type
N play a fundamental role in the theory of gravitational radiation. (For a recent review of
exact approaches to radiative spacetimes see, e.g., [1] and references therein.)

All solutions of the vacuum Einstein equations with in general non-zero cosmological
constant3, which are of typeN with a non-twisting null congruence, are known [3, 10, 14].
In the twisting case, only one (Hauser’s) solution is available [10]. Although far-zone
radiation fields of bounded sources are approximately of typeN , no known exact type-N
solution is asymptotically flat.

Recently, an interesting discussion appeared in the literature [5, 17, 18] in which twisting
type-N vacuum field equations were solved approximately. Stephani [18] argued, within
a linear theory, that no solutions regular outside a bounded source exist. Finleyet al [5]
iterated the solution up to the third order and concluded that their iterative procedure leads
to the regular solutions, so that ‘it seems that the twisting, type-N fields can describe a
radiation field outside bounded sources’.

In neither of these works, however, are the arguments really compelling since
singularities are not analysed properly. (For general treatments of singularities, see
e.g. [2, 4].) The authors study only the behaviour of invariants with respect to gauge
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transformations which leave invariant the coordinate system and field equations for type-N

metrics, because for type-N vacuum spacetimes with3 all scalar invariants of the Weyl or
Riemann tensor are trivial—they either vanish or are constants depending on3.

It is known that for a vacuum pp-wave, which is a very special case of a type-N metric,
in fact all curvature invariants ofany order, i.e. invariants depending also on covariant
derivativesof the Weyl (or Riemann) tensor, vanish [8, 16]. However, nothing appears to
be known about higher-order invariants in more general type-N spacetimes. The problem
of such higher-order invariants is addressed in the present paper.

We define an invariant of the metricgαβ(xγ ) of orderk as a non-constant scalar function
I (gαβ, gαβ,γ1, . . . , gαβ,γ1...γk+2) which satisfies

I (gαβ, gαβ,γ1, . . . , gαβ,γ1...γk+2) = I (g′αβ, g′αβ,γ1
, . . . , g′αβ,γ1...γk+2

) (1.1)

under a spacetime diffeomorphismxα → x ′α = x ′α(xβ). It can be proved (see e.g. [9])
that any invariant of orderk depends on the metric and the Riemann tensorRαβγ δ and its
covariant derivatives of order6 k:

I = I (gαβ, Rαβγ δ, . . . , Rαβγ δ;ε1...εk ). (1.2)

The maximal number,I (k, n), of functionally independent invariants of orderk in a
Riemannian space of dimensionn has been known since 1902. Denoting

D(k; n) = I (k; n)− I (k − 1; n), (1.3)

Haskins [7] found that

D(k; n) =



(
n

3

)
n+ 3

2
for k = 0,

(
n+ k + 1

n+ 3

)
n(k + 1)

2
for k > 1.

(1.4)

Hence, in a four-dimensional spacetime there exist in general 14 functionally independent
invariants of order zero which depend only ongαβ and Rαβγ δ, 60 invariants depending
on gαβ , Rαβγ δ, Rαβγ δ;ρ , 126 invariants containing alsoRαβγ δ;ρσ , etc. Clearly, when the
derivatives of the Riemann tensor are included, the number of independent invariants grows
rapidly. All 14 invariants of order zero were explicitly given in [6], their spinor equivalents
can be found in [20].

In section 2 we first briefly review basic definitions and relations of the two-component
spinor formalism and Newman–Penrose formalism [11], which will be needed later. Then
we demonstrate the generally known fact that in vacuum type-N spacetimes with3 = 0
all zero-order invariants vanish. If3 6= 0, some invariants are non-vanishing but they are
just constants depending on3. Using spinor formalism we prove the helpful lemma 1 on
the properties of the invariants constructed from the derivatives of the Weyl tensor.

In section 3 we specialize to the type-N vacuum solutions with3, admitting a non-
vanishing and non-twisting null geodesic congruence (called Kundt’s class in [10]). We
prove that in these spacetimes all invariants constructed from the Weyl tensor and its
covariant derivatives of arbitrary order vanish. The invariants constructed from just the
Riemann tensor are all constants depending on3.

Expanding and non-twisting type-N solutions are discussed in the first part of section 4.
Using again extensively the spinor and Newman–Penrose formalism we find that all the first-
order invariants vanish. However, the formalism indicates that a non-vanishing second-order
invariant may exist. A number of attempts eventually led to the non-vanishing invariant

I = Rαβγ δ;εφRαµγ ν;εφRλµρν;στRλβρδ;στ . (1.5)
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The zero- and first-order invariants also vanish in the twisting case. The invariant (1.5)
remains non-vanishing.

This invariant is then, in section 5, used to analyse the nature of the approximate
solutions [5, 18] we mentioned earlier. We find that Stephani’s conclusion, based on
the linearized theory, remains true for the third-order solution obtained by Finleyet al:
both solutions contain singularities at larger. This raises more doubts about the physical
meaning of type-N twisting solutions as describing radiation fields outside bounded sources;
nevertheless a definitive statement can be made only when a general, exact solution is found.

The technique by which we arrive at the non-vanishing invariant of second order could
probably also be employed in more complicated cases of algebraically special spacetimes.
Scalar invariants obtained might play a role not only in classical relativity but also in a
quantum context.

2. Higher-order curvature invariants: general properties

In this section we prove a lemma about the properties of the curvature invariants of higher
order in Petrov type-N spacetimes. The lemma will be used in the next section in which
curvature invariants in the specific classes of type-N spacetimes will be analysed. First, we
have to summarize some basic notation and relations which will be needed later.

2.1. Spinors and the Newman–Penrose formalism

Spinors and the Newman–Penrose formalism have been reviewed by many authors (see
e.g. [10, 13, 19]). Here we give only a very brief summary.

Consider a null congruence of geodesics with the tangent null vectorlα,

lαl
α = 0, (2.1)

which is affinely parametrized,

lαlβ ;α = 0. (2.2)

(Hereafter, we assume (2.2) to be satisfied.) The congruence is characterized by the
expansionθ , twist ω and shear|σ | given by

θ = 1
2l
α ;α , (2.3)

ω =
√

1
2l[α;β] lα;β , (2.4)

|σ | =
√

1
2l(α;β)l

α;β − θ2 . (2.5)

In algebraically special spacetimes the shear vanishes. A two-component spinor field
oA ∈ W (A = 1, 2 andW is a two-dimensional complex vector space) can be associated
with a null vector fieldlα in a standard way,

lα ←→ oAōȦ, (2.6)

where ōȦ ∈ W̄ , and another spinor field,ιA, exists such that together withoA it forms a
spinor basis satisfying

oAι
A = εABoAιB = 1, oAo

A = ιAιA = 0, (2.7)

where the Levi-Civita alternating symbolεAB plays the role of the metric in spinor calculus.
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The complex null tetrad,{lα, nα,mα, m̄α}, in which lα is introduced by (2.6) and

nα ←→ ιAῑȦ, mα ←→ oAῑȦ, m̄α ←→ ιAōȦ, (2.8)

satisfies the usual relations

lαn
α = −m̄αmα = 1. (2.9)

The (covariant) derivative operator∇α can be expressed in the form

∇α = nαD + lα1− m̄αδ −mαδ̄, (2.10)

where

D = lα∇α , 1 = nα∇α , δ = mα∇α , δ̄ = m̄α∇α . (2.11)

In terms of the covariant derivative with spinor indices,

∇AḂ = σαAḂ∇α (2.12)

(σ 0 andσ i are proportional to the unit and Pauli matrices, respectively), we have, equivalent
to (2.11),

D = oAōȦ∇AȦ, 1 = ιAῑȦ∇AȦ,

δ = oAῑȦ∇AȦ, δ̄ = ιAōȦ∇AȦ.
(2.13)

The twelve Newman–Penrose complex scalar spin coefficientsκ, ε, π, . . . are defined as
frame components of the covariant derivatives of the null-tetrad vectors. Our notation
follows that customarily used in literature [12, 19]. Some details are given in the appendix.

The Weyl tensorCαβγ δ in spinor form is given by

Cαβγ δ ←→ 9ABCDεȦḂεĊḊ + 9̄ȦḂĊḊεABεCD , (2.14)

where9ABCD = 9(ABCD). In the Newman–Penrose formalism the Weyl tensor is described
by five complex scalar quantities90, 91, 92, 93, 94 given by the projections of9ABCD
onto the basis spinorsoA, ιA. The Riemann tensorRαβγ δ in spinor form is given by

Rαβγ δ ←→ XABCDεȦḂεĊḊ + X̄ȦḂĊḊεABεCD +8ABĊḊεȦḂεCD + 8̄ȦḂCDεABεĊḊ, (2.15)

where

XABCD = 9ABCD + 1
12R(εACεBD + εADεBC),

R is the scalar curvature, and the spinor8ABĊḊ = 8(AB)(ĊḊ) = 8̄ABĊḊ corresponds to the
traceless Ricci tensorSαβ = Rαβ − 1

4Rgαβ :

8ABȦḂ ←→− 1
2Sab. (2.16)

In vacuum spacetimes with generally non-vanishing cosmological constant3,

R = 43, (2.17)

and

8ABĊḊ = 0. (2.18)

Bianchi identities connect the derivatives of the9 ’s with the 9 ’s themselves and with
the Newman–Penrose spin coefficients. All Bianchi identities, the relations giving the
Riemann (Weyl) tensor in terms of the spin coefficients and the commutation relations for
the derivative operators (2.11), are explicitly written down in, for example, [10].
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Here we are interested in thevacuum spacetimes of Petrov typeN with in general
3 6= 0. Let oA be the 4-fold principal null spinor of9ABCD, andιA satisfy (2.7). Then we
have

90 = 91 = 92 = 93 = 0, (2.19)

9ABCD = 94oAoBoCoD, (2.20)

andR and8ABĊḊ are given by (2.17) and (2.18). The Bianchi identities reduce to

D94 = (ρ − 4ε)94, (2.21)

δ94 = (τ − 4β)94, (2.22)

σ = κ = 0. (2.23)

Although under the conditions (2.17)–(2.20) and (2.23) the remaining Newman–Penrose
equations take a much simpler form than in the general case, they still represent the set of
21 equations. These are given in the appendix.

As is well known, transformations preserving the direction oflα can be divided into
two subclasses:

(i) null rotations around the vectorlα

l′α = lα , m′α = mα + c̄lα , n′α = nα + cmα + c̄m̄α + cc̄lα,

o′A = oA , ι′A = ιA + coA.
(2.24)

(ii) boosts in the(lα, nα)-plane and spacelike rotations in the(mα, m̄α)-plane

l′α = a2lα , n′α = a−2nα , m′α = e2iθmα,

o′A = zoA , ι′A = z−1ιA ,

(2.25)

wherez = aeiθ .

In the following we shall need, in particular, the behaviour of various quantities under the
pure constant boosts in the(lα, nα)-plane (a = constant,θ = 0 in (2.25)).

If a quantity� transforms under the boosts as

�′ = aq�, (2.26)

the numberq is called the boost-weight of�. We write b(�) to denote the boost-weight.
First notice thatb(oA) = 1, b(ιA) = −1, and recall that the operatorsD,1, δ and δ̄ are
also weighted. The boost-weights of the Newman–Penrose coefficients (NP ) and operators
(OP ) are summarized in table 1.

Table 1. Summary of the boost-weights for Newman–Penrose coefficients (NP ) and operators
(OP ).

x ∈ NP x ∈ OP b(x) = b(x̄)
κ 4
ε ρ σ D 2
α β π τ δ 0
γ λ µ 1 −2
ν −4

We shall also need the behaviour of94:

9 ′4 = a−494 H⇒ b(94) = −4. (2.27)
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2.2. Higher-order curvature invariants

As noted in the introduction, in a general spacetime there exist 14 independent invariants of
order zero, i.e. invariants depending only on the metric and the Riemann tensor. In terms
of the spinors determining the Riemann tensor according to (2.14), these invariants can be
constructed as products of the form

8ȦḂMN8
ȦḂMN, XABMNX

ABMN, 8GDȦḂ8RSȦḂX
RSKL8KLṀṄ8GD

ṀṄ ,

etc. Since, however, in the vacuum Petrov type-N spacetimes with3, equations (2.17)–
(2.20) are satisfied, it is easy to see that among the zero-order invariants nine vanish and
five are dependent just on the value of3 (as, e.g., (2.17)). Hence, we have to turn to
invariants of higher order.

First, let us decompose the spinor derivative∇CnẊn · · · ∇C1Ẋ1(94o
AoBoCoD) into the

spinor basis of the appropriate spinor space. Let us write

W [p,k] ≡ W ×W × · · · ×W︸ ︷︷ ︸
p

×W ×W × · · · ×W︸ ︷︷ ︸
k

.

Thus, W [p,k] is a 2p+k-dimensional complex vector space whose basis spinorsB
[p,k]
1 ,

B
[p,k]
2 , . . . , B

[p,k]
2p+k can be constructed from the tensorial products ofoA and ιA of the form

ξ
A1
1 ξ

A2
2 · · · ξApp λ

Ẋ1
1 λ

Ẋ2
2 · · · λẊkk , where theξAii ’s are oAi or ιAi and theλ

Ẋj
j ’s are ōẊj or ῑẊj .

Then the decomposition of thenth spinor derivative of94o
AoBoCoD reads

∇CnẊn · · · ∇C1Ẋ1(94o
AoBoCoD) =

22n+4∑
i=1

ciB
[n+4,n]
i . (2.28)

We shall need to know some restrictions on the coefficientsci rather than their specific
values. Let us first note that the coefficientsci must all be the sums of terms of the form

X1X2 · · ·Xn94, (2.29)

whereXi ∈ NP or Xi ∈ OP . This can easily be seen by considering the well known
decomposition of∇AẊ in terms of the NP operators (2.11) and of∇AẊoB , ∇AẊιB in terms
of the basis spinorso, ι and the NP coefficients.

It is now useful to introduce a simple notation. If a product of basis spinors has the
form

Y ≡ oA1 · · · oAm1︸ ︷︷ ︸
m1

ōẊ1 · · · ōẊm2︸ ︷︷ ︸
m2

ιB1 · · · ιBn1︸ ︷︷ ︸
n1

ῑẎ1 · · · ῑẎn2︸ ︷︷ ︸
n2

,

thenPo(Y ) = m1+m2 will denote the number ofoA’s and ōȦ’s, andPι(Y ) = n1+ n2 the
number ofιA’s and ῑȦ’s which are contained inY .

Now it is easy to see (essentially as a consequence of (2.7)), that if a spinor
SA1···AmẊ1···Ẋk ∈W [m,k] has the form

SA1···AmẊ1···Ẋk =
2m+k∑
i=1

siB
[m,k]
i , (2.30)

then all invariants formed from the products ofS... must vanish, provided that the coefficients
in (2.30) are such thatsi = 0 for all i for which

Po(B
[m,k]
i ) 6 Pι(B [m,k]

i ). (2.31)

This observation enables us to prove the following lemma.
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Lemma 1.Let an invariant constructed from the products of the spinors∇CnẊn · · · ∇C1Ẋ1

(94o
AoBoCoD), for fixed n, be non-vanishing. Then there exists a non-vanishing quantity

X1X2 · · ·Xn94, Xi ∈ NP ∪OP , such that

b(X1X2 · · ·Xn94) =
n∑
i=1

b(Xi)+ b(94) > 0, i.e.
n∑
i=1

b(Xi) > 4.

Proof. The nth spinor derivative is of the form (2.28), where the coefficientsci are
sums of terms of the form (2.29). According to the observation above, an invariant
formed from these derivatives will be non-vanishing only if there existsci 6= 0 such
that Po(B

[n+4,n]
i ) 6 Pι(B

[n+4,n]
i ). Since the basis spinors have the boost-weightd ≡

b(B
[n+4,n]
i ) = P o(B [n+4,n]

i ) − Pι(B [n+4,n]
i ), and since from (2.25) and (2.27) it follows that

b(ci) = −d, we see thatci must satisfy the conditionb(ci) > 0. Hence, there must exist a
non-vanishing quantityX1X2 · · ·Xn94, Xi ∈ NP ∪OP , such thatb(X1X2 · · ·Xn94) > 0.

3. Non-expanding and non-twisting solutions

Type-N vacuum solutions with3 admitting a non-expanding and non-twisting null geodesic
congruence belong to Kundt’s class (see [10] ch 27 for details). Sinceθ = ω = 0
(cf equations (2.3), (2.4)), the NP coefficient

ρ = θ + iω = 0. (3.1)

In this section we shall prove that in this class all the curvature invariants of any order
vanish (or are constants determined by3), so generalizing the results of [8, 16], where only
the plane-wave metrics are considered.

Choose the null tetrad parallelly propagated along the null congruence determined by the
multiple principal null direction of the Weyl tensor and parametrized by an affine parameter.
Thus, only94 6= 0 (cf equation (2.19)) and the NP coefficientsσ = κ = π = ε = 0. The
NP equations, given in the appendix for a general type-N vacuum spacetime with3, then
simplify considerably. From all the NP equations we shall only need those containing the
operatorD:

Dτ = 0,

Dα = 0,

Dβ = 0,

Dγ = τα + τ̄ β − 1
24R, (3.2)

Dλ = 0,

Dµ = 1
12R,

Dν = τ̄µ+ τλ,
and the commutators

(1D −D1) = (γ + γ̄ )D − τ δ̄ − τ̄ δ, (3.3)

(δD −Dδ) = (ᾱ + β)D. (3.4)
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We shall also need the Bianchi identity (2.21), which now simply reduces to

D94 = 0. (3.5)

The simple form of the above equations suggests the following notation: letFk be the
set of functionsf such thatf ∈ Fk ⇐⇒ Dkf = 0. From the NP equations (3.2) we
easily find that

α, β, τ, λ ∈ F1, γ, µ ∈ F2, ν ∈ F3. (3.6)

Using this, and employing equations (3.3) and (3.4) for the commutators, we can prove the
following lemma.

Lemma 2.Let f ∈ Fk. Then: (i) δf ∈ Fk, δ̄f ∈ Fk; and (ii)1f ∈ Fk+1.

Proof. (i) can easily be proven by induction. Applying (3.4) tof1, we immediately get
Dδf1 = 0 ⇒ δf1 ∈ F1. Assuming thenδfk ∈ Fk and applying (3.4) tofk+1, we find
Dk+1δfk+1 = 0⇒ δfk+1 ∈ Fk+1.

In order to prove (ii), we first show, by using Leibniz’s formula, thatDk+1(f2fk) = 0
for all k > 1. Then (ii) can be proven by induction similarly as in (i) (the commutator (3.3)
now being used instead of (3.4)).

It will now be useful to associate the numberp with any NP coefficientX which will
indicate the behaviour ofX under the action of the operatorD. Let

p(X) = k − 1 , if X ∈ Fk butX 6∈ Fk−1. (3.7)

If X ∈ OP , i.e. X is one of the NP operators, we define (being motivated by lemma 2)
p(1) = 1, p(δ) = 0, p(D) = −1.

The values ofp for all relevant quantities are summarized in table 2.

Table 2. Values ofp associated with NP coefficients and operators.

X ∈ NP X ∈ OP p(X)

ν 2
γ µ 1 1
α β τ λ δ 0

D −1

The indicatorsp enable us to formulate the following lemma in a concise form.

Lemma 3.Consider (as in lemma 1) a quantityX1X2 · · ·Xn whereXi ∈ NP ∪ OP . If∑n
i=1p(Xi) < 0, thenX1X2 · · ·Xn94 = 0.

Proof. From the Bianchi identity (3.5) we haveD94 = 0. Considering table 2, we observe
that the condition

∑n
i=1p(Xi) < 0 requires that for anyXi having a positivep(Xi), the

operatorD must appear at leastp(Xi) times amongX1 · · ·Xn since onlyp(D) is negative
(for example, with anyν, D must appear at least twice); an additionalD then has to enter
X1 · · ·Xn in order that

∑n
i=1p(Xi) < 0. This results inX1 · · ·Xn94 = 0.

Combining lemma 1 and lemma 3 we can now make the following proposition.
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Proposition 1.In type-N vacuum spacetimes with3 admitting a non-expanding and non-
twisting null geodesic congruence, allnth order invariants formed from the products of
spinors∇CnẊn · · · ∇C1Ẋ1(94o

AoBoCoD), with n arbitrary but fixed, vanish.

Proof. According to lemmas 1 and 3, a non-vanishing invariant will exist only if there are
Xi ∈ NP ∪OP , i = 1, . . . , n, such that

n∑
i=1

b(Xi) > 4 and
n∑
i=1

p(Xi) > 0. (3.8)

The values of these sums depend on how many times the specific NP coefficient or
NP operator entersX1 · · ·Xn. Let m1 denote the number of the coefficientsν and ν̄;
m2 the number ofγ, γ̄ , µ, µ̄; m3 the number ofλ, λ̄; m4 the number ofα, ᾱ, β, β̄, τ, τ̄ ; k1

the number of operatorsD; k2 the number ofδ, δ̄; and k3 the number of1, which enter
X1 · · ·Xn. Then, considering tables 1 and 2, we find that the inequalities (3.8) read

− 4m1− 2m2− 2m3− 2k3+ 2k1 > 4 2m1+m2+ k3− k1 > 0.

Combining the last two inequalities, we obtainm3 6 −2. This is impossible since allm’s
andk’s must be non-negative.

From lemmas 1 and 3, and from the last proof it follows that all the coefficientsci in
the decomposition (2.28) which multiply basis spinors satisfying the condition (2.31), must
necessarily vanish. Hence, all non-vanishing terms in the decomposition (2.28), withn

arbitrary, contain a larger number of spinorsoA than of ιA. Therefore, regarding (2.7) it is
evident that all invariants formed from the products of the derivatives (2.28) withdifferent
n’s must necessarily vanish. Recalling the relations (2.14) and (2.20) between the Weyl
tensorCαβγ δ, the Weyl spinor9ABCD and the NP scalar94, we can now formulate our two
basic propositions.

Proposition 2.In type-N vacuum spacetimes with3, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed from the Weyl tensor and its
covariant derivatives of arbitrary order vanish.

Next, recall that in vacuum spacetimes with3 Einstein’s equations implyRαβ = 3gαβ ,
so that

Cαβγ δ;ε = Rαβγ δ;ε. (3.9)

Then, regarding the spinor form (2.15) of the Riemann tensor we see that all invariants
constructed from the Riemann tensor and its covariant derivatives of arbitrary order can be
expressed in terms of the spinors

94o
AoBoCoD + 1

33(ε
ACεBD + εADεBC), (3.10)

∇C1Ẋ1(94o
AoBoCoD), (3.11)

...

∇CnẊn · · · ∇C1Ẋ1(94o
AoBoCoD). (3.12)

Applying the considerations above and recalling thatεAB = oAιB − oBιA, we can easily
confirm that all terms in the invariants containing94o

AoBoCoD or their derivatives of
arbitrary order, vanish. The only non-vanishing quantities can be formed from the constant
term 1

33(ε
ACεBD + εADεBC) and are dependent on3 only. We thus finally arrive at:
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Proposition 3.In type-N vacuum spacetimes with3, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed from the products of the
Riemann tensor and its covariant derivatives of arbitrary order vanish, provided they contain
a derivative of the Riemann tensor. The invariants constructed from the Riemann tensor
itself are all constants depending on3.

If 3 = 0, the Riemann tensor is equal to the Weyl tensor and all the invariants vanish
by proposition 2.

4. Expanding and twisting solutions

This section is divided into two parts. In the first, we analyse type-N spacetimes with
3 with expanding but non-twisting null congruences. We shall show that invariants of
zero and first order vanish (or are constants determined by3) as in the non-expanding
and non-twisting case. However, we will succeed in finding a non-vanishing invariant of
second order depending on the expansion and on94. In the second part, we shall show
that the invariants of the zero and first order again vanish, and we shall demonstrate how
the non-vanishing invariant is modified when there is a non-zero twist.

Before we turn to the details, we wish to point out the main reason why, with the
expansion present, a non-vanishing invariant may exist: it is due to the Newman–Penrose
equation for the expansion,Dρ = ρ2. Now Dnρ 6= 0 for any n, and one cannot even
formulate lemma 3, for example.

4.1. Non-twisting case

All metrics of vacuum type-N spacetimes with3 were given by Garćıa-D́ıaz and Plebánski
[3]. In their coordinates, suitable for our purposes, the metric reads

ds2 = 2v2 dξ dξ̄ + 2vĀ dξ du+ 2vA dξ̄ du+ 2ψ du dv + 2(AĀ+ ψB) du2, (4.1)

where

A = εξ − vf ,

B = −ε + 1
2v(f,ξ +f̄ ,ξ̄ )+ 1

63v
2ψ ,

ψ = 1+ εξ ξ̄ ,
ε = −1, 0,+1.

(4.2)

It is useful to choose the null tetrad corresponding to the forms

ω1 = v dξ̄ + Ā du,

ω2 = v dξ + A du,

ω3 = ψ du,

ω4 = −dv − B du.

(4.3)
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Using this tetrad, one obtains the NP coefficients as follows:

σ = κ = ε = π = λ = α = β = 0,

γ = f,ξ

2ψ
+ 3v

6
, τ = − εξ

ψv
, ρ = 1

v
,

ν = −f,ξξ
2ψ

, µ = −3v
6
, 94 = −f,ξξξ

2ψv
.

(4.4)

In the following calculations, the specific forms of most of the NP coefficients are not
important—we need to know only the value ofρ = 1/v, and which of the coefficients
vanish. Then we can write down all the NP equations by specializing the NP equations in
the appendix to the present case. The Bianchi identities (2.21), (2.22) now simplify to the
form

D94 = ρ94, δ94 = τ94. (4.5)

Using these and the NP equations, we can write the first spinor derivative of the Weyl spinor
as

∇EḞ (94o
AoBoCoD) = −(1+ 4γ )94 S

ABCDE

[0]
ōḞ

+ δ̄94 S
ABCDE

[0]
ῑḞ +94(τ ō

Ḟ − ρῑḞ ) SABCDE
[1]

, (4.6)

where we have introduced quantitiesSABCDE
[j ]

which denote the symmetrized products of

the basis spinorsoA andιA, and the subscript [j ] gives the number ofιA’s, enteringS... (for
example,SAB

[1]
= oAιB + oBιA). As usual,S̄... denotes the complex conjugate ofS..., with

[j ] being the number of̄ιȦ’s. From equation (4.6) it is then clear that all the first-order
invariants of the Weyl tensor vanish since there are not enoughι’s to be combined witho’s,
as was discussed in detail in the previous section.

Now consider the second derivatives. Since calculations become rather lengthy we
used the computer algebra packageMaple V. Again using the NP equations and Bianchi
identities, we arrive at the following results:

∇GḢ∇EḞ (94o
AoBoCoD) = A SABCDEG

[0]
S̄Ḟ Ḣ
[0]
+B SABCDEG

[1]
S̄Ḟ Ḣ
[0]

+ C SABCDEG
[0]

S̄Ḟ Ḣ
[1]
+D SABCDEG

[2]
S̄Ḟ Ḣ
[0]
+E SABCDEG

[1]
S̄Ḟ Ḣ
[1]

+ F SABCDEG
[2]

S̄Ḟ Ḣ
[1]
+G SABCDEG

[1]
S̄Ḟ Ḣ
[2]
+H SABCDEG

[2]
S̄Ḟ Ḣ
[2]

, (4.7)

where the functionsA,B, C, . . . read

A = {(1+ 9γ + γ̄ )1+ 4(5γ + γ̄ +1)γ − 5τν − ν̄δ̄}94,

B = δ{(1− 4γ )94
}
,

C = −δ̄{(1+ 4γ )94
}
,
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D = 294τ
2, (4.8)

E = (D1+ 4ργ )94,

F = −294ρτ,

G = −2ρδ̄94,

H = 294ρ
2.

The above expression (4.7) indicates that a non-vanishing invariant may exist. Looking
at the last term in (4.7), which is proportional to the functionH, we see that it contains, in
contrast to all other terms, the same number ofo’s andι’s. Consequently, a combination of
such terms may give a non-vanishing result. One can easily confirm, however, that simple
squares or even cubes of such terms do not work. After a number of unsuccessful attempts
to construct a non-vanishing expression we arrived at the invariant

I = Rαβγ δ;εφRαµγ ν;εφRλµρν;στRλβρδ;στ , (4.9)

or, regarding (3.9), equivalently

I = Cαβγ δ;εφCαµγ ν;εφCλµρν;στCλβρδ;στ . (4.10)

In terms of the spinors employed to arrive at the invariant, we obtain

I = 4H2H̄2 SBGDH
[2]

SBGDH
[2]

S̄ḂĠḊḢ
[2]

S̄ḂĠḊḢ
[2]

, (4.11)

where we have used the relationSABCDEF
[2]

ιEιF = SABCD
[2]

. Since a straightforward

calculation givesSBGDH
[2]

SBGDH
[2]

= 6, we find

I = 144H2H̄2, (4.12)

or, regarding (4.8) and (4.4), we finally obtain

I = 9(2ρ)894
29̄2

4, (4.13)

and

I = 144
f 2
ξξξ f̄

2
ξ̄ ξ̄ ξ̄

ψ4v12
. (4.14)

4.2. Twisting case

Twisting type-N vacuum spacetimes with3 are not known, except for the Hauser solution.
With non-vanishing twist,ρ becomes complex,ρ = θ + iω, and in contrast to non-twisting
spacetimes, the NP coefficientsα, β, λ in general do not vanish. Hence, the NP equations
become much more complicated. However, inspecting the relation generalizing (4.6), we
again find that the zeroth- and first-order invariants vanish. The calculations of the second
derivatives (4.7) are only feasible using a computer algebra package (here againMaple V).
The functionsA,B, C, . . . in (4.8) become much more lengthy, however the most relevant
function,H, remains the same. Therefore, using (4.12) we find that the invariant (4.9),
respectively (4.10), becomes

I = 9(2ρ)4(2ρ̄)494
29̄2

4. (4.15)

Before moving on to possible applications of the invariants, let us note that their form in
the NP formalism (not in terms of the Weyl or Riemann tensor) could have been anticipated
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by considering the behaviour of the NP quantities under the transformations (2.24) and
(2.25). Taking into account only undifferentiated NP quantities and assuming a type-N

spacetime withρ 6= 0, one finds that the quantities which are invariant under (2.24) and
(2.25) must be functionally dependent onρ2ρ̄2949̄4. All such invariants can thus be written
in terms of the invariant (4.9). Of course, expression (4.9) is invariant underany tetrad and
coordinate transformation.

5. Applications

The invariant (4.9) can be used to study the occurrence of singularities in various expanding
type-N spacetimes.

5.1. Expanding, non-twisting spacetimes

For example, in the Garcı́a-D́ıaz–Plebánski spacetimes with the metric (4.1), we find that
the invariant (4.9), which now becomes equal to the expression (4.14), is diverging if for
f 2
ξξξ f̄

2
ξ̄ ξ̄ ξ̄
6= 0 there is: (i)v = 0; and (ii)ψ = 1+ εξ ξ̄ = 0, i.e. if ε = −1 andξ ξ̄ = 1. It

also diverges whenv andψ are finite butf 2
ξξξ f̄

2
ξ̄ ξ̄ ξ̄

diverges. Iff is a polynomial quadratic
in ξ , the spacetime can be shown to be flat or de Sitter (if3 6= 0). If, however,

f (ξ, u) = c0(u)+ c1(u)ξ + · · · + cn(u)ξn,

wheren > 6, thenI is singular atξ = ∞, ξ̄ = ∞ for eachε = −1, 0, 1.

5.2. Type-N twisting spacetimes

Recently two papers appeared discussing the physical meaning of the vacuum Einstein
equations of Petrov typeN with expanding and twisting null congruence. Stephani [18]
has argued, within the framework of the linearized theory, that these solutions contain
singular lines (‘pipes’) in space which at any time extend arbitrarily far away from a
possible insular source. A few months ago, Finleyet al [5], using an iterative approach,
tried to resolve ‘Stephani’s paradox’ by constructing the solution up to third order in their
approximation scheme. They conclude that ‘up to the third order, there do exist acceptable,
regular solutions’. What does our invariant (4.15) say about the nature of these approximate
solutions?

The standard form of the type-N twisting vacuum solutions (see e.g. [10]) reads (using
here the usual signature+2)

ds2 = 2ω1ω2− 2ω3ω4,

ω1 = − dζ

P ρ̄
= ω̄2,

ω3 = du+ L dζ + L̄ dζ̄ ,

ω4 = dr +W dζ +W dζ̄ ,

(5.1)

where the real functionP(ζ, ζ̄ , u) and complex functionL(ζ, ζ̄ , u) appearing in the metric
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satisfy the relations

ρ = −1

r + i6
, 2i6 = P 2(∂̄L− ∂L̄),

W = L,u

ρ
+ i∂6 , ∂ ≡ ∂ζ − L∂u.

(5.2)

The functionρ is indeed the NP coefficient used before. Introducing a real functionV by
puttingP = V,u, the field equations can be written in the form

(∂∂∂̄∂̄V ),u = P−1(∂∂V ),u(∂̄ ∂̄V ),u,

Im(∂∂∂̄∂̄V ) = 0 , ∂[P−1(∂̄ ∂̄V ),u] = 0.
(5.3)

The coordinate system and field equations are invariant under gauge transformations [10, 18]

ζ ′ = f (ζ ), u′ = F(ζ, ζ̄ , u), r ′ = rF−1
,u . (5.4)

The NP component of the Weyl tensor is given by

94 = P 2ρ∂u[P−1(∂̄ ∂̄V ),u]. (5.5)

Under the gauge transformation (5.4), the quantities appearing above transform as follows:

ρ ′ = F,uρ, 6 = F,u6′,

∂ ′ = f ′−1
∂, P ′ = F−1

,u |f ′|P,

L′ = f ′−1
(Lf,u − F,ζ ),

9 ′4 = f ′2(f̄ ′)
−2
F−2
,u 94.

(5.6)

Using expressions (5.2) and (5.5) forρ and94, we can easily calculate the invariant
(4.15) to obtain

I = 9(2ρ)4(2ρ̄)494
29̄2

4 = 2304
P 8

(r2+62)6

(
∂u[P−1(∂̄ ∂̄V ),u]

)2(
∂u[P−1(∂∂V ),u]

)2
. (5.7)

It can easily be checked, by using (5.6), that (5.7) does not change under the gauge
transformation (5.4). Of course, in its original forms (4.9), (4.10),I is invariant under
any coordinate transformation.

Now, Stephani [18] found the general solution of the linearized field equations in the
form (using Stephani’s notation)

P = 1+ 1
2ζ ζ̄ ,

L = B(ζ, ζ̄ )+ C(u, ζ̄ )

(1+ ζ ζ̄ /2)2 +
ζ̄ 2D(u, ζ )

2(1+ ζ ζ̄ /2)2 −
ζ̄D,ζ

(1+ ζ ζ̄ /2) +D,ζζ ,

(5.8)

where the functionsC(u, ζ̄ ) andD(u, ζ ) are arbitrary andB(ζ, ζ̄ ) has to satisfy Im(B,ζ̄ ) = 0.
In order that spacetime is not flat, i.e.94 6= 0, the condition

D,uuζζζ 6= 0 (5.9)

has to be satisfied.
Using Stephani’s solution (5.8) in (5.7), we find the invariant to be

IL = 2304
P 8

r12
D2
,ζ ζ ζuuD̄

2
,ζ̄ ζ̄ ζ̄ uu

. (5.10)
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Defining C̃(u, ζ̄ ) ≡ C(u, ζ̄ )ζ̄−2 and D̃(u, ζ ) ≡ D(u, ζ )ζ−2, Stephani calculates the
expression

P 2L,uζ̄ =
2ζ̄ C̃,u(u, ζ̄ )

1+ ζ ζ̄ /2 + ζ̄
2C̃,uζ̄ −

2ζ D̃,u(u, ζ )

1+ ζ ζ̄ /2 − ζ
2D̃,uζ , (5.11)

which is invariant under the gauge transformation (5.4). Since the functionsC̃ and D̃ are
analytic inζ and ζ̄ , respectively, they will have singularities in the plane(ζ, ζ̄ ), i.e. on the
sphere (recall the standard conventionζ = √2 tan1

2θeiϕ). The expression (5.11) will be
regular only if C̃,u ∼ ζ̄−1 andD̃,u ∼ ζ−1. However, in this case the spacetime is flat.

Clearly, the functionD(u, ζ ) has singularities in the plane(ζ, ζ̄ ) and the invariant (5.10)
will diverge unlessD,uu ∼ aζ 2+bζ + c. (Notice that ifD ∼ ζ 3 then the invariant diverges
due toP 8.) However, this implies flat spacetime again.

As mentioned above, Finleyet al [5] constructed the twisting and diverging type-N

solution up to third order of an iteration procedure. Their final expressions for the functions
entering our invariant (5.7) read

6 ≈ 1− 1
2ζ ζ̄

1+ 1
2ζ ζ̄

Im(f2)− 2 Re(a(1)) Im

(
df (2)

du

)
,

94 ≈ ā(1)

r

(
1+ 1

2ζ ζ̄

ζ̄

)2 d3f̄ 2

du3
,

(5.12)

wherea(1) is a complex constant,f2(u) ≡ f (2)(u)+f (3)(u), f (2)(u), f (3)(u) being arbitrary
functions of u. The curvature is non-vanishing so far asf (2),uuu 6= 0. Both quantities,
6/r andK/r2 (for K see equation (5.9) in [5]), considered in [5], which are invariant
under the gauge transformations (5.4), are indeed regular; the NP coefficientρ (cf (5.2))
entering our curvature invariant (4.15) is also regular. However,(949̄4)

2 is not regular
on the (ζ, ζ̄ )-sphere unless̄a(1)f (2),uuu = 0, which corresponds to flat spacetime. Indeed,
(949̄4)

2 ∼ (1+ 1
2ζ ζ̄ )

8/(ζ ζ̄ )4 diverges atζ ζ̄ →∞ (which in the standard convention, with
ζ = √2 eiϕ tan 1

2θ , corresponds toθ = π).
Therefore, we find that Stephani’s conclusion based on the linearized theory remains

true for the third-order solution analysed by Finleyet al. Although this raises more doubts
about the interpretation of type-N twisting solutions as representing radiation fields outside
bounded sources, solutions of the full Einstein equations may perhaps bring us surprises.
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Appendix. The Newman–Penrose equations in type-N spacetimes

The NP coefficients are defined in table A1 (see e.g. [19]), in which∇ denotes, respectively,
D, 1, δ, δ̄; the first line gives the definition in terms of the basis spinors and the second in
terms of the null tetrad.
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Table A1. NP coefficients.

∇ oA∇oA oA∇ιA = ιA∇oA ιA∇ιA
ma∇la 1

2(n
a∇la − m̄a∇ma) −m̄a∇na

D κ ε π

1 τ γ ν

δ σ β µ

δ̄ ρ α λ

In the vacuum type-N spacetimes, the null tetrad can be chosen so that

90 = 91 = 92 = 93 = 0,

8AȦBḂ = 0, σ = κ = 0,

the NP equations are

Dρ = ρ2+ (ε + ε̄)ρ,

Dτ = (τ + π̄)ρ + (ε − ε̄)τ,

Dα − δ̄ε = (ρ + ε̄ − 2ε)α − β̄ε + (ε + ρ)π,

Dβ − δε = (ρ̄ − ε̄)β − (ᾱ − π̄)ε,

Dγ −1ε = (τ + π̄)α + (τ̄ + π)β − (ε + ε̄)γ − (γ + γ̄ )ε + τπ − 1
24R,

Dλ− δ̄π = ρλ+ π2+ (α − β̄)π − (3ε − ε̄)λ,

Dµ− δπ = ρ̄µ+ ππ̄ − (ε + ε̄)µ− π(ᾱ − β)+ 1
12R,

Dν −1π = (π + τ̄ )µ+ (π̄ + τ)λ+ (γ − γ̄ )π − (3ε + ε̄)ν,

1λ− δ̄ν = −(µ+ µ̄)λ− (3γ − γ̄ )λ+ (3α + β̄ + π − τ̄ )ν −94, (A.1)

δρ = ρ(ᾱ + β)+ (ρ − ρ̄)τ,

δα − δ̄β = µρ + αᾱ + ββ̄ − 2αβ + γ (ρ − ρ̄)+ ε(µ− µ̄)+ 1
24R,

δλ− δ̄µ = (ρ − ρ̄)ν + (µ− µ̄)π + µ(α + β̄)+ λ(ᾱ − 3β),

δν −1µ = (µ2+ λλ̄)+ (γ + γ̄ )µ− ν̄π + (τ − 3β − ᾱ)ν,

δγ −1β = (τ − ᾱ − β)γ + µτ − εν̄ − β(γ − γ̄ − µ)+ αλ̄,

δτ = λ̄ρ + (τ + β − ᾱ)τ,

1ρ − δ̄τ = −ρµ̄+ (β̄ − α − τ̄ )τ + (γ + γ̄ )ρ − 1
12R,

1α − δ̄γ = (ρ + ε)ν − (τ + β)λ+ (γ̄ − µ̄)α + (β̄ − τ̄ )γ,
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and the commutators are

(1D −D1) = (γ + γ̄ )D + (ε + ε̄)1− (τ + π̄)δ̄ − (τ̄ + π)δ,
(δD −Dδ) = (ᾱ + β − π̄)D − (ρ̄ + ε − ε̄)δ,

(δ1−1δ) = −ν̄D + (τ − ᾱ − β)1+ λ̄δ̄ + (µ− γ + γ̄ )δ,

(δ̄δ − δδ̄) = (µ̄− µ)D + (ρ̄ − ρ)1− (ᾱ − β)δ̄ − (β̄ − α)δ.

(A.2)
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