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Abstract. The results of Biak and Pravda (1998lass. Quantum Gravl51539) are generalized
forvacuum type-Ill solutions with, in general, a non-vanishing cosmological constdhis shown

that all curvature invariants containing derivatives of the Weyl tensor vanish if a type-IIl spacetime
admits a non-expanding and non-twisting null geodesic congruence. A non-vanishing curvature
invariant containing first derivatives of the Weyl tensor is found in the case of type-Ill spacetime
with expansion or twist.

PACS numbers: 0420, 0430

1. Introduction

In [1] we proved that in Petrov type-N vacuum spacetimes which admit a non-expanding
and non-twisting null geodesic congruence all curvature invariants constructed from the Weyl
tensor and its derivatives of arbitrary order vanish. We generalize this paper and obtain the
same result for non-expanding and non-twisting Petrov type-IIl vacuum spacetimes. Thus it
is useful to study these spacetimes in quantum gravity, as all their guantum corrections vanish
(see Gibbons [2]). The proof for type-1ll vacuum spacetimes is based on the same ideas as
that for type-N vacuum spacetimes given in [1]. Here we just outline the basic ideas of the
proof (see section 3). For understanding and rigorous reconstruction of the proof, paper [1] is
indispensable.

In the case of type-lll vacuum spacetime with expansion or twist we find a non-zero
curvature invariant of the first order (containing the first derivatives of the Weyl tensor).

First, let us recall some basic relations from spinor calculus and the Newman—Penrose
formalism. We can use basig, ¢4, which satisfies

ot =1, o 0 =0, it =0, (1.2)

to decompose the Weyl spinor (see [3])

\I/ABCD = \I’oLALBLctD — 4q/10(ALBlctD) + GWZO(AOBtch) — 4q}30(AOBOCLD)

+\I’40A030c0D, (12)
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where
LIlo = LI/ABCDOAOBOCOD,
\1-’1 = \IJABCDOAOBOCLD,
\112 = \I—’ABCDOAOBLCLD, (13)
Y3 = ‘-I’ABCDOALBLCLD,

Y, = \IIABCDLALBLCLD.

There exist four principal spinots,, B4, 4, 84 such that
Vapcp = AaBpYcdp)- (1.4)

Since three principal spinors df 45cp coincide in type-lll spacetimes, it is convenient to
choose this repeated principal spinor as a basis spinorhen

Vapcp = 040B0CSp) (1.5)
and

Wo =0y =¥, =0. (1.6)
For the Weyl spinor we thus obtain

Wapcp = —4WV304050ctp) + Va040p0c0p. a.7)
We choose the second basis spinpto satisfy

Diy =0, (1.8)

which implies that a complex null tetrad induceddyand:, is parallelly propagated along
the geodetic null congruence and several Newman—Penrose coefficients vanish:

c=k=¢e¢=m=0. (1.9)
To end this section let us write down the relations
VAX — AT D 4 0AGX A — 14555 — 0ATXS, (1.10)
vAX B yvoBéx — a0®oBTX — rotBoX — ﬂLAOB5X
+p0ALBZX + 0BT + oA BN — KLALBZX, (1.11)
VAX B — 1oApBaX — pofoBTX — yoALBEX — ;quBéX

+a o BTX + miAoBTX + g BX — e BIX, (1.12)

Equations (1.1) and (1.7) imply that all invariant quantities constructed fomcp
without derivatives vanish and thus all curvature invariants of the zeroth order vanish too. In
the next sections we study curvature invariants of higher orders.

2. Expanding or twisting solutions

Regarding (1.6) and (1.9), the Bianchi identity (see equation (7.67) in [4]) gives
D\IJ3 = 2,0\113. (21)

Using (1.1), (1.10)—(1.12), one can easily show that all first-order invariants of the Weyl tensor
vanish if they contain only squares or cubegig,s... However, there is a non-vanishing
curvature invariant

I = CaByS;scaMyv;SCkupv:a fo}pa;a, (2.2)
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which, in terms of Newman—Penrose quantities, reads
I = (48ppW3W3)2. (2.3)

The Robinson—Trautman metric of type-lll, that is the general vacuum type-Ill solution
admitting a geodesic, shear-free, twist-free and diverging null congruence, has the form

22
ds? = # d¢ di — 2dudr — (Aln P — 2/(In P) ) du?, (2.4)

whereP (u, ¢, ) satisfies
AAP =0, (AInP), #0, A = 2P?),0; (2.5)

andd/dr is the repeated null eigenvector. In an appropriately chosen complex null tetrad
(given, for example, in chapter 23 in [4]) we obtain

1
O'=K=8=7T=\Ifo=\111=\112=0, p=—-——,
,
P
W3 =——(AInP);, (2.6)
r
1 2
Uy = ﬁ(P (3AInP —r(n P),u)’g)’g.
Substituting (2.6) into the invariant (2.3), we obtain
48 _ 2
I=|—5PP(AINP)z(AINP), ). (2.7)
r

This invariant, which is non-zero in general, can be used for analysing singularities in
Robinson—Trautman solutions.

3. Non-expanding and non-twisting solutions

Non-expanding and non-twisting solutions satisfying (1.9) anreg 0 belong to Kundt’s class
and they are completely known (see chapter 27.5.1. in [4]).

In [1] we have proved that for type-N vacuum spacetimes, without expansion and without
twist, all curvature invariants of all orders vanish. This proof, with slight modifications, is also
valid for type-I11l vacuum spacetimes without expansion and without twist. Thus we give here
only the basic ideas of the proof.

In the following we need NP equations containing oper&ior

Dt =0,

Do =0,

DB =0,

Dy =ta+1TB — R/24, (3.1)
D) =0,

Du = R/12,

Dyv=tu+ti+Ws,
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and the commutators
(AD — DA)=(y+y)D — 16 — 16,
(8D — D8) = (a + B)D.
The Bianchi identity (2.1) has the form
DW3 = 0. (3.3)

Let us now turn our attention to the behaviour of the NP quantities under the constant
boost transformation

(3.2)

o't = ao?, A =a A (3.4)
A quantity 2, which transforms under this boost as
Q' =aiQ , (35)

has the boost-weighit(©2) = g. Summary of the boost-weights for NP coefficients (NP) and
operators (OP) is given in table 1 in [1]. F&g we have

W, =a 203 = b(V3) =-2. (3.6)

Now we analyse invariants ofVC%: . VCXi(Wy0(pBoC,P).  The quantity
W304080C D) is invariant under the boost transformation (3.4)

W0 4080/ D) = W0 0B 0P (3.7)

and thus alsa& S X» ., VOX1 (P304 0B 0C D)) is invariant under (3.4) anb(VEX» . vEaXa
(W301080¢ D)) = 0. Using Leibniz’s formula and relations (1.10)—(1.12), we decompose
the spinor derivative7 & X» .. VX1 (050408 0¢ D)) into the spinor basis of the appropriate
spinor space. Each term in such a sum has the form

Ko .. . o%m Xt o%Xm B (Buh | T (3.8)
————— —

]

mq my ny ny

whereK is a product of NP quantities. This term is also invariant under the boost (3.4) and
thus

b(K) =n1+n, —mqy — my. (39)

In the following we show that NP equations impf = 0 if »(K) > 0 and thus the
decomposition ofvC:X: | VEaX1(W30(40B 0 P)) consists only of terms containing more
o's then /’s and, as a consequence of equation (1.1), all invarianty©@f ... v©&*
(W30“ 080 1P vanish.

Lemma 1. Let an invariant constructed from the products of the spin@%xrl ... VOt
(W304080C1P)), for fixedn, be non-vanishing. Then there exists a non-vanishing quantity
K =X1X,...X,¥3, X; € NP U OP such that

b(X1X,... X,W3) = Y b(X;) +b(¥3) >0, ie. Y b(X;) =2
i=1 i=1
See the proof in [1].
We introduce a numbep for each NP-coefficient (or its derivatives) that describes its
behaviour under the action of the operaid(see [1] for the exact definition and table 2).
Comparing (3.1) and (3.2) with equations (3.2)—(3.4) in [1] we see that table 2 and lemma 2
in [1] remain unchanged. This enables us to reformulate lemma 3 (as a consequence of (3.1)—
(3.3)) and proposition 1.
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Lemma 3. Consider a quantity(; X, ... X, whereX; e NP U OP.
n
It > pxi) <0 then X1X,...X,¥3=0.
i=1

The proof of lemma 3 remains unchanged.
Proposition 1. In type-1ll vacuum spacetimes with admitting a non-expanding and non-

twisting null geodesic congruence ath-order invariants formed from the products of spinors
VX | VOX1 (P304 0B oC D)), with n arbitrary but fixed, vanish.

Proof. We follow a similar procedure as in [1], replacing equation (3.8) in [1] by

> b(Xi) =2 and > p(xi) =0, (3.10)
i=1 i=1
which leads to the same conclusion. O

Invariants constructed from the second term in (1.7) and its derivaifes; ... vCiXa
(W402080¢0P), also vanish. The proof is similar to that in [1], with the only difference

Dy, =0 for type-N (3.11)
DV, = (8 — 20) W3, D%V, =0 for type-lll, (3.12)

and thus we reformulate lemma 3 of [1].

Lemma 3. Consider a quantityX; X, ... X, whereX; e NPUOP.
It > p(X)<-1  then X;X,...X,¥;=0.
i=1

Proposition 1 remains unchanged.

Proposition 1'. In type-lll vacuum spacetimes with admitting a non-expanding and non-
twisting null geodesic congruence ath-order invariants formed from the products of spinors
VX | VOX1(W,04080C0P), with n arbitrary but fixed, vanish.

Since each term in decompositions of the spinfsX: ... VX1 (04086 oP) and
VX | VOX1 (w304 0B 0 D)) into the spinor basis contains mars then:’s, we conclude
our analysis with the following propositions.

Proposition 3. In type-lll vacuum spacetimes with, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed flomcp, ¥, ;3¢5 and their
derivatives of arbitrary order vanish.

The same proposition formulated in the tensor formalism reads:

Proposition 4. In type-Ill vacuum spacetimes with, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed from the Weyl tensor and its
covariant derivatives of arbitrary order vanish.
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4. Conclusion

A general Petrov-type spacetime has non-zero curvature invariants of zeroth order. For type-N
spacetimes we have shown in [1] that all Wey! invariants of all orders for non-twisting and
non-expanding solutions vanish. For twisting or expanding solutions of type-N we have proven
that the Weyl invariants of the zeroth and first orders vanish but we have found a non-zero
invariant of the second order,

CAPYEEDC, oy CHPTTCrp s = (48252 W4 Wg)2. (4.2)

In this paper we show that for type-IIl vacuum spacetimes without twist and expansion
all Weyl invariants of all orders vanish. This fact can be used in quantum gravity (see [2]). In
the case with expansion or twist only invariants of the zeroth order vanish and there exists a
non-vanishing invariant of the first order,

COPY3C e CHV Crps. o = (48p 5 WaWg)?. (4.2)

This invariant can be used for analysing singularities in type-Ill vacuum spacetimes with
expansion or twist. The form of the invariant in terms of NP quantities (4.2) can also be
helpful for constructing approximate solutions of Einstein’s vacuum field equations in type-Ili
with twist (see [5] for type-N).

Let us summarize our results in table 1.

Table 1. Curvature invariants in vacuum spacetimes (0, vanishes; 1, does not vanish).

Petrov type I,LU,D 1] N N
Expansion and twist p#0 p=0 p#0 p=0
Curvature invariants of order O 1 0 0 0 0
Curvature invariants of order 1 1 1 0 0 0
Curvature invariants of order 2 1 1 0 1 0
Curvature invariants of order 2 1 1 0 1 0
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