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Curvature invariants in type-III spacetimes
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Abstract. The results of Bǐcák and Pravda (1998Class. Quantum Grav.151539) are generalized
for vacuum type-III solutions with, in general, a non-vanishing cosmological constant3. It is shown
that all curvature invariants containing derivatives of the Weyl tensor vanish if a type-III spacetime
admits a non-expanding and non-twisting null geodesic congruence. A non-vanishing curvature
invariant containing first derivatives of the Weyl tensor is found in the case of type-III spacetime
with expansion or twist.

PACS numbers: 0420, 0430

1. Introduction

In [1] we proved that in Petrov type-N vacuum spacetimes which admit a non-expanding
and non-twisting null geodesic congruence all curvature invariants constructed from the Weyl
tensor and its derivatives of arbitrary order vanish. We generalize this paper and obtain the
same result for non-expanding and non-twisting Petrov type-III vacuum spacetimes. Thus it
is useful to study these spacetimes in quantum gravity, as all their quantum corrections vanish
(see Gibbons [2]). The proof for type-III vacuum spacetimes is based on the same ideas as
that for type-N vacuum spacetimes given in [1]. Here we just outline the basic ideas of the
proof (see section 3). For understanding and rigorous reconstruction of the proof, paper [1] is
indispensable.

In the case of type-III vacuum spacetime with expansion or twist we find a non-zero
curvature invariant of the first order (containing the first derivatives of the Weyl tensor).

First, let us recall some basic relations from spinor calculus and the Newman–Penrose
formalism. We can use basisoA, ιA, which satisfies

oAι
A = 1, oAo

A = 0, ιAι
A = 0, (1.1)

to decompose the Weyl spinor (see [3])

9ABCD = 90ιAιBιCιD − 491o(AιBιCιD) + 692o(AoBιCιD) − 493o(AoBoCιD)

+94oAoBoCoD, (1.2)
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where

90 = 9ABCDoAoBoCoD,
91 = 9ABCDoAoBoCιD,
92 = 9ABCDoAoBιCιD,
93 = 9ABCDoAιBιCιD,
94 = 9ABCDιAιBιCιD.

(1.3)

There exist four principal spinorsαA, βA, γA, δA such that

9ABCD = α(AβBγCδD). (1.4)

Since three principal spinors of9ABCD coincide in type-III spacetimes, it is convenient to
choose this repeated principal spinor as a basis spinoroA. Then

9ABCD = o(AoBoCδD) (1.5)

and

90 = 91 = 92 = 0. (1.6)

For the Weyl spinor we thus obtain

9ABCD = −493o(AoBoCιD) +94oAoBoCoD. (1.7)

We choose the second basis spinorιA to satisfy

DιA = 0, (1.8)

which implies that a complex null tetrad induced byoA andιA is parallelly propagated along
the geodetic null congruence and several Newman–Penrose coefficients vanish:

σ = κ = ε = π = 0. (1.9)

To end this section let us write down the relations

∇AẊ = ιAῑẊD + oAōẊ1− ιAōẊδ − oAῑẊδ̄, (1.10)

∇AẊoB = γ oAoBōẊ − αoAoB ῑẊ − τoAιBōẊ − βιAoBōẊ
+ρoAιB ῑẊ + ειAoB ῑẊ + σ ιAιBōẊ − κιAιB ῑẊ, (1.11)

∇AẊιB = νoAoBōẊ − λoAoB ῑẊ − γ oAιBōẊ − µιAoBōẊ
+αoAιB ῑẊ + πιAoB ῑẊ + βιAιBōẊ − ειAιB ῑẊ. (1.12)

Equations (1.1) and (1.7) imply that all invariant quantities constructed from9ABCD
without derivatives vanish and thus all curvature invariants of the zeroth order vanish too. In
the next sections we study curvature invariants of higher orders.

2. Expanding or twisting solutions

Regarding (1.6) and (1.9), the Bianchi identity (see equation (7.67) in [4]) gives

D93 = 2ρ93. (2.1)

Using (1.1), (1.10)–(1.12), one can easily show that all first-order invariants of the Weyl tensor
vanish if they contain only squares or cubes inCαβγ δ;ε. However, there is a non-vanishing
curvature invariant

I = Cαβγ δ;εCαµγ ν;εCλµρν;σCλβρδ;σ , (2.2)
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which, in terms of Newman–Penrose quantities, reads

I = (48ρρ̄939̄3)
2. (2.3)

The Robinson–Trautman metric of type-III, that is the general vacuum type-III solution
admitting a geodesic, shear-free, twist-free and diverging null congruence, has the form

ds2 = 2r2

P 2
dζ dζ̄ − 2 du dr − (1 lnP − 2r(lnP),u) du2, (2.4)

whereP(u, ζ, ζ̄ ) satisfies

11P = 0, (1 lnP),ζ 6= 0, 1 ≡ 2P 2∂ζ ∂ζ̄ (2.5)

and∂/∂r is the repeated null eigenvector. In an appropriately chosen complex null tetrad
(given, for example, in chapter 23 in [4]) we obtain

σ = κ = ε = π = 90 = 91 = 92 = 0, ρ = −1

r
,

93 = −P
r2
(1 lnP),ζ̄ ,

94 = 1

r2

(
P 2
(

1
21 lnP − r(lnP),u

)
,ζ̄

)
,ζ̄
.

(2.6)

Substituting (2.6) into the invariant (2.3), we obtain

I =
(

48

r6
P P̄ (1 lnP),ζ̄ (1 ln P̄ ),ζ

)2

. (2.7)

This invariant, which is non-zero in general, can be used for analysing singularities in
Robinson–Trautman solutions.

3. Non-expanding and non-twisting solutions

Non-expanding and non-twisting solutions satisfying (1.9) andρ = 0 belong to Kundt’s class
and they are completely known (see chapter 27.5.1. in [4]).

In [1] we have proved that for type-N vacuum spacetimes, without expansion and without
twist, all curvature invariants of all orders vanish. This proof, with slight modifications, is also
valid for type-III vacuum spacetimes without expansion and without twist. Thus we give here
only the basic ideas of the proof.

In the following we need NP equations containing operatorD:

Dτ = 0,

Dα = 0,

Dβ = 0,

Dγ = τα + τ̄ β − R/24,

Dλ = 0,

Dµ = R/12,

Dν = τ̄µ + τλ +93,

(3.1)
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and the commutators

(1D −D1) = (γ + γ̄ )D − τ δ̄ − τ̄ δ,
(δD −Dδ) = (ᾱ + β)D.

(3.2)

The Bianchi identity (2.1) has the form

D93 = 0. (3.3)

Let us now turn our attention to the behaviour of the NP quantities under the constant
boost transformation

o′A = aoA, ι′A = a−1ιA. (3.4)

A quantity�, which transforms under this boost as

�′ = aq�, (3.5)

has the boost-weightb(�) = q. Summary of the boost-weights for NP coefficients (NP) and
operators (OP) is given in table 1 in [1]. For93 we have

9 ′3 = a−293 H⇒ b(93) = −2. (3.6)

Now we analyse invariants of∇CnẊn . . .∇C1Ẋ1(93o
(AoBoCιD)). The quantity

93o
(AoBoCιD) is invariant under the boost transformation (3.4)

9 ′3o
′(Ao′Bo′Cι′D) = 93o

(AoBoCιD) (3.7)

and thus also∇CnẊn . . .∇C1Ẋ1(93o
(AoBoCιD)) is invariant under (3.4) andb(∇CnẊn . . .∇C1Ẋ1

(93o
(AoBoCιD))) = 0. Using Leibniz’s formula and relations (1.10)–(1.12), we decompose

the spinor derivative∇CnẊn . . .∇C1Ẋ1(93o
(AoBoCιD)) into the spinor basis of the appropriate

spinor space. Each term in such a sum has the form

K oA1 . . . oAm1︸ ︷︷ ︸
m1

ōẊ1 . . . ōẊm2︸ ︷︷ ︸
m2

ιB1 . . . ιBn1︸ ︷︷ ︸
n1

ῑẎ1 . . . ῑẎn2︸ ︷︷ ︸
n2

, (3.8)

whereK is a product of NP quantities. This term is also invariant under the boost (3.4) and
thus

b(K) = n1 + n2 −m1−m2. (3.9)

In the following we show that NP equations implyK = 0 if b(K) > 0 and thus the
decomposition of∇CnẊn . . .∇C1Ẋ1(93o

(AoBoCιD)) consists only of terms containing more
o’s then ι’s and, as a consequence of equation (1.1), all invariants of∇CnẊn . . .∇C1Ẋ1

(93o
(AoBoCιD)) vanish.

Lemma 1. Let an invariant constructed from the products of the spinors∇CnẊn . . .∇C1Ẋ1

(93o
(AoBoCιD)), for fixedn, be non-vanishing. Then there exists a non-vanishing quantity

K = X1X2 . . . Xn93,Xi ∈ NP ∪OP such that

b(X1X2 . . . Xn93) =
n∑
i=1

b(Xi) + b(93) > 0, i.e.
n∑
i=1

b(Xi) > 2.

See the proof in [1].
We introduce a numberp for each NP-coefficient (or its derivatives) that describes its

behaviour under the action of the operatorD (see [1] for the exact definition and table 2).
Comparing (3.1) and (3.2) with equations (3.2)–(3.4) in [1] we see that table 2 and lemma 2

in [1] remain unchanged. This enables us to reformulate lemma 3 (as a consequence of (3.1)–
(3.3)) and proposition 1.
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Lemma 3. Consider a quantityX1X2 . . . Xn whereXi ∈ NP ∪OP .

If
n∑
i=1

p(Xi) < 0 then X1X2 . . . Xn93 = 0.

The proof of lemma 3 remains unchanged.

Proposition 1. In type-III vacuum spacetimes with3 admitting a non-expanding and non-
twisting null geodesic congruence allnth-order invariants formed from the products of spinors
∇CnẊn . . .∇C1Ẋ1(93o

(AoBoCιD)), with n arbitrary but fixed, vanish.

Proof. We follow a similar procedure as in [1], replacing equation (3.8) in [1] by

n∑
i=1

b(Xi) > 2 and
n∑
i=1

p(Xi) > 0, (3.10)

which leads to the same conclusion. �

Invariants constructed from the second term in (1.7) and its derivatives,∇CnẊn . . .∇C1Ẋ1

(94o
AoBoCoD), also vanish. The proof is similar to that in [1], with the only difference

D94 = 0 for type-N, (3.11)

D94 = (δ̄ − 2α)93, D294 = 0 for type-III, (3.12)

and thus we reformulate lemma 3 of [1].

Lemma 3′. Consider a quantityX1X2 . . . Xn whereXi ∈ NP ∪OP .

If
n∑
i=1

p(Xi) < −1 then X1X2 . . . Xn94 = 0.

Proposition 1 remains unchanged.

Proposition 1′. In type-III vacuum spacetimes with3 admitting a non-expanding and non-
twisting null geodesic congruence allnth-order invariants formed from the products of spinors
∇CnẊn . . .∇C1Ẋ1(94o

AoBoCoD), with n arbitrary but fixed, vanish.

Since each term in decompositions of the spinors∇CnẊn . . .∇C1Ẋ1(94o
AoBoCoD) and

∇CnẊn . . .∇C1Ẋ1(93o
(AoBoCιD)) into the spinor basis contains moreo’s thenι’s, we conclude

our analysis with the following propositions.

Proposition 3. In type-III vacuum spacetimes with3, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed from9ABCD, 9̄ȦḂĊḊ and their
derivatives of arbitrary order vanish.

The same proposition formulated in the tensor formalism reads:

Proposition 4. In type-III vacuum spacetimes with3, admitting a non-expanding and non-
twisting null geodesic congruence, all invariants constructed from the Weyl tensor and its
covariant derivatives of arbitrary order vanish.
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4. Conclusion

A general Petrov-type spacetime has non-zero curvature invariants of zeroth order. For type-N
spacetimes we have shown in [1] that all Weyl invariants of all orders for non-twisting and
non-expanding solutions vanish. For twisting or expanding solutions of type-N we have proven
that the Weyl invariants of the zeroth and first orders vanish but we have found a non-zero
invariant of the second order,

Cαβγ δ;εφCαµγ ν;εφCλµρν;στCλβρδ;στ = (48ρ2ρ̄2949̄4)
2. (4.1)

In this paper we show that for type-III vacuum spacetimes without twist and expansion
all Weyl invariants of all orders vanish. This fact can be used in quantum gravity (see [2]). In
the case with expansion or twist only invariants of the zeroth order vanish and there exists a
non-vanishing invariant of the first order,

Cαβγ δ;εCαµγ ν;εCλµρν;σCλβρδ;σ = (48ρρ̄939̄3)
2. (4.2)

This invariant can be used for analysing singularities in type-III vacuum spacetimes with
expansion or twist. The form of the invariant in terms of NP quantities (4.2) can also be
helpful for constructing approximate solutions of Einstein’s vacuum field equations in type-III
with twist (see [5] for type-N).

Let us summarize our results in table 1.

Table 1. Curvature invariants in vacuum spacetimes (0, vanishes; 1, does not vanish).

Petrov type I, II, D III III N N

Expansion and twist ρ 6= 0 ρ = 0 ρ 6= 0 ρ = 0
Curvature invariants of order 0 1 0 0 0 0
Curvature invariants of order 1 1 1 0 0 0
Curvature invariants of order 2 1 1 0 1 0
Curvature invariants of order> 2 1 1 0 1 0
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