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Spinning C metric: Radiative spacetime with accelerating, rotating black holes
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The spinningC metric was discovered by Pleban´ski and Demian´ski as a generalization of the standardC
metric which is known to represent uniformly accelerated nonrotating black holes. We first transform the
spinningC metric into Weyl coordinates and analyze some of its properties as Killing vectors and curvature
invariants. A transformation is then found which brings the metric into the canonical form of radiative space-
times with boost-rotation symmetry. By analytically continuing the metric across ‘‘acceleration horizons,’’ two
new regions of spacetime arise in which both Killing vectors are spacelike. We show that this metric can
represent two uniformly accelerated, spinning black holes, either connected by a conical singularity, or with
conical singularities extending from each of them to infinity. The radiative character of the metric is briefly
discussed.@S0556-2821~99!02414-5#

PACS number~s!: 04.20.Jb, 04.30.2w, 04.70.Bw
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I. INTRODUCTION

The static part of a spacetime representing the stand
nonspinning vacuumC metric was originally found by Levi-
Civita in 1917–1919~see references in@1#!, but it was only
in 1970 when Kinnersley and Walker@2# understood, by
choosing a better parametrization, that it can be extende
that it represents two black holes uniformly accelerated
opposite directions. The ‘‘cause’’ of the acceleration is giv
by nodal ~conical! singularities ~‘‘strings’’ or ‘‘struts’’ !
along the axis of symmetry. By adding an external grav
tional field, the nodal singularities can be removed@3#. If the
holes are electrically~magnetically! charged, the field caus
ing the acceleration can be electric~magnetic! @4#. These
types of generalizedC metrics have been recently used in t
context of quantum gravity to describe the production
black hole pairs in strong background fields~see, for ex-
ample,@5–7#!.

During the 1980s, several other works analyzed the s
dardC metric. Ashtekar and Dray@8# were the first to show
that theC metric admits a conformal completion such that
null infinity admits spherical sections. Bonnor@9# trans-
formed the vacuumC metric to a Weyl form, in which the
metric represents a ‘‘spherical particle’’~in fact the horizon
of the black hole! and a semi-infinite line mass, with a str
holding them apart. By another transformation, Bonnor
larged the spacetime so that it became ‘‘dynamic,’’ rep
senting two black holes~‘‘spherical particles’’ in terminol-
ogy of @9#! uniformly accelerated by a spring joining them
In 1995 Cornish and Uttley@10# simplified Bonnor’s proce-
dure and extended it to the charged case@11#. Most recently,
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the black-hole uniqueness theorem for theC metric has been
proved@12#.

In none of the above works, however, has the basic
been emphasized that the vacuumC metric is just one spe-
cific example in a large class of asymptotically flat radiati
spacetimes with boost-rotation symmetry~with the boost
along the axis of rotational symmetry!. From a unified point
of view, boost-rotation symmetric spacetimes with hypers
face orthogonal axial and boost Killing vectors were stud
geometrically by Bicˇák and Schmidt@13#. We refer to this
detailed work for rigorous definitions and theorems. In fa
it is no surprise that theC metric was for a long time ana
lyzed in coordinate systems unsuitable for treating glo
issues such as the properties of null infinity. It is algeb
ically special, and the coordinate systems were adapted t
degenerate character. In polar coordinates$t,r,f,z%, the
metric of a general boost-rotation symmetric spacetime w
hypersurface orthogonal axial and boost Killing vectors,

]

]f
and z

]

]t
1t

]

]z
, ~1!

has the form@see@13#, Eq. ~3.38!#

ds25eldr21r2e2mdf21
1

z22t2
@~elz22emt2!dz2

22zt~el2em!dzdt2~emz22elt2!dt2#, ~2!

wherem andl are functions ofr2 andz22t2, satisfying, as
a consequence of Einstein’s vacuum equations, a simple
tem of three equations, one of them being the wave equa
for the functionm. The whole structure of the group orbits i
©1999 The American Physical Society04-1
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J. BIČÁK AND V. PRAVDA PHYSICAL REVIEW D 60 044004
boost-rotation symmetric curved spacetimes outside
sources~or singularities! is the same as the structure of th
orbits generated by the axial and boost Killing vectors
Minkowski space. In particular, the boost Killing vector~1!
is timelike in the regionz2.t2. It is this region which can be
transformed to the static Weyl form. Physically, this cor
sponds to the transformation to ‘‘uniformly accelerat
frames’’ in which sources are at rest and the fields are t
independent.

However, in the other ‘‘half’’ of the spacetime,t2.z2

~‘‘above the roof’’ in the terminology of@13#!, the boost
Killing vector is spacelike so that in this region, the met
~2! is nonstationary. It can be shown that fort2.r21z2, the
metric can be locally transformed into the metric of t
Einstein-Rosen waves. The radiative properties of the s
cific boost-rotation symmetric spacetime were investiga
long ago@14#, and for more general metrics in@15–17#. The
boost-rotation symmetric spacetimes were used as tests
in numerical relativity—see the review@18# for more details
and references.

Now in all the work mentioned above, it was assum
that the axial and boost Killing vectors are hypersurface
thogonal. Recently, Bicˇák and Pravdova´ @19# analyzed sym-
metries compatible with asymptotic flatness and admitt
gravitational and electromagnetic radiation. They ha
shown that in axially symmetric electrovacuum spacetim
in which, at least locally, a smooth null infinity exists, th
only second allowable symmetry which admits radiation
the boost symmetry. The axial and an additional Killing ve
tor havenot been assumed to be hypersurface orthogona
@19# the general functional forms of gravitational and ele
tromagnetic news functions, and of the total mass of asy
totically flat boost-rotation symmetric spacetimes at null
finity have been obtained. However, until now, no gene
theory similar to that given in@13# in the hypersurface or
thogonal case is available for the boost-rotation symme
spacetimes with Killing vectors which are not hypersurfa
orthogonal. Nevertheless, there is one explicitly given me
which can be expected to serve as an example of th
spacetimes—the spinning vacuumC metric. It was discov-
ered by Pleban´ski and Demian´ski @20# in 1976, studied later
by Farhoosh and Zimmerman@21#, and very recently briefly
discussed by Letelier and Oliveira@22#. In none of these
works, however, was the boost-rotation character of
spacetime properly analyzed. In particular, ‘‘the canoni
coordinates’’ in which the metric represents a generaliza
of the metric ~2! so that global issues outside the sourc
could properly be studied have not been found so far.

The main purpose of this paper is to find such a repres
tation of the spinningC metric ~SC metric! which would
generalize Eq.~2! and, thus, could also serve as a conveni
example for building up the general theory of boost-rotat
symmetric spacetimes with the Killing vectors which are
general not hypersurface orthogonal.

In the next section, we first write the Pleban´ski-
Demiański class of metrics@20#, specialized to the spinning
vacuum case, discuss the ranges of parameters enterin
metric and indicate the limiting procedure leading to the K
metric. In Sec. III the SC metric is transformed into We
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coordinates. This is not an easy task, fortunately we s
ceeded in generalizing the procedure Bonnor@9# used for the
standardC metric without spin. We show that, by choosin
different values of the original Pleban´ski-Demiański coordi-
nates we can, in principle, arrive at various Weyl spacetim

The properties of Killing vectors and of some invarian
of the Riemann tensor lead us, in Sec. IV, to choose a ph
cally plausible Weyl spacetime which contains both t
black hole and the acceleration horizon. Similarly, as h
been done with the standardC metric @9,10#, we concentrate
on this Weyl portion. In Sec. V the metric is transformed in
the ‘‘canonical form’’ of boost-rotation symmetric spac
times with Killing vectors which need not be hypersurfa
orthogonal@see Eqs.~46!, ~47!#. By analytically continuing
the resulting metric across the acceleration horizons~‘‘the
roof’’ !, two new regions of spacetime arise as in the stand
case of theC metric without spin.

Let us emphasize that it is only now, after having d
scribed the spacetime in coordinates in which global iss
can be addressed, that we are able to fix coordinatest,f and
two Killing vectors appropriately. The importance of th
fact is briefly discussed in relation to the most recent wo
@22# in which a transformation to the canonical form was n
performed. We also show that, analogous to theC metric
without spin, the axis of symmetry contains nodal singula
ties between the spinning ‘‘sources’’~holes! which cause the
acceleration, and is regular elsewhere; or the axis can
made regular between the sources, but then the nodal si
larities extend from each of the sources to infinity~see Fig.
1!.

Finally, in our concluding remarks, we briefly compa
our results with those obtained recently in@22#. We then give
two figures, constructed numerically, exhibiting clearly t
radiative character of the SC metric. A detailed analysis
the radiative properties of the SC metric and of its analy
extension into the holes’ interiors will be given elsewhere

II. SPINNING C METRIC

Pleban´ski and Demian´ski @20# gave their class of metrics
in the coordinates$t,p,q,s% in the form

ds25
E~Q2Pq4!

F
dt22

EF

Q
dq22

EF

P
dp2

1
E~Qp42P!

F
ds22

2E~Qp21Pq2!

F
dtds, ~3!

where

P5g2«p212mp32gp4, ~4!

Q52g1«q212mq31gq4, ~5!

E5~p1q!22, ~6!
4-2
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FIG. 1. Two uniformly accelerated spinning black holes~left! connected by a spring between them,~right! with string extending from
each of them to infinity.
o
r-

,

f
r

e

;

ra

e

-

ts

for

rs

ls
F511p2q2, ~7!

m,g,« being constants. The choice of the exact ranges
dimensionless coordinatesp,q will be specified later, at this
point, we considerp,q PR; the coordinatest,s have dimen-
sion of (length)2, and we also taket,sPR. In the general
form of Pleban´ski-Demiański metric @Eqs. ~2.1!, ~3.25! in
@20## we put the parametersn,e,g,l, corresponding to the
Newman-Unti-Tamburino~NUT! parameter, electric and
magnetic charge, and cosmological constant, equal to zer
parameterm50, the spacetime is flat. It is not straightfo
ward to obtain standard metrics from Eq.~3!. In @20# it is
shown~see also@1#! that the stationary~nonaccelerated! Kerr
solution can be obtained by scaling the coordinates and
multaneously, the parameters as

p5
p8

l
, q5

2 l

q8
, t5 l t8, s5 l 3s8,

m5 l 23m8, «5 l 22«8, g5 l 24g8. ~8!

Then, after taking the limitl˜`, and putting

m85M , «851, g85a2, p852a cosu,

q85r , s852f/a, t85t1af, ~9!

we obtain the standard Kerr metric with massM and specific
angular momentuma in the Boyer-Lindquist coordinates. I
«5m2/g, the limiting procedure leads to the extreme Ke
hole with a25M2. It is worth noticing that in this case th
quartic P can be factorized,P52g21(gp22mp1g)(gp2

2mp2g). If «.m2/g, we obtain a general Kerr black hole
with «,m2/g—a Kerr naked singularity. Another limiting
procedure~see@20#, @1#! leads to theC metric without rota-
tion.

In the following, we shall restrict ourselves to the gene
case in which the polynomials~4! and~5! have four different
real roots. We, thus, omit the special cases which may b
04400
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interest~cf. @8#, @23#!, but will be dealt with elsewhere. No
tice that if pi is the root of the polynomialP given by Eq.
~4!, thenqi52pi is the root of the polynomialQ @Eq. ~5!#.
The analysis of the 4th-order polynomial~5! shows that ifg
is chosen positive, the polynomial has four different roo
provided that

e.2A3g,

e~e2136g2!2~e2212g2!3/2

54g

,m2,
e~e2136g2!1~e2212g2!3/2

54g
. ~10!

In Fig. 2 we illustrate the allowed range of the parameters
g51.

Returning back to the metric~3!–~7!, we immediately ob-
serve that it has two Killing vectors,

]

]t
and

]

]s
. ~11!

III. SC METRIC IN WEYL COORDINATES

We just saw that the SC metric has two Killing vecto
~11!. We also noticed that in a limit, it goes over into theC

FIG. 2. The allowed range of parameters« andm2 for g51. If
a point («,m2) is ‘‘between’’ the two curves, then both polynomia
P,Q have four distinct real roots.
4-3
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J. BIČÁK AND V. PRAVDA PHYSICAL REVIEW D 60 044004
metric without rotation~cf. @1#! which is known to be axi-
symmetric and in some regions static. Hence, we expect
the SC metric can be converted into a standard We
Papapetrou form

ds25e22U@e2n~dr̄21dz̄2!1 r̄2dw̄2#2e2U~dt̄ 1Adw̄ !2,
~12!

where functions U,n,A depend only on r̄ and z̄,
w̄P^0,2p), r̄P^0,̀ ), t̄ ,z̄PR.

Vacuum Einstein’s equations imply

]2U

] z̄2
1

1

r̄

]U

]r̄
1

]2U

]r̄2
52

1

2

e4U

r̄2
3F S ]A

]r̄
D 2

1S ]A

] z̄
D 2G ,

]

] z̄
S e4U

r̄

]A

] z̄
D 1

]

]r̄
S e4U

r̄

]A

]r̄
D 50,

1

r̄

]n

]r̄
5S ]U

]r̄
D 2

2S ]U

] z̄
D 2

2
e4U

4r̄2F S ]A

]r̄
D 2

2S ]A

] z̄
D 2G ,

1

r̄

]n

] z̄
52

]U

]r̄

]U

] z̄
2

e4U

2r̄2

]A

]r̄

]A

] z̄
.

~13!

Axial and timelike Killing vectors

j (w̄)5
]

]w̄
, j ( t̄ )5

]

] t̄
, ~14!

determine invariantly the cylindrical-type radial coordina
by the relation

r̄25gt̄ w̄
22gt̄ t̄ gw̄w̄5~j ( t̄ ) ,j (w̄)!

22~j ( t̄ ) ,j ( t̄ )!~j (w̄) ,j (w̄)!.

~15!

In the following, we shall consider points withr̄50 as ‘‘ly-
ing on thez̄ axis of axial symmetry.’’ This is indeed the ax
of Weyl’s coordinates, however, it must be born on mi
that r̄50 is a real smooth geometrical~physical! axis only
there where the metric~12! satisfies the regularity condition
@1#

lim
r̄˜0

X,aX,a

4X
51, where X5j (w̄)aj (w̄)

a , a5023.

~16!

We shall see that for some intervals ofz̄, the pointsr̄50
may represent either a horizon of a rotating black hole o
rotating string—regularity conditions~16! are then not satis
fied. The norms of the Killing vectors will enable us to di
tinguish between horizons and strings.

In order to convert the original metric~3!–~7! into the
Weyl-Papapetrou metric~12!, we shall seek the transforma
tion of the form
04400
at
l-

a

r̄5 r̄~p,q!, z̄5 z̄~p,q!, t̄ 5 t̄ ~t,s!, w̄5w̄~t,s!.
~17!

Since the Killing vectors~11! must be linear combination
with constant coefficients of the Killing vectors~14!, we can
write

dt5k1 d t̄1k2 dw̄,

ds5k3 d t̄1k4 dw̄, ~18!

with k1•••k4 constants. As a consequence of Eqs.~17! and
~18!, we find the metric components associated with the K
ing vectors to be given in Weyl coordinates by

gw̄w̄5
E

F
@~2k21p2k4!2Q2~k41q2k2!2P#,

gw̄ t̄5
E

F
@~2k11p2k3!~2k21p2k4!Q

2~k31q2k1!~k41q2k2!P#,

gt̄ t̄5
E

F
@~2k11p2k3!2Q2~k31q2k1!2P#. ~19!

Substituting these components into Eq.~15!, we arrive at
surprisingly simple expression forr̄:

r̄25E2K 2PQ, K5~k2 k32k1 k4!. ~20!

Notice that this result is in disagreement with the last E
~34! of @22#; there only the first term should appear.

Turning now to the transformation of variablesp,q into
Weyl’s r̄,z̄, we first write

dr̄5Adp1Bdq,

dz̄5Cdp1Ddq. ~21!

FunctionsA andB can be determined from Eq.~20!. Func-
tions C andD can be obtained by inverting relations~21!,
substituting into the original metric~3! and demanding tha
gr̄ r̄5gz̄z̄ , gr̄ z̄50. In this way, we find

A5K ]

]p
~EAPQ!, B5K ]

]q
~EAPQ!,

C57
BAQP

P
, D56

AAQP

Q
. ~22!

SinceC5] z̄/]p, D5] z̄/]q, and the integrability conditions
]C/]q2]D/]p50 are satisfied, we can integrate forz̄. Re-
garding Eqs.~4!–~7!, we obtain
4-4
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z̄57uKuS 2g2« qp2mq2p1mqp21gq2p2

~p1q!2 D , ~23!

where we put an additive constant equal to zero. We t
arrive at the metric functions determining the Wey
Papapetrou line element~12! in the form:

e2U52gt̄ t̄ , ~24!

e2n52gr̄ r̄gt̄ t̄ , ~25!

A5
gt̄ w̄

gt̄ t̄

, ~26!

where

gr̄ r̄5gz̄z̄52
EF

A2P1B2Q
, ~27!

and gt̄ t̄ , gt̄ w̄ are given by Eqs.~19!. In this way, we suc-
ceeded in expressing the Weyl metric functions in terms
p,q.

In order to find these functions directly in the Weyl coo
dinates, we have to invert relations@see Eqs.~20!, ~23! and
~4!, ~5!#

z̄5K2g2« qp2mq2p1mqp21gq2p2

~p1q!2
, ~28!

r̄25
K 2~g2«p212mp32gp4!~2g1«q212mq31gq4!

~p1q!4
.

~29!

This is not an easy task. Fortunately, we can try to genera
the procedure used by Bonnor@9# for the vacuumC metric
without rotation@see Eq.~11! in @9##. We, thus, wish to find
constantsa1 ,a2 ,a3 ,a4 and z̄i ,i 51,2,3, such that

r̄21~ z̄2 z̄i !
25S a1p1a2q1a31a4pq

p1q D 2

. ~30!

Multiplying the last equation by (p1q)2, regarding expres-
sions~28!, ~29!, and requiring the coefficients in the resultin
polynomial to vanish, we get

a152Wi , a25Wi , a35
K 2mg

Wi
, a45

Kmz̄i

Wi
,

~31!

wherez̄i /K are the roots of the equation
04400
s

f

e

2~ z̄i /K!31«~ z̄i /K!212g2~ z̄i /K!

1«g22m2g50, i 51,2,3, ~32!

and

Wi5AK 2g21 z̄i
2. ~33!

Next we introduce functions

Ri5Ar̄21~ z̄2 z̄i !
2>0. ~34!

After substituting fora1•••a4 from Eq. ~31! into the rela-
tion ~30! and taking square roots, we can rewrite the fun
tions Ri in the form

Ri5e i

1

~p1q!
S 2Wip1Wiq1

K 2mg

Wi
1
Kmz̄ipq

Wi
D ,

~35!

in which e i is chosen11 or 21 so that the right-hand sid
of Eq. ~35! is indeed positive. Equation~35! represents three
dependent equations forp and q as functions ofr̄ and z̄.
These can be easily solved if first simple new variables s
as, for example,pq,p1q,2p1q are introduced. Finally, we
succeed to expressp andq as follows:

p5
S12S2

2S3
,

q5
S11S2

2S3
, ~36!

where

S152e1e2e3K 2mg~ z̄12 z̄2!~ z̄12 z̄3!~ z̄22 z̄3!,

S25gmK 2@e2e3~ z̄32 z̄2!W1R11e1e3~ z̄12 z̄3!

3W2R22e1e2~ z̄12 z̄2!W3R3#,

S352e2e3~ z̄32 z̄2!~K 2g22 z̄2z̄3!W1R1

1e1e3~ z̄32 z̄1!~K 2g22 z̄1z̄3!W2R2

1e1e2~ z̄12 z̄2!~K 2g22 z̄1z̄2!W3R3 . ~37!

Therefore, by choosing different values fore i in the last
expressions, we arrive at differentp’s andq’s according to
relations~36! and, thus, to different Weyl metric function
~24!–~26!. Because there exist eight different choices fore i ,
we get in principle eight different Weyl spacetimes. The
4-5
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properties will be analyzed in the next section. As we sh
see, only four of them have the signature12, which we are
using in this paper.

IV. PROPERTIES OF THE SC METRIC IN „p,q…
AND „r̄,z̄… COORDINATES

First, we shall study the character of the Killing vecto
In particular, we seek a region of spacetime in which th
exists a linear combination~with constants coefficients
k1 ,k2) of Killing vectors,

h5k1

]

]t
1k2

]

]s
, ~38!

which is spacelike, and another combination which is tim
like so that the region is then stationary. Hence, the quadr
form

gabhahb5k1
2gtt12k1k2gts1k2

2gss ~39!

must there be indefinite. This implies that the mat
gAB ,A,B5t,s, @given by Eqs. ~3!–~7!# has eigenvalues
l1 ,l2 satisfyingl1l2,0. Since it turns out that

l1l252E2PQ, ~40!

the stationary regions are those in which

PQ.0. ~41!

The analysis of the eigenvaluesl1 ,l2 reveals thatl11l2
52(E/F)@P(11q4)2Q(11p4)# and since sign(l1l2)5
2sign(PQ), we find out that the metric~3! has the signature
22 if P.0, whereasP,0 implies signature12. Since in
this paper we are choosing the signature12, we takeP
,0.

The character of the regions described by the specific
tervals of (p,q) coordinates is best understood by plotti
them in the schematic Fig. 3. Herep1,p2,p3,p4 andq1
,q2,q3,q4 denote the roots of the polynomialsP and Q,
the numbers 1, . . . ,5 indicate regions between individua
roots or between a root and infinity. Notice that the figure

FIG. 3. The schematic illustration of the character of the regi
described by the specific intervals of (p,q) coordinates. See the tex
for the details.
04400
ll
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e
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s

schematic in the sense that the squares are plotted to hav
same size, even though the lengths of the intervals betw
the roots are not the same.

Now in the polynomialsP,Q we choose, without loss o
generality, parameterg.0. Since our signature12 requires
P,0, we consider only the squares in the columns 1,3,5
the squares which represent stationary regions, the inequ
~41! is valid—in Fig. 3 these squares are shaded. By num
cally analyzing the right-hand side of Eq.~35!, we can make
sure that in the squares$2,1% and $2,5%, all parameterse i5
21, in $4,1% and $4,5%, e15e251, e3521, in $4,3%, e1
5e351, e2521 and in the square$2,3%, which will play
the main role in the following, we finde1521, e25e351.

The shaded square$2,3% is illustrated in detail in Fig. 4.
The boundaries of the square represent the axisr̄50 because
of the relation~20!. The transformation~28! implies that the
vortices of the square correspond to the rootsz̄i of Eq. ~32!.
From the same transformation~28!, we also see that the
lower left vortexL ~corresponding top2 ,q3) is special: when
it is approached along two different edges of the square,
arrive at eitherz̄˜1` or z̄˜2`. In addition, by approach-
ing this vortex along different lines from the interior of th
squares, we can achieve various values ofz̄ and r̄.

Since the character of the Killing vectors depends on
eigenvaluesl1 ,l2 @cf. Eqs. ~39!, ~40!#, and on the bound-
aries of the square eitherl150 or l250, just one of the
Killing vectors has to be null there. Betweenz̄1 and z̄2, all
other Killing vectors are spacelike so that this part of the a
will describe the Killing horizon, the same being true for th
boundary betweenL and z̄3. Later we shall see that the seg
ment betweenz̄1 and z̄2 corresponds to the black-hole hor
zon whereas that betweenL and z̄3 to the acceleration hori-
zon. The remaining segments, betweenz̄1 andL, andz̄2 and
z̄3, describe the axis of symmetry,r̄50, along which, how-
ever, may lay the string represented by a conical singula
There exists just one combination~38! of the Killing vectors
@corresponding to the minimum of the quadratic form~39!#
the norm of which is null, all other combinations~38! give
timelike vectors.

It is useful to calculate several simplest invariants of t
Riemann tensor for the metric~3!:

s

FIG. 4. The square$2,3%, with pP^p2 ,p3&, qP^q3 ,q4&. The
locations of infinity, the axis, and the black hole and accelerat
horizon are indicated. See the text for the details.
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I 15Rab
gdRab

gd5248m2
~q6p6215q4p4115q2p221!~p1q!6

~11p2q2!6
,

I 25Rab
gdRgd

«lR«l
gd596m3

~9q8p8284q6p61126q4p4236p2q211!~p1q!9

~11p2q2!9
,

I 35RabgdRa«lmR«l
bnRmn

gd52144m4
~p1q!12

~11p2q2!6
. ~42!
es
ne

,
e

i-

os
ni-
hi

-
ar

g
r

at
he
a

th
rs

te
o

na
of

n-

m-

et-
c-

tin-
Curiously, it is the last invariant which most simply indicat
that asymptotically flat regions can exist only on the li
given by

p1q50. ~43!

On this line invariantsI 1 and I 2 also vanish. In Sec. V
where the ‘‘canonical coordinates’’ will be introduced, w
shall see that indeed the pointL in Fig. 4 corresponds to
‘‘points at infinity’’ where the spacetime is flat. The invar
ants~42! diverge at the points

@p,q#5@0,̀ #, @0,2`#, @2`,0#, @`,0#, ~44!

which, thus, correspond to curvature singularities.
The region $2,3% described above appears to be m

plausible from physical point of view to represent a u
formly accelerated, rotating black hole. We shall use t
region in the following. The regions$2,1%,$2,5% which also
give signature12 and contain a timelike Killing vector, im
ply the existence of a naked singularity. Indeed, the inv
ants~42! diverge at the point@p52`,q50# which lies in
the left edge of$2,1%, and at the point@p5`,q50# in the
right edge of$2,5%. In fact, one can make sure that by gluin
these to edges together~and, thus, identifying the singula
points! both regions$2,1% and$2,5% glued together will give
one Weyl space.~Notice thate1 , e2, ande3 are the same in
these regions.! Since, however, it contains a singular ring
r̄5” 0 ~corresponding to the identified singular points at t
edges!, we shall not consider these regions further. We sh
see in the next section that the region$2,3%, after appropriate
transformation and extension, gives the required form of
boost-rotation symmetric spacetime with Killing vecto
which are not hypersurface orthogonal.

V. THE SC METRIC IN THE CANONICAL COORDINATES
ADAPTED TO THE BOOST-ROTATION SYMMETRY

Following Bonnor’s analysis@9# of the standardC metric,
we now make the transformation from the Weyl coordina
to new coordinates in which the boost-rotation symmetry
the SC metric will become manifest. Simultaneously, by a
lytically continuing the resulting metric, two new regions
spacetime will arise—in a close analogy to theC metric
without spin. The transformation
04400
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t̄ 5arctanh
t

z
,

r̄5rAz22t2, ~45!

z̄2 z̄35 1
2 ~r21t22z2!,

w̄5w,

brings the metric~12! into the form

ds25eldr21r2e2mdw21
1

z22t2
@~elz22emt2!dz2

22zt~el2em!dzdt1~elt22emz2!dt2#

22Aem~zdt2tdz!dw2A2em~z22t2!dw2, ~46!

where

em5
e2U

z22t2
, el5

e2n

e2U
~r21z22t2!, ~47!

and functions e2U,e2n, and A are given in terms of coordi-
nates $t,r,z,w% by Eqs. ~19!, ~24!–~27!, ~32!–~34!, ~36!,
~37!, and ~45!. One can easily obtain the transformation i
verse to Eq.~45! in the form

t56AAr̄21~ z̄2 z̄3!22~ z̄2 z̄3!sinht̄ ,

r5AAr̄21~ z̄2 z̄3!21~ z̄2 z̄3!, ~48!

z56AAr̄21~ z̄2 z̄3!22~ z̄2 z̄3!cosht̄ ,

where either upper signs or lower signs are valid.
The form ~46! represents a general boost-rotation sy

metric spacetime ‘‘with rotation,’’ i.e., with the Killing vec-
tors which are not hypersurface orthogonal. PuttingA50,
we recover the canonical form of the boost-rotation symm
ric spacetimes with the hypersurface orthogonal Killing ve
tors, the general structure of which was studied in@13#. No-
tice that transformation~45! is meaningful only forz2.t2,
i.e., ‘‘below the roof,’’ using the terminology of@13#. Here it
leads to the explicit forms of metric functions em,el, andA.
Assuming then that these functions are analytically con
4-7
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ued across the roofz25t2 and across the null conez21r2

2t250, we find out that, by choosing the coefficien
k1 ,k2 ,k3 , k4 in the relation~18! appropriately, the metric
can be made smooth across both the roof and null cone
cept for the axisr50, in general, as will be seen in th
following. ~In the original coordinates$t,p,q,s%, the region
t2.z2 corresponds to the square$3,3% in Fig. 3.! In addition,
as a consequence of transformation~45!, ~48!, we now get
two rotating black holes uniformly accelerated in oppos
directions, instead of one represented in the original W
coordinates, since the transformation~48! with the upper
signs transforms the Weyl region into the region withz2

.t2,z.0, whereas that with the lower signs intoz2.t2,z
,0 @see Fig. 1 and discussion below Eq.~64!#.

In order to choose the coordinatest̄ ,w̄,t,w and the Killing
vectors appropriately, i.e., to fix constantsk1•••k4 in the
relation~18!, we analyze the behavior of the metric at spa
like infinity. This is simpler to do in the original coordinate
p,q where we look for a curve approaching

r˜`, w˜const, z˜const, t˜const, z2.t2.
~49!

In Weyl’s coordinates, this can be achieved by choosin
parameter v and putting r̄5v,z̄5v2, t̄ 5const,w̄5const,
with v˜`. In the coordinatesp,q we can choose, corre
spondingly, the curve

p5p21v22, q52p21v24, ~50!

p2 being the root ofP, with v˜`. This curve approache
the pointL in Fig. 4. Regarding the transformation~28!, ~29!,
we see that indeedr̄;v, z̄;v2, t̄ 5const, w̄5const, as re-
quired.

In order to obtain spacetimes which are asymptotica
Minkowskian along the curve~49!, we now require

em
˜1, el

˜1, A˜0 ~51!

for Eq. ~49!, i.e., along the curve~50! with v˜`. The ex-
plicit form of gr̄ r̄ , given in Eq.~27!, when expressed alon
the curve~50!, leads togr̄ r̄5e2n/e2U;v22;r̄22. The re-
quirement~51! rewritten in terms of functionsU andn, leads
to e2U

˜ const, e2n;r̄22;r22 @cf. Eqs. ~45!, ~47!#; it is,
thus, satisfied if e2U

˜const. This implies, using Eqs.~24!
and ~19!, the following relation for the coefficientsk3 and
k1:

k352p2
2k1 . ~52!

Similarly, requiringA˜0 along the curve~49!, we deduce
from Eqs.~26! and ~19!, the relation fork2 andk4:

k25p2
2k4 . ~53!

Until now, we considered the regionz2.t2, i.e., ‘‘below the
roof.’’ Turning to the roof itself, the necessary condition
the regularity of the metric there reads~cf. the detailed dis-
cussion in Sec. V in@13# in the case of the hypersurfac
orthogonal Killing vectors!
04400
x-

yl

-

a

y

ele2m51 at z25t2. ~54!

Equation~47! then implies

e2n

e4U
r̄2
˜1 for r̄˜0, z.z3 , ~55!

or, in coordinatesp,q, in the limit whenq˜2p251q3 ,p
P^p2 ,p3&, so that the lower segmentLz̄3 in Fig. 4 is ap-
proached. Calculating this limit, we find that the conditio
~55! is satisfied if the coefficientk1 is given by

k1
25$p2@m2p2

322«mp2
21~4g21«2!p224mg#%21.

~56!

Finally, we wish to study the regularity of the axisr50.
Clearly, with the SC metric whole axis cannot be regul
There will be black-hole horizons mapped on the segme
of the axis, along other parts string singularities will, in ge
eral, be located. These can be understood as the ‘‘cause
the acceleration of the holes. However, pieces of the axis
be made regular~see again@13# for a detailed discussion o
the regularity of the axis of general boost-rotation symme
spacetimes with hypersurface orthogonal Killing vector!.
The regularity condition~16! implies ‘‘elementary flatness’’
in the vicinity of the rotational axis~cf. @1#!. Hence,

lim
r0˜0

1

2p

E
0

2p
Agwwur0

dw

E
0

r0Agrrdr

51, ~57!

which implies the condition

el1m
˜1 at r50. ~58!

This is easy to see, since from Eq.~46!, we have

grr5el, gww5r2e2m2A2em~z22t2!, ~59!

but calculating limr˜0A from Eqs.~26!, ~19!, ~36!, and~45!,
we find

A5O~r2! as r˜0 for z.Z1 , z,2Z1 , ~60!

where

Z15@2~ z̄32 z̄1!1t2#1/2. ~61!

Hence, the condition~58! requires e2n
˜1 for p˜p2 , 2p2

,q,2p1 ~cf. Fig. 4!. This implies

en
˜k4

22k1
2 , ~62!

so that the axis will be regular in the regions extending fro
the holes to infinity if

k4
25k1

2 . ~63!

Therefore, we have now fixed all constant parametersk1
•••k4 in terms of the original parametersm,«, and g @the
4-8
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FIG. 5. The plot of the curvature invariants related toI 3 in Eq. ~42! at fixed t5t0.0 ~left!. The peaks are located ‘‘above’’ th
accelerated, rotating black holes. The gravitational radiation pulse propagates in all directions with velocity of light and decreasing a
as seen at right, plotted foru5p/2.
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the
root p2 being determined by the solution ofP50 whereP is
given by Eq.~4!#. The axis is, thus, regular forz2.Z1. As a
consequence of transformation~45!, we find two accelerated
black holes ‘‘located’’ at the axis at the two segmen
^Z2 ,Z1& and ^2Z1 ,2Z2&, whereZ1 is given by expression
~61! and

Z25@2~ z̄32 z̄2!1t2#1/2. ~64!

The situation is illustrated in Fig. 1a. As in the Weyl pictu
~and in the case of a non-rotatingC metric!, we do not get
the ‘‘inner parts’’ of the holes—these can be obtained o
by analytic continuations across the horizons located
^Z2 ,Z1& and^2Z1 ,2Z2&. However, it is not difficult to see
that the Killing vector]/] t̄ becomes null outside the axis—
this corresponds to the outer boundary of the ergoregion

Between the accelerated holes, i.e., forzP^2Z2 ,Z2&, a
nodal ~string! singularity occurs@violating conditions~57!,
~58!# which can be understood as causing the accelerat
of the holes away from each other. It is interesting to obse
that there exist causality violation regions around this no
singularity ~here gww,0) which tend to be dragged alon
with black holes. A detailed discussion of these regions
well as of the ergoregions of the SC metric, will be giv
elsewhere.

Here, let us yet notice that, similarly to the nonrotatingC
metric and, indeed, to the case of all boost-rotation symm
ric spacetimes@13#, we can construct SC metrics in whic
the axis is regular between the holes and strings are loc
outside them, i.e., atz.Z1 , z,2Z1 ~see Fig. 1, right!. As a
consequence of the field equations, functionA in the metric
~46! is constant along the axis outside the horizon, its va
being different at z.Z1 ,z,2Z1 from that at zP
^2Z2 ,Z2&. @This can be checked by analyzing directly t
expression forA given by Eqs.~26!, ~19!, ~36!, ~37!, ~45!.# In
04400
y
at
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e
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e

the above case, when the nodal singularity extends betw
the horizons,A50 at the axis forz.Z1 ,z,2Z1 @see Eq.
~60!#, butA5A05” 0 atr50,zP^2Z2 ,Z2&. Since field equa-
tions allow us to add an additive constant toA, we may just
take Ã(r,z,t)5A(r,z,t)2A0 which implies a regular axis
between the holes, but nodal singularities atz2.Z1

2 ~see Fig.
1, right!.

VI. CONCLUDING REMARKS

Our main result is the explicit representation~46!, ~47! of
the spinningC metric as a spacetime with an axial and
boost Killing vector which are not hypersurface orthogon
This has been achieved by first transforming the origi
form of the metric into the Weyl coordinates and, subs
quently, by going over to coordinates adapted to boo
rotation symmetry. Simultaneously, two new ‘‘radiative’’ re
gions of the spacetime arise in which the boost Killing vec
is spacelike.

Indeed, it is easy to see that under the transformation~45!,
~48!, the Killing vectorj ( t̄ )5]/] t̄ goes over into

j5z
]

]t
1t

]

]z
. ~65!

This is the boost Killing vector which in the coordinates
adapted to the boost-rotation symmetry of theSC metric has
everywhere the same form as in flat space. Its norm is gi
by

uju252em~z22t2!. ~66!

One can make sure that, after analytically continuing
metric ~46! into the regiont2.z2, the norm~66! is always
positive there so that the Killing vector is spacelike.
4-9
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Very recently Letelier and Oliveira@22# gave an incom-
plete transformation of theSC metric into the Weyl form.
However, these authors did not choose the Killing vect
and, thus, also the corresponding coordinatest̄ andw̄ which
would reflect the boost-rotational symmetry of the SC spa
times @in contrast to our Eq.~18! relating (t,s) to ( t̄ ,w̄),
they putt; t̄ ,s;w̄#.

From the form~46! we have seen@cf. Eq. ~51!# that the
coordinates can be chosen so that the metric becomes ex
itly Minkowskian at spatial infinity. We did not analyze rig
orously the structure of null infinity where we expect to fin
a nonvanishing radiation field as it exists in the standardC
metric and, indeed, in all boost-rotation symmetric spa
times@19#. Here we confine ourselves to giving Fig. 5 whic
demonstrates the radiative character of the SC metric. In
figure the invariant proportional toI 3

1/12 andI 3
1/6, whereI 3 is

given by Eq.~42!, is plotted at a fixed timet5t0.0 and at
different times. The radiative field has the character o
pulse, as was noticed many years ago in@14# for the special
boost-rotation symmetric solutions with hypersurface
thogonal Killing vectors. It is also of interest to plot th
gradient ofgwt;A as a function of time: here again the pul
character can be observed.
D
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Although we did not here analyze the radiative propert
of the SC metric rigorously, it is most plausible to expe
that in the situation described by Fig. 1, right, one can g
arbitrarily strong hyperboloidal data~see @24# for a recent
review and references on this approach to the initial va
problem! on a hyperboloid ‘‘above the roof’’ (t.uzu), which
represent the SC metric data and which evolve into
spacetime with smooth null infinity with a nonvanishing r
diation field. No other spacetime of this type, with two Kil
ing vectors which are not hypersurface orthogonal, is av
able in an explicit form. This suggests the SC metric
become a useful, nontrivial test-bed for numerical relativi
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