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Spinning C metric: Radiative spacetime with accelerating, rotating black holes
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The spinningC metric was discovered by Plelsii and Demiaski as a generalization of the standaid
metric which is known to represent uniformly accelerated nonrotating black holes. We first transform the
spinningC metric into Weyl coordinates and analyze some of its properties as Killing vectors and curvature
invariants. A transformation is then found which brings the metric into the canonical form of radiative space-
times with boost-rotation symmetry. By analytically continuing the metric across “acceleration horizons,” two
new regions of spacetime arise in which both Killing vectors are spacelike. We show that this metric can
represent two uniformly accelerated, spinning black holes, either connected by a conical singularity, or with
conical singularities extending from each of them to infinity. The radiative character of the metric is briefly
discussed[S0556-282(99)02414-5

PACS numbgs): 04.20.Jb, 04.30-w, 04.70.Bw

I. INTRODUCTION the black-hole unigueness theorem for @enetric has been
proved[12].

The static part of a spacetime representing the standard, In none of the above works, however, has the basic fact
nonspinning vacuun® metric was originally found by Levi- been emphasized that the vacu@metric is just one spe-
Civita in 1917—1919see references ifl]), but it was only cific example in a large class of asymptotically flat radiative
in 1970 when Kinnersley and Walké®] understood, by SPacetimes with boost-rotation symmetyith the boost
choosing a better parametrization, that it can be extended $§0nd the axis of rotational symmejry=rom a unified point

that it represents two black holes uniformly accelerated irPf View, boost-rotation symmetric spacetimes with hypersur-
face orthogonal axial and boost Killing vectors were studied

opposite directions. The “cause” of the acceleration is given ically by Bié 4 Schmid ¢ hi

by nodal (conica) singularities (“strings” or ‘“struts”) ge:)r_r;e;nca ykfy B.'ak an dS(f:' r.?.' t[13].(;/\$ reter tolt |fs ¢

along the axis of symmetry. By adding an external gravita- etaiied work for rigorous detinitions and theorems. in fact,
it is no surprise that th€ metric was for a long time ana-

tional field, the nodal singularities can be remoy8d If the : ; X .
holes are electricallymagnetically charged, the field caus- !yzed in coordinate systems unswtab!e .fo.r treating global
' issues such as the properties of null infinity. It is algebra-

ing the accelergtlon can be electimagneti [4]. The.se ically special, and the coordinate systems were adapted to its
types of generalize@ metrics have been recently used in thedegenerate character. In polar coordinafe, ¢z}, the
context of quantum gravity to describe the production ofpetric of a general boost-rotation symmetric spacetime with

blacll< Tgleﬂ;;airs in strong background fieldsee, for ex-  pypersurface orthogonal axial and boost Killing vectors,
ample,[5-7)).

During the 1980s, several other works analyzed the stan-
dardC metric. Ashtekar and Dra}8] were the first to show 9 and zi+ti )
that theC metric admits a conformal completion such that its dd ot 9z’
null infinity admits spherical sections. Bonng®] trans-
formed the vacuunC metric to a Weyl form, in which the a5 the forn{see[13], Eq. (3.39]
metric represents a “spherical particlé€ih fact the horizon
of the black holg¢ and a semi-infinite line mass, with a strut
holding them apart. By another transformation, Bonnor en-

ds?=e dp?+ p%e *dgp?+ [(erz?—e*t?)dZ?

larged the spacetime so that it became “dynamic,” repre- 222
senting two black hole¢‘spherical particles” in terminol-
ogy of [9]) uniformly accelerated by a spring joining them. —221(e) — ) dzdt— (22— eMP) 2], @

In 1995 Cornish and Uttlej/10] simplified Bonnor's proce-
dure and extended it to the charged cllsH. Most recently,
whereu and\ are functions op? andz?—t?, satisfying, as
a consequence of Einstein’s vacuum equations, a simple sys-
*Email address: bicak@mbox.troja.mff.cuni.cz tem of three equations, one of them being the wave equation
"Email address: pravda@math.cas.cz for the functionu. The whole structure of the group orbits in
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boost-rotation symmetric curved spacetimes outside theoordinates. This is not an easy task, fortunately we suc-
sources(or singularitie is the same as the structure of the ceeded in generalizing the procedure Borgdused for the
orbits generated by the axial and boost Killing vectors instandardC metric without spin. We show that, by choosing
Minkowski space. In particular, the boost Killing vectr different values of the original Plebski-Demiarski coordi-

is timelike in the regiorz?>t?. It is this region which can be hates we can, in principle, arrive at various Weyl spacetimes.
transformed to the static Weyl form. Physically, this corre-  The properties of Killing vectors and of some invariants
sponds to the transformation to “uniformly acceleratedf the Riemann tensor lead us, in Sec. IV, to choose a physi-

frames” in which sources are at rest and the fields are im&2lly plausible Weyl spacetime which contains both the
independent. black hole and the acceleration horizon. Similarly, as has

However, in the other “half’ of the spacetima?>z2 been done with the standa@imetric[9,10], we concentrate
(“above thé roof” in the terminology of13]), the ,boost on this Weyl portion. In Sec. V the metric is transformed into
Killing vector is spacelike so that in this region, the metric € “canonical form” of boost-rotation symmetric space-
(2) is nonstationary. It can be shown that f8F p2+ 22, the times with Killing vectors which need not be hypersurface
metric can be locally transformed into the metric of theCrthogonallsee Eqs(46), (47)]. By analytically continuing

Einstein-Rosen waves. The radiative properties of the spdl'® resuling metric across the acceleration horiziise
cific boost-rotation symmetric spacetime were investigated®®f); two new regions of spacetime arise as in the standard
long ago[14], and for more general metrics [a5—17. The ~ case of theC metric without spin.

boost-rotation symmetric spacetimes were used as tests bedsL€t US émphasize that it is only now, after having de-
in numerical relativity—see the revie[i8] for more details scribed the spacetime in coordinates in which global issues
and references. can be addressed, that we are able to fix coordinatesand

Now in all the work mentioned above, it was assumedwo Killing vectors appropriately. The importance of this

that the axial and boost Killing vectors are hypersurface orfact is briefly discussed in relation to the most recent work

thogonal. Recently, Bik and Pravdova19] analyzed sym- [22] in which a transformation to the canonical form was not
metries compatible with asymptotic flatness and admitting?€’formed. We also show that, analogous to Genetric
gravitational and electromagnetic radiation. They haveVithout spin, the axis of symmetry contains nodal singulari-

shown that in axially symmetric electrovacuum spacetimedi€S Petween the spinning “sourcegholes which cause the
in which, at least locally, a smooth null infinity exists, the 2cceleration, and is regular elsewhere; or the axis can be

only second allowable symmetry which admits radiation ismade regular between the sources, but then the nodal singu-

the boost symmetry. The axial and an additional Killing vec-/arities extend from each of the sources to infiisge Fig.
tor havenot been assumed to be hypersurface orthogonal. - ) . ) )
[19] the general functional forms of gravitational and elec- Finally, in our concluding remarks, we briefly compare

tromagnetic news functions, and of the total mass of asympRUr 'esults with those obtained recently 22]. We then give
totically flat boost-rotation symmetric spacetimes at null in-tWO figures, constructed numerically, exhibiting clearly the

finity have been obtained. However, until now, no generaf@diative character of the SC metric. A detailed analysis of
theory similar to that given ii13] in the hypersurface or- (he radiative properties of the SC metric and of its analytic
thogonal case is available for the boost-rotation symmetri(,eXtens'O” into the holes’ interiors will be given elsewhere.
spacetimes with Killing vectors which are not hypersurface

orthogonal. Nevertheless, there is one explicitly given metric Il. SPINNING C METRIC

which can be expected to serve as an example of these . o ) i
spacetimes—the spinning vacuuBmetric. It was discov- Plebaski _and Demiaski [_20] gave their class of metrics
ered by Plebaski and Demiaski [20] in 1976, studied later 1" the coordinategr,p,q,o7} in the form

by Farhoosh and Zimmermad@1], and very recently briefly

discussed by Letelier and Oliveif@2]. In none of these 2_E(Q—Pq4)d , EF EF

— AN2 2
works, however, was the boost-rotation character of the ds®= F T Q dq P dp
spacetime properly analyzed. In particular, “the canonical
coordinates” in which the metric represents a generalization E 4_p 2E 24 PR
of the metric(2) so that global issues outside the sources (Qp )d 2 (@Qp d )drdo', 3)

g
could properly be studied have not been found so far. F F
The main purpose of this paper is to find such a represen-
tation of the spinningC metric (SC metrig which would
: . where
generalize Eq(2) and, thus, could also serve as a convenient
example for building up the general theory of boost-rotation
symmetric spacetimes with the Killing vectors which are in P=y—ep?+2mp°— yp*, (4)
general not hypersurface orthogonal.
In the next section, we first write the Plelski
Demiarski class of metric$20], specialized to the spinning Q=—vy+eq®+2mc+yq, (5)
vacuum case, discuss the ranges of parameters entering the
metric and indicate the limiting procedure leading to the Kerr
metric. In Sec. lll the SC metric is transformed into Weyl E=(p+q) 2 (6)
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FIG. 1. Two uniformly accelerated spinning black holéft) connected by a spring between themight) with string extending from
each of them to infinity.

F=1+p?qg? (7)  interest(cf. [8], [23]), but will be dealt with elsewhere. No-
tice that if p; is the root of the polynomiaP given by Eqg.
), thenq;= —p; is the root of the polynomia®@ [Eq. (5)].
he analysis of the 4th-order polynomi&) shows that ify
is chosen positive, the polynomial has four different roots
provided that

m, y,e being constants. The choice of the exact ranges o
dimensionless coordinatgsqg will be specified later, at this
point, we considep,q e R; the coordinates, o have dimen-
sion of (length$, and we also take, o eR. In the general

form of Plebaski-Demiarski metric [Egs. (2.1), (3.25 in e>23y
[20]] we put the parametens,e,g,\, corresponding to the ’
Newman-Unti-Tamburino(NUT) parameter, electric and €(€2+36y%) — (e2—12y?)32
magnetic charge, and cosmological constant, equal to zero. If 54
parameterm=0, the spacetime is flat. It is not straightfor- Y
ward to obtain standard metrics from E®). In [20] it is ) e(€2+36y%) + (e2—12y%)%2
shown(see als¢1]) that the stationarynonacceleratederr <m“< 54y : (10)
solution can be obtained by scaling the coordinates and, si-
multaneously, the parameters as In Fig. 2 we illustrate the allowed range of the parameters for
y=1.
p’ - Returning back to the metri®)—(7), we immediately ob-
p= T q=—, 7=I7', o=I1%", serve that it has two Killing vectors,
q/
i d i (17
— and —.
m:|—3mr, 8:|_28,, )’:|_4')”- (8) JaT Jo

. - . lll. SC METRIC IN WEYL COORDINATES
Then, after taking the limit—co, and putting

We just saw that the SC metric has two Killing vectors

m=M, &'=1, y'=a% p'=-acosé, (11). We also noticed that in a limit, it goes over into t@e
mﬂT

q' =r, o' =—¢la, 7' =t+adg, 9
301

we obtain the standard Kerr metric with madsand specific
angular momentuna in the Boyer-Lindquist coordinates. If
e=m?/y, the limiting procedure leads to the extreme Kerr 201
hole with a?=M?2. It is worth noticing that in this case the
quartic P can be factorizedP=—y~ }(yp?—mp+ y)(yp?
—mp—v). If e>m?/y, we obtain a general Kerr black hole;
with e <m?/y—a Kerr naked singularity. Another limiting
procedure(see[20], [1]) leads to theC metric without rota- 5 7} 5 5 64,
tion.

In the following, we shall restrict ourselves to the general FIG. 2. The allowed range of parametersndm? for y=1. If
case in which the polynomialg) and(5) have four different  a point ,m?) is “between” the two curves, then both polynomials
real roots. We, thus, omit the special cases which may be af,Q have four distinct real roots.
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metric without rotation(cf. [1]) which is known to be axi- — Z=7( T=1( Py
symmetric and in some regions static. Hence, we expect that p=r(P.0). (p.9), (o). ¢ (P(T'U)('N)

the SC metric can be converted into a standard Weyl-

Papapetrou form Since the Killing vectorg11) must be linear combinations
. _ with constant coefficients of the Killing vecto($4), we can
ds?=e 2Y[e"(dp?+ dz?) + p?dp?]— €V (dt + Adp)?, write
(12

where functions U,»,A depend only on; and z, dr=rydttrde,

©e(0,2m), pe(02), t,zeR.

Vacuum Einstein’s equations imply do=xzdt+r,de, (18)
2U 19U 82U 1 etV aAVZ [aa)? with «;- - - k4 constants. As a consequence of EdS) and
Ste=—=t=="5= —| +| =] |, (18), we find the metric components associated with the Kill-
Jdz=  p dp dp p ap Iz ing vectors to be given in Weyl coordinates by

g [eV oAl g [V oA E . )
2\ +ﬂ—; > =0, G = EL(—K2F PKa) Q= (ks Q7K2)“P],
2 2 2 2
1ov [oU U eVl [ 9A IA E
:—_:(—_ _(—_) _:2 — — | = g<p_t: E[(_Kl+p2K3)(_K2+p2K4)Q
p dp ap 0z 4p°| \ dp 0z
—(k3+0%k1)(Kk4+G%K2) P,
1gv U du €Y A IA
piz dp gz 2p2 dp oz E
: 8 por gi= £L(— K1+ P*3)2Q— (ka+q?k)?P).  (19)
(13 F
Axial and timelike Killing vectors Substituting these components into H35), we arrive at
p P surprisingly simple expression far.
§o=7= {w=>= (14 —
Y ae Jt P2=E2C2PQ, K=(kyka— Ky Ks). (20)

determine invariantly the cylindrical-type radial coordinate \gtice that this result is in disagreement with the last Eq.

by the relation (34) of [22]; there only the first term should appear.
Turning now to the transformation of variablesq into

Weyl's p,z, we first write

PP=007 0t = (€0 () *— (€0 £0) (€5 E9)-

(15
In the following, we shall consider points wih=0 as “ly- dp=.Adp+Bda,
ing on thez axis of axial symmetry.” This is indeed the axis .
of Weyl's coordinates, however, it must be born on mind dz=Cdp+Ddq. (21

that p=0 is a real smooth geometricgbhysica) axis only
there where the metric2) satisfies the regularity conditions Functions.4 and B can be determined from E¢0). Func-

(1] tions C and D can be obtained by inverting relatioiigl),
substituting into the original metri€3) and demanding that
X XE a 0,,= 97, 9,,=0. In this way, we find
Emo o~ L where X=£(5.€(;,  @=0-3. e P
= J J
(16) A=K (EVPQ), B=K7 (EPQ),
We shall see that for some intervals ofthe pointsp=0
may represent either a horizon of a rotating black hole or a BJQP AJOQP
rotating string—regularity conditiond 6) are then not satis- C=+—F == o (22

fied. The norms of the Killing vectors will enable us to dis-
tinguish between horizons and strings. i — — ) . N

In order to convert the original metri(3)—(7) into the  SinceC=dz/dp, D=3z/dq, and the integrability conditions
Weyl-Papapetrou metril2), we shall seek the transforma- dC/dq—dDIJdp=0 are satisfied, we can integrate forRe-
tion of the form garding Egs(4)—(7), we obtain
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— y—& qp—m?p+map+ yq?p? 23 2(z1 1K)+ &(z, 1K) %+ 293z 1K)

z=%|K|
(p+q)? +ey?—m?y=0, i=1,2,3, (32

where we put an additive constant equal to zero. We thugnd
arrive at the metric functions determining the Weyl-
Papapetrou line elemeft?) in the form:

W=\ K 2y2+ 22, (33
€= —gr, (24
Next we introduce functions
eZV: _gppgt ty (25) > = —
Ri=Vp“+(z—z)°=0. (34
A= %' (26)  After substituting fora;- - - a4 from Eq. (31) into the rela-
Ot tion (30) and taking square roots, we can rewrite the func-
tions R; in the form
where _
1 K?my Kmzpq
Ri=€——| —W;p+W,q+ + ,
EF T | PTRAT T T, -
g —— 2
9op=92= " Yop | B2Q @0

in which ¢; is chosent+ 1 or —1 so that the right-hand side
and g7, Ji, are given by Egs(19). In this way, we suc- of Eq.(35) is indeed positive. Equatiof85) represents three
ceeded in expressing the Weyl metric functions in terms Of:iependent equations fqr and g as functions of; and z.
p.q. i ) ) ) These can be easily solved if first simple new variables such
In order to find these functions directly in the Weyl coor- 55 for examplepq,p+q, — p+q are introduced. Finally, we
dinates, we have to invert relatiofisee Eqs(20), (23) and  gycceed to expregsandq as follows:

(4), (5)]

242 5%
— _—y—edp-m¢p+map+yq’p P= 25,
z=K 5 : (28)
(p+q)
S+S;
2 2 3 4 2 4 q= oS, (36)
o KAy eptr2mpi = yph (= y+eq +2ma’*+ yq’)
(p+a)?
(299  Where
This is not an easy task. Fortunately, we can try to generalize _ 0 T TN T T T
the procedure used by Bonnf#] for the vacuumC metric S$1= ~ €16263K " MY(21 = 2) (21~ 23) (22~ 29),
without rotation[see Eq(11) in [9]]. We, thus, wish to find
constantsy, ,a,,a3,a, andz; ,i=1,2,3, such that S,= ymKk 2[6263(;3—;2)W1R1+ 6163(?1—;3)
2 X W,R,— €1€5(21— 2,)W3Rg],
o Th\2_ a1p+ aq+ aztaspq 212 w2
p+(z—z)°= e . (30 - -
S3= — €263(23— 22) (K 2y?— 2,23) W1 Ry
Multiplying the last equation byd+q)?, regarding expres- — — 2 9 T
sions(28), (29), and requiring the coefficients in the resulting + €1€3(23—21) (K y* = 2,23) WoR,
polynomial to vanish, we get n 6152(;1_?2)(’(:272_?22)W3R3- 37)
_ _ _/sz*y _’sz Therefore, by choosing different values fer in the last
al——Wi, az—Wi, az= , ap= y . . . , .
W, W, expressions, we arrive at differepts andq’s according to
(31 relations(36) and, thus, to different Weyl metric functions
o (24)—(26). Because there exist eight different choicesdar
wherez; /K are the roots of the equation we get in principle eight different Weyl spacetimes. Their
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1 2 3 4 5 N 21 Za

o0 black hole horizon

1
qa

2 w o
q3 % %

3
q2 i

4 -0 acceleration horizon
a L Foo+z Z3

5 FIG. 4. The squaré2,3}, with pe(p,,ps), d€(0sz,ds). The
0 locations of infinity, the axis, and the black hole and acceleration

= A P2 Ps P1 tX horizon are indicated. See the text for the details.

FIG. 3. The schematic illustration of the character of the regions
described by the specific intervals gf,)) coordinates. See the text gchematic in the sense that the squares are plotted to have the
for the details. same size, even though the lengths of the intervals between
. . . . the roots are not the same.

properties will be analyzed in thg next sectlon. As we shall Now in the polynomials®,Q we choose, without loss of

SE€e, o_nly fpur of them have the signatur, which we are generality, parametey>0. Since our signature-2 requires

using in this paper. P <0, we consider only the squares in the columns 1,3,5. In

the squares which represent stationary regions, the inequality
IV. PROPERTIES OF THE SC METRIC IN (p.q) (41) is valid—in Fig. 3 these squares are shaded. By numeri-

AND (p,z) COORDINATES cally analyzing the right-hand side of E@®5), we can make

First, we shall study the character of the Killing vectors, SUré that in the squarg®,1} and{2,5}, all parameters; =

In particular, we seek a region of spacetime in which there 1+ IN {41 and{4,3, e;=e;=1, es=—1, In {43, €

exists a linear combinatior{with constants coefficients — €3=1, €2=—1 and in the squar¢2,3;, which will play
ky ,k,) of Killing vectors, the main role in the following, we find;=—1, e;=e3=1.

The shaded squai@,3} is illustrated in detail in Fig. 4.
n= kli + kzi, (39) The boundaries of the square represent the;axi@ because
ar do of the relation(20). The transformatio(28) implies that the

which is spacelike, and another combination which is time-vortices of the square correspond to the raptef Eq. (32).

like so that the region is then stationary. Hence, the quadratitrom the same transformatioi28), we also see that the
form lower left vortexL (corresponding t@,,qs) is special: when

w p_12 ) it is approached along two different edges of the square, we
9ap" 1" =K1Grr+ 2KikoG 7o T KoY 0g (39 arrive at eithez— + e or z— — . In addition, by approach-
must there be indefinite. This implies that the matrixing this vortex along different lines from the interior of the
gas.A.B=7,0, [given by Egs.(3)—(7)] has eigenvalues squares, we can achieve various valueg ahdp.

A1,\; satisfyingh 1A ,<<0. Since it turns out that Since the character of the Killing vectors depends on the
eigenvalues\;,\, [cf. Egs.(39), (40)], and on the bound-

__p2
MA,=—E°PQ, (40) aries of the square either;=0 or \,=0, let one_of the
the stationary regions are those in which Killing vectors has to be null there. Betweep andz, all
other Killing vectors are spacelike so that this part of the axis
PQ>0. (41)  will describe the Killing horizon, the same being true for the

) , boundary betweeh and?3. Later we shall see that the seg-
The analysis of the eigenvaluas A, reveals that, + X, i petweer andz, corresponds to the black-hole hori
= —(E/F)[P(1+9%) —Q(1+p*] and since sign(;\,)= Weelr, andz, sponds - -

—sign(PQ), we find out that the metrit3) has the signature 20N whereas that betweénandz; to tﬂe acceleratign hori-
—2 if P>0, whereasP<0 implies signaturet+ 2. Since in  zon. The remaining segments, betwegrandL, andz, and
this paper we are choosing the signatur@, we takeP  z; describe the axis of symmetry=0, along which, how-
<0. ever, may lay the string represented by a conical singularity.
The character of the regions described by the specific inThere exists just one combinati¢88) of the Killing vectors
tervals of (p,q) coordinates is best understood by plotting [corresponding to the minimum of the quadratic fo(@9)]
them in the schematic Fig. 3. Hepg<p,<p;<p, andq, the norm of which is null, all other combinatiori88) give
<@p<0s<q, denote the roots of the polynomiaksand Q, timelike vectors.
the numbers 1 ..,5 indicate regions between individual It is useful to calculate several simplest invariants of the
roots or between a root and infinity. Notice that the figure isRiemann tensor for the metri@):
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(q°p®—15q*p*+150°p?—1)(p+q)°
(1+p?g?)°®

I, =R ;R,z"°=—48m?

(99®p®—84q°p®+ 1260*p*— 36p?g*+ 1) (p+0q)°

’

1,=R* ;R \R* ;=96m>

(1+p?a?)°
(p+q)*?
— papByd eN v 4
|3—R By Raa)\;tR BVR'U“ y(s——144m m (42)
|
Curiously, it is the last invariant which most simply indicates _ t
that asymptotically flat regions can exist only on the line t=arctanhz—,
given by
p=pVZ—1t%, (45)

p+q=0. (43
z-23=3(p*+1*=2),
On this line invariantsl; and |, also vanish. In Sec. V,
where the “canonical coordinates” will be introduced, we ZZQD,
shall see that indeed the poihtin Fig. 4 corresponds to
“points at infinity” where the spacetime is flat. The invari- brings the metrid12) into the form
ants(42) diverge at the points

dg=edp?+ p2e *dp?+

2 2 2
[p.q]=[0s], [0—2], [—0], [%0], (44 (7"~ et)az

722—t?
which, thus, correspond to curvature singularities. —2zt(e! —e¥)dzdt + (e~ e'2%) dt’]

The region{2,3} described above appears to be most — 2Ae*(zdt—tdz)dp— A2e4(Z2—t2)dg?,  (46)
plausible from physical point of view to represent a uni-
formly accelerated, rotating black hole. We shall use thisvhere
region in the following. The regiong2,1},{2,5 which also
give signaturet+ 2 and contain a timelike Killing vector, im- eV
ply the existence of a naked singularity. Indeed, the invari- eﬂzzz—_tz, e\:ezu
ants(42) diverge at the poinfp=—«,q=0] which lies in
the left edge off2,1}, and at the poinfp==,q=0] inthe  ang functions &’,€?*, andA are given in terms of coordi-
right edge of{2,5}. In fact, one can make sure that by gluing nates{t,p,z,¢} by Egs. (19), (24—(27), (32)—(34), (36),
these to edges togethéand, thus, identifying the singular (37), and(45). One can easily obtain the transformation in-
points both regiong 2,1} and{2,5} glued together will give  yerse to Eq(45) in the form
one Weyl space(Notice thate;, €,, ande; are the same in

v

(p*+2°—1?), (47)

Eese reg|0n$.S|n§e, howevgr, it (':c.mtau"ls a smgu!ar ring at f= + \/\/;ﬂLT—zS)Z—(z—zg,)sinht,

p#0 (corresponding to the identified singular points at the

edge$, we shall not consider these regions further. We shall \/ —— R

see in the next section that the regi@3}, after appropriate p= N Np*+(2—25)%+ (2~ 23), (48
transformation and extension, gives the required form of the

boost-rotation symmetric spacetime with Killing vectors 7=+ \/ /:p2+(?—?3)2—(?—?3)cosh_,

which are not hypersurface orthogonal.
where either upper signs or lower signs are valid.

The form (46) represents a general boost-rotation sym-
metric spacetime “with rotation,” i.e., with the Killing vec-
tors which are not hypersurface orthogonal. PuttiygO,

Following Bonnor's analysif9] of the standardC metric,  we recover the canonical form of the boost-rotation symmet-
we now make the transformation from the Weyl coordinategic spacetimes with the hypersurface orthogonal Killing vec-
to new coordinates in which the boost-rotation symmetry oftors, the general structure of which was studie@lii]. No-
the SC metric will become manifest. Simultaneously, by anatice that transformatioit45) is meaningful only forz?>t2,
lytically continuing the resulting metric, two new regions of i.e., “below the roof,” using the terminology dfL3]. Here it
spacetime will arise—in a close analogy to t@emetric  leads to the explicit forms of metric function&,e", andA.
without spin. The transformation Assuming then that these functions are analytically contin-

V. THE SC METRIC IN THE CANONICAL COORDINATES
ADAPTED TO THE BOOST-ROTATION SYMMETRY

044004-7
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ued across the roaf?=t? and across the null corg+ p?

—t?=0, we find out that, by choosing the coefficients

PHYSICAL REVIEW D 60 044004

e t=1 at z°=t2 (54)

K1,K3,K3, K4 in the relation(18) appropriately, the metric Equation(47) then implies
can be made smooth across both the roof and null cone ex-

cept for the axisp=0, in general, as will be seen in the

following. (In the original coordinateér,p,q,o}, the region
t?> 72 corresponds to the squaj@,3 in Fig. 3) In addition,
as a consequence of transformati@d®), (48), we now get

v

e4U;2—>1 for p—0, z>za,

(59

or, in coordinate®,q, in the limit whenq— —p,=+qs,p

two rotating black holes uniformly accelerated in opposite ¢ (p, p,), so that the lower segmentz; in Fig. 4 is ap-

directions, instead of one represented in the original Weyhroached. Calculating this limit, we find that the condition

coordinates, since the transformatiof8) with the upper
signs transforms the Weyl region into the region with
>t2,z>0, whereas that with the lower signs inté>t? z
<0 [see Fig. 1 and discussion below E§4)].

(55) is satisfied if the coefficienk, is given by

K%={pz[m2p§—28mp§+<4y2+82>p2—4my]}*1.( )
56

In order to choose the coordina@aj,tgp and the Killing Finally, we wish to study the regularity of the axis=0.

et 1 1 Claty, with the SC meric whole xS camot be regulr
clation{~Lo), we analy . - SPaCCrpare will be black-hole horizons mapped on the segments
like infinity. This is simpler to do in the original coordinates

where we look for a curve approachin of the axis, along other parts string singularities will, in gen-
P.q PP g eral, be located. These can be understood as the “cause” of

the acceleration of the holes. However, pieces of the axis can
be made regulafsee agairf13] for a detailed discussion of
the regularity of the axis of general boost-rotation symmetric
In Weyl's coordinates, this can be achieved by choosing &pacetimes with hypersurface orthogonal Killing vectors
parameterv and putting p=v,z=v2,t=constp=const, The regularity conditior(16) implies “elementary flatness”
with v—o. In the coordinatep,q we can choose, corre- in the vicinity of the rotational axigcf. [1]). Hence,
spondingly, the curve

22>t2,
(49

p—®, g@—const, z—const, t—const,

2
p=p2+v7? g=—pytv4 (50) 1 o Goelpgle
lim o e 1, (57)
p, being the root ofP, with v—o. This curve approaches po—0 <7 fpo\/g_dp
the pointL in Fig. 4. Regarding the transformati28), (29), o P
. _N _,\_, 2 _: _: _
\C/Ivl:airse((aje that indeed~v, z~v*, t=const, ¢=const, as re which implies the condition
In order to obtain spacetimes which are asymptotically & 41 at p=0. (58)

Minkowskian along the curvé49), we now require

This is easy to see, since from Eg¢6), we have

et—1, &—1, A—0 (51

for Eq. (49), i.e., along the curvé50) with v—o. The ex-
plicit form of g, given in Eq.(27), when expressed along but calculating lim_,oA from Egs.(26), (19), (36), and(45),

U,p=€", O,,=p’e “—A%(Z*—t?), (59

the curve(50), leads tog,,=€*"/e/~v 2~p 2 The re- We find
quirement(51) rewritten in terms of functions) andv, leads 9
— A= f >Z <-Z
to €Y— const, 8"'~p ?~p 2 [cf. Egs. (45), (47)]; it is, O(p%) asp—0 for z>27;, z 1, (60
thus, satisfied if  —const. This implies, using Eq$24)  where
and (19), the following relation for the coefficients; and o
Ky Z,=[2(z5—z;) +t?]¥2 (62)

K3= —P5Ky. (520 Hence, the conditioi58) requires & —1 for p—p,, —p,

o . <g<—p; (cf. Fig. 4. This implies
Similarly, requiringA—0 along the curvé49), we deduce
from Egs.(26) and(19), the relation fork, and k,: e'— ngxi, (62)

Ko= P§K4- (53 so that the axis will be regular in the regions extending from

the holes to infinity if
Until now, we considered the regiai>t?, i.e., “below the Y

roof.” Turning to the roof itself, the necessary condition of K‘21= Kf_
the regularity of the metric there reatts. the detailed dis-

cussion in Sec. V if13] in the case of the hypersurface Therefore, we have now fixed all constant parameters
orthogonal Killing vectors .-~ K, in terms of the original parameters,s, and y [the

(63

044004-8
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A

FIG. 5. The plot of the curvature invariants relatedltoin Eq. (42) at fixedt=t,>0 (left). The peaks are located “above” the
accelerated, rotating black holes. The gravitational radiation pulse propagates in all directions with velocity of light and decreasing amplitude
as seen at right, plotted fat= /2.

root p, being determined by the solution Bf=0 whereP is the above case, when the nodal singularity extends between
given by Eq.(4)]. The axis is, thus, regular fa?>Z,. Asa  the horizonsA=0 at the axis foz>Z,,z<-Z, [see Eq.
consequence of transformatio#6), we find two accelerated (60)], butA=Aq#0 atp=0ze(~Z;,Z;). Since field equa-
black holes “located” at the axis at the two Segmemst|ons~allow us to add an additive constant®pwe may just
(Z,,Z,) and({—Z,,—Z,), whereZ, is given by expression take A(p,z,t)=A(p,z,t)—A, which implies a regular axis
(61) and between the holes, but nodal singularitieg%t Z2 (see Fig.
1, right.
Z,=[2(z3—z,) +t?]*2 (64)
VI. CONCLUDING REMARKS
The situation is illustrated in Fig. 1a. As in the Weyl picture ) ) o ]
(and in the case of a non-rotatir@ metric), we do not get Our main result is the explicit representati@¥®), (47) of
the “inner parts” of the holes—these can be obtained onlyth® SpiNningC metric as a spacetime with an axial and a
by analytic continuations across the horizons located a'POQSt Killing vector Wthh are not hypersurface orthog_or_1a|_
(Z,,Z4) and(—Z;,— Z,). However, it is not difficult to see This has been a_ch!eved by first transf(_)rmmg the original
that the Killing vectord/dt becomes null outside the axis— form of the metric into the Weyl coordinates and, subse-

; . quently, by going over to coordinates adapted to boost-
th'Ség?v;r:esﬁiﬂgsatgctewggggrht:) ?:Sr\d:aéy (;I;?e ;rg;rt;glgns. rotation symmetry. Simultaneously, two new “radiative” re-
, LE., —4L9o,L9),

nodal (string singularity occurgviolating conditions(57) _gions of ;[_fll(e spacetime arise in which the boost Killing vector
) . * . is spacelike.
(58)] which can be understood as causing the accelerations Indeed, it is easy to see that under the transformaté)

of the holes away from each other. It is interesting to observe - = ,
that there exist causality violation regions around this noda{#49): the Killing vector;=d/t goes over into
singularity (hereg,,,<0) which tend to be dragged along

with black holes. A detailed discussion of these regions, as §:z£+ti. (65)
well as of the ergoregions of the SC metric, will be given at oz
elsewhere.

Here, let us yet notice that, similarly to the nonrotatidg This is the boostKilling vector which in the coordinates
metric and, indeed, to the case of all boost-rotation symmetadapted to the boost-rotation symmetry of $1& metric has
ric spacetimeg13], we can construct SC metrics in which everywhere the same form as in flat space. Its norm is given
the axis is regular between the holes and strings are locatday
outside them, i.e., &>Z,, z<—Z, (see Fig. 1, right As a
consequence of the field equations, functhoim the metric |€]?2=—e*(2—1t?). (66)
(46) is constant along the axis outside the horizon, its value
being different at z>Z7Z,,z<-Z; from that at ze One can make sure that, after analytically continuing the
(—Z,,Z,). [This can be checked by analyzing directly the metric (46) into the regiont?>>z?, the norm(66) is always
expression foA given by Eqs(26), (19), (36), (37), (45).] In  positive there so that the Killing vector is spacelike.
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Very recently Letelier and Oliveir22] gave an incom- Although we did not here analyze the radiative properties
plete transformation of th&C metric into the Weyl form. of the SC metric rigorously, it is most plausible to expect
However, these authors did not choose the Killing vectorghat in the situation described by Fig. 1, right, one can give

and, thus, also the corresponding coordinatasd e which ~ arbitrarily strong hyperboloidal datesee[24] for a recent
would reflect the boost-rotational symmetry of the SC spaceEEV'belW n;i”d re;‘]eren(t:)eT %ﬂ thtl)s apl?]foaChfto(;rT)'n'“r?' r\]/ame
. . Eq(l lati PR problem on a hyperboloid “above the roof’t(>z]), whic
times [in contrast to our Eq(18) relating (r,7) to (t,¢), represent the SC metric data and which evolve into the
they putr~t,oc~¢].

spacetime with smooth null infinity with a nonvanishing ra-
Fr(;qm the formb(46)hwe have rs]eelﬁt::f. Eq. .(St)] that the I,diation field. No other spacetime of this type, with two Kill-
coordinates can be chosen so that the metric becomes expligiy yactors which are not hypersurface orthogonal, is avail-

itly Minkowskian at spatial infinity. We did not analyze rig- able in an explicit form. This suggests the SC metric to

orously th_e structure Qf nu!l |nf|n|ty_ Whgre we expect to find hecome a useful, nontrivial test-bed for numerical relativity.
a nonvanishing radiation field as it exists in the standard
metric and, indeed, in all boost-rotation symmetric space-
times[19]. Here we confine ourselves to giving Fig. 5 which
demonstrates the radiative character of the SC metric. In the V.P. enjoyed the hospitality of the Institute of Theoretical
figure the invariant proportional "2 and|3®, wherel;is  Physics of the F. Schiller-University, Jena, where part of this
given by Eq.(42), is plotted at a fixed timé=t,>0 and at work was done. Helpful discussions with Alena Pravdaxa
different times. The radiative field has the character of agratefuly acknowledged. J.B. thanks Swiss National fonds
pulse, as was noticed many years agdlia| for the special for support and Petr Haek for discussions and kind hospi-
boost-rotation symmetric solutions with hypersurface or-tality at the Institute of Theoretical Physics in Berne, where
thogonal Killing vectors. It is also of interest to plot the this work was finished. We were supported in part by the
gradient ofg .~ A as a function of time: here again the pulse Grant No. GACR-209/99/0261 and V.P. also by Grant No.
character can be observed. GACR-201/98/1452.
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