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Abstract
With appropriately chosen parameters, the C-metric represents two uniformly
accelerated black holes moving in the opposite directions on the axis of the
axial symmetry (the z-axis). The acceleration is caused by nodal singularities
located on the z-axis.

In the present paper, geodesics in the C-metric are examined. In general,
there exist three types of timelike or null geodesics in the C-metric: geodesics
describing particles (a) falling under the black hole horizon; (b) crossing the
acceleration horizon; and (c) orbiting around the z-axis and co-accelerating
with the black holes.

Using an effective potential, it can be shown that there exist stable timelike
geodesics of the third type if the product of the parameters of the C-metric,
mA, is smaller than a certain critical value. Null geodesics of the third type are
always unstable. Special timelike and null geodesics of the third type are also
found in an analytical form.

PACS numbers: 0420, 0420J, 0425

1. Introduction and summary

The C-metric is a vacuum solution of the Einstein equations of the Petrov type D. Kinnersley and
Walker [1] showed that it represents black holes uniformly accelerated by nodal singularities
in opposite directions along the axis of the axial symmetry. In coordinates {x, y, p, q} adapted
to its algebraical structure, the C-metric reads as follows:

ds2 = 1

A2(x + y)2

(
G−1 dx2 + F−1 dy2 + G dp2 − F dq2

)
, (1)

where the functions F , G are the cubic polynomials

F = −1 + y2 − 2mAy3, (2)

G = 1 − x2 − 2mAx3, (3)

with m and A being constant. As we are choosing the signature +2, we take G > 0.
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Figure 1. The character of the regions determined by roots of the polynomialsF andG is illustrated
schematically. Static regions are shaded, black hole and acceleration horizons are denoted by BH
and AH, respectively. Broken lines represent curvature singularities.

Although this form of the C-metric (1) is simple, it is not suitable for a physical
interpretation of the solution. Since the metric (1) has two Killing vectors ∂/∂p, ∂/∂q it
is possible to transform it in its static regions given by

G > 0, F > 0 (4)

to the Weyl form [2] (see section 3). By further transformation [2] one can show that the
C-metric is, in fact, a radiative boost–rotation symmetric spacetime [2,3] (see section 4). The
class of boost–rotation symmetric spacetimes is the only class of exact radiative solutions of the
full nonlinear Einstein equations that are known in an analytical form, describe moving objects,
and are asymptotically flat (see [3–5] for a general treatise). Several generalizations of the
C-metric are known, let us mention the charged C-metric [6,7] and the spinning C-metric [8,9].

Farhoosh and Zimmermann [10] studied a special class of geodesics in the C-metric—test
particles moving on the symmetry axis. We examine general geodesics starting in the most
physical static region of the C-metric (region B, see figure 1) with the help of an effective
potential. It turns out that there exist three types of timelike (null) geodesics: (a) geodesics
describing particles falling under the black hole horizon and then on the curvature singularity;
(b) those describing particles crossing the acceleration horizon and reaching future timelike
(null) infinity—they are not co-accelerated with the black holes; and (c) geodesics describing
particles spinning around the axis of the axial symmetry (the z-axis), co-accelerating with
the black holes along this axis and reaching future null infinity. We investigate stability of
timelike and null geodesics of the third type using the effective potential in the coordinates
{x, y, p, q} (section 2) and in the Weyl coordinates (section 3) in which it is easy to see that
the stability of timelike geodesics does not depend on the distribution of conical singularities
located on the z-axis. We show that null geodesics of this type are always unstable and that
there exist stable timelike geodesics of the considered type if the product of the parameters
of the C-metric, mA, is smaller than a certain critical value (22). This result indicates that a
black hole or a star, having satellites in the equatorial plane, which starts to accelerate in the
direction perpendicular to this equatorial plane can retain some of its satellites (which is, in
fact, not very surprising) only if the acceleration is sufficiently small.
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We present special geodesics of the third type in an analytical form representing particles
(or zero-rest-mass particles) orbiting around the axis of the axial symmetry in a constant
distance and uniformly accelerating along the z-axis (dragged by the black holes). They
are given by x = constant, y = constant in the coordinates {x, y, p, q} (see section 2), by
ρ̄ = constant, z̄ = constant in the Weyl coordinates (section 3) and finally we examine them
in the coordinates adapted to the boost–rotation symmetry (ρ = constant, z2 − t2 = constant)
where their physical interpretation can be easily understood (section 4).

In [11] it was shown that the Schwarzschild metric can be obtained from the C-metric in
the Weyl coordinates by the limiting procedure A → 0 (note that one can obtain the Weyl
coordinates used in [11] by multiplying the Weyl coordinates in our paper by a factor of A).
Using this procedure one can find that the unstable null geodesic in the C-metric representing
photon-like particles orbiting around the z-axis corresponds to the unstable circular photon
orbit in the Schwarzschild metric.

2. Geodesics in {x, y, p, q} coordinates

First, we study geodesics in the coordinates {x, y, p, q} in which the C-metric has the form (1).
The polynomials F and G entering the metric have three different real roots iff the condition

27m2A2 < 1 (5)

holds. Then the C-metric contains four different static regions A,B, C,D (see figure 1) where
the polynomials F , G satisfy (4). The metric (1) in each of these static regions can be
transformed into the Weyl form with different metric functions (see [3]).

Curvature invariants diverge at x → ±∞ or y → ±∞ [3] where curvature singularities
are located (see figure 1). Region B is the only static region without curvature singularities. In
fact, it is the most physical static region describing a uniformly accelerated black hole (see [3]
for an analysis of the other regions). Acceleration horizons and black hole horizons are at
y = yi where yi are the roots of the equation F = 0 and are denoted in figure 1 by AH and
BH, respectively.

In this paper we consider only region B which exists iff condition (5) is satisfied.
If a metric has a Killing vector ξα then there exists a conserved quantity ξαUα for timelike

geodesics with a tangent vector Uα and ξαkα for null geodesics with a tangent vector kα . Since
the C-metric (1) has two Killing vectors ∂/∂p and ∂/∂q, corresponding covariant components
of the 4-velocity, Up, Uq , for particles and components kp, kq of the wave 4-vector for zero-
rest-mass particles are conserved along geodesics and thus

dp(τ)

dτ
= LA2

(
x(τ) + y(τ)

)2

G(x(τ))
, (6)

dq(τ)

dτ
= EA2

(
x(τ) + y(τ)

)2

F(y(τ))
, (7)

where L and E are constants of motion, τ is a proper time for timelike geodesics and an affine
parameter for null geodesics.

Let us examine special geodesics x(τ) = x0, y(τ) = y0, where x0 and y0 are constants.
Then substituting (6) and (7) into the geodesic equations we obtain(

1 + mAx0
3 + x0y0 + 3mAx0

2y0
)
L2

G(x0)
− G(x0) E

2

F(y0)
= 0, (8)

F(y0) L
2

G(x0)
−

(−1 + mAy0
3 − x0y0 + 3mAx0y0

2
)
E2

F(y0)
= 0. (9)
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Figure 2. The full curve is given by (10) (the circle represents the null geodesic given by
(15), each point on the curve between the circle and the cross represents a timelike geodesic
(14) and the remaining points correspond to spacelike geodesics), the broken curve is given by
V,xxV,yy − V 2

,xy = 0, where L was substituted from (12) after performing the derivatives for: (a)

m = 1
2 , A = 1

3 (not satisfying (22)); (b) m = 0.02, A = 0.05 (satisfying (22))—between the
intersections of the two plotted curves the geodesics (14) are stable and the corresponding potential
V has its local minimum there.

A linear combination of these two equations leads to the condition

3m2A2x2
0y

2
0 + mA(x0y0 + 3) (y0 − x0) − 1 = 0. (10)

Points [x0, y0] in region B satisfying this condition are plotted in figure 2.
The norm of the 4-velocity is

A2 (x0 + y0)
2

(
L2

G(x0)
− E2

F(y0)

)
= ε, (11)

where ε = −1, 0 for timelike and null geodesics, respectively.
From (8) and (11) for a given timelike geodesic (ε = −1), i.e. given x0, y0, constants L

and E read

L2 = G(x0)
2

A2 (x0 + y0)
3 (1 + 3mAx0) x0

, (12)

E2 = F(y0)
2

A2 (x0 + y0)
3 (1 − 3mAy0) y0

. (13)

In region B, L2 and E2 are positive only for x0 > 0 where thus timelike geodesics exist
(see figure 2). Thus all timelike geodesics in region B with x, y being constant are given by

x(τ) = x0,

y(τ ) = y0,

p(τ) = LA2 (x0 + y0)
2

G(x0)
τ,

q(τ ) = EA2 (x0 + y0)
2

F(y0)
τ,

(14)

where x0 ∈ (0, x3), y0 is given by (10), and L, E are given by (12) and (13), respectively.
Spacelike geodesics have x0 < 0 and we do not consider them further.
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There exists a null geodesic (ε = 0, the circle in figure 2):

x(τ) = 0,

y(τ ) = 1

3mA
,

p(τ) = L
1

9m2
τ,

q(τ ) = E
3A2

1 − 27m2A2
τ,

L2 = E2 27m2A2

1 − 27m2A2
.

(15)

Note that L2 is positive since the condition (5) is assumed to be satisfied.
Let us now examine the stability of general timelike geodesics. For this purpose we first

construct an effective potential of a general freely falling particle whose 4-velocity has the
norm

−1 = −1

A2(x + y)2

[
− 1

G

(
dx

dτ

)2

− 1

F

(
dy

dτ

)2

− G

(
dp

dτ

)2

+ F

(
dq

dτ

)2]
. (16)

Substituting from (6) and (7) into (16) we obtain the condition

F

E2A4(x + y)4

[
1

G

(
dx

dτ

)2

+
1

F

(
dy

dτ

)2]
= E2 − V 2

E2
, (17)

where the effective potential V has the form

V =
√
F

(
1

A2(x + y)2
+
L2

G

)
. (18)

From (17) it follows that a freely falling particle with given E has access only to those regions
where E > V . The potential V goes to infinity for x → x2 or x → x3 and consequently
particles cannot reach the left- and right-hand edges of the square B. Thus there remain only
three possibilities: (a) particles leave the square B across the upper edge, i.e. they fall under
the black hole horizon (on which V = 0); (b) particles leave the square B through the lower
edge (on which also V = 0), i.e. they cross the acceleration horizon; and (c) particles remain
in the square B, i.e. they are co-accelerated with the black holes (see section 4).

Let us now study the stability of geodesics of the third type. There exist stable geodesics
of this type if V has its local minimum in region B, i.e. if there exists a point (x∗, y∗) in region
B where

V,x(x
∗, y∗) = V,y(x

∗, y∗) = 0, (19)

V,xx(x
∗, y∗)V,yy(x

∗, y∗) − V 2
,xy(x

∗, y∗) > 0, (20)

V,xx(x
∗, y∗) > 0. (21)

For given m, A and L there is only one point (x∗, y∗) in region B satisfying (19). It lies on
the curve (10) with L given by (12), i.e. it corresponds to the geodesic (14). Condition (21) is
always satisfied, however, condition (20) is quite complicated and numerical calculations (see
also figure 2 and the text below) show that the necessary condition for satisfying (20) is

mA � 4.54 × 10−3. (22)
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Figure 3. The function V as a function of x, y for L = 0.084 and (a) m = 1
2 , A = 1

3 (not satisfying
(22)); (b) m = 0.02, A = 0.05 (satisfying (22)), where a local minimum exists.

Figure 4. Curves V = constant for m = 0.02, A = 0.05, L = 0.084: (a) V = √
372.9; (b)

V = √
373; (c) V = √

429.

Figures 3(a) and (b) illustrate the behaviour of the potential V for parameters m, A which
do not and do satisfy condition (22), respectively.

For parametersm,Anot satisfying condition (22) there is no local minimum of the potential
V and thus a small perturbation causes a freely falling particle moving along the geodesic (14)
to fall either under the black hole horizon or under the acceleration horizon.

For parameters m, A satisfying condition (22) and for suitable L (see figure 2) there exists
a region (the region bounded by a closed curve in figure 4(a)) from which freely falling particle
with E lower than a certain critical value cannot escape (see figure 5(a)). In this region the
considered geodesics are stable. It will be made clear in section 4 that these trapped particles are
co-accelerated with the uniformly accelerated black hole. If the parameter E of these trapped
particles is increased over a certain critical value they fall under the acceleration horizon (and
thus they are not co-accelerated with the black hole, see figures 4(b), 4(c), 5(b) and 5(c)) or
under the black hole horizon (see figures 4(c) and 5(c)).
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Figure 5. Curves V = constant as in figure 4 and numerically obtained geodesics for m = 0.02,
A = 0.05, L = 0.084. All geodesics start at the same point (x0, y0) which lies on the curve (10) but
have different initial velocities, i.e. different constants of motion E: (a) E = √

372.9—a geodesic
of a co-accelerated particle; (b) E = √

373—a geodesic of a particle crossing the acceleration
horizon; (c) E = √

429—geodesics of particles which fall under the acceleration or the black hole
horizon depending on the direction of an initial velocity.

Similarly, we may derive an effective potential � for zero-rest-mass test particles
substituting (6) and (7) into the relation for the norm of the wave 4-vector kαkα = 0:

F

E2A4(x + y)4

[
1

G

(
dx

dτ

)2

+
1

F

(
dy

dτ

)2]
= 1 − L2

E2

1

�2
, (23)

where

� =
√

G

F
. (24)

Thus photon-like particles can only reach regions where L/E < �. In the considered part B of
the spacetime, the function � has vanishing first derivatives at the point x = 0, y = 1/(3mA)

(the circle in figure 2), however, there is not a local extreme and thus the geodesic (15) is
unstable.

3. Geodesics in the Weyl coordinates

For interpreting the geodesics (14) and (15) we transform them into the Weyl coordinates in
this section and into the coordinates adapted to the boost and rotation symmetries in the next
section.

As was mentioned earlier the C-metric in each of its static regions can be transformed into
the static Weyl form

ds2 = e−2U
[
e2ν(dρ̄2 + dz̄2) + ρ̄2dφ̄2

] − e2Udt̄2 (25)

by transformation (see [2])

z̄ = 1 + mAxy(x − y) + xy

A2(x + y)2
,

ρ̄ =
√
FG

A2(x + y)2
,

φ̄ = p,

t̄ = q.

(26)
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Figure 6. Region B in the Weyl coordinates: the axis ρ̄ = 0 with the black hole horizon (BH,
z̄1 < z̄ < z̄2) and the acceleration horizon (AH, z̄ > z̄3) and the curve given by equation (35) for
m = 1

2 , A = 1
3 (the circle corresponds to the null geodesic (37), each point between the circle

and the cross represents a timelike geodesic (36) and the other points on the curve correspond to
spacelike geodesics).

Transforming the C-metric in region B into the Weyl coordinates we obtain

e2U = [R1 − (z̄ − z̄1)] [R3 − (z̄ − z̄3)]

R2 − (z̄ − z̄2)
, (27)

e2ν = 1

4

m2

A6(z̄2 − z̄1)2(z̄3 − z̄2)2

×
[
R2R3 + ρ̄2 + (z̄ − z̄2)(z̄ − z̄3)

] [
R1R2 + ρ̄2 + (z̄ − z̄1)(z̄ − z̄2)

]
R1R2R3

[
R1R3 + ρ̄2 + (z̄ − z̄1)(z̄ − z̄3)

] e2U , (28)

where functions R1, R2 and R3 are defined by

Ri =
√
(z̄ − z̄i )2 + ρ̄2, (29)

and z̄1 < z̄2 < z̄3 are the roots of the equation

2A4z̄3
i − A2z̄2

i + m2 = 0. (30)

As was shown in [2], the C-metric in the Weyl coordinates corresponds to the field of a rod
between z̄1 and z̄2, a semi-infinite line mass at z̄ > z̄3 and conical singularities for z̄ < z̄1 and
z̄2 < z̄ < z̄3 keeping them apart. The rod between z̄1 and z̄2 represents the black hole horizon
and the semi-infinite line mass at z̄ > z̄3 represents the acceleration horizon (see figure 6).

The regularity condition of the axis

e2ν(ρ̄ = 0, z̄) = 1 (31)

is not satisfied at points where nodal singularities appear. Since the metric (25) with metric
functions

e−2U ′ = a e−2U ,

e2ν ′ = b e2ν,
(32)

where a and b are constants, also satisfies the vacuum Einstein equations, by choosing the
constant b appropriately we may regularize (i.e. fulfil the condition (31)) either part of the axis
z̄ < z̄1 or z̄2 < z̄ < z̄3 (see [3]).
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Conditions (6) and (7) for geodesics in the Weyl coordinates (corresponding to the
existence of two Killing vectors ∂/∂t̄ , ∂/∂φ̄) read as follows:

dφ̄(τ )

dτ
= L

e2U

ρ̄(τ )2
, (33)

dt̄ (τ )

dτ
= Ee−2U . (34)

Due to the transformation (26), the geodesics x(τ) = x0 = constant, y(τ) = y0 = constant,
discussed in the previous section, now have the form ρ̄(τ ) = ρ̄0 = constant, z̄(τ ) = z̄0 =
constant. Condition (10) in terms of the coordinates ρ̄, z̄ reads

R1R3 − R3R2 − R1R2 = 0, (35)

where R1, R2, R3 are given by (29) and the corresponding curve is plotted in figure 6.
Timelike geodesics (14) have in the Weyl coordinates the form

ρ̄(τ ) = ρ̄0,

z̄(τ ) = z̄0,

φ̄(τ ) = L
e2U(ρ̄0,z̄0)

ρ̄2
0

τ,

t̄(τ ) = Ee−2U(ρ̄0,z̄0)τ,

(36)

where z̄0, ρ̄0 are constants satisfying (35), and E, L are constants of motion (33), (34).
Similarly, the null geodesic (15) in the Weyl coordinates reads (the circle in figure 6)

z̄(τ ) = 9m2,

ρ̄(τ ) =
√

3(1 − 27m2A2)
m

A
,

φ̄(τ ) = L
1

9m2
τ,

t̄(τ ) = E
3A2

1 − 27m2A2
τ.

(37)

Analogously as in section 2, (16)–(18), the motion of a freely falling particle with the
constants of motion E, L is restricted to a region where E > V , the effective potential V being

V =
√

e2U

(
1 +

L2e2U

ρ̄2

)
. (38)

Note, that since the potential V and the condition (35) do not depend on the function e2ν ,
after changing the constant b, i.e. changing the distribution of nodal singularities, the geodesics
(36) remain geodesics and, moreover, this change does not affect their stability.

In figure 7 (analogous to figure 4) curves with different values of V 2 are plotted. There
again appears a region bounded by a closed curve from which trapped particles with a given
parameter E cannot escape. Particles with E higher than a certain critical value fall either
under the black hole horizon (the axis between w1, w2 where w = |z̄|1/4 sign z̄) or under the
acceleration horizon (the axis between w3 and ∞).
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Figure 7. Curves V 2 = constant for m = 0.02, A = 0.05, L = 0.084 (to compactify the picture
coordinate w = |z̄|1/4 sign z̄ is used instead of z̄; wi correspond to z̄i ). The potential V is infinite
on the axis at w ∈ (−∞, w1) and w ∈ (w2, w3) and null at the black hole and acceleration horizons
at w ∈ (w1, w2), w ∈ (w3, ∞), respectively.

4. Geodesics in the canonical coordinates adapted to the boost–rotation symmetry

To find an interpretation of geodesics studied in the previous sections we transform the metric
(25) by the transformation

ρ̄2 = ρ2(z2 − t2),

φ̄ = φ,

z̄ − z̄3 = 1
2 (t

2 + ρ2 − z2),

t̄ = arctanh(t/z)

(39)

into the form

ds2 = −eλ dρ2 − ρ2e−µ dφ2

− 1

z2 − t2

[
(eλz2 − eµt2) dz2 − 2zt (eλ − eµ) dz dt + (eλt2 − eµz2) dt2

]
(40)

which is adapted to the boost and rotation symmetries (see [4] and [3]). The inverse
transformation to (39) has the form

ρ =
√√

ρ̄2 + (z̄ − z̄3)2 + (z̄ − z̄3),

z = ±
√√

ρ̄2 + (z̄ − z̄3)2 − (z̄ − z̄3) cosh t̄ ,

t = ±
√√

ρ̄2 + (z̄ − z̄3)2 − (z̄ − z̄3) sinh t̄ ,

(41)

where either upper or lower signs are valid.
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Figure 8. Uniformly accelerated black holes (the shaded region) and co-accelerated test particles
(broken curves).

From (41) it follows that geodesics we are interested in, satisfying ρ̄ = ρ̄0 = constant,
z̄ = z̄0 = constant in the Weyl coordinates, in the coordinates {t , ρ, z, φ} satisfy ρ = constant
and z2 − t2 = constant (the worldline is a hyperbola in the (z, t)-plane which corresponds
to a uniformly accelerated motion along the z-axis, see figure 8). Geodesics of this type
(corresponding to (36) and (37)) now have the form

ρ(τ) = K1,

φ(τ ) = c2τ,

z(τ ) = ±K2 cosh c1τ,

t (τ ) = K2 sinh c1τ,

(42)

where the constants K1, K2, c1 and c2 read

K1 =
√√

ρ̄2
0 + (z̄0 − z̄3)2 + (z̄0 − z̄3),

K2 =
√
z2 − t2 =

√√
ρ̄2

0 + (z̄0 − z̄3)2 − (z̄0 − z̄3),

c1 = Ee−2U(ρ̄0,z̄0),

c2 = L
e2U(ρ̄0,z̄0)

ρ̄2
0

.

These geodesics describe particles orbiting the z-axis and uniformly accelerating along the
z-axis.
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[5] Bičák J 2000 Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics

Einstein’s Field Equations and Their Physical Meaning ed B G Schmidt (Berlin: Springer)
[6] Kinnersley W and Walker M 1970 Uniformly accelerating charged mass in general relativity Phys. Rev. D 2

1359
[7] Cornish F H J and Uttley W J 1995 The interpretation of the C metric. The charged case when e2 � m2 Gen.

Rel. Grav. 27 735
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