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Abstract
All Lorentzian spacetimes with vanishing invariants constructed from the
Riemann tensor and its covariant derivatives are determined. A subclass of
the Kundt spacetimes results and we display the corresponding metrics in local
coordinates. Some potential applications of these spacetimes are discussed.

PACS numbers: 0420, 0420J, 0240

1. Introduction

A curvature invariant of order n is a scalar obtained by contraction from a polynomial in
the Riemann tensor and its covariant derivatives up to the order n. In general, there are 14
algebraically independent curvature invariants of zeroth order, the simplest being the Ricci
scalar. Many papers are devoted to studying the properties of the zeroth-order curvature
invariants (see [1–5], and references therein) but higher-order curvature invariants remain
largely unexplored. Recently, it was shown that for spacetimes in which the Ricci tensor does
not possess a null eigenvector, an appropriately chosen set of zeroth-order curvature invariants
contains all the information that is present in the Riemann tensor [5]. This is certainly not
true for vacuum Petrov type N spacetimes with nonzero expansion or twist, all of whose
zeroth- and first-order curvature invariants vanish, but for which there are non-vanishing
curvature invariants of the second order [6]; and for some non-flat spacetimes in which all
curvature invariants of all orders vanish [6, 7].

In this paper we shall determine all Lorentzian spacetimes for which all curvature
invariants of all orders are zero. Indeed, we shall prove the following:

Theorem 1. All curvature invariants of all orders vanish if and only if the following two
conditions are satisfied:

(A) The spacetime possesses a non-diverging SFR (shear-free, geodesic null congruence).
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(B) Relative to the above null congruence, all curvature scalars with non-negative boost
weight vanish.

The analytic form of condition (A), expressed relative to any spin basis where oA is aligned
with the null congruence in question, is simply

κ = ρ = σ = 0, (1)

and the analytic form of condition (B) is

�0 = �1 = �2 = 0, (2)

�00 = �01 = �02 = �11 = 0, (3)

� = 0. (4)

Previous equations are expressed in terms of quantities used in the Newman–Penrose
formalism.

Spacetimes that satisfy condition (A) belong to Kundt’s class [8, 9] (also see section 4
and appendix A). Condition (B) implies that the spacetime is of Petrov type III, N or O (see
equation (2)) with the Ricci tensor restricted by (3) and (4). (Note: throughout this paper we
follow the notation of [10]; � is not the cosmological constant, it is the Ricci scalar up to a
constant factor.)

The GHP formalism [10] assigns an integer, called the boost weight, to curvature scalars
and certain connection coefficients and operators. This is important for this work and we shall
summarize some of the key details of this notion in section 2.

The outline for the rest of the paper is as follows. Section 2 is devoted to the proof that the
above conditions are sufficient for vanishing of curvature invariants. The ‘necessary’ part of
theorem 1 is proved in section 3. The curvature invariants constructed in this section may also
be useful for computer-aided classification of spacetimes. Kundt’s class of spacetimes admits
a conveniently specialized system of coordinates and so it is possible to classify and explicitly
describe all spacetimes with vanishing curvature invariants. This is briefly summarized in
section 4, and some of the details are presented in appendix A. We conclude with a discussion.

Perhaps the best known class of spacetimes with vanishing curvature invariants are the
pp-waves (or plane-fronted gravitational waves with parallel rays), which are characterized as
Ricci-flat (vacuum) type N spacetimes that admit a covariantly constant null vector field. The
vanishing of curvature invariants in pp-wave spacetimes has been known for a long time [11]
(see also [12]), and the spacetimes obtained here can perhaps be regarded as extensions and
generalizations of these important spacetimes. In many applications (e.g., in vacuum pp-wave
spacetimes), the resulting exact solutions have a five-dimensional isometry group acting on
three-dimensional null orbits (which includes translations in the transverse direction along the
wavefront) and, hence, the solutions are plane waves. However, the solutions studied here
need not be plane waves and are not necessarily vacuum solutions. In particular, non-vacuum
spacetimes with a covariantly constant null vector are often referred to as generalized pp-wave
and typically have no further symmetries (the arbitrary function in the metric is not subject to
a further differential equation, namely, Laplace’s equation, when the Ricci tensor has the form
of null radiation). The pp-wave spacetimes have a number of remarkable symmetry properties
and have been the subject of much research [8]. For example, the existence of a homothety
in spacetimes with plane-wave symmetry and the scaling properties of generally covariant
field equations has been used to show that all generally covariant scalars are constant [13] and
that metrics with plane-wave symmetry trivially satisfy every system of generally covariant
vacuum field equations except the Einstein equations [14].
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In addition to pp-waves, presently there are known to be three classes of metrics with
vanishing curvature invariants: the conformally flat pure radiation spacetime given in [7]; the
vacuum Petrov type-N non-expanding and non-twisting spacetimes [6] (this class contains
the pp-waves); and vacuum Petrov type-III non-expanding and non-twisting spacetimes [15].
Naturally all of these spacetimes are subcases of the class studied here. The spacetimes studied
in [16, 17] also belong to our class.

There are two important applications of the class of spacetimes obtained in this paper.
Knowledge of all Lorentzian spacetimes for which all the curvature invariants constructed
from the Riemann tensor and its covariant derivatives are zero, which implies that all covariant
2-tensors thus constructed are zero except for the Ricci tensor, will be of potential relevance
in the equivalence problem and the classification of spacetimes, and may be a useful first step
towards addressing the important question of when a spacetime can be uniquely characterized
by its curvature invariants. More importantly perhaps, the spacetimes obtained in this paper
are also of physical interest. For example, pp-wave spacetimes are exact solutions in string
theory (to all perturbative orders in the string tension) [18, 19] and they are of importance in
quantum gravity [20]. It is likely that all spacetimes for which all curvature invariants vanish
will have similar applications and it would be worthwhile investigating these metrics further.

Finally, we note that it is possible to generalize theorem 1 by including spacetimes with
non-vanishing cosmological constant. The assumptions regarding the Weyl and traceless Ricci
tensors remain the same. Even in this general case, the invariants constructed from the Weyl
tensor, the traceless Ricci tensor and their arbitrary covariant derivatives vanish. The only
non-vanishing curvature invariants are order-zero curvature invariants constructed as various
polynomials of the cosmological constant. It must be noted, however, that there may exist
other types of spacetimes with constant curvature invariants.

2. Sufficiency of the conditions

Before tackling the proof of the main theorem we make some necessary definitions and
establish a number of auxiliary results. We shall make use of the Newman–Penrose (NP) and
the compacted (GHP) formalisms [10]. Throughout we work with a normalized spin basis
oA, ιA, i.e.,

oAι
A = 1.

The corresponding null tetrad is given by

lα ←→ oAōȦ, nα ←→ ιAῑȦ, mα ←→ oAῑȦ, m̄α ←→ ιAōȦ

with the only nonzero scalar products

lαn
α = −mαm̄α = 1.

We also recall that

oAo
A = 0 = ιAιA. (5)

The spinorial form of the Riemann tensor Rαβγδ is

Rαβγδ ←→ XABCDεȦḂεĊḊ + X̄ȦḂĊḊεABεCD +�ABĊḊεȦḂεCD + �̄ȦḂCDεABεĊḊ, (6)

where

XABCD = �ABCD +�(εACεBD + εADεBC)

and� = R/24, with R the scalar curvature. The Weyl spinor�ABCD = �(ABCD) is related to
the Weyl tensor Cαβγδ by

Cαβγδ ←→ �ABCDεȦḂεĊḊ + �̄ȦḂĊḊεABεCD. (7)
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Projections of �ABCD onto the basis spinors oA, ιA give five complex scalar quantities
�0,�1,�2,�3,�4. The Ricci spinor �ABĊḊ = �(AB)(ĊḊ) = �̄ABĊḊ is connected to the
traceless Ricci tensor Sαβ = Rαβ − 1

4Rgαβ

�ABȦḂ ←→ − 1
2Sab. (8)

The projections of�ABȦḂ onto the basis spinors oA, ιA are denoted by�00 = �̄00,�01 = �̄10,
�02 = �̄20,�11 = �̄11, �12 = �̄21 and �22 = �̄22.

Equations (2) and (3) imply

�ABCD = �4oAoBoCoD − 4�3o(AoBoCιD), (9)

�ABĊḊ = �22oAoBōĊ ōḊ − 2�12ι(AoB)ōĊ ōḊ − 2�21oAoBῑ ˙(C ōḊ). (10)

Following the convention established in [10], we say that η is a weighted quantity (a scalar,
a spinor, a tensor or an operator) of type {p, q}, if for every non-vanishing scalar field λ a
transformation of the form

oA �→ λoA, ιA �→ λ−1ιA,

representing a boost in the lα–nα plane and a spatial rotation in the mα–m̄α plane, transforms
η according to

η �→ λpλ̄qη.

The boost weight b of a weighted quantity is defined by

b = 1
2 (p + q).

Directional derivatives are defined by

D = lα∇α = oAōȦ∇AȦ, δ = mα∇α = oAῑȦ∇AȦ,
D′ = nα∇α = ιAῑȦ∇AȦ, δ′ = m̄α∇α = ιAōȦ∇AȦ

and thus

∇α←→∇AȦ = ιAῑȦD + oAōȦD′ − ιAōȦδ − oAῑȦδ′. (11)

In the GHP formalism, new derivative operators þ,þ′, �, �′, which are additive and obey the
Leibniz rule, are introduced. They act on a scalar, spinor or tensor η of type {p, q} as follows:

þη = (D + pγ ′ + qγ̄ ′)η, �η = (δ − pβ + qβ̄ ′)η,
þ′η = (D′ − pγ − qγ̄ )η, �′η = (δ′ + pβ ′ − qβ̄)η. (12)

Let us explicitly write down how the operators þ,þ′, �, �′ act on the basis spinors:

þoA = −κιA, þōȦ = −κ̄ ῑȦ, þιA = −τ ′oA, þῑȦ = −τ̄ ′ōȦ,
þ′oA = −τ ιA, þ′ōȦ = −τ̄ ῑȦ, þ′ιA = −κ ′oA, þ′ῑȦ = −κ̄ ′ōȦ,
�oA = −σ ιA, �ōȦ = −ρ̄ῑȦ, �ιA = −ρ ′oA, �ῑȦ = −σ̄ ′ōȦ,
�′oA = −ριA, �′ōȦ = −σ̄ ῑȦ, �′ιA = −σ ′oA, �′ ῑȦ = −ρ̄ ′ōȦ.

(13)

The types and boost weights of various weighted quantities encountered in the GHP formalism
are summarized in table 1.

Henceforth we shall assume that conditions (A) and (B) of theorem 1 hold, and by
implication that equations (1)–(4) also hold. Without loss of generality, we also assume that
oA and ιA are parallely propagated along lα . Analytically, this condition takes the form of the
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Table 1. Boost weights of weighted quantities.

p q b p q b

oA 1 0 1
2 ιA −1 0 − 1

2

κ 3 1 2 κ ′ −3 −1 −2
σ 3 −1 1 σ ′ −3 1 −1
ρ 1 1 1 ρ′ −1 −1 −1
τ 1 −1 0 τ ′ −1 1 0

þ 1 1 1 þ′ −1 −1 −1� 1 −1 0 �′ −1 1 0

�r 4 − 2r 0 2 − r �rt 2 − 2r 2 − 2t 2 − r − t
� 0 0 0

following two additional relations:

γ ′ = 0, τ ′ = 0. (14)

Assumptions (A), (B) and conditions (14) greatly simplify the form of the spin-coefficient
equations, the Bianchi and the commutators identities [10]. Most of these relations assume
the form 0 = 0. Some of the non-trivial relations are as follows:

þτ = 0, (15)

þσ ′ = 0, (16)

þρ ′ = 0, (17)

þκ ′ = τ̄ ρ ′ + τσ ′ −�3 −�21, (18)

þ�21 = 0, (19)

þ�3 = 0, (20)

þ�22 = ��21 + (�− 2τ )�3, (21)

þ�4 = �′�3 + (�′ − 2τ̄ )�21, (22)

þþ′ − þ′þ = τ̄� + τ�′, (23)

þ�− �þ = 0. (24)

Extending an idea introduced in [6], we make the following key definition.

Definition 2. We shall say that a weighted scalar η with the boost weight b is balanced if

þ−bη = 0 for b < 0 and η = 0 for b � 0.

We can now prove the following.

Lemma 3. If η is a balanced scalar, then η̄ is also balanced.

Proof. By definition, a weighted scalar η of type {p, q} is changed by complex conjugation
to a weighted scalar η̄ of type {q, p}. The boost weight, however, remains unchanged. Let us
also recall that

þ̄ = þ
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and, hence, that

þ−bη̄ = þ−bη = 0,

as desired. �

Lemma 4. If η is a balanced scalar, then

τη, ρ ′η, σ ′η, κ ′η, (25)

þη, �η, �′η,þ′η (26)

are all balanced as well.

Proof. Let b be the boost weight of a balanced scalar η. From table 1 we see that the scalars
listed in (25) have boost weights b, b−1, b−1, b−2, respectively. Hence, it suffices to show
that the following quantities are all zero:

þ−b(τη), þ1−b(ρ ′η), þ1−b(σ ′η), þ2−b(κ ′η).

This follows from the Leibniz rule and from equations (15)–(20).
Next we show that the scalars in (26) are balanced as well. These scalars have boost

weights b + 1, b, b, b − 1, respectively. Hence, it suffices to show that the following scalars
are all zero:

þ−1−b(þη), þ−b(�η), þ−b(�′η), þ1−b(þ′η).
The vanishing of the first quantity follows immediately from definition 2. Using the
commutator relation (24) we have

þ−b�η = �þ−bη = 0, (27)

as desired. Vanishing of the quantity involving �′ follows by considering the complex conjugate
of (27) and using the relation �̄ = �′ and lemma 3.

To show that the quantity involving þ′ vanishes, we employ (15), (23), and (27) to obtain

þ1−b(þ′η) = þ−b(þ′þη) + τ̄ (þ−b�η) + τ (þ−b�′η) = þ−b(þ′þη).
We now proceed inductively and conclude that

þ1−bþ′η = þ′þ1−bη = 0.
�

Lemma 5. If η1, η2 are balanced scalars both of type {p, q}, then η1 + η2 is a balanced scalar
of type {p, q} as well.

Proof. The sum η1 + η2 satisfies

η1 + η2 �→ λpλ̄q(η1 + η2), þ−b(η1 + η2) = þ−bη1 + þ−bη2 = 0

and thus is a balanced scalar of type {p, q}. �

Lemma 6. If η1, η2 are balanced scalars, then η1η2 is also balanced.

Proof. Let b1, b2 be the respective boost weights. Boost weights are additive and hence the
boost weight of the product is b1 + b2. Setting n = −b1 − b2 and applying the Leibniz rule
gives

þn(η1η2) =
n∑
i=0

(n
i

)þi (η1)þn−i (η2).
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For−b1 � i � n, the factor þi(η1) vanishes. For 0 � i � −1− b1, we have n− i > −b2 and
hence the other factor vanishes. Therefore the entire sum vanishes. �

Definition 7. A balanced spinor is a weighted spinor of type {0, 0} whose components are all
balanced scalars.

Lemma 8. If S1,S2 are balanced spinors, then S1S2 is also a balanced spinor.

Proof. The product S1S2 is a weighted spinor of type {0, 0} and its components are balanced
scalars, thanks to lemma 6. �

Lemma 9. A covariant derivative of an arbitrary order of a balanced spinor S is again a
balanced spinor.

Proof. Applying the covariant derivative (11) to a balanced spinor S, we obtain

∇AȦS = ιAῑȦþS + oAōȦþ′S − ιAōȦ�S − oAῑȦ�′S.
From table 1, it follows that∇AȦS is again a weighted spinor of type {0, 0} and its components
are balanced scalars due to (13) and lemmas 3–5. �

Lemma 10. A scalar constructed as a contraction of a balanced spinor is equal to zero.

Proof. A scalar constructed as a contraction of a balanced spinor also has zero boost weight,
and therefore vanishes by definition 2.

Let us explain more intuitively how this works. A balanced spinor has the form
∑
CiBi

where Ci are balanced scalars and Bi are the basis spinors (products of o, ι, ō and ῑ). Since
the boost weight of each Ci is negative and the boost weight of each CiBi is zero, it follows
that the boost weight of each Bi is positive, i.e., there are more o and ō than ι and ῑ in Bi . As a
consequence of (5), a full contraction of eachBi vanishes. In a nutshell, all scalars constructed
as a contraction of a balanced spinor vanish because each term contains more o than ι. �

We are now ready to prove that conditions (A) and (B) of theorem 1 are sufficient for
vanishing of all curvature invariants.

Proof. From table 1 and equations (19)–(22), it follows that the Weyl spinor (9) and the Ricci
spinor (10) and their complex conjugates (lemma 3) are balanced spinors. Their products and
covariant derivatives of arbitrary orders are balanced spinors as well (lemmas 8 and 9).

Finally, due to lemma 10 and equations (6)–(8), all curvature invariants constructed from
the Riemann tensor and its covariant derivatives of arbitrary order vanish. �

3. Necessity of the conditions

In this section we consider a spacetime with vanishing curvature invariants and prove that
this spacetime satisfies the conditions listed in theorem 1. The Ricci scalar, being a curvature
invariant, must vanish. To prove the other conditions, we consider various zeroth-, first- and
second-order invariants formed from the Weyl and the Ricci spinors, as well as the Newman–
Penrose equations and the Bianchi identities.

In the following, we will employ these Newman–Penrose equations:

þρ − �′κ = ρ2 + σ σ̄ − κ̄τ − κτ ′ +�00,

�ρ − �′σ = τ (ρ − ρ̄) + κ(ρ̄ ′ − ρ ′)−�1 +�01
(28)
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and the Bianchi identities

þ�3 − �′�2 − þ�21 + ��20 − 2�′� = 2σ ′�1 − 3τ ′�2 + 2ρ�3 − κ�4

− 2ρ ′�10 + 2τ ′�11 + τ̄ ′�20 − 2ρ̄�21 + κ̄�22,

þ�4 − �′�3 + þ′�20 − �′�21 = 3σ ′�2 − 4τ ′�3 + ρ�4

− 2κ ′�10 + 2σ ′�11 + ρ̄ ′�20 − 2τ̄�21 + σ̄�22,

þ�22 + þ′�11 − ��21 − �′�12 + 3þ′� = (ρ + ρ̄)�22 + 2(ρ ′ + ρ̄ ′)�11

− (τ + 2τ̄ ′)�21 − (2τ ′ + τ̄ )�12 − κ̄ ′�10 − κ ′�01 + σ ′�02 + σ̄ ′�20,

þ′�2 − ��3 + þ�22 − ��21 + 2þ′� = σ�4 − 2τ�3 + 3ρ ′�2 − 2κ ′�1

+ ρ̄�22 − 2τ̄ ′�21 − 2τ ′�12 + 2ρ ′�11 + σ̄ ′�20.

(29)

First, we consider the well-known invariants

I = � CD
AB � AB

CD , J = � CD
AB � EF

CD � AB
EF . (30)

It is generally known that these invariants vanish if and only if the Petrov type is III, N or O.
In the following, we choose the spinor basis oA and ιA in such a way that for the Petrov types
III and N, oA is the multiple eigenspinor of the Weyl spinor. Thus, condition (2) is satisfied.

We consider the three Petrov types case by case.

(a) Petrov type N.

�0 = �1 = �2 = �3 = 0.

Demanding that the invariant

I1 = ∇ Ė
D �ABCD∇ Ḋ

C �ABKL∇LK̇�̄ṘṠṪ K̇∇K
Ṫ
�̄ṘṠḊĖ = (2�4�̄4κκ̄)

2 (31)

vanishes, we obtain

κ = 0. (32)

In further calculations we assume that (32) is valid.
Vanishing of another invariant

I2 = KFḞEĖ
MṀLL̇K̄

MṀLL̇
F ḞEĖ = (24�4�̄4)

2(ρρ̄ + σ σ̄ )4, (33)

where

KFḞEĖ
MṀLL̇ = ∇FḞ∇EĖ�ABCD∇MṀ∇LL̇�ABCD, (34)

implies that

σ = ρ = 0 (35)

and therefore condition (1), i.e., condition (A) of theorem 1, holds.
Substituting (32) and (35) into equations (28), we get

�00 = �01 = �10 = 0. (36)

And finally from the vanishing of the invariant

�ABȦḂ�ABȦḂ = 4�11
2 + 2�02�20 + 2�00�22 − 4�10�12 − 4�01�21, (37)

using (36), it follows that

�11 = �02 = �20 = 0

and thus condition (3), i.e., condition (B) of theorem 1, is also satisfied.
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(b) Petrov type III. Providing that the Weyl spinor �ABCD is of Petrov type III, we can
construct another spinor �̃ABCD

�̃ABCD = �ABEF� EF
CD = −2�3

2oAoBoCoD (38)

which is of Petrov type N. Now we can construct analogical curvature invariants from
�̃ABCD as we did from �ABCD for type N and again conclude that κ = σ = ρ = 0 and
�00 = �01 = �02 = �11 = 0 for metrics with all curvature invariants vanishing.

(c) Petrov type 0. Recall that the totally symmetric Plebański spinor is defined by

χABCD = � ĊḊ
(AB �CD)ĊḊ. (39)

Its components are

χ0 = 2
(
�00�02 −�01

2),
χ1 = �00�12 +�10�02 − 2�11�01,

χ2 = 1
3

(
�00�22 − 4�11

2 +�02�20 + 4�10�12 − 2�01�21
)
,

χ3 = �22�10 +�12�20 − 2�11�21,

χ4 = 2
(
�22�20 −�21

2).
(40)

In analogy with the Petrov classification of the Weyl tensor, it is possible to define the
Plebański–Petrov type (PP-type) of the Plebański spinor [21]. Thus vanishing of curvature
invariants analogous to I and J (30) constructed from the Plebański spinor implies that
the PP-type is III, N or O.

For the PP-types III and N, we can argue as we did for the cases of the Petrov types III
and N and conclude that κ = σ = ρ = 0 and�00 = �01 = �02 = �11 = 0. Substituting
these results into (40) we obtain χ0 = χ1 = χ2 = χ3 = 0 and thus the PP-type III is
excluded.

It remains to consider the PP-type O case.
Without loss of generality we can choose a null tetrad so that

�00 = 0.

Then χ0 = 0 in (40) implies

�01 = �10 = 0.

Hence, the vanishing of the invariant (37) gives

�11 = �02 = �20 = 0.

Demanding χ4 = 0 in (40) we get

�12 = �21 = 0.

Thus, the only non-vanishing component of the Ricci spinor is�22. The Bianchi identities
(29) take the form

κ̄�22 = 0, σ̄�22 = 0, þ�22 = (ρ + ρ̄)�22, þ�22 = ρ̄�22,

which implies

κ = σ = ρ = 0.
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Up to now we have proved that spacetimes with vanishing invariants constructed from the
Weyl and the Ricci spinors, and their arbitrary derivatives satisfy conditions (A) and (B) of
theorem 1. Invariants constructed from the Riemann tensor and its derivatives are combinations
of corresponding spinorial invariants. Thus, one could argue that there might exist a very
special class of spacetimes for which all tensorial invariants vanish even though there exist
nonzero spinorial invariants. To prove that this does not happen we now construct several
tensorial curvature invariants. They may also be useful for computer-aided classification of
spacetimes.

The curvature invariants shown in (30) can be given as

Cαβ
γδCγδ

αβ − iC∗αβγ δCγδαβ, Cαβ
γ δCγδ

εφCεφ
αβ − iCαβ

γδC∗γ δεφCεφαβ,
where

C∗αβγ δ = 1
2εαβεφC

εφ
γ δ

denotes the dual of the Weyl tensor. Their vanishing implies that the Petrov type is III,
N or O.

(a) Petrov type N. From the vanishing of

I1 = Cαβγδ;εCαβκλ;γCρστκ;λCρσδε;τ = 8I1 = 2(4�4�̄4κκ̄)
2, (41)

κ = 0 follows.
To obtain σ = ρ = 0 we have to construct the tensorial invariants I2, I3, I4:

I2 = Cαβγδ;εφCαµγν;εφCλµρν;στCλβρδ;στ = 4I2 + 2I3Ī3 + 4(I4 + Ī4), (42)

where

I3 = KFḞEĖ
F ḞEĖ = 6(4ρσ�4)

2, (43)

I4 = ∇FḞ∇EĖ�ABCD∇FḞ∇EĖ�ACMN∇T Ṫ∇SṠ�LMNR∇T Ṫ∇SṠ�BDLR
= 18(4ρσ�4)

4, (44)

and thus I2 is equal to

I2 = 2832[(�4�̄4)
2(ρρ̄ + σ σ̄ )4 + 8(ρρ̄σ σ̄�4�̄4)

2 + 8(ρσ�4)
4 + 8(ρ̄σ̄ �̄4)

4].

I3 is defined by

I3 = Cαβγδ;εφCαβγ δ;λµCρστν;λµCρστν;εφ = 16(2I2 + I5 + Ī5), (45)

where

I5 = KFḞEĖ
MṀLL̇K

MṀLL̇
F ḞEĖ = 21032(ρσ�4)

4, (46)

and so it takes the form

I3 = 21132[(�4�̄4)
2(ρρ̄ + σ σ̄ )4 + 8(ρσ�4)

4 + 8(ρ̄σ̄ �̄4)
4].

The curvature invariant I4 is a linear combination of I2 and I3

I4 = 8I2 − I3 = 21432(ρρ̄σ σ̄�4�̄4)
2.

Demanding I4 = 0 we obtain

ρσ = 0

and then the vanishing of I3 implies

ρ = σ = 0.

As in the spinorial case, the Newman–Penrose equations (28) imply�00 = �01 = 0, and
finally the invariant constructed from the traceless Ricci tensor corresponding to (37)

SαβSαβ = 4�ABȦḂ�ABȦḂ = 4
(
4�11

2 + 2�02�20
)

is zero if �11 = �02 = �̄20 = 0. Thus conditions (A) and (B) of theorem 1 are satisfied.
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(b) Petrov type III. In analogy to (38), the tensor Dαβγδ can be defined in terms of the Petrov
type-III Weyl tensor

Dαβγδ = CαβλµCγδλµ

which is traceless, has the same symmetries as the Weyl tensor and is of the Petrov
type N

Dαβγδ ←→ −4�3
2oAoBoCoDεȦḂεĊḊ − 4�̄2

3 ō
ȦōḂ ōĊ ōḊεABεCD.

We can construct curvature invariants from Dαβγδ similar to those made from Cαβγδ for
type N and again show that their vanishing leads to κ = σ = ρ = 0 and �00 = �01 =
�02 = �11 = 0.

(c) Petrov type O. It is possible to define the traceless Plebański tensor corresponding to (39)
which is endowed with the same symmetries as the Weyl tensor in terms of the traceless
Ricci tensor Sαβ (see [22])

Pαβγ δ = S[α
[γ S

β]
δ] + δ[α

[γ Sδ]λS
β]λ − 1

6δ
[α

[γ δ
β]
δ]SµνS

µν.

With the Plebański tensor we can proceed in the same way as in the spinorial case.

3.1. Alternative proof

Another way to prove the necessity of conditions (1)–(4) for the vanishing of all curvature
invariants is to use the result from paper [23] that the invariants I6, I7 and I8 constructed from
the Ricci spinor are equal to zero only if all four eigenvalues of the Ricci tensor are equal
to zero. Consequently, the Segre types of the Ricci tensor are {(31)} (i.e., PP-type N with
the only non-vanishing components�′12 and�′22 [24]), {(211)} (i.e., PP-type O with the only
non-vanishing component�′22) or {(1111)} (i.e., vacuum). In non-vacuum cases, the multiple
null eigenvector l′ of the Ricci tensor may, in general, differ from the repeated null vector of
the Weyl tensor l; however, by demanding vanishing of the mixed invariants m1,m4,m6 [5]
constructed from both the Weyl and the Ricci tensors, we arrive at the condition l′ = l. Then
the Bianchi identities for non-vanishing �3,�4,�12 and �22 imply κ = 0. And finally, the
vanishing of the invariant (33) for P-types III and N results in ρ = σ = 0.

4. Local description of the spacetimes with vanishing curvature invariants

Let us describe the metric, written in an adapted coordinate form, of all of the spacetimes with
vanishing curvature invariants (i.e., those satisfying theorem 1). We recall that spacetimes
with vanishing curvature invariants satisfy (1) (i.e., belong to the Kundt class [8, 9, 25]), are
of the Petrov type III, N or O (i.e., the Weyl spinor �ABCD is of the form (9)) and the Ricci
spinor�ABĊḊ has the form (10) that corresponds to the Ricci tensor

Rαβ = −2�22lαlβ + 4�21l(αmβ) + 4�12l(αm̄β). (47)

Consequently, the Plebański spinor (39) has the form

χABCD = −2�21
2oAoBoCoD (48)

and the Plebański–Petrov type (PP-type) is N for �12 �= 0 or O for �12 = 0. We note that
for PP-type N, using a null rotation about lα we can transform away the Ricci component�22

and using further a boost in the lα–nα plane and a spatial rotation in the mα–m̄α plane set
�12 = �21 = 1. For PP-type O, it is possible to set �22 = 1 by performing a boost in the
lα–nα plane.



6224 V Pravda et al

The Ricci tensor (47) has all four eigenvalues equal to zero and its Segre type is {(31)}
(�12 �= 0), {(211)} (�12 = 0 and �22 �= 0) or {(1111)} (for vacuum �12 = �22 = 0).
The most physically interesting non-vacuum case {(211)} corresponds to a pure null-radiation
field [8]. It can be shown that an electromagnetic field compatible with (47) has to be null.
Other energy–momentum tensors, including a fluid with anisotropic pressure and heat flux,
can correspond to a Ricci tensor of PP-type O. Indeed, it is known that no energy–momentum
tensor for a spacetime corresponding to a Ricci tensor of Segre type {31} (or its degeneracies)
can satisfy the weak energy conditions (see [8], p 72), and, hence, spacetimes of PP-type
N are not regarded as physical in classical general relativity and, hence, attention is usually
restricted to PP-type O models. However, for mathematical completeness we will discuss
all of the models here. In addition, in view of possible applications in high energy physics
in which the energy conditions are not necessarily satisfied, these models may have physical
applications [26].

The most general form of the Kundt metric in adapted coordinates u, v, ζ, ζ̄ [8] is

ds2 = 2du[Hdu + dv +Wdζ + W̄dζ̄ ]− 2P−2 dζ dζ̄ , (49)

where the metric functions

H = H(u, v, ζ, ζ̄ ), W = W(u, v, ζ, ζ̄ ), P = P(u, ζ, ζ̄ )
satisfy the Einstein equations (see [8] and appendix A). For the spacetimes considered here,
we may, without loss of generality, put P = 1. Tables 2–4 summarize the Kundt metrics for
different subcases in the studied class.

It is of interest to find the conditions for which the repeated null eigenvector lα of the
Weyl tensor is recurrent for the Kundt class. The vector lα satisfies

lαlα = 0, lα ;βlβ = 0, lα;α = 0, l(α;β)lα;β = 0, l[α;β]l
α;β = 0

and its covariant derivative has, in general, the form

lα;β = (γ + γ̄ )lαlβ + (β ′ − β̄)lαmβ + (β̄ ′ − β)lαm̄β − τ̄mαlβ − τm̄αlβ .
Performing a boost in the lα–nα plane

l̃α = Alα, m̃α = mα, ñα = A−1nα

with A satisfying

A,α = A(β̄ − β ′ + τ̄ )mα +A(β − β̄ ′ + τ )m̄α,
i.e., putting β̃

′ − ¯̃β = β ′ − β̄− δ′A/A = τ̄ , τ̃ = τ (see, e.g., [27] for transformation properties
of NP quantities), we obtain

l̃α;β = (γ̃ + ¯̃γ )l̃α l̃β + τ̄ (l̃αmβ − l̃βmα) + τ (l̃αm̄β − l̃β m̄α) (50)

with l̃α satisfying

£l̃gαβ = l̃α;β + l̃β;α = 2(γ̃ + ¯̃γ )l̃α l̃β . (51)

This normalization is called ‘an almost Killing normalization’ in [28]. As τ cannot be
transformed away by any transformation of the tetrad preserving the l-direction and one
can even show that τ τ̄ is invariant with respect to all tetrad transformations preserving the
l-direction, the repeated null eigenvector lα of the Weyl tensor is proportional to a recurrent
vector l̃α if and only if τ = 0. To summarize, all Kundt spacetimes with τ = 0 admit a
recurrent null vector.

Finally, let us present the relation between quantities L and L′ given in [28] and NP-
quantities when lα satisfies (51)

L = γ + γ̄ , L′ = DL = −2τ τ̄ .
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Table 2. All spacetimes with vanishing invariants with �12 �= 0 and �22 �= 0, i.e., PP–N, are
displayed. For details and references, see appendix A.

τ P-type Metric functions

= 0 III W = W0(u, ζ, ζ̄ )

H = vh1(u, ζ, ζ̄ ) + h0(u, ζ, ζ̄ )

Equations (A.16), (A.17)
N �3 = 0 (A.18)

Equations (A.16), (A.17)
O �3 = �4 = 0 (A.18), (A.19)

Equations (A.16), (A.17)

�= 0 III W = −2v
ζ+ζ̄

+W0(u, ζ, ζ̄ )

H = −v2

(ζ+ζ̄ )2
+ vh1(u, ζ, ζ̄ ) + h0(u, ζ, ζ̄ )

Equations (A.16), (A.17)
N �3 = 0 (A.18)

Equations (A.16), (A.17)
O �3 = �4 = 0 (A.18), (A.19)

Equations (A.16), (A.17)

5. Discussion

The pp-wave spacetimes have a number of important physical applications, many of which
also apply to the other spacetimes obtained in this paper. As mentioned earlier, pp-wave
spacetimes are exact vacuum solutions to string theory to all orders in α′, the scale set by the
string tension [18]. Horowitz and Steif [19] generalized this result to include the dilaton field
and antisymmetric tensor fields which are also massless fields of string theory using a more
geometrical approach. They showed that pp-wave metrics satisfy all other field equations
that are symmetric rank two tensors covariantly constructed from curvature invariants and
polynomials in the curvature and their covariant derivatives, and since the curvature is null, all
higher-order corrections to Einstein’s equation constructed from higher powers of the Riemann
tensor automatically vanish. Therefore, all higher-order terms in the string equations of motion
are automatically zero. Many of the spacetimes obtained here will have similar properties.

In addition, solutions of classical field equations for which the counter terms required to
regularize quantum fluctuations vanish are of particular importance because they offer insights
into the behaviour of the full quantum theory. The coefficients of quantum corrections to Ricci
flat solutions of Einstein’s theory of gravity in four dimensions have been calculated up to two
loops. In particular, a class of Ricci flat (vacuum) Lorentzian 4-metrics, which includes the
pp-wave spacetimes and some special Petrov type III or N spacetimes, have vanishing counter
terms up to and including two loops. Thus these Lorentzian metrics suffer no quantum
corrections to all loop orders [20]. In view of the vanishing of all quantum corrections it is
possible that all of the metrics summarized in tables 2–4 are of physical import and merit
further investigation.

String theory in pp-wave backgrounds has been studied by many authors [18, 29], partly
in a search for a connection between quantum gravity and gauge theory dynamics. Such string
backgrounds are technically tractable and have direct applications to the four-dimensional
conformal theories from the point of view of a duality between string and gauge theories.
Indeed, pp-waves provide exact solutions of string theory [19, 18] and type-IIB superstrings
in this background were shown to be exactly solvable even in the presence of the RR
5-form field strength [30]. As a result, the spectrum of the theory can be explicitly obtained.
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Table 3. All spacetimes with vanishing invariants with �12 = 0 and �22 �= 0, i.e., PP-O, null
radiation, are displayed. For details and references, see appendix A.

τ P-type Metric functions

= 0 III W = W0(u, ζ )

H = 1
2 v(W0,ζ̄ +W̄0,ζ ) + h0(u, ζ, ζ̄ )

�22 = h0,ζ ζ̄ −�(W0W0,ζ̄ ζ̄ +W0,uζ̄ +W0,ζ̄
2)

N W = 0
H = h0(u, ζ, ζ̄ )

�22 = h0,ζ ζ̄
O W = 0

H = h02(u)ζ ζ̄ + h01(u)ζ + h̄01(u)ζ̄ + h00(u)

�22 = h02(u)

�= 0 III W = −2v
ζ+ζ̄ +W0(u, ζ )

H = −v2

(ζ+ζ̄ )2
+ v W0+W̄0

ζ+ζ̄
+ h0(u, ζ, ζ̄ )

�22 = (ζ + ζ̄ )
(
h0+W0W̄0
ζ+ζ̄

)
,ζ ζ̄ −W0,ζ W̄0,ζ̄

N W = −2v
ζ+ζ̄

H = −v2

(ζ+ζ̄ )2
+ h0(u, ζ, ζ̄ )

�22 = (ζ + ζ̄ )
(
h0
ζ+ζ̄

)
,ζ ζ̄

O W = −2v
ζ+ζ̄

H = −v2

(ζ+ζ̄ )2
+ h00(u)[1 + h01(u)ζ + h̄01(u)ζ̄ + h02(u)ζ ζ̄ ](ζ + ζ̄ )

�22 = h00(u)h02(u)(ζ + ζ̄ )

Table 4. All spacetimes with vanishing invariants with �12 = �22 = 0, i.e., PP-O, vacuum, are
displayed. For details and references, see appendix A.

τ P-type Metric functions

= 0 III W = W0(u, ζ )

H = 1
2 v(W0,ζ̄ +W̄0,ζ ) + h0(u, ζ, ζ̄ )

h0,ζ ζ̄ = �(W0W0,ζ̄ ζ̄ +W0,uζ̄ +W0,ζ̄
2)

N pp-waves W = 0
H = h00(u, ζ ) + h̄00(u, ζ̄ )

�= 0 III W = −2v
ζ+ζ̄

+W0(u, ζ )

H = −v2

(ζ+ζ̄ )2
+ v W0+W̄0

ζ+ζ̄
+ h0(u, ζ, ζ̄ )

(ζ + ζ̄ )
(
h0+W0W̄0
ζ+ζ̄

)
,ζ ζ̄ = W0,ζ W̄0,ζ̄

N W = −2v
ζ+ζ̄

H = −v2

(ζ+ζ̄ )2
+ [h00(u, ζ ) + h̄00(u, ζ̄ )](ζ + ζ̄ )

This model is expected to provide some hints for the study of superstrings on more general
backgrounds. There is also an interesting connection between pp-wave backgrounds and
gauge field theories. It is known that any solution of Einstein gravity admits plane-wave
backgrounds in the Penrose limit [31]. This was extended to solutions of supergravities
in [32]. It was shown that the super-pp-wave background can be derived by the Penrose
limit from the AdSp × Sq backgrounds in [33]. The Penrose limit was recognized to be
important in an exploration of the AdS/CFT correspondence beyond massless string modes in
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[34, 35]. Maximally supersymmetric pp-wave backgrounds of supergravity theories in 11 and
10 dimensions have attracted great interest [36].

Recently, the idea that our universe is embedded in a higher-dimensional world has
received a great deal of renewed attention [37]. Due to the importance of branes in
understanding the non-perturbativedynamics of string theories, a number of classical solutions
of branes in the background of a pp-wave have been studied; in particular a new brane-world
model has been introduced in which the bulk solution consists of outgoing plane waves (only),
which avoids the problem that the evolution requires initial data specified in the bulk [38].

Finally, in [13] an example of non-isometric spacetimes with non-vanishing curvature
scalars which cannot be distinguished by curvature invariants was presented. This example
represents a solution of Einstein’s equation with a negative cosmological term and a minimally
coupled massless scalar field. In this paper we have noted the existence of a class of spacetimes
in which all of the curvature invariants are constants (depending on the cosmological constant).
These results and their extensions to higher dimensions are consequently also of physical
interest.
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Appendix. The Kundt metrics with all curvature invariants vanishing

Let us present here more details on the spacetimes with all curvature invariants vanishing,
which were briefly summarized in section 4. Appendix A.1, appendix A.2 and appendix A.3
correspond to tables 2, 3 and 4, respectively.

Since all of the spacetimes satisfying condition (A) of theorem 1 (i.e., that satisfy (1)),
belong to the Kundt class we start with the metric given by (49) in coordinates u, v, ζ, ζ̄ [8],
where the null tetrad is given by

l = ∂v, n = ∂u − (H + P 2WW̄)∂v + P 2(W̄∂ζ +W∂ζ̄ ), m = P∂ζ . (A.1)

Only certain coordinate transformations and tetrad rotations can be performed which preserve
the form of the metric (49) and the null tetrad (A.1) (see [8])

(I) ζ ′ = f (ζ, u),
P ′2 = P 2f,ζ f̄ ,ζ̄ , W ′ = W

f,ζ
− f̄ ,u

P 2f,ζ f̄ ,ζ̄
,

H ′ = H − 1

f,ζ f̄ ,ζ̄

(
f,u f̄ ,u

P 2
+Wf,u f̄ ,ζ̄ +Wf̄ ,u f,ζ

)
;

(A.2)

(II) v′ = v + g(ζ, ζ̄ , u),
(A.3)

P ′ = P, W ′ = W − g,ζ , H ′ = H − g,u;

(III) u′ = h(u), v′ = v/h,u,
(A.4)

P ′ = P, W ′ = W

h,u
, H ′ = 1

h,u
2

(
H + v

h,uu

h,u

)
.
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In particular, in these coordinates it is not possible, in general, to simultaneously simplify
the forms of the Ricci spinor components in (47) in PP-types N and O by boosts and null and
spatial rotations.

In most cases it is possible to specialize the solution form by an appropriate choice
of coordinates, thereby narrowing the range of allowed coordinate transformations. The
remaining coordinate freedom will be described below on a case-by-case basis.

A.1. Plebański–Petrov type N, i.e., �12 �= 0 and�22 �= 0

• Petrov type III. The functions H,W and P have to satisfy equations which follow from
the fact that we assume the Petrov types III, N or O (�0 = �1 = �2 = 0) and have the
Ricci tensor of the form (47).

For the Kundt class, �0 vanishes identically and

�1 = 1
2PRvζ = − 1

4PW,vv = 0

and thus

W,vv = 0. (A.5)

Then �2 = 0 = �̄2 and R = 0 reduce to

�2 = − 1
6 [H,vv + 2(P,ζ P,ζ̄ −PP,ζ ζ̄ ) + P 2(2W,vζ̄ −W̄ ,vζ )] = 0, (A.6)

W,vζ̄ = W̄ ,vζ , (A.7)

2W,vζ̄ = W,v W̄ ,v (A.8)

and

Rζζ̄ = −2(lnP),ζ ζ̄ = 0. (A.9)

The Gaussian curvature, K = 2P 2(lnP),ζ ζ̄ = 	(lnP), of wave surfaces determined
uniquely by the spacetime geometry is a spacetime invariant and since it vanishes for the
studied class of spacetimes, they are characterized by plane-wave surfaces [8].

From (A.9), using a type I coordinate transformation (A.2), we can put

P = 1. (A.10)

This restricts the type I transformations to

ζ ′ = eiθ(u)ζ + f (u). (A.11)

Then, equations (A.5), (A.7) and (A.8), together with

Rζζ = −W,vζ + 1
2W,v

2 = 0, (A.12)

after another type I coordinate transformation (A.11), give without loss of generality [8]

W(u, v, ζ, ζ̄ ) = −2v

ζ + ζ̄
n +W0(u, ζ, ζ̄ ) (A.13)

with n = 0 or 1. If n = 1, the wave surfaces are polarized, and consequently type I
transformations are further restricted to

ζ ′ = ζ + f (u), f̄ + f = 0.

Finally, equations (A.6) and

Ruv = −H,vv − 1
2W,v W̄ ,v = 0 (A.14)
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are identical and have the solution [8]

H(u, v, ζ, ζ̄ ) = −v2

(ζ + ζ̄ )2
n + vh1(u, ζ, ζ̄ ) + h0(u, ζ, ζ̄ ). (A.15)

Employing (A.5)–(A.8), (A.10), (A.12) and (A.14), the remaining Einstein equations are

Ruu = 2(W̄H,vζ +WH,vζ̄ )− 2H,ζ ζ̄ +H,v (W,ζ̄ + W̄ ,ζ )− (H,ζ W̄ ,v +H,ζ̄ W,v)

−HW,v W̄ ,v −(WW̄ ,uv + W̄W,uv) +W,uζ̄ + W̄ ,uζ −W,ζ̄ W̄ ,ζ
+ (WW̄,v−W̄W,v)(−W̄ ,ζ +W,ζ̄ ) + 1

2

(
W,ζ̄

2 + W̄ ,ζ
2 +W 2W̄ ,v

2 + W̄ 2W,v
2
)

= −2[�22 − 2(W�21 + W̄�12)] (A.16)

Ruζ =−H,vζ + 1
2 (W,uv −W,ζ ζ̄ + W̄ ,ζ ζ +W,v W,ζ̄ − W̄ ,v W,ζ )− 1

4W,v (WW̄ ,v + W̄W,v)

= −2�12. (A.17)

The NP quantities read

ρ = σ = κ = ε = 0,

τ = −τ ′ = 2β = −2β ′ = − 1

ζ + ζ̄
n,

σ ′ = − 2v

(ζ + ζ̄ )2
n− W̄0,ζ̄ ,

ρ ′ = − 2v

(ζ + ζ̄ )2
n− 1

2 (W0,ζ̄ +W̄0,ζ ),

κ ′ = 6v2

(ζ + ζ̄ )3
n− v

[
h1,ζ̄ + 2

W0 + W̄0

(ζ + ζ̄ )2
n− 2

W0,ζ̄ + W̄0,ζ̄

ζ + ζ̄
n

]
− h0,ζ̄ − (W0W̄0),ζ̄ ,

γ = 3v

(ζ + ζ̄ )2
n +

1

2
h1 − W0 + W̄0

ζ + ζ̄
n +

1

4
(W0,ζ̄ − W̄0,ζ ),

�3 = −2h1,ζ̄ + W̄0,ζ ζ̄ −W0,ζ̄ ζ̄ + 2
W0,ζ̄ − W̄0,ζ̄

ζ + ζ̄
n− 2

W0 + W̄0

(ζ + ζ̄ )2
n, (A.18)

�4 = v
[
−h1,ζ̄ ζ̄ + 2

h1,ζ̄ − W̄0,ζ ζ̄ +W0,ζ̄ ζ̄

ζ + ζ̄
n + 2

W̄0,ζ̄ − 2W0,ζ̄

(ζ + ζ̄ )2
n + 4

W0 + W̄0

(ζ + ζ̄ )3
n

]

+ h1W̄0,ζ̄ − h0,ζ̄ ζ̄ + W̄0,uζ̄ + W̄0(W̄0,ζ ζ̄ −W0,ζ̄ ζ̄ )

+ 2
h0,ζ̄ + W̄0(W0,ζ̄ − W̄0,ζ̄ )

ζ + ζ̄
n− 2

h0 +W0W̄0

(ζ + ζ̄ )2
n. (A.19)

The remaining coordinate freedom for the case n = 1 is

(I) ζ ′ = ζ + f (u), f̄ + f = 0, W0
′ = W0 − f,u,

h0
′ = h0 − f,u f̄ ,u + (W0 −W 0)f,u, h1

′ = h1;
(II) v′ = v + g, W0

′ = W0 − g,ζ + 2g/(ζ + ζ̄ ),
h0
′ = h0 − g,u− gh1 − g2/(ζ + ζ̄ )2, h1

′ = h1 + 2g/(ζ + ζ̄ )2;
(III) u′ = h(u), v′ = v/h,u,

W0
′ = W0/h,u, h0

′ = h0/h,u
2, h1

′ = h1/h,u + h,uu /h,u2.

(A.20)

One could, without loss of generality, take h1 = 0.
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The remaining coordinate freedom for the n = 0 case is

(I) ζ ′ = eiθ(u)ζ + f (u),

W0
′ = e−iθW0 + f̄ ,u− ie−iθ θ,u ζ̄ , h1

′ = h1,

h0
′ = h0 − f,u f̄ ,u−ieiθ θ,u f̄ ,u ζ + ie−iθ θ,u f,u ζ̄ − θ,u2ζ ζ̄

−W0(e−iθf,u + iθ,u ζ )−W 0(eiθ f̄ ,u− iθ,u ζ̄ );
(A.21)

(II) v′ = v + g,

W0
′ = W0 − g,ζ , h0

′ = h0 − g,u−gh1, h1
′ = h1;

(III) u′ = h(u), v′ = v/h,u,
W0
′ = W0/h,u, h0

′ = h0/h,u
2, h1

′ = h1/h,u + h,uu/h,u2.

One could therefore without loss of generality take h0 = 0.
In general, we cannot make any further progress unless we identify a specific source,

e.g., null radiation or null electromagnetic field, which then yields additional field
equations through equations (A.16) and (A.17) (and, for example, the Maxwell equations).
• Petrov type N. In this case�3 = 0 and equation (A.18) constitutes an additional differential

equation that must be satisfied. This equation can be integrated to obtain a more specialized
form of the metric.
• Petrov type O. In this case �3 = �4 = 0, i.e. right-hand sides of equations (A.18), (A.19)

must vanish. These equations can be integrated to obtain a fully specified form of the
metric.

A.2. Plebański–Petrov type O, �12 = 0 and�22 �= 0 — pure radiation

Conformally Ricci-flat pure radiation metrics, studied in [17], all belong to this class. In fact,
in [17] the authors present all pure radiation solutions belonging to Kundt’s class of Petrov
types N and O for τ �= 0 and of Petrov types III, N and O for τ = 0. For pure radiation, one
of the remaining Einstein equations simply serves to define the radiation energy–density. For
specific sources, such as a null electromagnetic field, these equations (e.g., equations (A.16)
and (A.17)) lead to additional differential equations. In the case of vacuum, all solutions can
be explicitly written (see the following subsection).

A.2.1. n = 0 (τ = 0)

• Petrov type III. For n = 0 the Einstein equation Ruζ = 0 (A.17) becomes[
h1 + 1

2 (W0,ζ̄ − W̄0,ζ )
]
,ζ = 0.

Using a type II transformation (A.3), (A.21) (see [8] for a discussion) and (A.13), (A.15),
its solution turns out to be

W = W0(u, ζ̄ ),

H = 1
2v(W0,ζ̄ + W̄0,ζ ) + h0(u, ζ, ζ̄ ).

(A.22)

The metric functions are subject to the only remaining Einstein equation (A.16)

�22 = h0,ζ ζ̄ −�
(
W0W0,ζ̄ ζ̄ +W0,uζ̄ +W0,ζ̄

2). (A.23)

The NP quantities take the form

ρ = σ = κ = ε = τ = σ ′ = τ ′ = β = β ′ = 0,

ρ ′ = − 1
2 (W0,ζ̄ + W̄0,ζ ), κ ′ = − 1

2vW0,ζ̄ ζ̄ − h0,ζ̄ − W̄0W0,ζ̄ , γ = 1
2W0,ζ̄ ,

�3 = −2W0,ζ̄ ζ̄ , �4 = − 1
2vW0,ζ̄ ζ̄ ζ̄ − h0,ζ̄ ζ̄ − W̄0W0,ζ̄ ζ̄ . (A.24)
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This choice of metric form restricts the type I, II and III transformations (A.21) to the
following three cases:

ζ ′ = ζ + f (u);
v′ = v + g1(u)ζ + ḡ1(u)ζ̄ + g0(u);
u′ = h(u), v′ = v/h,u −

(
h,uu /h,u

2
)
ζ ζ̄ ,

where f, g1, g0 and h are arbitrary functions of u and a1, a0 are real constants.

• Petrov type N. For type-N spacetimes (�3 = 0 → W0,ζ̄ ζ̄ = 0),W0 can be transformed
away (A.21) [8] and thus the metric functions (A.22) are

W = 0, H = h0(u, ζ, ζ̄ ) (A.25)

and the NP quantities (A.24) read

ρ = σ = κ = ε = τ = σ ′ = τ ′ = β = β ′ = ρ ′ = γ = 0, κ ′ = −h0,ζ̄ ,

�3 = 0, �4 = −h0,ζ̄ ζ̄ .
(A.26)

The only remaining Einstein equation (A.23) now becomes

�22 = h0,ζ ζ̄ . (A.27)

The remaining coordinate freedom comes from a mixed type I and II transformation:

ζ ′ = eiθ (ζ + f (u)), v′ = v + f̄ ,u ζ + f,u ζ̄ + g(u),
(A.28)

h0
′ = h0 − g,u + f,u f̄ ,u− f̄ ,uu ζ − f,uu ζ̄ ,

where θ is a real constant and u is determined up to a affine transformation.
These spacetimes are known as generalized pp-wave solutions. In the case of a null

electromagnetic field, energy momentum tensor,equation (A.27) and Maxwell’s equations
lead to a further differential equation for h0, whose solution is known [8].

• Petrov type O. All metrics belonging to this class are given in [16] (see (12) therein). The
condition�4 = 0 from (A.26) is h0,ζ̄ ζ̄ = 0 with the solution

h0 = h02(u)ζ ζ̄ (A.29)

after a transformation (A.28). The metric functions are thus given by (A.25) with (A.29)
and the Einstein equation (A.27) becomes�22 = h02.

The coordinates are fixed up to an eight-parameter group of transformations:

ζ ′ = eiθ (ζ + f (u)),

v′ = v/a1 + f̄ ,u ζ + f,u ζ̄ + 1
2 (f f̄ ),u + g0,

u′ = a1u + a0,

where f (u) is a complex-valued solution of

f,uu + fh02 = 0,

and θ, a1, a0, g0 are real constants.



6232 V Pravda et al

A.2.2. n = 1, τ �= 0.

• Petrov type III. For n = 1, the Einstein equation Ruζ = 0 (A.17) is
[
h1 +

1

2
(W0,ζ̄ −W 0,ζ )− W0 + W̄0

ζ + ζ̄

]
,ζ

= −W0,ζ̄ +W 0,ζ

ζ + ζ̄
.

Again using a type II transformations (A.20) (as in [8]), we obtain the solution (A.13),
(A.15)

W = −2v

ζ + ζ̄
+W0(u, ζ ), H = −v2

(ζ + ζ̄ )2
+ v

W0 + W̄0

ζ + ζ̄
+ h0(u, ζ, ζ̄ ). (A.30)

The remaining Einstein equation (A.16) then reads

�22 = (ζ + ζ̄ )

(
h0 +W0W̄0

ζ + ζ̄

)
,ζ ζ̄ −W0,ζ W̄0,ζ̄ . (A.31)

The NP quantities are as follows

ρ = σ = κ = ε = 0, τ = −τ ′ = 2β = −2β ′ = − 1

ζ + ζ̄
,

σ ′ = − 2v

(ζ + ζ̄ )2
− W̄0,ζ̄ , ρ ′ = − 2v

(ζ + ζ̄ )2
,

κ ′ = 6v2

(ζ + ζ̄ )3
− v

[
W0 + W̄0

(ζ + ζ̄ )2
− W̄0,ζ̄

ζ + ζ̄

]
− h0,ζ̄ −W0W̄0,ζ̄ ,

γ = 3v

(ζ + ζ̄ )2
− 1

2

W0 + W̄0

ζ + ζ̄
,

�3 = −
4W̄0,ζ̄

ζ + ζ̄
,

�4 = v
[
−W̄0,ζ̄ ζ̄

ζ + ζ̄
+

6W̄0,ζ̄

(ζ + ζ̄ )2

]
+

2h0,ζ̄ +W̄0,ζ̄ (W0 − W̄0)

ζ + ζ̄
− 2

h0 +W0W̄0

(ζ + ζ̄ )2

− h0,ζ̄ ζ̄ + W̄0,uζ̄ .

(A.32)

The remaining coordinate freedom is

ζ ′ = ζ + f (u), f̄ + f = 0;
v′ = v + (ζ + ζ̄ )g(u);
u′ = h(u), v′ = v

h,u
− (ζ + ζ̄ )2

h,uu

2h,u2 .

(A.33)

• Petrov type N. All type-N pure radiation metrics were found in [17]. For type-N spacetimes
(�3 = 0 → W̄0,ζ̄ = 0), W0 can be transformed away again using (A.21), (A.33) and the
metric functions (A.30) take the form

W = −2v

ζ + ζ̄
, H = −v2

(ζ + ζ̄ )2
+ h0(u, ζ, ζ̄ ) (A.34)

with h0 satisfying (A.31)

�22 = (ζ + ζ̄ )

(
h0

ζ + ζ̄

)
,ζ ζ̄

. (A.35)
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The NP quantities are as follows

ρ = σ = κ = ε = 0, τ = −τ ′ = 2β = −2β ′ = − 1

ζ + ζ̄
,

σ ′ = ρ ′ = − 2v

(ζ + ζ̄ )2
, κ ′ = 6v2

(ζ + ζ̄ )3
− h0,ζ̄ , γ = 3v

(ζ + ζ̄ )2
, (A.36)

�3 = 0, �4 = −(ζ + ζ̄ )

(
h0

ζ + ζ̄

)
,ζ̄ ζ̄

.

The remaining coordinate freedom is given by

ζ ′ = ζ + if0, u′ = h(u), v′ = v

h,u
− (ζ + ζ̄ )2

h,uu

2h,u2 ,

h0
′ = h0

h,u
2 +

(ζ + ζ̄ )2

4h,u4 (−3h,uu2 + 2h,u h,uuu ),
(A.37)

where f0 is a real constant, and h = h(u) is an arbitrary real function.
• Petrov type O. All conformally flat pure radiation metrics (both with τ = 0 and τ �= 0),

generalizing the solutions found in [39] and [7], were given in [16]. The physical
interpretation of this class of spacetimes is discussed in [40].

The equation �4 = 0 in (A.36) has the solution (see (16) in [16])

h0 = h00(u)[1 + h01(u)ζ + h̄01(u)ζ̄ + h02(u)ζ ζ̄ ](ζ + ζ̄ ) (A.38)

which is to be substituted into the metric functions (A.34).
The Einstein equation (A.35) turns to be

�22 = (ζ + ζ̄ )h00(u)h02(u).

The remaining coordinate freedom is a four-parameter transformation group consisting
of translations of ζ by an imaginary constant and fractional linear transformations of u.
More precisely,

ζ ′ = ζ + if0, u′ = au + b

cu + d
, v′ = cu + d

ad − bc [v(cu + d) + c(ζ + ζ̄ )2],

h00
′ = (cu + d)4

(ad − bc)2h00,

where a, b, c, d, f0 are all real constants (note: one of the constants is redundant).
Einstein–Maxwell null fields, massless scalar fields and neutrino fields do not exist for
this class of metrics [16].

A.3. The vacuum case, i.e.,�12 = �22 = 0.

The vacuum Petrov types-III, N and O Kundt metrics are reviewed in [8] (ch 27.5). The form
of the metric, and the remaining coordinate freedom are as in appendix A.2, with the vacuum
condition imposing an additional constraint on the metric parameters.

A.3.1. n = 0, τ = 0.

• Petrov type III. For vacuum Petrov type-III spacetimes, the metric and the NP quantities
are given by (A.22) and (A.24), respectively, where h0 satisfies the Einstein equation
(A.23)

h0,ζ ζ̄ −�
(
W0W0,ζ̄ ζ̄ +W0,uζ̄ +W0,ζ̄

2) = 0. (A.39)
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Petrov [41] found an example belonging to this class (in different coordinates)

ds2 = x(v − ex) du2 − 2 du dv + ex(dx2 + e−2u dz2). (A.40)

• Petrov type N — pp waves. The metric functions (A.25) and the NP quantities (A.26) of
vacuum Petrov type-N spacetimes satisfy (A.27)

h0,ζ ζ̄ = 0, i.e., h0 = h00(u, ζ ) + h̄00(u, ζ̄ ). (A.41)

These spacetimes belong to the class of pp-wave spacetimes (see chapter 21.5 in [8])
which admit a covariantly constant null vector that is consequently also a null Killing
vector.
• Petrov type O — flat spacetime. For flat spacetime, equation (A.41) reduces the solution

(A.29) to h0 = 0, a flat metric.

A.3.2. n = 1, τ �= 0.

• Petrov type III. For Petrov type-III vacuum spacetimes with non-vanishing τ , the remaining
Einstein equation (A.31) turns out to be

(ζ + ζ̄ )

(
h0 +W0W̄0

ζ + ζ̄

)
,ζ ζ̄

= W0,ζ W̄0,ζ̄ . (A.42)

Its solution determines the metric (A.30) and the NP quantities (A.32).
An example from this class, which was originally found by Kundt [9], with W0 =

W̄0 = ψ/(ζ + ζ̄ ) satisfying ψ,ζ ζ̄ = 0, is known (see [8]).
• Petrov type N. For Petrov type-N vacuum spacetimes, the Einstein equation (A.42)

simplifies to (
h0

ζ + ζ̄

)
,ζ ζ̄

= 0

with the solution

h0 = [h00(u, ζ ) + h̄00(u, ζ̄ )](ζ + ζ̄ ). (A.43)

The metric and NP quantities are then given by (A.34) and (A.36) with (A.43).
• Petrov type O — flat spacetime. For the flat spacetime the condition �4 = 0 in (A.36),

i.e., (
h0

ζ + ζ̄

)
,ζ̄ ζ̄

= 0,

has the solution

h0 = h00(u)[1 + h01(u)ζ + h̄01(u)ζ̄ ](ζ + ζ̄ ).
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