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Abstract

A higher dimensional frame formalism is developed in order to study
implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes
of the algebraic types IIl and N in arbitrary dimension n. It follows that
the principal null congruence is geodesic and expands isotropically in two
dimensions and does not expand in n — 4 spacelike dimensions or does not
expand at all. It is shown that the existence of such principal geodesic null
congruence in vacuum (together with an additional condition on twist) implies
an algebraically special spacetime. We also use the Myers—Perry metric as an
explicit example of a vacuum type D spacetime to show that principal geodesic
null congruences in vacuum type D spacetimes do not share this property.

PACS number: 04.50.+h

1. Introduction

For dimensions n < 4 the Weyl tensor vanishes identically and for n = 4 it has very special
properties. It is of interest to determine which of the properties of four-dimensional (4D)
spacetimes can be straightforwardly generalized to higher dimensions and which need to be
modified or do not hold at all.

Recently a classification of algebraic tensor types in Lorentzian manifolds of arbitrary
dimension was developed [1]. For the Weyl tensor in 4D this classification reproduces the
Petrov classification and for the Ricci tensor in 4D the Segre classification.

In 4D it follows from the Bianchi identities®

Rapicda:ey =0 (1

that in algebraically special vacuum spacetimes the multiple principal null direction of the
Weyl tensor is geodesic and shearfree. In this paper a higher dimensional frame formalism

3 Note that in this paper we use two different operations denoted by {}. In the first case {} acts on three indices and
stands for Rypicd;e) = Rabed:e + Rabde;c + Rabec;a- In the other case {} acts on four indices and is given by (5).
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is developed in order to study implications of the Bianchi identities, which are given in
appendix B, for vacuum spacetimes of algebraic types N and III in higher dimensions.
Although in most applications it is necessary to perform calculations in a given spacetime
dimension 7, in this paper we present results without specifying the dimension and hence
these results are valid in any dimension.

In 4D, for algebraically special vacuum spacetimes some of the tetrad components of the
Bianchi identities in the Newman—Penrose formalism [2] lead to simple algebraic equations
(i.e. equations with no derivatives). In higher dimensions these algebraic equations are much
more complex and the number of independent equations, as well as the number of unknowns,
depends on the dimension of the spacetime.

We show that in vacuum type III and N spacetimes of arbitrary dimension the multiple
principal null direction (PND) is geodesic. For type N spacetimes (section 3) the symmetric
expansion matrix S has just one non-vanishing doubly degenerate eigenvalue. Consequently,
the principal null geodesic congruence expands isotropically in two dimensions and does not
expand in n — 2 dimensions. Thus, shear does not vanish for n > 4. The antisymmetric twist
matrix A has only one independent component. All other components may be set to zero by
appropriately choosing the frame. For type III, we prove similar results in the generic case
(section 4) and in the non-twisting case (appendix C.1). The complete proof, including all
possible degenerate cases, is presented for five-dimensional spacetimes (appendix C.2).

In section 5, we show that for a vacuum spacetime the properties of S and A
matrices mentioned above imply that the spacetime is algebraically special. We also show
that an arbitrary vacuum spacetime admitting a non-expanding and non-twisting geodesic
null congruence (i.e., a higher dimensional generalization of the vacuum Kundt class) is
algebraically special.

These statements cannot be regarded as a generalization of the Goldberg—Sachs theorem
for higher dimensions (see section 5 for details) since in appendix D it is shown that the
Myers—Perry metric, which is of the algebraic type D, has the expansion matrix S with one
doubly degenerate eigenvalue and also another non-vanishing eigenvalue.

In section 6, we conclude with a discussion of potential applications.

2. Preliminaries

The Newman—Penrose formalism [2] in 4D is based on using a null tetrad €, n, m and m,
where £ and m are real null vectors and m and ™ are complex null vectors instead of
an orthonormal basis, thus taking advantage of the null cone structure of spacetimes. For
n-dimensional calculations it seems to be more practical to choose a pair of null vectors £, n
and an orthonormal set of real spacelike vectors m®). We thus need two types of indices:
indices a, b, ... with values 0, ..., n — 1 and indices i, j, ... going from 2 to n — 1. We will
observe Einstein’s summation convention for both of these types of indices. However, for
indices i, J, ..., there is no difference between covariant and contravariant components and
thus we will not distinguish between subscripts and superscripts.
The frame

m® =n, m =¢, m¥ 2)
thus satisfies

iy =nng = *m" = n*ml =0, ', =1, mDim) =,
and the metric has the form
(@),,,())

8ab = ZE(unb) + Sijma my .
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If one would like to completely generalize the Newman—Penrose formalism for higher
dimensions it would be necessary to denote Ricci rotation-coefficients and all independent
components of the Riemann, Weyl and Ricci tensors and then rewrite all frame components
of the Bianchi identities (1) and the Ricci identities

s
Va;bc = Va;cb + R achsv

where V is an arbitrary vector, as well as expressions for commutators [8] of covariant
derivatives in the directions of the frame vectors

D = (v, A =nV,, 8 =mv,. 3)

However, in this paper we are only interested in studying consequences of the Bianchi
identities, which are given in detail in appendix B, and thus we do not introduce the Ricci
identities except for equation (103) given in section 5.

2.1. Decomposition of the Riemann and Weyl tensors

In order to construct a basis in the space of 4-rank tensors with symmetries

Ruvea = 3 (Riavlica) + Ricaitan)): 4)
we introduce the operation { }

W(aXpYeldy = %(w[axb]y[czd] + WX YiaZb])- 5

When decomposing the Riemann tensor in terms of the frame vectors we also have to
take into account that

Ra{bgd} =0. (6)

Now let us decompose the Riemann tensor into its frame components and sort them by their
boost weights (see [1]):

, G
Rupea = 4R0i0jn{am1(;)”cmdj})

1

, —
+ 8R010in{u€bncm% +4R0ijkn{um;;[)m£])ma(i})

. : 0
+4Ro101m(, byn by + 4R01ij”{a5bm£-l)miij})

i () O]

+ 8R0i1jn{am2)ﬁcm;}}) + Rijum|ymy ' mPm)

-1

(k)
d

+ 8R1o1i€{anbﬁcmf;; +4R1ijk£{amg)m£j)m )

-2

+ 4R1,<1j6{aml(j)écm;]}) .

The Riemann frame components in this relation are subject to constraints following from (4)
and (6),

Roijo)j1 = 0,

Roi(jiy = Rogijry =0,

Rijxi = Ryijrny, Rigjiy =0, Roiij = 2Ropij ) (N
Riigivy = Rujry =0,

Rijipyjy = 0.
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Let us check that we have an appropriate number of independent frame components. It is well
known that an n-dimensional Riemann tensor has
n2m% =1
12

independent components. Counting independent frame components of various boost weights,
we obtain

®)

2,-2 1,—1 0

5 (m(m2+ 1)) +2 ((m +Dm@m — 1) +m> N m*(m? — 1)

+m’+ 1,
3 12

where m = n — 2. This is in agreement with (8).
Similarly, it is possible to decompose the Weyl tensor but due to its tracelessness we have
the following additional conditions:

Coioi = Cri1i =0,
Coroi = Cojij, Cio1; = Cyjij, 9
2Coi1; = Coij — Cigji, Coio1 = _%Cijij~

It is well known that an n-dimensional Weyl tensor has

n+2)(n+ Hnn —3)
12

independent components. By counting the independent scalars of various boost weights, we
obtain

(10)

2.-2 1.-1 0
((m+2)(m— 1)> ((m+1)m(m— 1)) m*m? —1) m@m—1)
2 ———— ) +2 + + ,

2 3 12 2

which is in agreement with (10).

The primary algebraic classification of the Weyl tensor in higher dimensions [1] is based
on whether all Weyl frame components of a boost weight higher than a specified number can
be transformed away by an appropriate choice of the null direction £. If it is indeed possible,
we call the corresponding direction a Weyl aligned null direction (WAND) of an appropriate
order (0, 1, 2, 3). If the set of WANDs of a given order is discrete, we call the corresponding
directions principal null directions (PND).

Type III and N spacetimes admitting a WAND of orders 2 and 3, respectively, were
introduced in [7]. We will use the notation based on that given in [7] which is suitable for
these algebraic classes but becomes rather cumbersome in more general cases. Let us in
accordance with [1, 7] state that a spacetime is of the algebraic type III if there exists a frame
(2) in which the Weyl tensor has the form

‘ o o
Cabea = 8Wi L n,bm$) +8Wyem (I m P e.my) + 8w ,mGe.my), (1)

with W;;; # 0. The case with W;;; = 0 (and consequently from (12) also ¥; = 0) is of the
algebraic type N. Note, however, that in this paper the operation {} differs by a factor 1/8
from that given in [7].

The components of the Weyl tensor ¥;, W;;; and W;; are given by

1 1
¥; = Cioyi, Viik = 5Cuij, Vi = 5C;-
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Note that W;; is symmetric and traceless. W;;; is antisymmetric in the first two indices and
from (7) and (9) it also follows that

W, =205, (12)

Wiy = 0. (13)

2.2. Decomposition of covariant derivatives of the frame vectors

Let us denote components of covariant derivatives of the frame vectors £, n, m¥ by Lap, Ny
i
and M 45, respectively,

) 1y (D)

d
ea;h = Lcdm,(lc nmy -, Ngp = chmgc)m ) ()

d ) i
5, my), = Meam'my".
Since the norm of all frame vectors is constant, it follows that
i
LOa = Nla =Mia = 0.

Also from the fact that all scalar products of the frame vectors are constant, we get

Noo+Lia=0,  Moa+Lia=0,  Mia+Nu=0,  Mja+Mia=0. (14)
We thus arrive at

Loy = L11€aly + Liglany + Lyi€amy’ + Lym €, + Ligm©ny + Lim©Om, (15)
gy = —L11ngly —Liongny —Ll,-naml(f) + Nilmg)ﬁb + N,-Omfli)nb + Nijmgi)m;,j), (16)

ms;)b = —Nilyly — Niolanp — Liyngly — Lionanpy — Nijeamzj)
om0 — Lonm® g omPn + Mm@ m® 17
+Mjm; £y ijhamy + M jom; 'ny + Mum, ' m,’. (17)

2.3. Null geodesic congruences

In sections 3 and 4, we will show that the multiple PND in type III and N vacuum spacetimes
is geodesic. Let us thus study properties of null geodesic congruences in higher dimensions.
Analogous but in some cases not fully equivalent definitions are given in the appendix of the
paper [10].

The congruence corresponding to £ is geodesic if

Capl? xl, & Lip=0.
It is always possible to rescale £ (and consequently also n) in such a way that £,.,£° = 0

and thus also Ly = 0. From now on we will use this parametrization. Then the covariant
derivative of the vector £ is

Cap = Lirlaly + Lyilam + Liym© 0y + LimOm'). (18)
Let us decompose L into its symmetric and antisymmetric parts, S and A,

Lij = Sij + Aij, Sij = Sjis Ajj = —Aji,
where

Sij = Liapym P m I, Aij = Ligym D m .
We define the expansion & and the shear matrix o;; as follows:

1 1
0= e = (ST, (19)

n—2
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. . .
0jj = (E(a;b) — Oéklm;k)m;))m(’)“m(/)b =S — r&‘j- (20)

We will also denote 02 = o; joij. Let us, for simplicity, call A the twist matrix and S
the expansion matrix, though S contains information about both, expansion and shear. For
simplicity we also introduce quantities

S = %[S], A2 = A[J‘A,'j. (21)

1
2
3. Type N vacuum spacetimes

For type N spacetimes the Weyl tensor (11) has the form
Cabed = 8%;i€,,m} L,mY), (22)

where ¥ is symmetric and traceless. Bianchi equations, given in appendix B, now reduce to

DVY;; = —Z‘I’k(i]l]jlj)o — WLy — 2W;; Ly, (23)
Su Wi = —W M Lkl + M itj Wiis + Wigj Ligt + 2L, Wi 24
0= Ly (25)
0 = W;; Ly, (26)
0= LWy + Lipn ¥Vt (27)
0= WA jn. (28)

Let us first show that from equation (26) it follows that the multiple PND £ in type N
vacuum spacetimes is geodesic. For simplicity we will denote L; as L;.
The contraction of i/ with k in (26) leads to

\I"ijLi =0.
Now the contraction of (26) with W;; gives
\Ijik \I/,'ij =0.

Note that in type N spacetimes W;; W;; > 0 and thus the previous equation implies L; = 0 and
£ is indeed geodesic.
By substituting L = A + S into (27) and using (28), we obtain

Sk[j qjm]i + Si[m"pj]k =0. (29)

Let us now study in detail consequences of equations (25), (28) and (29). It is possible
to find a general solution of these equations by taking into account their various contractions
(hereafter we assume S # 0 and A # 0; the non-twisting case can be obtained as a special
case with A = 0).

Contracting i with j in (28) gives

WicAim = VinAik = U.A+A- ¥ =0 (30)
and contracting k£ with j in (29) leads to
\I"iijm""‘I"ijij =285Y;, = W.S+S5.¥=25". 31D

The previous two equations imply

V.L+L-¥=25".
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By contracting i with m in (31) we get

\Ifl'j Sij =0 = ‘-I—’,'J'Lij =0. (32)
From (25) and (30) it follows that
\IfkiSkj = ‘-IkaSki = v.S-S.¥=0. (33)

Let us denote a trace [P - ¥] as p. Now we are in a position to formulate the following lemma.

Lemma 1. In vacuum type N spacetimes with L # O the following relations are satisfied:

() ¥.8 =S50, (34)
(b) S-5=58, (35)
() A-S=S8-A=SA, (36)
(d SA.-A=-A%S, (37
(e) 25¥.W = p8S, (38)
(f) SL-LT =SLT.L = (5*+A%S. (39)

Proof.

(a) This equation is a direct consequence of (31) and (33).
(b) By multiplying (29) by S;, and using lemma 1(a) we get

Wi SimSip + SWpSkj = WimSijSip + SYp Sim -
An appropriate linear combination of this equation with (29) leads to

Wi (SimSip — SSmp) = Vi (SijSip — SSp;),
which, denoting X,,,, = S;,,Sip — SS,p, takes the form

Wi Xonp = Wi X jp- (40)
Note that the matrix X is symmetric. Now contracting k£ with j gives

VX, =0. (41)

Multiplying (40) with X, and using (41) leads to X,,, X,,, = 0, which, contracting p
with r, gives X,,, X, = 0 and consequently X,,, = 0.
(c) Multiplying (28) with Sy, and using lemma 1(a) leads to

Yij AkmSkp + SYipApj + Vim A jiSkp = 0. (42)
Now contracting i with m and using (30) gives
YijYi, =0, (43)

where Y, = A Sip + SA;p. Now substituting Ag; Sy, = Yip — SA;p into (42) and using
(28) leads to

Wij Ymp = l[’im Yjp~ (44)

Multiplying (44) with Y, using (43) gives Y,,,Y,,, = 0 and consequently Y,,, = 0.
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(d) Let us define another symmetric matrix B by Bjx = A;;A . Note that [B] = —2A2.
Multiplying (30) by A,, and again applying (30) leads to

VikBir = Yir Bik. (45)
Multiplying (28) by A, leads to

VYij Bir — ik Bjr + Yim Ajk Apr = 0, (46)
which after contracting k with r gives

VikBjr = —A*W;j. (47)

Multiplying (46) with By, and using (45), (47) and (30) leads to By, B;, = 2A* and
similarly multiplying (46) by Sy, results in By, Sy, = —2SA%. Let us now define a
symmetric matrix @ by

Qij = SBij +AZSij.
Using previous formulae it turns out that Q;; Q;; = 0 and thus Q;; = 0.

(e) This follows from multiplying (29) by Wy;.
(f) This follows directly from lemma 1(b)—(d). O

Let us now use lemma 1 to prove the following lemmas for vacuum type N spacetimes
with L # 0.

Lemma 2. The matrix S has at most two eigenvalues . = 0 and ). = S.
Proof. Let us denote the eigenvector of S by &. We thus have §;;&; = A&,. By multiplying
lemma 1(b) by & we obtain
SiiSikén = SSuk = A’ =S)
and thus A =0or A = S. ]

Lemma 3. The following statements are equivalent:

(a) Vector & is an eigenvector of S for the eigenvalue ) = 0.
(b) Vector & is an eigenvector of A for the eigenvalue ) = 0.
(c) Vector & is an eigenvector of ¥ for the eigenvalue A = 0.

Proof.

(a) = (b): Suppose that S;;&; = 0. Then by multiplying lemma 1(c) in the form
SijAjk = SA,‘/( by Ei we obtain AikSi =0.

(b) = (a): Suppose that A;;§; = 0. Then by multiplying lemma 1(d) in the form
SAjjAj = —A2Si by &, we obtain ;& = 0.

(a) = (c): Suppose that S;;5; = 0. Then by multiplying lemma 1(a) in the form
W;;Sir = SWi, by & we obtain W; & = 0.

(c) = (a): Suppose that W;;§; = 0. Then by multiplying lemma 1(e) in the form
2Sq/ij\yjk = pSir by & we obtain S;; & = 0. O

Lemma 4. Every eigenvector of W is also an eigenvector of S.

Proof. The case A = 0 is solved in lemma 3. Let us now suppose that W;;&; = A&, L # 0.
Then by multiplying lemma 1(a) in the form W;;S;; = SW;; by & we obtain S;;&; = S&. U

Lemma 5. The only possible eigenvalues of ¥ are A = 0 and » = £/p/2.
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Proof. Let us now suppose that W;;&; = A§;, L # 0. Then thanks to lemma 4 §;;§; = S&;.
By multiplying lemma 1(e) in the form 25W¥;; W ;i = pSix by & we obtain 22 =p/2. O

For every symmetric matrix W there exists an orthonormal basis of its eigenvectors &/
in which

Wi = Z)\afiaé%f

Let us denote eigenvectors of ¥ corresponding to A = 0, = /p/2 and A = —/p/2 by

u®, v4 and 'wA, respectively. Here indices o, 8,..., A, B,..., and A, B, ... distinguish
between vectors ', ..., u®x vl .. vt and w!, ..., w™, Now we have
ij = Evivj—wiwj.
Note that for indices &, 8, ..., A, B, ... and A, B, ... we also observe Einstein’s summation
convention. Thanks to lemmas 3 and 4
A A A A
Sij = S(vf v+ w; wj). (49)

Let us now multiply (29) by v{! vf . This leads to

548 (@S[, + S\IJ,-,) = Sy 2pvfvf

which for A # B gives v'v? = 0 and thus just one value of index A is possible and
consequently Ap.x = 1. Let us thus denote v! by v. Similarly, we can find that Amax = 1 and
that there is thus just one vector w = w'. Equations (48) and (49) now take the form

[P
\pij = E(v,-vj—w,-wj), S,'j =S(vivj+wiwj). (50)
Let us now introduce a new vector V' by
V,' = Aijvj~

Thanks to lemma 1(c) and (d) we have
Si;jVi = SijAirvr = SV, Vivi =0, ViV, = A?

and thus V is just a multiple of w (wi = :I:% V,~) and we have freedom to set w; = %Vi. Then
we have

A[jijAw,', A,-jwj:—Avi.
Now by multiplying equation (28) by v;v; we get
Ax = A(wgyy — vwy). (5D

Note that ¥, .S and A given by (50) and (51) satisfy equations (28), (29) and thus represent
the general solution of these equations for L # 0.

4. Type III vacuum spacetimes

For type III vacuum spacetimes the Weyl tensor is given by (11), where W; ;. satisfies (12) and
(13). The algebraic equations

Wik L = L Wj, (52)
Wi Lip = Wi Ly, (53)
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Lijj Wiy + 2L ;| WYsij = 0, (54)
2A0 /1 Yrmy + Lig Vi — LV jmy = 0, (55)

where we denote L;q as L;, follow from the Bianchi equations given in appendix B.

Let us show that from (52) and (53) it follows that the multiple PND £ in vacuum
type III spacetimes is geodesic. By contracting / with j in (53) and using (52), (12) and (13)
we obtain

WL = WL, (56)

One can see that for the class with W # 0 it implies (as we can see by contracting this formula
with L;) that L; = 0. Similarly, for the case W, = 0 these equations also imply that L; = 0
(contract (53) with L; and employ (52) and (56)). Thus, the multiple PND £ in vacuum type
IIT spacetimes is geodesic.

Now the task is to solve (54) and (55). This turns out to be quite complicated. We will be
able to find a general solution in an arbitrary dimension in the non-twisting case with A;; =0
(see appendix C.1). We also present a solution for the twisting case, but we can prove that it
is a general solution only if we assume that W;;; is in a ‘general form’. In appendix C.2, we
show that this solution is indeed general in all degenerate cases in five dimensions.

Let us start with extracting some information from (54) and (55) by various contractions.
By contracting (55) and using (54) we get

L“I'[ijk + 2L[,’|5‘~I—’5k|j] — 2Ssk“yijs + L[i|k\IJ|j] = O, (57)

where L = 25 is the trace of L. After adding (54) (where we replace indices i, j, k by k, i, j,
respectively) to (57) we obtain

LW;j + 4S5 Wk j1 — 28 Wijs + 28k W1 = 0, (58)
which does not contain A—the antisymmetric part of L, and similarly

LWijp — 4V Ay — 2 A e — 2W55, S5 = 0. (59)
Contraction of i with j in (54) leads to

LW, — 2LV + 2LV, =0 (60)
and contraction of £ with j in (58) (using (12) and (13)) to

LijV; = 2L ;W 61)
and (60), using (13), with (61) imply
L\IJI‘—Lij\pj—ZLji‘-IJj-’rZij\If,‘jk=O. (62)

By substituting L = S + A into (60) and (62) we get
LW; —385;;V; —A;iV; +2(Sjx — Aj)Vijxr =0 (64)
and their linear combinations give

L\I—’i +4A,]‘~I—’J — 4(Sjk + 2A]k)"pl]k = O’ (65)
LY; —48;¥; +48; W = 0. (66)
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By multiplying (54) by L;; we arrive at
LijLy¥; = 30V, (67)

where ¢ = LlJLl]

Inspired by the type N case, we again choose an orthonormal basis of eigenvectors of S.
We will denote vectors corresponding to non-zero eigenvalues of S as v', v?, ..., v and
vectors corresponding to the eigenvalue 0 as u', u?, ..., u®=. We thus have

Amax

Aavid (68)
=2

Unfortunately, there are three indices A in this formula and we thus will not use Einstein’s
summation convention for indices A, B, ... (though we will still use it for indices «, 8, .. .).
Let us now decompose other quantities appearing in (54) and (55)

A
v = E apv; +bau?‘,

,J—ZAAB v vB—v v ZBA,g v; uﬂ—v ut )+Caﬂ(u jﬁ—u‘;uf),
AB

W = ZMABC(viAvj —vivf )y +ZNABV vio? —vtuf)ul (69)
ABC AB
+ ZOAﬁC(leu —vAu’3 )i +ZPAW v} uﬂ —v?uﬂ) 14
A

+ ZRaﬂc(uf‘u —u" uﬁ)vk +Saﬂy(u f - u‘;‘ufg)uz,

where A, C, M, N, R and S are antisymmetric in the first two indices. Now we need to rewrite
some of the equations from this section in terms of these new quantities (more complicated
equations are given in appendix A).

From (12) and (66), it follows that

an =4 Magg +2Pags. (70)
B
ba =2 Opap +4Supp, (71)
and
(L —4ig)ap = —8 Z)\BMABB’ (72)
Lby =4 15Opas. (73)
B

respectively. Equation (58) implies

LS.s, =0, (74)
(L = 2Ac)Rapc =0, (75)
LPgyy +2XpPpya =0, (76)

(L — Z)LC)OAﬁC + 4)\-ANACﬁ + )\AbﬁsAc = O, (77)
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2A4AOA}/B —ZABOB)/A+2LNABV =0, (78)

(L —2Xkc)Mapc +20aMycp +2hpMcpa + Acdcraar =0, (79)
and (13) leads to

Paipy) + Rpya =0, (80)

Opaipicr + Neap =0, (81)

Miapcy =0, (82)

S{ABC} =0. (83)

In the twisting case, equations (54) and (55), without specifying dimension, are quite
complex, and there are too many distinct cases to be solved. We thus present the solution
provided L # 0 and provided that for every pair A, C (A # C) there exists f for which
Oupc # 0. It turns out that the only eigenvalues of S that are compatible with (54) and (55)
correspond to Apax = 2, A1 = L/2, A, = L/2. We also checked other cases (but not all of
them) and they also lead to the same conclusion. For completeness, we treat all other possible
cases in five dimensions in appendix C.2.

A linear combination of (78) and (81), [(78) — L (81)], gives

QAa+L)O4yp = 2Ap +L)Opy 4. (84)
For A 5 B [(77) — 24 (81)] leads to
(L +2xp —208)O0ny B = 22408y alaB, (85)

and [2A4 (84) — (215 + L) (85)] gives
2

<xi + A% — Aakp — T) Oayp = 0]axp. (86)

If O4, 5 # 0, we obtain from (86)

2 2 L2 —
Wit hp = hahp — = 0lax5- 87)

If for each pair A, B there exists y such that O, p # 0 then (87) is valid forall A, B, A # B.
In the case A = 2, we have L = A; + A» and equation (86) leads to (A; — A»)> = 0 and
consequently A; = A, = £.

In the case Amax > 2, by subtracting

12
<ki +Ag = hake — 7) = 0lazc (88)
from (87) we obtain

(Ap — Ac)(Ap + Ac — Aa) = Olaxp axc.BxC
and thus

Ag—Ac=0 (89)
or

A +Ac — Aalaxp axc,Bzc = 0.

However, in the second case one can show that simply by summing this equation with
interchanged indices

()\-B"')‘-C_)\A=0)+()\B+)‘-A_)‘-C=0):>)\A =0
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which cannot happen as A4 # 0 by definition and thus (89) is satisfied and by substituting
Aa = Ap = A in (87) we obtain A = :I:%. Note however that ZA Aa = L and thus the case
Aa = —L/2is excluded and A,x = 2. Thus we can conclude with

Lemma 6. For vacuum type Il spacetimes with L # 0, providing that for every pair A, C
(A # C) there exists B for which O spc # 0, the expansion matrix S has just one non-vanishing
eigenvalue S = % which has multiplicity 2.

Let us now study the case with two non-vanishing eigenvalues of S, A} = A, = L/2, in
general, i.e. without any assumptions about O 4g¢.

4.1. The case Amax =2, A1 = Ay = L/2and V; #0
From (74) and (76) it follows that

Saﬂy =0, PAlgy = —'PAy,g. (90)
By assuming that the index A # C in (77) we obtain
NAcﬁ =0.

Since N is antisymmetric in the first two indices, N, acg = 0 for all combinations of indices.
By substituting A = C in (77) we obtain

bg=0
and thus \; is an eigenvector of S corresponding to L /2. Equation (77) now implies
Oapc = Ocga
and (71) implies
> Oupa=0. 91)
A

Substituting A # C, B # C into (79) leads to
Mapc = Olazc,Bxc,
(70) leads to
a) = 4ZMABB = a; =4Min, ay = 4Moay (92)
B

and (80) gives
Papy + Rpya = 0. (93)

Substituting the index B = A into (A.5), summing over the index A and using (A.1),
(92), (91) and (90) we arrive at ) , Bagaa = 0. Consequently, the vector ®

(bi = Aij\pj = ZZAABaBU,'As
B

which is orthogonal to W;, is also an eigenvector of S. We thus have two orthogonal
eigenvectors of S, W; and ®;. Let us denote W;¥; by 1> and ®;®; by ¢>. Now we
choose an orthogonal basis with these two vectors which corresponds to
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In this basis we will denote components corresponding to W; and &; by indices P and F,
respectively. S now takes the form

VY, D0,
This equation implies S;;S;; = 25%. Now using £ = 2(A% + S?) it follows from the previous
equations and (67) that

A ®; = A7

and thus
P = D;0; = DAV = A2 Wy = A%y
A;j as an antisymmetric matrix takes the general form
Aij = Apr(W; @ — W;®;) + Bpg (Viu§ — W,uy)
+BF“(¢””‘; — ®juf) +Cup (Mf‘uﬁ - u"-‘uf)

j J
but from A;;¥; = ®; and A;; P; = A2, we get
1
Bpa =0, APF:_E, Bra =0
and thus

1
Aij = W(@,\I—’] — q)j\p,') +Ca,3(u?u7 — u?‘uf;)

Thanks to (90)—(93) we can rewrite W; ; in the form

1 Opup

U, = ﬁ(\picb_,- — ;) D + — (Win§ — Wjud )Wy — 5 (Piu§ — D juf) Dy
é 14 ¢

o @)

+ L (W — WU D+ — o (D% — D ju?) Wy
2% ¢
P P

+ Pby (\l’;uf —\l/juf)u,};+%(d>iuf —d>juf})uz
P P

— —;ﬁy (ulﬂu); — ufuz/)\llk - —;ﬁy (u?u]; — u‘?uf/)dhc 95)

By substituting (95) into (A.15) we obtain AprPp,s =0, AprPr,s = 0 and since App # 0
we also get Pp,s = 0 = Ppys. Then (A.14) or (A.13) gives CopMcpe = 0 which, since
Mepe does not vanish, implies Cog = 0. In this case we thus have

1

Aij = ﬁ(cb,w, —d,;¥,), (96)
and
1 Opa Opq
Uik = 55 (U @; — ;D) Py + P2P (Win§ — Wjuf )Wy — —PZP (Piu§ — D juf) Dy
2¢ 4 ¢
OPaF o o OPaF o o
+W(%Mj _‘I/jui)(bk"'W(cbiuj — ®juf )Wy o7

We do not need to examine the rest of equations in appendix A since §;;, A;; and W;;; given
by (94), (96) and (97), respectively, already satisfy both equations (54) and (55) and thus
represent their solution.

Note that from (94), (96) and (97) we obtain for type III spacetimes relations equal or
analogous to equations given in lemma 1:
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(@) WS = S, (98)
(b) Sk Sjx = SSij, (99)
(©)  AuSiy = SikArj = SAij, (100)
(d) SApAy = —AS;, (101)
(€) SLiLjy = SLyLyj = (S*+AHS;;. (102)

5. Comments on a possible generalization of the Goldberg—Sachs theorem
for higher dimensions

In sections 3 and 4, it is shown that for type N and III vacuum spacetimes the expansion and
twist matrices S and A have very specific properties given by (50), (51) and (94), (96) for
type N and III, respectively. Note, however, that while in higher dimensions as well as in
4D the multiple PND is geodesic, it is not shearfree forn > 4. The question thus arises whether
there exist some properties of matrices S and A that are satisfied (together with the condition
that the spacetime possesses a geodesic null congruence) if and only if the vacuum spacetime
is algebraically special. The answer is unclear at present. Moreover, the conditions for .S
and A that hold for types N and III are not satisfied for type D spacetimes (see appendix D).
Let us here, as a first step towards such possible generalization, show that from the Ricci
identities it follows that

Lemma 7.

(a) Suppose that an otherwise arbitrary vacuum spacetime admits a non-expanding and non-
twisting geodesic null congruence (i.e. S = 0 = A). Then, the spacetime in question is
algebraically special.

(b) Suppose that an otherwise arbitrary vacuum spacetime admits an expanding and twisting
geodesic null congruence, and that its S and A matrices, in an appropriately chosen
frame, have the form (50), (51). Then, the spacetime in question is algebraically special.

Proof. The contraction of the Ricci identities £4.pc — £a:cp — R®apels = 0 with £4mDPm e
assuming that £ is geodesic with an affine parametrization leads to

5 N
DL;j+ LigLsj+ LisMjo+ LsjMio + Roio; = 0. (103)

If L =5+ A =0then Ryi; = Coio; = 0 for all i, j and the spacetime is thus algebraically
special. This proves part (a) of lemma 7.
If we switch i and j in (103) and add and subtract the two equations we obtain

2DS” + Lissz + Lstsi + 2Si5[\slj0 + ZSS]'ASJZ'O + ZROin = O, (104)
2D A + LisLy; — Ly Ly +2A; M jo + 2A,; Mio = 0. (105)

We further assume that we have chosen vectors ") in such a way that S is diagonal with
the only non-zero entries being Sy, = S33 and that A has only two non-vanishing components
Ayz; = —Asz;. Then (104) takes the form

2 . .
2DS;;+ S(S° = AV)Sy + 28:s M jo +28,; Mio + 2Roio; = 0. (106)

2 3
If i,j > 3 then ROin = 0. If ; #* j < 4 then (106) 1mplles 2850 M3o + 2833 Moo +
2Rp03 = 0 which using (14) leads to Rppo3. If i = j < 4 then again from (106) we get
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2DS + 2(52 — Az) +2Rpp =2DS + 2(52 — Az) +2Rp303 = 0 which together with Rp;o; = 0
gives Ryox = Rozos = 0. For j > 3 and i € (2, 3) equations (106) and (105) turn to be

K 2 3
285isMjo+2Roio; =0 = SnMjo+ Roo;j =0, S33Mjo+ Roz; =0, (107)

s 3 2 2 3
2AMjo=0 = AxMjo=AnMj=0 = Mjo=Mjo=0 (108)

which leads to Rozo; = Ro30; = 0 and hence Ry;o; = Coio; = 0 for all i, j and the spacetime
is thus algebraically special. This proves part (b) of lemma 7. ]

Note also that by contracting 7 with j in (106) we obtain for higher dimensions the same
relation which is also valid for 4D

DS = A% — §2. (109)

6. Discussion

In this paper, we present a higher dimensional frame formalism. The complete set of frame
components of the Bianchi identities, which are in this context usually called the Bianchi
equations, is given in appendix B. For algebraically general spacetimes these equations are
quite complicated. However, for algebraically special cases they are much simpler (e.g., see
section 3 for the type N case). In 4D it is possible to use the Bianchi and Ricci equations to
construct many algebraically special solutions of Einstein’s field equations. The hope is that
it is possible to do a similar thing in higher dimensions, at least for the simplest algebraically
special spacetimes. The vast majority of today’s known higher dimensional exact solutions
are simple generalizations of 4D solutions. The present approach may lead to new, genuinely
higher dimensional exact solutions. Type N and D (see [1, 3] for the definition of type D in
higher dimensions) solutions may be of particular physical interest.

In particular, we study the consequences of the algebraic Bianchi equations for type N and
III spacetimes. It turns out that the principal null direction £ in these spacetimes is geodesic.
For vacuum type N spacetimes with non-vanishing expansion or twist we also prove that
the corresponding components of the Weyl tensor and expansion and twist matrices, in an
appropriately chosen frame, can be expressed as

[P
v = E(Uivj —ww;), Sij = Siv; +wiw;), A = A(wry — vewy).

Note that we do not obtain any constraints for ¥;; in non-twisting and non-expanding type N
spacetimes. We also establish similar results for vacuum type III spacetimes.

The Weyl tensor is said to be reducible if we can decompose it into two parts

Cea = C%eq + C4
where indices a, b, ... have values from O to n — 1, whereas indices @, b, . .. have values
from O to N — 1, and indices a, 13, ... from N to n — 1 [3]. In this sense the Weyl tensor
in vacuum type N spacetimes with non-vanishing expansion or twist is reducible, with a
nontrivial four-dimensional part and a vanishing (n — 4)-dimensional part.

In 4D the well-known Goldberg—Sachs theorem [4] states that ‘a vacuum metric is
algebraically special if and only if it contains a shearfree geodesic null congruence’. This
theorem (and also its non-vacuum generalizations—see [5]) is very useful for constructing
algebraically special exact solutions. At present it is unclear if and to what extent this theorem
may be generalized for higher dimensions (see section 5 for details).
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Recently, all 4D spacetimes with vanishing curvature invariants (i.e., vanishing invariants
constructed from the Riemann tensor and its covariant derivatives of an arbitrary order—VSI
spacetimes) were determined in [6]. In [7], the generalization to higher dimensions was
discussed. All these spacetimes are of type III, N or O. The results presented in this paper
will enable us to explicitly express curvature invariants involving derivatives of the Riemann
tensor in higher dimensions. For example, for type N vacuum spacetimes we obtain, thanks
tolemma 1,

I = Cude;pqCamcn;pqCtmun;rsctbud;rs _ 322101)2(52 + A2)4.

Consequently, we will be able to prove that higher dimensional VSI spacetimes are expansion
and twist free, thereby proving the assertion made in [7] (see [8]).
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Appendix A. Components of equations (54) and (55)

Equation (54) gives

Catpby1 + D BrpPraty) +4Cop1Spaty) = 0. (A1)
F
anﬁac + Bco,bﬁ — 2)LCPCaﬂ + Z 4ACFPFaﬂ +2 Z BFﬂoFaC
F F

+ 8C¢5R¢ac + 48@¢8¢aﬂ = 0, (AZ)

Baipby) +4 Y BrigiNraiy) — 4CorpPagty) = 0. (A.3)
F
2808ac — AcOcas + Bicla@s1 +4 Y Aris1OFaic) + 4B Ragic) = 0, (A4)
F
)»A(SABby — BAVaB + ZAABby + 4)\3./\/’314), +38 ZAFBNFAV
F
+2BB¢PA¢y _4ZBF)/MFAB +4C¢VOA¢B =0, (A.S5)
F

Aadarpacy + 2Aapacy) + 2ApMpac — 2hcMcas

+SZAF|B\MFA|C] +2B[3|¢OA¢|C] =0. (A6)

F

Equation (55) leads to

2C(apSysiey + CstaSpery — CyiaSpeys = 0, (A7)
2Cp:Rysa + Coe| Paipy + Co1pPajers + 2BaipSysie) + Bary Speis) = 0, (A.8)
2CiapPcsie) + 2Cs1aRpeyc — BeiaSpsys = 0, (A.9)

—4Biae Rys8) + BigisPiatey — Bisly Piajes +4C1s1eNagjy) + 4AapSyse = 0, (A.10)
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2Baig1Pesis + BergPajers +2Cp:Ocsa — 2Cs18/Oaje1c — BasRpec
— (Aadac +2Aca)Spes =0, (A.11)
4C1upiNepiey + BpiaRpeyc — BeeRpeyp = 0, (A.12)
4CupMepE +4BENepig) + Boig|Okjaic — BeigiOkjaip
+2)ME8E[DRaﬂ\C] + 4~A[D|ERaﬂ\C] =0, (A.13)
2Cay MpED + BpaNpEy + 28810 Ony E] + Bily Okain) — 2A8EPDya
+2AD[BPE]0(;/ + )"DaD[BPE]OtV = 0, (A14)
Biajy Naes + BiaisNaiey + Bery Nasis) + 2A1a8 Rysiey = 0, (A.15)
4BgieMcepis) + 2BpjeMsEeic) + 4AsENCc D + 2Ap1OE e + 2AciEOBlab
+ A0 OFaic] + AESEC|OBaip) = 0, (A.16)
Biajy Mgeip — 2A148Opy e} + 2Ap(aNBE), + Ap8p(aNBE), =0, (A.17)
4AugMcepiey + 2ApiaMpeic — 2AciaMBED
+ApSpaMpeyc — AcdciaMpeyp = 0. (A.18)
Appendix B. Bianchi equations
DRyo1; + ARo10i — 8i Rotor = 2Ro10i L131 — Rio1iL1o — RotisLs1t — 2Ri015Lyi
+2Rp1ji1s Lsj0) — Ro101 Nio — 2Ro10s Nsi + Ro1i5 Nso
5 5
+2 Rogsp01i Nsj1] — Rotos Mi1 — Rio1s Mo, B.1)
—A Rojj + 281 Rio1ji) = 2R011j1L1jiy + 2Rv017i1 Liji1 + 2Rupijis Ls)j1 + RisijLst
+2Ro101 Nyji1 + 2Ro101; Nijt + 2Rouyits Ny|j1 + 2Ros11j Nsji)
s N
— Rosij Ny1 + 2Ro1jiis M j11 + 2R1015 M (i1, (B.2)
—DRoy;j + 811 Rotoj1 = 2Ro101 Liij1 + 2Rororj1 L 1i1 + 2Rougijs Ls) j1 + 2Rorij1s L) j1
+2Ri011i L jjo + Risij Lo + 2Ro10r; Nito + 2 Rop jjos Nyjig
N s
— Royij Nyo + 2Ro11iis M| j1o + 2Ro10s M i1 (B.3)

DRyj1j — ARgj1i — 6jRio1i = 2Ri01:L1j) — 2Ryi1L1o + 2Ryigjs Lsjiy + 2Ro10111Nigj)

—2R101i Nijyo + 2Royjis Nsj11 + Ros1i Ngj — 2Ry ij)s Nso

N N N
+ 2Ry j1s Mij + 2Ryoi51: M jj1y + Riois Mij,

DRy;1j — ARoioj + 8 Rotoi = 2Ro101jLij1) + 2Ro10i L(1jy — 2RoiojL11 + Rio1jLio
+2Roifjis Lsj11 + 2Ropjjis Lsjiy — RijisLso + Ro0i N jo + 2Roijols Ny j1

5 5 N
— Roros M ij + 2Rogi01; M i1y + 2Roifois M j11

—DRij + ARorij — 8k Ro1ij = —2Rop1ij Lt + 2Roki Ljn + 2Ryo1 L jik

— 2Rk Lijjo + RuikijLio + 2Rpiysij Lk — 2Ro101i Njie — Rotij Nio

5
+2Ropijor Nij1t + 2Rop 11k Njito + 2Rkisij Nsjo) + 2Ro1gijs M| j1k

S S S
+2Ropkjs Mijn + 2R1jkis M jj0) + 2Ry115ij M k)01,

(B.4)

(B.5)

(B.6)
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A Rojji + Ok Roin)j1 = 2Roingj Lkt + 2Ropiji Ly + 2Rvo11j1 Lijg + 2Ruk)is Ls) 1
— RisjxLg1 + 2Ro10i Nijiy + 2 Roiorj Niqt + 2Roigxis Ns| 1

5 5 5 s
+2Roi1s Mkj1 + 2Ros1ik Mi)j1 + 2Roipkis M1 j11 — Rosjx M1, B.7)

D Ry;ji + 8tk Roio|j1 = —2Ro10i L i) + 2Rorok Li|j1 + 4 Roiogj) L1k + 2Roinj Lo
+2Ropijx Lo + 2Roikis Ls j) + 2Rogrjis Lsj1 — RisjkLso + 2Roiorj1 N0

N N 5 s
+2Roios Mkj1 + 2 Ropkjos M i) j1 + 2 Roitkis M1 j10 — Rosjx M io, (B.8)
DRy;ji + 81k Rojjii = 2Rio1i Lijxy + 2R Lo — RuijeLio + 2Ryirgs L)
+ Ro10j Nik + 2Ro1jik Nijo) — 2Ropxj1i Vi j1o + 2Roprjis Ns|j1 — Risjk Nso
5 5 5 5
+2Ropk)1s My j1 — 2Ros1i M1ji) + 2R1ifk)s M j1o — Risjx Mo, (B.9)
ARyjji + 8k Ruinyj) = 2R L + 4Rk Liyj) — Ruije L + Rot jeNit + 2Ropjj1i Ny
+2Ri011k Nijj1 + 2R101i N1 + 2Ruigk)s Ny j1 + 2R1prjis Ny j1 — Risjx Nst

S S S s
—2Ryj1s Myjig + 2Ripinis Mijj) + 2Ruipes M jn — Risje M, (B.10)

=8| Ro11jky = Rio1ii L jky — Riorgi Lijy + RisijiLsiky + Rotogi Nikjy — Rooii N jry
N N
— Royij Nk + 2Rogpijx Ny j1 + Rotgils M jxy — Roigijs M kjy» (B.11)
—DR;jkm + 81k Rojm1ij = 2Ro1ij Ligm) + 2Rokp11j Lyiym + 2Ropmni L jiky + 2Romi j L1k
+ 2R jikm Lyito + 2R 1pm)ij Lo + 2R;jikis Lsim) + 2 Roiopm N jjk)
s
+2Rojotk Niym1 + 2Rop jjm Nyjijo + 2 Ropmyij Nikjo + 2 Rogrjis M jim)
N N N N
+2Ropm|js M ik + 2Rosij M gem) + 2R[ijskm M | j10 + 2R jik)s M im10, (B.12)
—ARijkm + Stk Ripmyij = 2Ruipm L jig + 2RugjjeLjiym + 2R jiem Lijy + 2Rukij Liim
+2R1pij Lix1) — 2Ro01i Nijom) + 2Rogijim Ny jik + 2Rogj11k Njim
N
+2Rojikm Nyijt + 2Romij Ny + 2R jik)s Nsjm) + 2R1kgi)s M| jim

s N s s
+ 2R mpjis M itk + 2R15i Miom) + 2R jik1s M im11 + 2Rpijskom M 115 (B.13)

8j1R1ipmiy = Ruingj Lmnky — Ruingj Limy + Ruigjk) L1ymy + Rotgjm Nijky — Rogj1i Njiom)
5 5 s
+ Rogj11i Nimky + Risjk| Nsimy — Riigjis Mimky + Ruigjis M ikmy + Risjx Mijmys
(B.14)
8¢j1 Roiymiy = Rotgjki Lijmy — Roirgj Limy + Roit(j Lmky + Roigjm L1y + Risqjk) Lsim)
s 5 5
+ Roio(j Nmky — Roiogj Nim) + Roigjis M kmy — Roigjis Mimky + Ros{jki Mijm)»
(B.15)
Sk Rijinmy = Rijtm| Litny — Ruitkm| L jiny — Rigkij Limny + Rugriij Linm)
+ Rojikm Niiny — Roitkm| N jiny + Rogklij Ninmy — Rogkiij Nymn)

S s S S
+ Rijtkis Mymny — Rijkis Minmy + Ristom) M jiny — Rjstiom| M ijny- (B.16)
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Appendix C. Proof for vacuum a type III spacetimes

C.1. Non-twisting case in an arbitrary dimension

In this case, A = 0 and thus L = S is symmetric (we assume S # 0 since in the non-twisting
and non-expanding case both sides of equations (54) and (55) vanish).
From (60) we obtain

L

Note that providing ¥; # 0 from (C.1) and (67) we obtain L? = 2¢ and thus the case L = 0
leadsto S = 0.

Equation (59) leads to
LW;j = 2W;j S, (C.2)
which using the decomposition (69) implies
LNag, =0, LPyp, =0, LSy, =0, €3
(L —2Ac)Mypc =0, (L —2Ac)Oupc =0, (L = 2xc)Rupc = 0.

First study the case with L = 0. From equations (C.3) we get Mapc = 0, Oppc = 0,
Rapc = 0and thus from (76) and (81) Pag, = 0, Nap, = 0and further from (A.11) Spp, = 0
which imply W;;x = 0, i.e., type N or O spacetime and thus there are no non-trivial solutions
of (54) and (55) of type III with L = 0.

Now we may proceed to the case L # 0. Then (C.3) and (80) imply

Nagy =0, Papc =0, Sapy =0, Rapc = 0. (C4)

From (C.1) we get

Aaap = %aA, and b, =0, (C.5)
which leads to

ay, =0 or g = (C.6)

(1) If all a4 # O then all A4 = L/2 (C.6) and thus Ayax = 2,41 = Ay = L/2. The
corresponding solution is given by (C.20).

(ii) If at least one a4 # O then corresponding A4 = L/2 and from (79) with B = C # A and
(A.6) with A = C # B and after interchanging A with B we get

2L —4hp +4hy
ay = ——————MupplB+a, (C.7)
AB
A
as = 4A_MABB|B#A- (C.8)
B

Comparing the right-hand sides we obtain 2L — 4Ap + 414 = 414 and thus Ap = L/2
for all B # A. However, the remaining A4 = L /2 and in this case again A, = 2, A; =
Ary=L/2.
(iii) If all a4 = O then (C.8) implies
Mapp =0 (C.9)
for all A, B. We treat separately the case with all M pc = 0 and the case with some
Maupc #0.
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(A) If all M pc = 0 then there exists at least one non-vanishing O 4g¢ in order to have
a type III Weyl tensor.
For Anax = 3, from equation (A.16) for B =C,C # E,C # D, D # E we get
AcOgqop = 0 which implies that all Ogyp = O|gp. Equation (77) with C = A, i.e.,
(L — ZA.A)OAﬂA = 0, 1mphes

L
OAﬂA =0 or )»A = E (ClO)
From equation (A.16) (for B=C,D = E,C # E)
AcOpap = —ApOcaclpxc. (C.11)

If there exists Ac # L/2 then from (C.10) O¢yc = 0 and thus from (C.11) all
Opep = 0 and W;j; = 0, the spacetime is of type N or O. The other possibility that
all A4 = L/2 is not compatible with A,x = 3 and s0 Apax < 2.

For A = 2, (71) with (C.11) imply

L
)\2 = )»1 = E and 02,32 = —0151 (Cl2)
or O = O1p1 = 0. In the second case, equation (81) implies
0251 = 0152 (Cl3)

and from (78) (or (A.4)) we get A, = A} = L/2.

For Apax = 1, from (C.10) we immediately get O;5; = 0, type N or O spacetimes.
To summarize, the case Mspc = 0 (V A, B, C) always leads to Apax = 2, A1 =
Ay = L/2 or to type N or O spacetimes.

(B) Let us now assume, for Ap, > 4, that there exists M pc # 0|p2c. Then (A.18)
forC # D,A# D,A# C,B=D,C # E and D # E implies ApMgc =0
and thus all M4pc = 0|p.c which is in contradiction with our assumptions and
consequently A < 3.

Equation (79) with C # A and B # C and (A.6) gives

(L =2hc+2200)Mcap = (L —2hc +22p) Mcpalcxa.c#B, (C.14)
AaMcap = ApMcpa. (C.15)
These two equations lead to
(L =2xc)Mcap = (L —2Ac)Mcpa (C.16)
and so either
L
Ac = 7 A AaMcap = ApMcpa (C.17)
or
L
Ac # 7 A Mcap = Mcpa AraMcap = ApMcpa, (C.18)
i.e.,
Mcap =Mcpa =0 or Mecap = Mcpa 0 A Ay = Ag. (C.19)

Let us assume that A, = 3. Let Ay #% L/2. Then the case (a) M3 = M3, =0
(C.18) implies Mj3; = 0 (82) which is the case Mypc = 0 studied above (A).
The condition (b) M3 = M3, # 0 (C.18) also implies Mj3; = 0 (82) and for
Ay # L/2 we get Mpj3 = Mpz; = 0(C.18) and thus also M3 = 0 and this is again
the case M spc = 0. However, if A, = L/2 then A; M3 = Az M3 = 0(C.17) and
since Mj3; = 0 we again obtain the case M 45¢c = 0.

If Ay = L/2then A, = L/2immediately implies A3 = Oand A, # L /2 corresponds
to the case analysed in the previous paragraph.

Amax < 3 again leads to all M pc = 0 (C.9).
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To summarize, the general solution of (54) and (55) in the non-twisting case may be
written, substituting (C.4), (C.5), (C.8), (C.12) and (C.13) into (69), in the form

1 2 L 1.1 2.2
v; =4M122UZ~ +4M2110i, S,'j = E(Ui vj+vi Uj),

_ 1.2 1,2\ 2 2.1 2. 1y,1 1 o 1 oay, 1
Vi = 2M122(vi v, — Ujvi)vk +2M211(vi v — vjvl-)vk +(910,1(vl-uj —vju; )vk
2 2« 1, « 1 «

2 2 2 2 |
— Orar (V7§ — v7ud ) vg + Oraa (v u§ — vjuf )vi + Oran (V7§ — viuf)vy.
(C.20)

C.2. Twisting type 11l spacetimes in five dimensions

In section 4, we studied possible non-zero eigenvalues A4, A = 1, ..., Anax, of S which are
compatible with equations (54) and (55), providing that for every pair A, C (A # C) there
exists B for which O,gc # 0. It turned out that it follows from (54) and (55) that A, = 2
and A; = A, = L/2. Here we study all other possible cases in 5D and show that the only case
with non-vanishing eigenvalues of S is A = 2 and A; = A, = L/2. The corresponding
form of W;jx, ¥;, S and A is given in section 4.

In 5D, Anax can have values 0, 1, 2 or 3. We will treat these cases separately (the cases
Amax = 0 and A« = 1 can be easily solved in arbitrary dimensions).

(1) The case Amax = 0 (globally) corresponds to S = 0 and one of the Ricci equations gives
DA = AA, which implies (take trace of both sides) that A = 0. Thus, in an arbitrary
dimension, as in 4D, there are no non-expanding, twisting spacetimes.

(i) If Apax = 1,1, 4y = L # 0, then Magc = 0, Nyp, = 0 and A4z = 0. From (74)
and (75), it follows S,g, = 0 and Rgc = 0. Equations (80) and (76) give Pag, = 0.
From (77) and (71), it follows bg = 0 and Oag4 = 0. Thus, the case A, = 1leadstoa
type N or O spacetime.

(iii) In the case Apax = 2, dmax = 1 and thus, thanks to antisymmetry, Rqogc = 0 and
Supy = 0. Then from (80) Pag, = Pa,p and from (76) Ppy, = 0o0r Ag = —L/2.

Let us proceed further assuming that at least one non-vanishing O exists:
From (77) and (81), it follows that O, = 0 is equivalent to O,; = 0. Similarly, from
(77) and (71), O111 = 0 1is equivalent to 01, = 0.
The case Oi12, Oz11 # 0 was analysed in section 4 and leads to Ay = A, = L/2. If
O112 = 0= Oy and Oy, Oz12 # 0 then (81) gives Nap, = 0 and from (77) and (71),
AM— A Ao — A
Al o
follows A1 = A, = L/2. Next we have to analyse possible cases with O 5c =0V A, B, C.

Let us now assume that all O’s are zero and at least one M is non-vanishing. From
(79) for B = C and B # A and from (72) we get

Oap2 = —=2(O1p1 + O2p2), (C.21)

Aar = 2(3A; — )M, (=3A1 + A2)ar = =8 M, (C22)

)»1612 = 2(3)\2 — )\1)./\/1211, (—3%2 + )»1)612 = —8)\1./\/1211. (C23)
If aj # 0 (and thus also Mjy # 0) then the ratio of equations (C.22) gives
(BAy + X2) (A1 — Ay) = 0 which has solutions

)\,2 = )\.1 or )\,2 = —3)»1. (C24)

Similarly, if a; # 0, Mj;; # 0 then the ratio of equations (C.23) gives (31, + A1) (Ay —
A1) = 0 with solutions A, = A; and Ay = —3A,. Thus for a; # 0 and a, # 0, the only
solutionis A, = A; = L/2.
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If only one ay # 0, without loss of generality a; # 0 and a, = 0, then Mj;; = 0
and from (70) P,;; = 0 and from (A.14) it follows P;1; = 0. For the second solution
in (C.24), ., = —3X, from (C.22) and (70) we obtain a; = —4 M, and a; = 4 M7,
respectively, and thus this case does not occur.

If a; = 0 = a, then (C.22), (C.23) imply that all M’s are zero and from (70) also all
P’s vanish, which leads to type N or O spacetime.

(iv) For Apax = 3, the only components of W;;, W; and A;; are Mypc,aa and Ayp,
respectively.
From (79) with C = B we obtain the equation
2L +4) 4 — 4hp
ap = —————————Muapplp+a (C.25)
AB
which together with (70) gives
2L +4x; — 4, 2L +4x; —4)3
) = ——————Mipp = —————Mi33 = 4(Min + Mi33), (C.26)
Ao A3
2L + 4)&2 — 4)\1 2L + 4)\2 — 4)\3
ay = X—lel = A—Mzas = 4(Ma11 + Mazz), (C.27)
1 3
2L + 4)\3 — 4)\1 2L + 4)\3 — 4)\2
asz = )L—M,m = A—Mszz = 4(Mz11 + M32). (C.28)
1 2

(A) Ifall a4 # 0 then the only solutionis A; = A, = L/2 and A3z = 0, which corresponds
to Apmax = 2 discussed above.

(B) Let us now study the case with one a4 vanishing (we can assume a3 = 0 without loss
of generality). Then from (C.28) either M3;; + M3 =0and A = Ay = L/2 + A3,
which implies Apax = 2,43 = 0, A1 = Ay = L/2, or M3;; = M3y, = 0 and then
from (C.26) and (C.27) we get

307 — A3 — A3+ 2(=A1ky — AAz + A2h3) =0, (C.29)
—A+343 — A3+ 2(=A1 Ay + Az — AoAs) = 0. (C.30)

Their difference gives

4()\.1 —)\.2)()\.1 +)\2 —)xg) =0 (C31)
and thus either A; = A, and from (C.29) A3 = 0 or A3 = Ay + A, and from (C.29)
MiAz = 0. This case thus again leads to Ay = 2.

(C) If only one a, is non-vanishing (we again choose a; # 0 and a; = a3 = 0
without loss of generality) then (C.27), (C.28) imply either A; = L/2 + Az = X,
and A; = L/2 + A, = A3, which is not possible, or A = L/2 + A3 = Xy, which gives
M =A=0L/2and A3 =0,0r Ay = L/2+ Ay = Az, which gives A = A3 = L/2
and A, = 0, or Mp; = Moz = M3 = M3 = 0. All these cases, except the
last one, are inconsistent with our assumption A;,,x = 3. We thus need to check the
last case M1 = Moz = Msyp = Mjp = 0, which has two possible branches
corresponding to M3 = 0 and M3 # 0.

(a) Myz3 = 0: from (79) (in the form (C.14))

(—A1+ 3%+ A3) Mz = (—A1 + Ay + 303) M3z, (C.32)
(BAr — A2 + A3)Moiz = (A1 — Ao + 3A3) M3, (C.33)
Bri + Ao — A3)Mszio = (A + 34 — 3h3) M3y, (C.34)
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wegetis = 0and Ay = L/2 = A, for Ma3; = Mz # 0,0r Moz = Mz = 0.
Then from (A.6) we get Ay =0anda; = %Mlzz = 4}?3' M 133 which together
with (C.26) gives A, = A3 = L/2, 1 = 0.

(b) M3 # 0: from (C.32)—(C.34) and (82) we get
A+ =200 A+ AMAz +A0R3) =0 (C.35)

with the solution A3 = A + A» & 24/A 1 A,. By substituting this result into (C.29)
we get Aj(Ay = /A1Ay) = 0 and thus either A; = O and A, = A3 = L/2 or
A =Xy = L/2and A3 = 0 (A3 = 4X; does not satisfy (C.29)).
(D) If all ag4 = 0 then from (C.26)—(C.28) either one of A, = 0 and the other two are

equal to L/2 or all Mg = 0. Then if

(@) M3 = 0 from (C.32)—(C.34) and (82) we get either one of L, = 0 and the
other two are again equal to L/2 or all M pc = 0, which corresponds to a
type N or O spacetime.

(b) If M 23 # O then from (C.32)—(C.34) and (82) we get (C.35). Further from (A.6)
we get all A4 = 0 and then

MMz = A3Misza, (C.36)

MMz = —A3 Mo, (C.37)

MMz = AaMosy, (C.38)
which yields

0= (A — A3)(A1 — A2 — A3), (C.39)

0= —AT + Atha +3hihs +200h3 — 223, (C.40)

0 = —AT+3A1h2 + A1h3 +2h0h3 — 243, (C.41)

with the solution either A; = A; + A3 (then (C.40) implies A, or A3z is zero) or
Ay = Az and (C.40) implies A; = 0 or A; = 4X,; however, from (A.18) we get
(A2 — A1) M 23 = 0 which is a contradiction.

Appendix D. An example of a type D vacuum spacetime

The five-dimensional rotating black-hole metric in Boyer—Lindquist coordinates has the form
[9, 10] (we use the notation of [10])

2
-
4A

ds? = ——dx? + p?de? — A’ + (x + a®) sin> 0 dp” + (x + b*) cos’ 0 dyr?

2
+ 2 (dr +a sin? 6 dgp + b cos® 6 dy)?,
0

where
> = x+a’cos’ 6 + b*sin’ 0, A= (x +a>)(x + b — ry’x.

After normalizing two null vectors L, and L_ given in (4.23) in [10], one can appropriately
choose the rest of the frame vectors m', m? and m?>. It turns out that all components of the
Weyl tensor with the boost weights 2, 1, —1, —2 vanish and hence the spacetime is of the
algebraic type D [1, 3]. One can also explicitly calculate the matrix S. While the form of .S
depends on the choice of m', m? and m?, the characteristic polynomial of S, P, (.S), does
not. For P, (S) we obtain

P.(S) = (x - %) (x - g)z (D.1)
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and the diagonal form of S is

% 0 0
Saaz = | 0 pi 0 (D.2)
0 0 g

From (20) it follows that shear is

— i(l_i> (D.3)
o= P 2) .

which is in accordance with equation (4.25) in [10]. Note that for a = b = 0 all eigenvalues
of S are equal and shear is thus zero. Whereas for a® +b> > 0 the matrix S has two equal and
one distinct eigenvalues and shear does not vanish. Note also that similarly as for types III
and N, this algebraically special vacuum solution has non-vanishing shear (see also footnote 4
in paper [10]). Moreover, in this spacetime S does not have the properties proved in sections
3 and 4 for vacuum type N and type III spacetimes.
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