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Abstract
We study manifolds with Lorentzian signature and prove that all scalar curvature
invariants of all orders vanish in a higher dimensional Lorentzian spacetime if
and only if there exists an aligned non-expanding, non-twisting, geodesic null
direction along which the Riemann tensor has negative boost order.

PACS numbers: 04.20.Jb, 02.40.−k

1. Introduction

Recently [1] it was proven that in four-dimensional (4D) pseudo-Riemannian or Lorentzian
spacetimes all of the scalar invariants constructed from the Riemann tensor and its covariant
derivatives of arbitrary order are zero if and only if the spacetime is of Petrov-type III, N or
O, all eigenvalues of the Ricci tensor are zero (the Ricci tensor is consequently of Plebański–
Petrov-type (PP-type) N or O, or alternatively, of Segre-type {(31)}, {(211)} or {(1111)})
and the common multiple null eigenvector of the Weyl and Ricci tensors is geodesic, shear-
free, non-expanding and non-twisting; we shall refer to these spacetimes as vanishing scalar
invariant (VSI) spacetimes. An equivalent characterization of VSI spacetimes in 4D is that
there exists an aligned shear-free, non-expanding non-twisting, geodesic null direction �a

along which the Riemann tensor has negative boost order. For Petrov-type O, the Weyl tensor
vanishes and so it suffices that the null vector field �a associated with the Ricci tensor is
again geodesic, shear-free, non-expanding and non-twisting. All of these spacetimes belong
to Kundt’s class, and hence the metric of these spacetimes can be expressed in an appropriate
form in adapted coordinates [2, 3]. VSI spacetimes can be classified according to their Petrov-
type, Segre type and the vanishing or non-vanishing of the quantity τ . This leads to 16
non-trivial distinct classes of VSI spacetimes, one of which is the vacuum pp-wave (Petrov-
type N, vacuum, τ = 0) spacetime, in addition to the trivial flat Minkowski spacetime. All
of the corresponding metrics are displayed in [1]. The generalized pp-wave solutions are of
Petrov-type N, PP-type O (with τ = 0), and admit a covariantly constant null vector field [4].
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We shall study VSI spacetimes in arbitrary N dimensions (not necessarily even, but
N = 10 is of particular importance from string theory) and, in principle, for arbitrary signature.
However, we shall focus our attention on Lorentzian manifolds with signature N −2. We note
that for Riemannian manifolds with signature N, flat space is the only VSI manifold. Manifolds
with signature N − 4 with N � 5 are also of physical interest [5, 6]. In [7] we investigated
N-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the
Riemann tensor and its covariant derivatives are zero. These spacetimes are higher dimensional
generalizations of N-dimensional pp-wave spacetimes, which have been of interest recently
in the context of string theory in curved backgrounds in higher dimensions. We presented
a canonical form for the Riemann and Weyl tensors in a preferred null frame in arbitrary
dimensions if all of the scalar curvature invariants vanish (thereby generalizing the theorem
of [1] to higher dimensions). We shall prove the assertions in this paper, and we shall briefly
discuss the algebraic structure of the resulting spacetimes. In particular, we shall prove:

Theorem 1. All curvature invariants of all orders vanish in an N-dimensional Lorentzian
spacetime if and only if there exists an aligned non-expanding (Sij = 0), non-twisting
(Aij = 0), geodesic null direction �a along which the Riemann tensor has negative boost
order.

An analytical form of the conditions in theorem 1 are as follows:

Rabcd = 8Ai�{anb�cm
i
d} + 8Bijkm

i {amj
b �cm

k
d} + 8Cij �{ami

b �cm
j
d} (1)

(i.e., the Riemann tensor is of algebraic type III or N [9]), and

�a;b = L11�a�b + L1i�am
i
b + Li1m

i
a�b; (2)

that is, the expansion matrix Sij = 0, the twist matrix Aij = 0 (which are the analogues of
ρ, σ in 4D; see section 1.2 for the definitions), as well as Li0 = 0 = L10 (corresponding to
an affinely parametrized geodesic congruence �a; i.e., analogues of κ, ε + ε̄, respectively—see
equation (58)).

In this paper we shall first summarize the N-dimensional null frame formalism, the
algebraical classification of a tensor based on boost order [7–9] and the Bianchi identities and
their consequnces for vacuum-type III and N spacetimes [10]. The sufficiency and necessity
of theorem 1 are then proven in sections 2 and 3, 4, respectively. The paper concludes with a
discussion. Many of the details of the analysis are found in the appendices.

1.0.1. Notation

We shall consider a null frame � = m0,n = m1,m2, . . . ,mN−1 (�,n null with �a�a =
nana = 0, �ana = 1,mi real and spacelike mi

amj a = δij , i = 2, . . . , N − 1, all other
products vanish) in an N-dimensional Lorentz-signature space(time), so that

gab = 2�(anb) + δjkm
j
am

k
b. (3)

Covariance is relative to the group of linear Lorentz transformations. Throughout, Roman
indices a, b, c, A,B,C range from 0 to N − 1. Lowercase indices indicate an arbitrary basis,
while the uppercase ones indicate a null frame. Spacelike indices i, j, k also indicate a null
frame, but vary from 2 to N − 1 only. We will raise and lower the spacelike indices using δij ;
e.g., Ti = δijT

j . We will observe Einstein’s summation convention for both of these types of
indices; however, for indices i, j, . . . there is no difference between covariant and contravariant
components and thus we will not distinguish between subscripts and superscripts.

We also introduce the notation (compare with [7, 9])

w{axbyczd} ≡ 1
2 (w[axb]y[czd] + w[cxd]y[azb]) ≡ 1

8 {[wpxq][yrzs]}. (4)
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Table 1. Boost weights of the Weyl scalars.

2 1 0 −1 −2

C0i0j C010i , C0ijk C0101, C01ij , C0i1j , Cijkl C011i , C1ijk C1i1j

1.1. Background

A null rotation about n is a Lorentz transformation of the form

n̂ = n, m̂i = mi + zin, �̂ = � − zim
i − 1

2δij zizjn. (5)

A null rotation about � has an analogous form. A boost is a transformation of the form

n̂ = λ−1n, m̂i = mi , �̂ = λ�, λ �= 0. (6)

A spin is a transformation of the form

n̂ = n, m̂i = X
j

i mj , �̂ = �, (7)

where X
j

i is an orthogonal matrix.
Let Ta1,...,ap

be a rank p tensor. For a fixed list of indices A1, . . . , Ap, we call the
corresponding TA1,...,Ap

a null-frame scalar. These scalars transform under a boost (6)
according to

T̂ A1,...,Ap
= λbTA1,...,Ap

, b = bA1 + · · · + bAp
, (8)

where

b0 = 1, bi = 0, b1 = −1. (9)

We call the above b the boost weight of the scalar. We define the boost order of the tensor T,
as a whole, to be the boost weight of its leading term [8].

We can then decompose the Riemann tensor and sort its components by boost weight:

Rabcd =
2︷ ︸︸ ︷

4R0i0j n{ami
bncm

j
d} +

1︷ ︸︸ ︷
8R010in{a�bncm

i
d} + 4R0ijkn{ami

bm
j
cm

k
d} (10)

+

{
+4R0101n{a�bnc�d} + 4R01ij n{a�bm

i
cm

j
d}

+8R0i1j n{ami
b�cm

j
d} + Rijklm

i {amj
bm

k
cm

l
d}

}0

+

−1︷ ︸︸ ︷
8R101i�{anb�cm

i
d} + 4R1ijk�{ami

bm
j
cm

k
d} +

−2︷ ︸︸ ︷
4R1i1j �{ami

b �cm
j
d} .

The Weyl tensor Cabcd has a boost-weight decomposition analogous to (10). Table 1 shows
the boost weights for the scalars of the Weyl curvature tensor Cabcd . Thus, generically Cabcd

has boost order 2. If all C0i0j vanish, but some C010i , or C0ijk do not, then the boost order
is 1, etc. The Weyl scalars also satisfy a number of additional relations, which follow from
curvature tensor symmetries and from the trace-free condition:

C0i0
i = 0,

C010j = C0ij
i , C0(ijk) = 0,

C0101 = C0i1
i , C0i1j = − 1

2Cikj
k + 1

2C01ij , Ci(jkl) = 0,

C011j = −C1ij
i , C1(ijk) = 0,

C1i1
i = 0.

(11)
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A priori, the assignment of a boost order to a tensor seems to depend on the choice of
a null frame [8]. However, a null rotation about � fixes the leading terms of a tensor, while
boosts and spins subject the leading terms to an invertible transformation. It follows that the
boost order of a tensor is a function of the null direction k. We shall therefore denote boost
order by B(k) (with the choice of a tensor C determined by context). We will say that a null
vector k is aligned with the Weyl tensor C whenever B(k) � 1 [8, 9]. We will call the integer
1 − B(k) ∈ {0, 1, 2, 3} the order of alignment.

Definition 2. We will say that the principal type of a Lorentzian manifold is I, II, III, N
according to whether there exists an aligned k of alignment order 0, 1, 2, 3, respectively (i.e.,
B(k) = 1, 0,−1,−2, respectively). If no aligned k exists we will say that the manifold is of
type G. If the Weyl tensor vanishes, we will say that the manifold is of type O.

It follows that there exists a frame in which the components of the Weyl tensor satisfies:

Type I : C0i0j = 0,

Type II : C0i0j = C0ijk = 0,

Type III : C0i0j = C0ijk = Cijkl = C01ij = 0,

Type N: C0i0j = C0ijk = Cijkl = C01ij = C1ijk = 0.

(12)

The general types have various algebraically special subtypes [9], which include (the following
only lists the additional conditions for the algebraic specializations): Type Ia C010i = 0,
subclasses of type II (with C0101 = 0, the traceless Ricci part of Cijkl = 0, the Weyl part of
Cijkl = 0 and C01ij = 0) and type IIIa C011i = 0. Note that the conditions for the type II
subcases can be combined to yield composite types. The full type of the Weyl tensor includes
identifying its principal type and subclass and multiplicities, etc [8]. The special type D is
defined by the fact that in canonical form all terms are of boost weight zero. For type III
tensors, the principle null direction (PND) of order 2 is unique. There are no PNDs of order 1,
and at most 1 PND of order 0. (For N = 4 there is always exactly 1 PND of order 0; for N > 4
this PND need not exist.) For type N tensors, the order 3 PND is the only PND of any order.

1.2. Bianchi identities

Covariant derivatives of the frame vectors can be expressed as [10]

�a;b = L11�a�b + L10�anb + L1i�am
i
b + Li1m

i
a�b + Li0m

i
anb + Lijm

i
am

j
b, (13)

na;b = −L11na�b − L10nanb − L1inam
i
b + Ni1m

i
a�b + Ni0m

i
anb + Nijm

i
am

j
b, (14)

mi
a;b = −Ni1�a�b − Ni0�anb − Li1na�b − Li0nanb − Nij�am

j
b

+
i

Mj1m
j
a�b − Lijnam

j
b +

i

Mj0m
j
anb +

i

Mklm
k
am

l
b (15)

(where L11 is the analogue of the spin coefficient γ + γ̄ in 4D, etc).
Let us decompose L into its symmetric and antisymmetric parts, S and A,

Lij = Sij + Aij , Sij = Sji, Aij = −Aji. (16)

If � corresponds to a null geodesic congruence with an affine parametrization, we can express
the expansion θ and the shear matrix σij as

θ ≡ 1

n − 2
�a

;a = 1

n − 2
[S], (17)
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σij ≡ (
�(a;b) − θδklm

k
am

l
b

)
mi

amj
b = Sij − [S]

n − 2
δij . (18)

For simplicity, let us call A the twist matrix and S the expansion matrix, although S contains
information about both expansion and shear. We also introduce the quantities

S ≡ 1
2 [S], A2 ≡ 1

2AijAij . (19)

We next introduce directional derivatives D,� and δi by

D ≡ �a∇a, � ≡ na∇a, δi ≡ mi
a∇a, ∇a = naD + �a� + mi

aδi . (20)

Commutators then have the form

�D − D� = L11D + L10� + Li1δi − Ni0δi, (21)

δiD − Dδi = (L1i + Ni0)D + Li0� + (Lji −
i

Mj0)δj , (22)

δi � − �δi = Ni1D + (Li1 − L1i )� + (Nji −
i

Mj1)δj , (23)

δiδj − δj δi = (Nij − Nji)D + (Lij − Lji)� + (
j

Mki −
i

Mkj )δk. (24)

For type III and type N vacuum spacetimes we will use the notation of [10] with

�i = C101i , �ijk = 1
2C1kij , �ij = 1

2C1i1j .

The Weyl tensor can thus be expressed as

Cabcd = 8�i�{anb�cm
i
d} + 8�ijkm

i {amj
b �cm

k
d} + 8�ij�{ami

b �cm
j
d}. (25)

Case �ijk �= 0 is of type III, while �ijk = 0 (and consequently also �i = 0) corresponds to
type N. Note that �ij is symmetric and traceless. �ijk is antisymmetric in the first two indices
and in vacuum also satisfies3

�i = 2�ijj , (26)

�{ijk} = 0. (27)

Further constraints on �ij ,�ijk,S,A and � can be obtained by employing the Bianchi
and Ricci identities

Rab{cd;e} = 0, (28)

Va;bc = Va;cb + Rs
abcVs, (29)

where V is an arbitrary vector.
The implications of the Bianchi identities (28) for vacuum-type III and N spacetimes were

studied in [10]. It was shown that for these spacetimes � is geodesic. Furthermore, if they
have non-vanishing expansion S and twist A and uα,v and w are orthonormal elements of
the vector space spanned by vectors m(i) (see sections III and IV in [10]) then

3 Note that we use two different operations denoted by { }. In the first case { } acts on three indices and stands for
Rab{cd;e} = Rabcd;e + Rabde;c + Rabec;d . In the other case { } acts on four indices and is given by (4).



5524 A Coley et al

(1) in vacuum type N spacetimes with S �= 0 it is always possible to choose vectors v and w
for which

�ij =
√

p

2
(vivj − wiwj ), (30)

Sij = S(vivj + wiwj ), (31)

Akl = A(wkvl − vkwl), (32)
where

p ≡ �ij�ij ; (33)

(2) in vacuum type III spacetimes with S �= 0, A �= 0, �i �= 0 and with a ‘general form’ of
�ijk (see [10] for details) it is possible to introduce a vector


i ≡ Aij�j (34)

and then express S,A and �ijk as

Sij = S

(
�i�j

ψ2
+


i
j

φ2

)
, (35)

Aij = 1

ψ2
(
i�j − 
j�i), (36)

�ijk = 1

2φ2
(�i
j − �j
i)
k +

O1α1

ψ2

(
�iu

α
j − �ju

α
i

)
�k − O1α1

φ2

(

iu

α
j − 
ju

α
i

)

k

+
O1α2

ψφ

(
�iu

α
j − �ju

α
i

)

k +

O1α2

ψφ

(

iu

α
j − 
ju

α
i

)
�k, (37)

where φ2 ≡ 
i
i , ψ2 = �i�i . We have treated all possible degenerate situations for the
non-twisting case, Aij = 0, in arbitrary dimensions (see appendix C.1 in [10]) and for the
twisting case in five dimensions (see appendix C.2 in [10]), and they all lead to special
cases of the solution (35)–(37) which are given explicitly in [10]. We assert that the
solution (35)–(37) is a general solution even for the twisting case in arbitrary dimensions.
We have proven this in all of the general cases, and although we have not rigorously
proven this for all of the degenerate cases there is evidence that it is indeed true.

2. The sufficiency proof

In this section, we start with the assumptions of theorem 1 and then show that all curvature
invariants of all orders vanish. The corresponding form of the Riemann tensor (1), which
implies appropriate types for the Weyl and Ricci tensors, was given in [7]. The congruence
corresponding to � is geodesic with vanishing shear, twist and expansion; i.e.,

Li0 = Lij = 0. (38)

Let us, for simplicity, choose an affine parametrization and a parallely propagated frame.
Thus,

L10 = 0, Ni0 = 0,
i

Mj0 = 0. (39)

Due to the Bianchi identities

Rab{cd;e} = 0, (40)
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we can express how the operator D acts on Ai, Bijk and Cij . Corresponding results may be
obtained by evaluating the Bianchi identities with various combinations of null-frame indices,
and by using the form (1) of the Riemann tensor. For example, for indices 101i0 we obtain

DAi = 0. (41)

The other two equations of interest are obtained by using, respectively, indices ij1k0 and
1i1j0:

DBijk = 0, (42)

DCij = −BkjiLk1 + AiL[1j ] + 1
2

k

MijAk + 1
2δjAi. (43)

Evaluating the Ricci identities

�a;bc − �a;cb = Rd
abc�d (44)

and using indices 10i, i01 and 110, respectively, yields

DL1i = 0, (45)

DLi1 = 0, (46)

DL11 = −L1iLi1. (47)

From equations (45)–(47), it follows that

D2L11 = 0. (48)

Similarly, evaluating

na;bc − na;cb = Rd
abcnd (49)

with indices ij0 and i10, respectively, we get

DNij = 0, (50)

DNi1 = −NijLj1 + Ai. (51)

From equations (41), (46) and (50) we obtain

D2Ni1 = 0. (52)

Evaluating

mi
a;bc − mi

a;cb = Rd
abcm

i
d (53)

with indices j0k and j10, respectively, we obtain

D
i

Mjk = 0, (54)

D
i

Mj1 = −
i

MjkLk1. (55)

From equations (46) and (54) we get

D2
i

Mj1 = 0. (56)

Note that from the previous equations it also follows that

D2Cij = 0. (57)
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Table 2. Properties of quantities which are relevant for our proof.

Quantity Boost weight ‘D-equation’

L11 −1 D2L11 = 0
L1i 0 DL1i = 0
Li1 0 DLi1 = 0

Ni1 −2 D2Ni1 = 0
Nij −1 DNij = 0

i

Mjk 0 D
i

Mjk = 0
i

Mj1 −1 D2
i

Mj1 = 0

Ai −1 DAi = 0
Bijk −1 DBijk = 0
Cij −2 D2Cij = 0

Let us now express covariant derivatives of the frame vectors and commutators for a
geodesic, affinely parametrized, expansion and twist-free � and the rest of the frame parallely
propagated along �

�a;b = L11�a�b + L1i�am
i
b + Li1m

i
a�b, (58)

na;b = −L11na�b − L1inam
i
b + Ni1m

i
a�b + Nijm

i
am

j
b, (59)

mi
a;b = −Ni1�a�b − Li1na�b − Nij�am

j
b +

i

Mj1m
j
a�b +

i

Mklm
k
am

l
b; (60)

�D − D� = L11D + Li1δi, (61)

δiD − Dδi = L1iD, (62)

δi � − �δi = Ni1D + (Li1 − L1i )� + (Nji −
i

Mj1)δj , (63)

δiδj − δj δi = (Nij − Nji)D + (
j

Mki −
i

Mkj )δk. (64)

Now we can proceed with the proof in a similar way to that in four dimensions [1]. Thus,
we will only outline the key points. In all of the proofs we recall that � is geodesic and affinely
parametrized, the expansion and twist matrices vanish and the frame is parallely propagated
along �.

Definition 3. We shall say that a weighted scalar η with boost weight b is balanced if
D−bη = 0 for b < 0 and η = 0 for b � 0.

In analogy with the proof in 4D (employing table 2 and the commutators (61), (62)) we
obtain

Lemma 4. If η is a balanced scalar then L11η,L1iη, Li1η,Ni1η,Nijη,
i

Mj1η,
i

Mklη,Dη,

δiη,�η are balanced as well.

Definition 5. A balanced tensor is a tensor whose components are all balanced scalars.

From (20) and lemma 4 (together with the assumptions in this section), it then follows
that



Vanishing scalar invariant spacetimes in higher dimensions 5527

Lemma 6. A covariant derivative of an arbitrary order of a balanced tensor is again a
balanced tensor.

The Riemann tensor in the form (1) is balanced from equations (41), (42) and (57).
Consequently, all of its covariant derivatives are also balanced and thus all curvature invariants
in this case vanish. This completes the sufficiency part of the proof.

3. The necessity proof for zeroth-order invariants

In this section, we prove that the Riemann tensor for VSI spacetimes necessarily has negative
boost order.

A scalar formed from the contractions of the Riemann curvature tensor is an invariant
quantity in the sense that the contraction yields the same answer with respect to every choice
of basis. There is an infinite number of different ways to perform such contractions. Hence,
a given curvature tensor has associated with it an infinite set of invariants, some of which are
generically non-vanishing. In this section, we classify the algebraically special spacetimes
characterized by the condition that all zeroth-order (i.e., algebraic) invariants formed from
Rabcd vanish. Henceforth, we shall refer to such spacetimes as belonging to the VSI0 class.
We will show that such spacetimes are necessarily of principal type III, N or O, with an aligned
Ricci tensor of types PP-N, PP-O (or vacuum).

A scalar invariant has boost weight zero. It follows immediately that if the boost order of
the curvature tensor is negative along some aligned null direction �a , then all scalar invariants
must vanish. The converse is much harder to prove. In 4D it is well known [2, 11] that the
vanishing of the fundamental second- and third-degree Weyl invariants, I = J = 0, implies
that the Petrov type (principal type) is III, N or O. The condition that the Ricci tensor either
vanishes or is of type PP-N or PP-O and is aligned, follows easily.

In higher dimensions, an entirely different approach is needed. We define a curvature-like
tensor to be a rank 4 tensor with the following index symmetries:

Rabcd = −Rbacd = Rcdab.

The class of curvature-like tensors is more general than the class of Riemann curvature tensors,
because we do not impose the algebraic Bianchi condition

Rabcd + Racdb + Radbc = 0. (65)

Indeed, curvature-like tensors may be best characterized as symmetric, rank 2 tensors with
bivector indices. On occasion we will, therefore, write curvature-like tensors as Rαβ = Rβα,

where α, β are bivector indices as defined in appendix C.
With every curvature-like Rabcd we associate the rank 2, symmetric covariant

Rab = Racb
c,

which we will call the Ricci covariant. In addition, we could raise a bivector index and consider
the transformation of bivector space Rα

β (see appendix C). By taking powers and then lowering
an index we obtain additional covariants, e.g., the following curvature-like tensors R

(k)
αβ ,

R
(2)
αβ = Rα

γ Rγβ, R
(3)
αβ = Rα

γ Rγ
δRδβ, etc.

Our main result is the following.

Theorem 7. Let Rabcd be a non-zero, curvature-like tensor with vanishing zeroth-order
invariants. Then, R(3)

αβ = 0, and there exists an aligned null direction �a along which the boost

order is negative. Generically, that is for R
(2)
αβ �= 0, the principal type is III, with

Rabcd = 8R011in{a�b �cm
i
d} + 4R1ijk�{ami

bm
j
cm

k
d} + 4R1i1j �{ami

b �cm
j
d}. (66)
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If R
(2)
αβ = 0, then the principal type is N, with

Rabcd = 4R1i1j �{ami
b �cm

j
d}. (67)

The proof will be broken up into a number of lemmas that treat special cases (the proofs
of the lemmas are given in the appendices).

Lemma 8. A curvature-like tensor of pure boost weight zero possesses a non-vanishing
invariant.

Lemma 9. Let Rabcd be a curvature-like tensor with vanishing zeroth-order invariants. If the
Ricci covariant Rab �= 0, then there exists an aligned null direction �a along which the boost
order of Rabcd is negative.

Lemma 10. Let Sabcd be a symmetric, rank 4 tensor with vanishing zeroth-order invariants.
Then there exists an aligned null direction �a; i.e. S0000 = 0.

Lemma 11. Let Rabcd be a curvature-like tensor with vanishing zeroth-order invariants. If
R

(2)
αβ = 0 and Rab = 0, then there exists an aligned null direction �a along which the boost

order is negative.

Lemma 12. Let Rabcd be a curvature-like tensor with negative boost order. If R
(2)
αβ = 0 and

Rab = 0, then the principal type is N; i.e., (67) holds.

Proof of theorem 7. If Rab �= 0, then the theorem follows by lemma 9. Henceforth,
we suppose that Rab = 0. If R

(2)
αβ = 0, then the theorem follows by lemmas 11 and 12.

Henceforth, we suppose that R
(2)
αβ �= 0.

By proposition 20 of the appendix, Rαβ is nilpotent. Hence, for some sufficiently large k
we have

Pαβ = R
(k)
αβ �= 0, P

(2)
αβ = 0.

We now consider two cases, depending on whether the covariant Pab = Pacb
c is non-zero

or whether it vanishes. In the first case Pab �= 0, and we proceed as we did in the proof to
lemma 9 by constructing a rank 2 covariant

Qab = �a�b,

and then showing that the boost order is negative. If Pab = 0, then we apply lemmas 11 and
12 to Pabcd to find an aligned �a such that

Pabcd = 4P1i1j �{ami
b �cm

j
d}.

Consider the following rank 4 covariant

Qabcd = Paebf Pc
e
d
f = λ�a�b�c�d, λ =

∑
ij

(P1i1j )
2 > 0.

Proceeding as in the proof of lemma 9, we can show that

R0i01 = R0ijk = 0.

Since components of negative boost weight cannot contribute to an invariant, lemma 8 implies
that the weight-zero components of Rabcd vanish. The theorem is thus proven. �
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4. Necessity proof

In this section, we prove the necessity part of theorem 1 assuming that the Riemann tensor
has negative boost weight; i.e., the Weyl tensor is of type III, N or O and the Ricci tensor is of
type N or O as was shown in theorem 7.

We will explicitly express two differential Weyl invariants for type N and III vacuum
spacetimes. These differential invariants were originally used for similar proofs in 4D
[13, 1, 14] and, as in 4D, they are zero only if both the expansion and twist vanish. Though
the resulting expressions are simple, the calculations are quite extensive even with the use of
MAPLE.

We cannot repeat similar calculations for non-vacuum spacetimes since, at present, the
consequences of the Bianchi identities for non-vacuum spacetimes have not been fully studied
and thus we cannot employ possible non-vacuum analogues of (30)–(37). For non-vacuum
spacetimes we thus prove existence of non-vanishing differential Ricci invariants if � is not
geodesic or if it is expanding or twisting. The explicit form of these invariants may be
reconstructed from the proof if necessary.

4.1. Type N vacuum spacetimes

Curvature invariants of the zeroth- and first-order (i.e., invariants containing the Riemann
tensor and its first covariant derivative) vanish. Curvature invariants of the second order lead
to invariants of matrices �ij (25) and L (16). Let us explicitly calculate the second-order
invariant

I = Cabcd;rsCamcn;rsCtmun;vwCtbud;vw (68)

given in [13]. This expression can be rewritten as a polynomial invariant constructed from the
components of the matrices Ψ and L which contain more than a thousand terms. A typical
term is, for example,

27�ij�il�mr�ktLjkLlmLnpLnqLrpLrqLrsLts,

which, due to lemma 1 in [10], can be simplified to 27p2(S2 + A2)4. We note that it is efficient
to use part (f) of this lemma as often as possible, and only afterwards to decompose L into
S and A and use the remaining equations in lemma 1. Extensive algebraical calculations in
MAPLE lead to

I = 32210p2(S2 + A2)4. (69)

This invariant clearly vanishes only if both quantities S and A are equal to zero, and we have
thus completed the necessity part of the proof for type N vacuum spacetimes.

Let us check this formula in 4D. The relations between the frame vectors m2 and m3 and
the standard null-tetrad vectors m and m̄ are

ma = 1√
2

(
m2

a − im3
a
)
, m̄a = 1√

2

(
m2

a + im3
a
)
. (70)

In 4D, Ψ has two independent real components, �22 and �23, which are related to the complex
ψ4 = Cabcdn

am̄bncm̄d by

ψ4 = 2(�22 + i�23), ψ̄4 = 2(�22 − i�23), ψ4ψ̄4 = 4
(
�22

2 + �23
2
)
. (71)

Now we can recover the formula for the invariant I in 4D [13]:

I4D = 3228(θ2 + ω2)4ψ2
4 ψ̄2

4, (72)

by using S = θ,A = ω,p = 1
2ψ4ψ̄4.
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4.2. Type III vacuum spacetimes

The zeroth-order curvature invariants again vanish; however, we can calculate the first-order
non-vanishing invariant

IIII = Cabcd;eCamcn;eClmrn;sClbrd;s (73)

given in [14]. Due to equations (35)–(37), we can express this invariant, after extensive
calculations in MAPLE, as

IIII = 64(S2 + A2)2[9ψ2 + 27ψ(OPP + OPF ) + 28(OPP + OPF )2], (74)

where OPP = OPαPOPαP ,OPF = OPαFOPαF .
We note that OPP ,OPF and ψ are non-negative and for type III spacetimes at least one of

them is positive and thus the VSI condition for type III vacuum spacetimes implies S = A = 0.
We also note that the solution (35)–(37) is expressed for simplicity in a frame which is adapted
to the twisting case with non-vanishing �i . However, this solution may also be expressed in
another frame in which we obtain the non-twisting case by simply putting A = 0 and the case
with �i = 0 by putting �i = 0. Thus, we can obtain the resulting expressions for the invariant
IIII in these special cases by substituting A = 0 or ψ = 0 in equation (74). We remark that the
completeness of the proof for the vacuum type III case relies on the solution (35)–(37) being a
general solution. Although there is good analytical evidence to support this for six dimensions
and there is some support in higher dimensions, we have not rigorously proven this in all the
degenerate cases (of measure zero) for the twisting case in dimension six and higher.

4.3. Ricci invariants

In this section, we show that for non-vacuum PP-N and PP-O spacetimes there exist non-
vanishing first- and second-order (in derivatives) Ricci invariants if � is not geodesic or if it
admits expansion or twist. We start by proving several lemmas and then we apply them to the
PP-N and PP-O cases separately.

Lemma 13. If there exists a null frame in which a tensor T of rank 2 is of pure boost order
zero, then T possesses a non-vanishing invariant.

Proof. We prove this lemma by contradiction by assuming that a second rank tensor of pure
boost order zero,

Tab = T01na�b + T10�anb + Tijm
i
am

j
b, (75)

has vanishing algebraical scalar invariants. Consequently,

T (2)
ac ≡ TabTc

b = T01T10(na�c + �anc) + TisTjsm
i
am

j
c (76)

and

T (2)
ac T (2)ac = 2(T01)

2(T10)
2 + T

(2)
ij T

(2)
ij , (77)

where

T
(2)
ij = TsiTsj . (78)

Thus, if T has vanishing algebraical invariants then

T
(2)
ij = 0 ⇒ Tij = 0 and T01T10 = 0. (79)

Now, considering that

TabT
ba = (T01)

2 + (T10)
2 + TijTji (80)
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we conclude that

T01 = T10 = 0 (81)

and thus a non-vanishing T cannot have vanishing algebraical invariants. �

Lemma 14. If there exists a null frame in which a tensor T of rank 2 has boost order zero,
then T possesses a non-vanishing invariant.

Proof. Every tensor T with boost order zero can be divided into two parts

T = T (0) + T (−) (82)

where T (0) is of pure boost order zero and T (−) has negative boost order.
Clearly T (−) does not affect any invariant of T , and thus this lemma is a direct consequence

of lemma 13. �

Lemma 15. If there exists a null frame in which a tensor T of rank 3 has pure boost order
zero, then T possesses a non-vanishing invariant.

Proof. We again prove this lemma by contradiction. A general form of a third rank tensor of
pure boost order zero is

Tabc = T01ina�bm
i
c + T10i�anbm

i
c + T0i1nam

i
b�c + T1i0�am

i
bnc

+ Ti01m
i
anb�c + Ti10m

i
a�bnc + Tijkm

i
am

j

bm
k
c. (83)

Let us now construct from T several second rank pure boost order zero tensors. If T has
vanishing algebraical invariants, then all of these tensors have to vanish according to lemma 13.
In fact, we do not need to express these tensors fully, we just need some of their components:

TabcTd
cb�and = T01iT1i0 + T0i1T10i , (84)

TabcT
a
d
b�cnd = T01iT1i0 + Ti10Ti10, (85)

TabcT
a
d
bnc�d = T0i1T10i + Ti01Ti01. (86)

An appropriate linear combination of equations (84)–(86) leads to

Ti10Ti10 + Ti01Ti01 = 0 (87)

and thus

Ti10 = Ti01 = 0. (88)

Other components of pure boost order zero tensors of rank 2 are

TabcT
b
d
c�and = T01iT01i + T0i1Ti10, (89)

TabcT
b
d
cna�d = T10iT10i + T1i0Ti01, (90)

TabcTd
ba�cnd = T1i0T1i0 + Ti10T10i , (91)

TabcTd
banc�d = T0i1T0i1 + Ti01T01i . (92)

From the vanishing of equations (88)–(92), it follows that

T01i = T10i = T1i0 = T0i1 = 0. (93)

Now we need only one last invariant

TabcT
abc = 2T01iT10i + 2T0i1T1i0 + 2Ti01Ti10 + TijkTijk (94)

which thanks to equations (88) and (93) vanishes only if

Tijk = 0. (95)

Thus, if T has vanishing algebraical invariants then T vanishes. �
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4.3.1. PP-N spacetimes. For PP-N spacetimes the Ricci tensor has the form [7]

Rab = Ki

(
�am

i
b + mi

a�b

)
+ A�a�b, (96)

with Ki �= 0 for at least one value of i.
Now a tensor of rank 3

Tabc ≡ Rab;σ Rσ
c (97)

has boost order zero, and thus (lemma 15) for VSI spacetimes all of its components with boost
weight zero have to vanish. By expressing the component

Tijk = KiLj0Kk + Li0KjKk, (98)

and multiplying this equation by Li0 and by contracting k with j , we obtain

(KiLi0)
2 + Li0Li0KjKj = 0 (99)

which implies

Li0 = 0; (100)

i.e., � is geodesic, and thus also
i

M00 = 0. (101)

Assuming that equations (100) and (101) are satisfied, we find that the first covariant derivative
of the Ricci tensor Rab;c has the boost order 0 and thus for VSI spacetimes all of its components
of boost weight zero must vanish. From

Rij ;k = LjkKi + LikKj = 0, (102)

and contracting i with j , it follows that

LikKi = 0. (103)

Multiplying equation (102) by Kj and using (103) leads to

KjKjLik = 0 (104)

which implies that

Lij = 0; (105)

i.e., the expansion and twist matrices are zero.

4.3.2. PP-O spacetimes. For PP-O spacetimes the Ricci tensor has the form [7]

Rab = A�a�b. (106)

The covariant derivative Rab;c, has boost order 0. The boost weight zero component

R1i;0 = ALi0 (107)

has to vanish from the VSI condition and thus

Li0 = 0 (108)

and � is geodesic. We choose the affine parametrization with L10 = 0. Now, the second rank
tensor Rab;cc has boost order 0. Thus, the component with boost weight zero

Rij ;AA = 2ALjkLik (109)

has to vanish from the VSI condition and consequently

Lij = 0, (110)

i.e., the expansion and twist matrices are zero.
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5. Discussion

We have proven that in N-dimensional Lorentzian spacetimes the boost order of the Riemann
tensor is negative along some aligned non-expanding, non-twisting, geodesic null direction
�a if and only if all scalar curvature invariants vanish (generalizing a previous theorem in 4D
[1]). We emphasize that even though our main focus has been the Lorentzian geometry case,
some results from the more general theory (N-dimensional, real vector space equipped with
an inner product gab with no assumption about the signature) have been developed.

In the Lorentzian case, we have provided strong evidence for the following conjecture
(the algebraic VSI conjecture): any tensor with vanishing algebraic scalar invariants must
necessarily have negative boost order along some aligned null direction. We have given a
proof of this conjecture for arbitrary dimensions and for the following tensor types: bivectors
in proposition 27, symmetric rank 2 tensors in corollary 24, and for the general class of
curvature-like tensors in theorem 7. Lemmas 14 and 15 provide additional evidence for this
conjecture.

We note that all of the VSI spacetimes have a shear-free, non-expanding, non-twisting
geodesic null congruence � = ∂v , and hence belong to the ‘generalized Kundt’ class [7].

There is a number of potentially important physical applications of VSI spacetimes. For
example, it is known that a wide range of VSI spacetimes (in addition to the pp-wave spacetimes
[15, 16]) are exact solutions in string theory (to all perturbative orders in the string tension)
[17]. Recently, type IIB superstrings in pp-wave backgrounds with an RR five-form field were
also shown to be exactly solvable [18]. Indeed, many authors [15, 19] have investigated string
theory in pp-wave backgrounds in order to search for connections between quantum gravity
and gauge theory dynamics.

In the context of string theory, it is of considerable interest to study Lorentzian
spacetimes in higher dimensions. In particular, higher dimensional generalizations of
pp-wave backgrounds have been considered [19, 20], including string models corresponding
not only to the NS–NS but also to certain R–R backgrounds [21, 22], and pp-waves in
11- and 10-dimensional supergravity theory [23]. In addition, a number of classical solutions
of branes [24] in higher dimensional pp-wave backgrounds have been studied in order to better
understand the non-perturbative dynamics of string theories. In particular, a class of pp-wave
string spacetimes supported by non-constant NS–NS H3 or R–R Fp form fields were shown
to be exact type II superstring solutions to all orders in the string tension [22, 25]. In this
class of 10-dimensional superstring theory models the pp-wave metric, the NS–NS 2-form
potential and the 3-form H3 background, which depends on arbitrary harmonic functions
bm(x) (∂2bm = 0,m = 1, 2, . . .) of the transverse coordinates xi , are given by [22]

ds2 = du dv + K(x) du2 + dx2
i + dy2

m, i = 1, . . . , d, m = d + 1, . . . , 8, (111)

B2 = bm(x) du ∧ dym, H3 = ∂ibm(x) dxi ∧ du ∧ dym (112)

where the only non-zero component of the generalized curvature is

R̂uiuj = − 1
2∂i∂jK − 1

2∂ibm∂jbm. (113)

These solutions are consequently of PP-type O and of principal (algebraic Weyl) type N.
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Appendix A. Indefinite signature inner products

Let 0 < p < q be integers, and let Rp,q denote Rp+q equipped with a signature (p, q) inner
product

p∑
λ=1

XλYλ −
p+q∑

λ=p+1

XλYλ, Xλ, Y λ ∈ Rp+q .

Let SOp,q be the corresponding group of (p, q)-orthogonal transformations. We consider a
collection Xi

λ of mutually orthogonal null vectors. In other words, for all values of collection
indices i, j we have

p∑
λ=1

Xi
λXj

λ −
p+q∑

λ=p+1

Xi
λXj

λ = 0. (114)

Proposition 16. A collection of mutually orthogonal null vectors, Xi
λ ∈ Rp,q , has at most p

linear independent elements.

Proposition 17. Let Xi
λ ∈ Rp,q be a collection of p, or fewer, linear independent, mutually

orthogonal null vectors. Then, there exists a (p, q) isometry T λ
µ ∈ SOp,q such that the

transformed collection of mutually orthogonal vectors

Yi
λ = T λ

µXi
µ

has the form Yi
i = Yi

i+p = 1, with all other components 0.

Corollary 18. Let Xi
λ ∈ Rp,q be an arbitrary collection of mutually orthogonal null vectors.

Then, there exists a (p, q) isometry T λ
µ ∈ SOp,q such that the transformed collection of

mutually orthogonal vectors

Yi
λ = T λ

µXi
µ

satisfies

Yi
λ = Yi

λ+p, λ = 1, . . . , p, and Yi
λ = 0, λ > 2p.

Appendix B. The Petrov normal form

Even though our focus is Lorentzian geometry, some signature-independent results need
to be developed. Let gδε be an N-dimensional, non-degenerate inner product; we make
no assumptions about signature4. Let T = Tδε be a general, rank 2 tensor. For each
k = 1, 2, . . . , N − 1 let

σk = T (k)
ε
ε = T ε2

ε1
T ε3

ε2
· · · T ε1

εk

denote the kth power invariant of T. The following is well known [29]:

Theorem 19. Every scalar invariant of T has a unique representation as a polynomial of the
power invariants σ0, . . . , σN−1.

4 As a notational reminder we will use δ, ε, γ to index tensors in the more general setting, and reserve a, b, c as
indices of tensors in a Lorentzian setting.
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Corollary 20. A rank 2 tensor T has vanishing zeroth-order invariants (i.e., is VSI0) if and
only if it is nilpotent; i.e., T(k) = 0 for some k � 0.

Next, we consider a symmetric, rank 2 tensor Qδε = Qεδ . The normal forms described
below are a specialization of the normal forms described by Petrov [12], and the proof of the
following result can be found therein.

Theorem 21. If a symmetric tensor Qδε belongs to the VSI0 class, then there exists a basis,
λ,ν

K ε, λ = 1, . . . , r; ν = 1, . . . , dλ,

and a sequence of block signatures σλ = ±1, such that

gδε =
∑
λ,ν

σλ

λ,ν

K(δ

λ,ρ

Kε), (115)

Qδε =
∑
λ,ν

dλ>1

σλ

λ,ν+1
K (δ

λ,ρ

Kε), (116)

where λ = 1, . . . , r , where ν = 1, . . . , dλ, and we are letting ρ = dλ + 1 − ν.

Corollary 22. Let Qδε be a symmetric, rank 2 tensor. If Q(2)
δε = 0, then

Qδε =
p∑

λ=1

λ

Kδ

λ

Kε −
p+q∑

λ=p+1

λ

Kδ

λ

Kε,

where the
λ

Kε, λ = 1, . . . , p + q, are mutually orthogonal null vectors; i.e.,
p

Kε

q

Kε = 0.

Proof. Conditions (115) and (116) are equivalent to the statement that the linear transformation
Qδ

ε has the action
λ,1
K ε →

λ,2
K ε → · · · →

λ,dλ

K ε → 0. (117)

Since Q(2)
δε = 0, we have that dλ = 1 or 2 for all λ. We then rearrange our basis so that

σλ = 1, dλ = 2 for λ = 1, . . . , p, so that σλ = −1, dλ = 2 for λ = p + 1, . . . , p + q, and so
that dλ = 1 for λ > p + q. We obtain the desired form by setting

λ

Kε =
λ,2
K ε, λ = 1, . . . , p + q. �

Conditions (115) and (116) are equivalent to the assertion that gδε and Qδε can be
simultaneously put into block diagonal form:

gδε =




1
G

.. .
r

G


 , Qδε =




1
Q

.. .
r

Q


 ,

such that the blocks have the form

λ

G =
(

σλ

. .
.

σλ

)
,

λ

Q =




σλ 0
σλ 0

. .
.

. .
.

σλ 0
0


 .
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Thus, there are four kinds of blocks, depending on the block signature σp and on the block
parity—a block being called even or odd according to whether dλ is even or odd. The
basis vectors of an even block are pairs of conjugate null vectors. The same is true for odd
blocks, save that the middle vector is either a unit spacelike or a timelike vector depending on
whether the signature σλ is +1 or −1, respectively. The following table summarizes the four
possibilities, and the corresponding signatures of the blocks:

σλ Parity Signature
λ

G Signature
λ

Q

+1 Even
( 1

2 dλ,
1
2 dλ

) ( 1
2 dλ,

1
2 dλ − 1

)
−1 Even

( 1
2 dλ,

1
2 dλ

) ( 1
2 dλ − 1, 1

2 dλ

)
+1 Odd

( 1
2 (dλ + 1), 1

2 (dλ − 1)
) ( 1

2 (dλ − 1), 1
2 (dλ − 1)

)
−1 Odd

( 1
2 (dλ − 1), 1

2 (dλ + 1)
) ( 1

2 (dλ − 1), 1
2 (dλ − 1)

)

Summing the signatures of all the blocks we arrive at the following result.

Proposition 23. Suppose that a symmetric Qδε has vanishing zeroth-order invariants (i.e., is
VSI0). Then, the signature of the inner product gδε is given by(

N + σo

2
,
N − σo

2

)
, where σo =

∑
dλ odd

σλ; (118)

and the signature of Qδε by(
N − ν + σe

2
,
N − ν − σe

2

)
, where σe =

∑
dλ even

σλ. (119)

As a particular case of the above proposition, suppose that gab has Lorentz signature,
(N − 1, 1). In this case, equation (118) is a very strong constraint on the size and number of
odd and even blocks. Indeed, there can be at most one block of size 2 and signature (1, 1), or
one block of size 3 and signature (2, 1). The possibilities are summarized below.

Corollary 24. Suppose that gab has Lorentz signature. Then, there exists a null-frame
�a, na,mi

a relative to which a VSI0 Qab takes on exactly one of the following normal forms:

Qab = 0; (120)

Qab = ±�a�b; (121)

Qab = �(am
2
b). (122)

Appendix C. Bivectors

Henceforth, we assume that gab has Lorentz signature. A bivector is a rank 2 skew-symmetric
tensor. The vector inner product gab naturally induces a bivector inner product

gαβ = 1
2 (gacgbd − gadgbc), α = (a, b), β = (c, d).

We use α = (a, b), a < b to denote a bivector index, and henceforth use α, β, γ, . . . to
denote bivector indices. A bivector index can take on N(N − 1)/2 possible values; this
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is the dimension of the vector space of all bivectors. The inner product of two bivectors
Jα = Jab,Kα = Kab can also be characterized as the total contraction

gαβJ αKβ = JαKα = JabK
ab.

A bivector Kα will be called null if KαKα = 0. Every null-frame �a, na,mi
a induces a

basis of bivectors consisting of the N − 2 pairs of conjugate, null bivectors �[am
i
b], n[am

i
b],

the negative-norm bivector �[anb] and 1
2 (N − 2)(N − 3) positive-norm bivectors mi

[am
j
b]. It

follows that the bivector inner product gαβ has signature
(

1
2 (N − 1)(N − 2), N − 1

)
.

It can be shown [27] that for even N a bivector Kα always admits at least one aligned, real
null direction, while for odd N it is possible that there is no real aligned null direction. The
boost weights of the components of Kab given by

Kab =
1︷ ︸︸ ︷

2K0in[am
i
b] +

0︷ ︸︸ ︷
2K01n[a�b] + Kijm

i
[am

j
b] +

−1︷ ︸︸ ︷
2K1i�[am

i
b] .

For an aligned (or singly aligned) bivector we can set K0i = 0 (but K1i is not zero) and
for a bi-aligned bivector we can set K0i = K1i = 0. We can classify bivectors into alignment
types (using notation consistent with [8, 10]). We will say that a bivector is of type G if
K0i cannot be made to vanish and of type I if K0i = 0 (but K01 does not vanish), and of
algebraically special type II if K0i = K01 = Kij = 0. For type II, the bivector is aligned and
K1i cannot be made to vanish; i.e., there is no bi-aligned subclass. For type I, we will say
that the bivector is bi-aligned if K0i = K1i = 0, and we shall refer to this case as type Ii (this
case is akin to type IIii in the classification of the Weyl tensor [9] and could perhaps also be
referred to as type D). We also note that in 4D, types Ii and II are referred to as types I and N,
respectively [28].

A collection of bivectors
λ

Kα is null and mutually orthogonal if and only if

2
λ

K0i

µ

K1
i + 2

λ

K1i

µ

K0
i +

λ

Kij

µ

Kij − 2
λ

K01

µ

K01 = 0 (123)

for all λ,µ.

Proposition 25. Let
λ

Kα, λ = 1, . . . , r be a collection of null, mutually orthogonal, linearly
independent bivectors. Then, r � N − 1.

Proof. This follows directly from proposition 16. �

Proposition 26. Let
λ

Kα be a collection of null, mutually orthogonal bivectors with a common

alignment, i.e.,
λ

K0i = 0. Then, there exists a null, bi-aligned bivector Mα and scalars Cλ

such that
λ

Kij = CλMij and
λ

K01 = CλM01.

Proof. Consider the sequence of type Ii bivectors defined by

λ

M0i = 0,
λ

M01 =
λ

K01,
λ

Mij =
λ

Kij ,
λ

M1i = 0.

For a fixed �a , the vector space of type Ii bivectors has signature (1, (N − 2)(N − 3)/2).

Hence, by proposition 16, the
λ

Mα must be multiples of one another. �

Proposition 27. A bivector Kα has vanishing zeroth-order scalar invariants (VSI0) if and
only if it is of alignment type II.
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Proof. Since an invariant has boost weight zero, a Kab with negative boost order must have
vanishing scalar invariants. Let us now prove the converse; i.e., we assume that Kab has
vanishing scalar invariants and prove that necessarily the boost order is negative.

Let us consider the symmetric rank 2 covariant

Rab = KacKb
c.

By corollary 24, we can choose an aligned �a so that

R00 = R0i = R01 = Rij = 0.

Since

R00 =
∑

i

(K0i )
2,

we have that K0i = 0. From

Rii = −2K0iK1i +
∑

k

(Kik)
2, R01 = K2

01 −
∑

i

K0iK1i .

we infer that Kij = K01 = 0, as was to be shown. �

We note that these results may be of importance in the study of higher dimensional
spacetimes with Maxwell-like fields [26].

Appendix D. The proofs of the lemmas

Proof of lemma 8. Let Rabcd be a curvature-like tensor with terms of zero boost weight
only. We argue by contradiction, and suppose that Rabcd has vanishing scalar invariants. By
proposition 20,

R(k)
abcd = 0

for a sufficiently large k. Consequently, R(j)
abcd has vanishing zeroth-order invariants for all

j < k. Since R(j)
abcd is of pure boost weight zero we may, without loss of generality, suppose

that R(2)
abcd = 0.

We decompose the curvature-like tensor as follows:

Rabcd = Aabcd + Babcd ,

where

Aabcd = 8R0101n{a�bnc�d} + 4R01ij n{a�bm
i
cm

j
d} + Rijklm

i {amj
bm

k
cm

l
d};

Babcd = 8R0i1j n{ami
b�cm

j
d}.

Evidently,

AαβBβ
γ = BαβAβ

γ = 0,

and hence,

A(2)
abcd = B(2)

abcd = 0. (124)

Now, there are two cases to consider; either Aαβ vanishes, or it does not. If it does vanish,
then

RabcdR
adcb = 4

∑
ij

(R0i1j )
2

is a non-vanishing invariant. Thus, without loss of generality, Aαβ �= 0.
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Note that Aαβ is a quadratic combination of type Ii bivectors. In appendix C, we showed
that the vector space of type Ii bivectors has Lorentz signature. Hence, by equations (124) and
corollary 22,

Aαβ = ±KαKβ,

where Kα is a null, type Ii bivector; i.e.,

−2(K01)
2 + KijK

ij = 0.

Consequently, K01 �= 0, and hence,

R0101 = A0101 = ±(K01)
2 �= 0.

The matrix Xij = B0i1j is nilpotent by (124), and hence, Xi
i = 0. Let Rab = Racb

c be
the Ricci covariant. We have

R01 = −R0101 + R0i1
i = −A0101 + Xi

i �= 0.

Hence,

RabR
ab = (R01)

2 + RijR
ij

is a non-vanishing invariant. We have established a contradiction and hence proved the lemma.
�

Proof of lemma 9. Corollary 24 gives normal forms for Rab with vanishing invariants. We
choose an aligned �a so that

R00 = R0i = R01 = Rij = 0. (125)

If Rab = 0, then all contractions vanish. Assuming that Rab �= 0, we can construct a
non-vanishing covariant of the form

Qabcd = �a�b�c�d .

To obtain this covariant we use RabRcd or RaeR
e
bRcf R

f

d , depending on whether Rab has the
form (121) or the form (122), respectively. The vanishing of the invariant

QabcdRaebf Rc
e
d
f =

∑
ij

(R0i0j )
2

implies that

R0i0j = 0. (126)

We set Tαβ = R(2)
αβ and note that the vanishing of the invariant

QabcdTaebf Tc
e
d
f =

∑
ij

(T0i0j )
2

implies that

T0i0j = R0iabR0j
ab = 0. (127)

We define the following sequence of bivectors:

i

Kab = R0iab;
these are aligned because of equation (126). Also, by equation (127), we have that

T0i0j =
i

Kα

j

Kα = 0.
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By proposition 26, there exist Mjk,M01 and Ci such that

MjkM
jk − 2M01

2 = 0, (128)

and such that

R0ijk =
i

Kjk = CiMjk, R0i01 =
i

K01 = CiM01. (129)

By equation (125),

R0j = R01j0 + R0ij
i = −CjM01 + CiMj

i = 0.

Hence, since Mi is skew-symmetric, we have

CjR0j = −CjCjM01 + CjCiM
ij = −M01

∑
j

(Cj )
2 = 0.

Hence either Cj = 0 or M01 = 0. In the second case, Mij = 0 and equation (128) is satisfied.
In both cases, by equation (129)

R0i01 = R0ijk = 0.

Since components of negative weight cannot contribute to an invariant, lemma 8 implies that
the weight zero components of Rabcd also vanish. �

The proof of lemma 10 is given in [30].

Proof of lemma 11. Setting

Sabcd = R(a|ef |bRc
ef

d),

we have

S0000 =
∑
ij

(R0i0j )
2.

Using lemma 10, we choose �a such that S0000 = 0, and hence

R0i0j = 0. (130)

By corollary 22,

Rαβ =
p∑

λ=1

λ

Kα

λ

Kβ −
p+q∑

λ=p+1

λ

Kα

λ

Kβ, (131)

where, without loss of generality, p < q, and where the generating bivectors
λ

Kα are linearly
independent, null and mutually orthogonal (123). Set

Xi
λ =

λ

K0i , λ = 1, . . . , p + q, i = 2, . . . , n − 1,

and note that, by equation (130),

R0i0j =
p∑

λ=1

Xi
λXj

λ −
p+q∑

λ=p+1

Xi
λXj

λ = 0,

for all i, j = 2, . . . , N −1. Hence, by corollary 18 we may, without loss of generality, assume
that

λ

K0i =
λ+p

K 0i , λ = 1, . . . p, and
λ

K0i = 0, λ > 2p. (132)
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For λ = 1, . . . , p, we set

λ

Eα =
λ

Kα +
λ+p

K α,
λ

F α =
λ

Kα −
λ+p

K α;
for λ = p + 1, . . . , q we set

λ

F α =
λ+p

K α.

Now, equation (131) may be re-expressed as

Rαβ =
p∑

λ=1

2
λ

E(α

λ

F β) +
q∑

λ=p+1

λ

F α

λ

F β. (133)

By equation (132) the
λ

F α are aligned. Since they are null and mutually orthogonal, we have
by proposition 26 that there exist Fij , F01 and Cλ such that

FijF
ij − 2F01

2 = 0, (134)

and such that
λ

F ij = CλFij ,
λ

F 01 = CλF01.

Setting

Eα =
p∑

λ=1

Cλ

λ

Eα,

we have, by equation (133),

R0i01 = E0iF01, R0ijk = E0iFjk.

The assumption Rab = 0 implies that

R0i = −R0i01 + R0ji
j − R0i01 = −E0iF01 + E0jFi

j = 0.

However, Fij is skew-symmetric, and hence

E0iR0
i = −E0iE0

iF01 + E0iE0jF
ij = −F01

∑
i

(E0i )
2 = 0.

Therefore, either E0i = 0, or F01 = 0. In the latter case, by equation (128) Fij = 0 as well.
In either case, the components of weight 1 necessarily vanish: R0i01 = R0ijk = 0. Hence, by
lemma 8, Rabcd has negative boost order. �

Proof of lemma 12. We define the following sequence of bivectors:

i

Kab = R1iab;
these are aligned because of the assumption of negative boost order. Also, by assumption, we
have

R(2)
1i1j =

i

Kα

j

Kα = 0.

Since R1j = 0, we can adapt the argument at the end of lemma 9 to establish that

R1i01 = R1ijk = 0. �
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