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Abstract

‘We study manifolds with Lorentzian signature and prove that all scalar curvature
invariants of all orders vanish in a higher dimensional Lorentzian spacetime if
and only if there exists an aligned non-expanding, non-twisting, geodesic null
direction along which the Riemann tensor has negative boost order.

PACS numbers: 04.20.Jb, 02.40.—k

1. Introduction

Recently [1] it was proven that in four-dimensional (4D) pseudo-Riemannian or Lorentzian
spacetimes all of the scalar invariants constructed from the Riemann tensor and its covariant
derivatives of arbitrary order are zero if and only if the spacetime is of Petrov-type III, N or
O, all eigenvalues of the Ricci tensor are zero (the Ricci tensor is consequently of Plebanski—
Petrov-type (PP-type) N or O, or alternatively, of Segre-type {(31)}, {(211)} or {(1111)})
and the common multiple null eigenvector of the Weyl and Ricci tensors is geodesic, shear-
free, non-expanding and non-twisting; we shall refer to these spacetimes as vanishing scalar
invariant (VSI) spacetimes. An equivalent characterization of VSI spacetimes in 4D is that
there exists an aligned shear-free, non-expanding non-twisting, geodesic null direction £¢
along which the Riemann tensor has negative boost order. For Petrov-type O, the Weyl tensor
vanishes and so it suffices that the null vector field £ associated with the Ricci tensor is
again geodesic, shear-free, non-expanding and non-twisting. All of these spacetimes belong
to Kundt’s class, and hence the metric of these spacetimes can be expressed in an appropriate
form in adapted coordinates [2, 3]. VSI spacetimes can be classified according to their Petrov-
type, Segre type and the vanishing or non-vanishing of the quantity r. This leads to 16
non-trivial distinct classes of VSI spacetimes, one of which is the vacuum pp-wave (Petrov-
type N, vacuum, t = 0) spacetime, in addition to the trivial flat Minkowski spacetime. All
of the corresponding metrics are displayed in [1]. The generalized pp-wave solutions are of
Petrov-type N, PP-type O (with T = 0), and admit a covariantly constant null vector field [4].
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We shall study VSI spacetimes in arbitrary N dimensions (not necessarily even, but
N = 10is of particular importance from string theory) and, in principle, for arbitrary signature.
However, we shall focus our attention on Lorentzian manifolds with signature N — 2. We note
that for Riemannian manifolds with signature NV, flat space is the only VSI manifold. Manifolds
with signature N — 4 with N > 5 are also of physical interest [5, 6]. In [7] we investigated
N-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the
Riemann tensor and its covariant derivatives are zero. These spacetimes are higher dimensional
generalizations of N-dimensional pp-wave spacetimes, which have been of interest recently
in the context of string theory in curved backgrounds in higher dimensions. We presented
a canonical form for the Riemann and Weyl tensors in a preferred null frame in arbitrary
dimensions if all of the scalar curvature invariants vanish (thereby generalizing the theorem
of [1] to higher dimensions). We shall prove the assertions in this paper, and we shall briefly
discuss the algebraic structure of the resulting spacetimes. In particular, we shall prove:

Theorem 1. All curvature invariants of all orders vanish in an N-dimensional Lorentzian
spacetime if and only if there exists an aligned non-expanding (S;; = 0), non-twisting
(A;j = 0), geodesic null direction £* along which the Riemann tensor has negative boost
order.

An analytical form of the conditions in theorem 1 are as follows:

Rabcd =S SAiZ{anbﬂcmZd} + 8Bijkm’{am-’b Ecmkd} + 8C,»j€{am’b Zcm-’d} (1)
(i.e., the Riemann tensor is of algebraic type III or N [9]), and

Loy = Litlaly + Liilgm'y + Liym' o Lp; (2)
that is, the expansion matrix S;; = 0, the twist matrix A;; = 0 (which are the analogues of
p, o in 4D; see section 1.2 for the definitions), as well as L;o = 0 = Lo (corresponding to
an affinely parametrized geodesic congruence £,; i.e., analogues of «, € + €, respectively—see
equation (58)).

In this paper we shall first summarize the N-dimensional null frame formalism, the
algebraical classification of a tensor based on boost order [7-9] and the Bianchi identities and
their consequnces for vacuum-type III and N spacetimes [10]. The sufficiency and necessity
of theorem 1 are then proven in sections 2 and 3, 4, respectively. The paper concludes with a
discussion. Many of the details of the analysis are found in the appendices.

1.0.1. Notation

We shall consider a null frame £ = mg,n = m, m,, ..., my_; (¢, n null with £¢, =
n‘ng = 0,£%n, = 1, m; real and spacelike m;*m;, = &;;,i = 2,..., N — 1, all other
products vanish) in an N-dimensional Lorentz-signature space(time), so that

8ab = ZE(anb) + (Sjkm/amkb. (3)
Covariance is relative to the group of linear Lorentz transformations. Throughout, Roman
indices a, b, ¢, A, B, C range from 0 to N — 1. Lowercase indices indicate an arbitrary basis,
while the uppercase ones indicate a null frame. Spacelike indices i, j, k also indicate a null
frame, but vary from 2 to N — 1 only. We will raise and lower the spacelike indices using §;;;
e.g., T; = 8;;T’. We will observe Einstein’s summation convention for both of these types of
indices; however, for indices i, j, . .. there is no difference between covariant and contravariant
components and thus we will not distinguish between subscripts and superscripts.

We also introduce the notation (compare with [7, 9])

W(aXpYeZdy = %(w[axb]y[czd] + WieXg)YiaZp) = %{[wp-xq][yrzs]}- 4
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Table 1. Boost weights of the Weyl scalars.

2 1 0 —1 -2

Coioj  Coroi» Coijk Coto1s Cotijs Coitj, Cijrt - Contis Crijk - Cuitj

1.1. Background
A null rotation about n is a Lorentz transformation of the form

h=mn, W = m; +z;n, L=t—zm' —18Uzzm. ®)
A null rotation about £ has an analogous form. A boost is a transformation of the form

A =21"n, W =m;, 2=, X #£0. (6)
A spin is a transformation of the form

'ﬁ,:’n,, miZXl-jmj, e

Il
S

)

where X / is an orthogonal matrix.

Let Tp,...a, be a rank p tensor. For a fixed list of indices Ay, ..., A,, we call the
corresponding Ty, . 4, a null-frame scalar. These scalars transform under a boost (6)
according to

yaees

b=bp +---+ba,, (8)
where
bp=1, b; =0, by =—1. ©))

We call the above b the boost weight of the scalar. We define the boost order of the tensor T,
as a whole, to be the boost weight of its leading term [8].
We can then decompose the Riemann tensor and sort its components by boost weight:

2 1

Rapea = 4Roiojniam' snem? gy + 8 Rooin g Lonem' ay + 4Rojrniam’ ym? ;m” 4 (10
o 0
{+4R0101n{a5bnc£d} +4Ro1ijn Lym' cm’ g }
+8Ro;1 jnam' plem? gy + Rijigm' (qm? ym* m' g,
-1 -2

+ 8R101,-Z{anbﬁcmid} + 4R1[jk€{umibmjcmkd} + 4R1i1j€{amib Zcmjd} .

The Weyl tensor C,,.q has a boost-weight decomposition analogous to (10). Table 1 shows
the boost weights for the scalars of the Weyl curvature tensor C,p.q. Thus, generically Cypeq
has boost order 2. If all Cy;o; vanish, but some Coj;, or C;jx do not, then the boost order
is 1, etc. The Weyl scalars also satisfy a number of additional relations, which follow from
curvature tensor symmetries and from the trace-free condition:

Coio' =0,

Coioj = Coij' Coijky =0,

Coio1 = Coit', Coij = _%Cikjk + %COIijv Cigjkny = 0, (an
Coiij = —Cuij', Ciijr =0,

Ciii' =0.
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A priori, the assignment of a boost order to a tensor seems to depend on the choice of
a null frame [8]. However, a null rotation about £ fixes the leading terms of a tensor, while
boosts and spins subject the leading terms to an invertible transformation. It follows that the
boost order of a tensor is a function of the null direction k. We shall therefore denote boost
order by B(k) (with the choice of a tensor C determined by context). We will say that a null
vector k is aligned with the Weyl tensor C whenever B(k) < 1 [8, 9]. We will call the integer
1 — B(k) € {0, 1, 2, 3} the order of alignment.

Definition 2. We will say that the principal type of a Lorentzian manifold is I, II, III, N
according to whether there exists an aligned k of alignment order 0, 1, 2, 3, respectively (i.e.,
B(k) = 1,0, —1, =2, respectively). If no aligned k exists we will say that the manifold is of
type G. If the Weyl tensor vanishes, we will say that the manifold is of type O.

It follows that there exists a frame in which the components of the Weyl tensor satisfies:

Type I: C(),'()j = 0,

TypeIl:  Coio; = Coijx =0,

Type lll:  Coio; = Coijx = Cijii = Co1ij =0,

Type N:  Coioj = Coijkx = Cijit = Coiij = Cijx = 0.

(12)

The general types have various algebraically special subtypes [9], which include (the following
only lists the additional conditions for the algebraic specializations): Type la Cp1p; = O,
subclasses of type II (with Coi9; = 0, the traceless Ricci part of C;j; = 0, the Weyl part of
Cijii = 0 and Coy;; = 0) and type Illa Co;;; = 0. Note that the conditions for the type II
subcases can be combined to yield composite types. The full type of the Weyl tensor includes
identifying its principal type and subclass and multiplicities, etc [8]. The special type D is
defined by the fact that in canonical form all terms are of boost weight zero. For type III
tensors, the principle null direction (PND) of order 2 is unique. There are no PNDs of order 1,
and at most 1 PND of order 0. (For N = 4 there is always exactly 1 PND of order 0; for N > 4
this PND need not exist.) For type N tensors, the order 3 PND is the only PND of any order.

1.2. Bianchi identities

Covariant derivatives of the frame vectors can be expressed as [10]

Casp = L11laly + Liolany, + L1 Lam'y + Liym' o€y + Ligm' ynp + Lijm' ym” (13)
Nasp = —Liingly — Lionany — Lyngm'y + Niym' o€, + Nigm' qny, + Nijm' qm? (14)
m' gy = —Nitlaly — Niolany — Liingly, — Liohan, — Nijlam’ ),
i i i
‘ ; ; ko
+Mj1m]a€b —L,-jnamfb+Mj0m/anb+Mk,m amp (15)

(where Ly is the analogue of the spin coefficient y + 7 in 4D, etc).
Let us decompose L into its symmetric and antisymmetric parts, S and A,

Lij = Sij + Aij, Sij = Sjis Ajj = —Aji. (16)

If £ corresponds to a null geodesic congruence with an affine parametrization, we can express
the expansion 6 and the shear matrix o;; as

1 1
n—2 9" pn=2

S

1

~
[
|

(ST, 7)
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Oij = (E(a;b) — Géklmkaml;,) m,-“mjb = Sij — _6ij~ (18)

For simplicity, let us call A the rwist matrix and S the expansion matrix, although S contains
information about both expansion and shear. We also introduce the quantities

= 3151, A = JA;A;;. (19)
We next introduce directional derivatives D, A and §; by
D = (v, A =n'V,, 8 =m;"V,, Vo, =ngD+ L, A+m' 5. (20)

Commutators then have the form

AD— DA =L D+ LpgA+L;16 — Niod;, 21
8D — D8, = (Lyy + Nio)D + Lig s + (L i — Myo)3, 22)
§iA—A§; =Ni1D+(Li1_Lli)A+(Nji_Ai4jl)8ja (23)
8i8; —38;6; = (Nij = N;ji)D+ (Lij — L)) A +(A£1ki - Ai[kj)fsk- (24)

For type III and type N vacuum spacetimes we will use the notation of [10] with
V; = Cioyi, Wik = 3Ciij, Wi = 1Cyy;.
The Weyl tensor can thus be expressed as
Cabea = 8Wilianplem' gy + 8W;jm’ qm’ , €cm® gy + 8%, Lum’y Lem’ gy (25)

Case W, # 01is of type III, while W;;; = 0 (and consequently also W; = 0) corresponds to
type N. Note that ¥;; is symmetric and traceless. W;;; is antisymmetric in the first two indices
and in vacuum also satisfies’

\Ifi = 2\I—’ijj, (26)
\I—’{,‘jk} =0. (27)

Further constraints on W;;, W;j;, S, A and £ can be obtained by employing the Bianchi
and Ricci identities

Rab[cd;e} = 07 (28)
Va;bc = Va;cb + R, Vs, (29)

abc
where V' is an arbitrary vector.

The implications of the Bianchi identities (28) for vacuum-type III and N spacetimes were
studied in [10]. It was shown that for these spacetimes £ is geodesic. Furthermore, if they
have non-vanishing expansion S and twist A and u®, v and w are orthonormal elements of
the vector space spanned by vectors m ") (see sections III and IV in [10]) then

3 Note that we use two different operations denoted by {}. In the first case {} acts on three indices and stands for
Rabicd;ey = Rabed:e + Rabde;c + Ravec;a- In the other case { } acts on four indices and is given by (4).
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(1) in vacuum type N spacetimes with S 7 0 it is always possible to choose vectors v and w

for which
U — p
ij = \/;(U,‘Uj — w,‘w.]'), (30)
S,‘j =S(v,-vj+wiwj), 31
A = A(wryy — vewy), (32)
where
p =YV (33)

(2) in vacuum type III spacetimes with S # 0, A # 0, ¥; # 0 and with a ‘general form’ of
W,z (see [10] for details) it is possible to introduce a vector

Pi = Ay Y; (34)
and then express S, A and W, as
v, ;P
S,‘j =S wz + ¢2 s (35)
1
Ajj = w(dbilllj - ®;v)), (36)
1 Ot @ Olet @ «
Wy = 2752(\11,@, ;D) Dy + w—’;(wluj — Wul )Wy ¢—j(c1>,~uj — O ul)d;
(910,2 Olaz
+ —(Vu — Vjul ) + ——(D;u — O,uf )y, 37
w(b ( J J ) 1/f¢ ( J J )

where ¢2 = o;P;, 1//2 = W; U;. We have treated all possible degenerate situations for the
non-twisting case, A;; = 0, in arbitrary dimensions (see appendix C.1 in [10]) and for the
twisting case in five dimensions (see appendix C.2 in [10]), and they all lead to special
cases of the solution (35)—(37) which are given explicitly in [10]. We assert that the
solution (35)—(37) is a general solution even for the twisting case in arbitrary dimensions.
We have proven this in all of the general cases, and although we have not rigorously
proven this for all of the degenerate cases there is evidence that it is indeed true.

2. The sufficiency proof

In this section, we start with the assumptions of theorem 1 and then show that all curvature
invariants of all orders vanish. The corresponding form of the Riemann tensor (1), which
implies appropriate types for the Weyl and Ricci tensors, was given in [7]. The congruence
corresponding to £ is geodesic with vanishing shear, twist and expansion; i.e.,

Lip=Li; =0. (38)

Let us, for simplicity, choose an affine parametrization and a parallely propagated frame.
Thus,

i

Lip=0, Njp =0, Mo =0. 39)
Due to the Bianchi identities
Rapiea:ey =0, (40)
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we can express how the operator D acts on A;, B;jx and C;;. Corresponding results may be
obtained by evaluating the Bianchi identities with various combinations of null-frame indices,
and by using the form (1) of the Riemann tensor. For example, for indices 101i0 we obtain

DA; =0. (41)
The other two equations of interest are obtained by using, respectively, indices ij1k0 and
1i1;0:
DBy =0, (42)
k
DCij = —ByjiLiy + ALy + 5 Mij A + 38, A;. (43)

Evaluating the Ricci identities

Casbe — Laser = RY, Ly (44)

abce

and using indices 10i, ;01 and 110, respectively, yields

DL, =0, 45)
DL;; =0, (46)
DLy =—Ly;L;j. 47

From equations (45)—(47), it follows that

D’Ly; = 0. (48)
Similarly, evaluating
ng (49)

with indices 70 and i 10, respectively, we get

Na:be — Na;eb = R(ilbc
DN;; =0, (50)
DN;; :—N[ijl-l-A,‘. (1))

From equations (41), (46) and (50) we obtain

D*N;; = 0. (52)
Evaluating

M gipe —m'gep = RE, m'y (53)

with indices jOk and j10, respectively, we obtain

DMy =0, (54)

i

DM;j = —M;Ly,. (55)
From equations (46) and (54) we get
D*M;, = 0. (56)

Note that from the previous equations it also follows that
D’C;; = 0. (57)
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Table 2. Properties of quantities which are relevant for our proof.

Quantity Boost weight  ‘D-equation’

L -1 D2L;, =0
Lli 0 DL],' =0
Li 0 DL;;1 =0
Nii -2 D2N;j; =0
N,'j -1 DN,'J' =0
i i

M 0 DMy =0
i i

M; -1 D>M;; =0
Aj -1 DA; =0
Bijk -1 DB,‘jk =0
Cij -2 D?Ci; =0

Let us now express covariant derivatives of the frame vectors and commutators for a
geodesic, affinely parametrized, expansion and twist-free £ and the rest of the frame parallely
propagated along £

Cap = L11laly + Liilam'y + Liym' 40y, (58)

Nap = —Liingly — Lyngm'y + Njym' €, + Nijm' qm? (59)

m' gy = —Nijtlaly — Litngly — Nijlam?p + M jym? €, + Mygm* ,m'; — (60)

AD—DA:L”D-FL,‘](S,‘, (61)

6D — Dé; = Ly;D, (62)

8 A—AS; = NjuD+(Liy — Lij))A+(Nj; — M 1), (63)
J i

8i8; —8;6; = (N;jj — Njij)D + (My; — My;)é. (64)

Now we can proceed with the proof in a similar way to that in four dimensions [1]. Thus,
we will only outline the key points. In all of the proofs we recall that £ is geodesic and affinely
parametrized, the expansion and twist matrices vanish and the frame is parallely propagated
along £.

Definition 3. We shall say that a weighted scalar n with boost weight b is balanced if
D™’y =0forb <0andn=0forb > 0.

In analogy with the proof in 4D (employing table 2 and the commutators (61), (62)) we
obtain
Lemma 4. If n is a balanced scalar then Lyn, Ljn, Liin, Niin, Nijn, Mjin, Myn, Dn,
8in, An are balanced as well.

Definition 5. A balanced tensor is a tensor whose components are all balanced scalars.

From (20) and lemma 4 (together with the assumptions in this section), it then follows
that
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Lemma 6. A covariant derivative of an arbitrary order of a balanced tensor is again a
balanced tensor.

The Riemann tensor in the form (1) is balanced from equations (41), (42) and (57).
Consequently, all of its covariant derivatives are also balanced and thus all curvature invariants
in this case vanish. This completes the sufficiency part of the proof.

3. The necessity proof for zeroth-order invariants

In this section, we prove that the Riemann tensor for VSI spacetimes necessarily has negative
boost order.

A scalar formed from the contractions of the Riemann curvature tensor is an invariant
quantity in the sense that the contraction yields the same answer with respect to every choice
of basis. There is an infinite number of different ways to perform such contractions. Hence,
a given curvature tensor has associated with it an infinite set of invariants, some of which are
generically non-vanishing. In this section, we classify the algebraically special spacetimes
characterized by the condition that all zeroth-order (i.e., algebraic) invariants formed from
Rupeq vanish. Henceforth, we shall refer to such spacetimes as belonging to the VSIj class.
We will show that such spacetimes are necessarily of principal type III, N or O, with an aligned
Ricci tensor of types PP-N, PP-O (or vacuum).

A scalar invariant has boost weight zero. It follows immediately that if the boost order of
the curvature tensor is negative along some aligned null direction £¢, then all scalar invariants
must vanish. The converse is much harder to prove. In 4D it is well known [2, 11] that the
vanishing of the fundamental second- and third-degree Weyl invariants, / = J = 0, implies
that the Petrov type (principal type) is III, N or O. The condition that the Ricci tensor either
vanishes or is of type PP-N or PP-O and is aligned, follows easily.

In higher dimensions, an entirely different approach is needed. We define a curvature-like
tensor to be a rank 4 tensor with the following index symmetries:

Rapeca = —Rpaca = Redap-

The class of curvature-like tensors is more general than the class of Riemann curvature tensors,
because we do not impose the algebraic Bianchi condition

Ravea + Racap + Raape = 0. (65)

Indeed, curvature-like tensors may be best characterized as symmetric, rank 2 tensors with
bivector indices. On occasion we will, therefore, write curvature-like tensors as Ryg = Rgq,
where «, 8 are bivector indices as defined in appendix C.

With every curvature-like R,;.; We associate the rank 2, symmetric covariant

Rab = Racbcv
which we will call the Ricci covariant. In addition, we could raise a bivector index and consider
the transformation of bivector space R, (see appendix C). By taking powers and then lowering
an index we obtain additional covariants, e.g., the following curvature-like tensors R (Olfz,,

R = R.” Ryp, R} = R, R,’ Ry, etc.
Our main result is the following.
Theorem 7. Let R,p.q be a non-zero, curvature-like tensor with vanishing zeroth-order
invariants. Then, R(s; = 0, and there exists an aligned null direction £* along which the boost
order is negative. Generically, that is for R(j; # 0, the principal type is III, with

Ruped = SRo11inialy €em’ gy + 4Ry i ligm’ ym? ;m* gy + 4Ry 1€ qm'y Lem? gy (66)
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I'}”R(lf;3 = 0, then the principal type is N, with

Rapea = 4Ryt Lam’y €em? 4. (67)

The proof will be broken up into a number of lemmas that treat special cases (the proofs
of the lemmas are given in the appendices).

Lemma 8. A curvature-like tensor of pure boost weight zero possesses a non-vanishing
invariant.

Lemma 9. Let R,pcq be a curvature-like tensor with vanishing zeroth-order invariants. If the
Ricci covariant Ry, # 0, then there exists an aligned null direction £* along which the boost
order of Rupcq Is negative.

Lemma 10. Let S,pcq be a symmetric, rank 4 tensor with vanishing zeroth-order invariants.
Then there exists an aligned null direction £, i.e. Soooo = 0.

Lemma 11. Let R,p.q be a curvature-like tensor with vanishing zeroth-order invariants. If
R(jzg = 0 and Ry, = 0, then there exists an aligned null direction £* along which the boost
order is negative.

Lemma 12. Let R,pcq be a curvature-like tensor with negative boost order. If R(j) = 0and
R, = 0, then the principal type is N, i.e., (67) holds.

Proof of theorem 7. If R,, # 0, then the theorem follows by lemma 9. Henceforth,
we suppose that R, = 0. If R(If}g = 0, then the theorem follows by lemmas 11 and 12.

Henceforth, we suppose that R (51)3 # 0.
By proposition 20 of the appendix, R,g is nilpotent. Hence, for some sufficiently large &
we have

k 2
Pos = R #0, P =0.

We now consider two cases, depending on whether the covariant P,, = P,.° is non-zero
or whether it vanishes. In the first case P,, # 0, and we proceed as we did in the proof to
lemma 9 by constructing a rank 2 covariant

Qab = L,lp,

and then showing that the boost order is negative. If P,;, = 0, then we apply lemmas 11 and
12 to P,peq to find an aligned £¢ such that

Papea = 4Pii1jLigm’y Lem? g
Consider the following rank 4 covariant

Qubed = Pachy Pea” = Malplely, r= (Pij)* > 0.
ij
Proceeding as in the proof of lemma 9, we can show that
Roio1 = Roiji = 0.

Since components of negative boost weight cannot contribute to an invariant, lemma 8 implies
that the weight-zero components of R, vanish. The theorem is thus proven. U
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4. Necessity proof

In this section, we prove the necessity part of theorem 1 assuming that the Riemann tensor
has negative boost weight; i.e., the Weyl tensor is of type III, N or O and the Ricci tensor is of
type N or O as was shown in theorem 7.

We will explicitly express two differential Weyl invariants for type N and III vacuum
spacetimes. These differential invariants were originally used for similar proofs in 4D
[13, 1, 14] and, as in 4D, they are zero only if both the expansion and twist vanish. Though
the resulting expressions are simple, the calculations are quite extensive even with the use of
MAPLE.

We cannot repeat similar calculations for non-vacuum spacetimes since, at present, the
consequences of the Bianchi identities for non-vacuum spacetimes have not been fully studied
and thus we cannot employ possible non-vacuum analogues of (30)—(37). For non-vacuum
spacetimes we thus prove existence of non-vanishing differential Ricci invariants if £ is not
geodesic or if it is expanding or twisting. The explicit form of these invariants may be
reconstructed from the proof if necessary.

4.1. Type N vacuum spacetimes

Curvature invariants of the zeroth- and first-order (i.e., invariants containing the Riemann
tensor and its first covariant derivative) vanish. Curvature invariants of the second order lead
to invariants of matrices W;; (25) and L (16). Let us explicitly calculate the second-order
invariant

abcd;rs tmun;vw
I=C Camcn;r.rc Ctbud;uw (68)

given in [13]. This expression can be rewritten as a polynomial invariant constructed from the
components of the matrices ¥ and L which contain more than a thousand terms. A typical
term is, for example,

27 \pij LIlil LIer \ykzij le an an Lrp qu Lrs sz s

which, due to lemma 1 in [10], can be simplified to 27 p2(S 2+ A%)*. We note that it is efficient
to use part (f) of this lemma as often as possible, and only afterwards to decompose L into
S and A and use the remaining equations in lemma 1. Extensive algebraical calculations in
MAPLE lead to

1=372"p%($* + AH)". (69)
This invariant clearly vanishes only if both quantities S and A are equal to zero, and we have
thus completed the necessity part of the proof for type N vacuum spacetimes.
Let us check this formula in 4D. The relations between the frame vectors m? and m? and
the standard null-tetrad vectors m and m are

me — %(,ma —im3), me = %(”Da +im3?). (70)

In 4D, ¥ has two independent real components, W,, and W,3, which are related to the complex
Yy = Cabcdn”rhbn”n_’td by

Ya = 2V +iWn3), Va4 =2(Wy — W), Yalra = 4(Wa” + W), (1)
Now we can recover the formula for the invariant / in 4D [13]:
Lip = 32280 + ) Y5, (72)

by using S =6, A = w, p = Y.
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4.2. Type Il vacuum spacetimes

The zeroth-order curvature invariants again vanish; however, we can calculate the first-order
non-vanishing invariant

bed; l N
IIII = C" ecamcn;ec mr JClhrd;x (73)

given in [14]. Due to equations (35)—(37), we can express this invariant, after extensive
calculations in MAPLE, as

I = 64(S* + AD?[9Y2 + 279 (Opp + Opr) +28(Opp + Opr)?1, (74)

where Opp = OpapOpapr, Orr = OparOpar.

We note that Opp, Opp and ¥ are non-negative and for type III spacetimes at least one of
them is positive and thus the VSI condition for type III vacuum spacetimes implies S = A = 0.
‘We also note that the solution (35)—(37) is expressed for simplicity in a frame which is adapted
to the twisting case with non-vanishing W;. However, this solution may also be expressed in
another frame in which we obtain the non-twisting case by simply putting A = 0 and the case
with &; = 0 by putting W; = 0. Thus, we can obtain the resulting expressions for the invariant
Iy in these special cases by substituting A = 0 or ¢ = 0 in equation (74). We remark that the
completeness of the proof for the vacuum type III case relies on the solution (35)—(37) being a
general solution. Although there is good analytical evidence to support this for six dimensions
and there is some support in higher dimensions, we have not rigorously proven this in all the
degenerate cases (of measure zero) for the twisting case in dimension six and higher.

4.3. Ricci invariants

In this section, we show that for non-vacuum PP-N and PP-O spacetimes there exist non-
vanishing first- and second-order (in derivatives) Ricci invariants if £ is not geodesic or if it
admits expansion or twist. We start by proving several lemmas and then we apply them to the
PP-N and PP-O cases separately.

Lemma 13. [f there exists a null frame in which a tensor T of rank 2 is of pure boost order
zero, then T possesses a non-vanishing invariant.

Proof. We prove this lemma by contradiction by assuming that a second rank tensor of pure
boost order zero,

Tup = Toinaly + Tiolanp + Tijm' qm? p, (75)

has vanishing algebraical scalar invariants. Consequently,

T2 =T, T." = Toi Tio(nale + Lane) + Ty Tism' ym! (76)
and

TOTA = 2(To)) (Tio)* + T, T, (77)
where

T = T,T,;. (78)
Thus, if T" has vanishing algebraical invariants then

T =0=T;=0 and To1 Tio = 0. (79)

Now, considering that

T T = (To1)* + (T10)* + T;; T (80)
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we conclude that
Toy =Tip=0 (81)

and thus a non-vanishing T' cannot have vanishing algebraical invariants. ]

Lemma 14. [f there exists a null frame in which a tensor T' of rank 2 has boost order zero,
then T possesses a non-vanishing invariant.

Proof. Every tensor T" with boost order zero can be divided into two parts
T=T9+17" (82)
where T') is of pure boost order zero and T~ has negative boost order.

Clearly T does not affect any invariant of T', and thus this lemma is a direct consequence
of lemma 13. U

Lemma 15. [f there exists a null frame in which a tensor T of rank 3 has pure boost order
zero, then T possesses a non-vanishing invariant.

Proof. We again prove this lemma by contradiction. A general form of a third rank tensor of
pure boost order zero is

i i i i
Tabc = TOlinaebmc + TlOieanbmc + TOilnambec + Tliogambnc

. , i

+ Tigminpl. + Tiom! Lpn, + T;jom!ymymy. (83)
Let us now construct from 7" several second rank pure boost order zero tensors. If 7" has
vanishing algebraical invariants, then all of these tensors have to vanish according to lemma 13.

In fact, we do not need to express these tensors fully, we just need some of their components:

Tupe Ty 0" = Toui Thio + Toi Thoi (84)
Tupe T 4" 0" = Toui Trio + TinoTino, (85)
Tupe T 4"n € = Toi1 Troi + Tio1 Tion- (86)

An appropriate linear combination of equations (84)—(86) leads to

Ti10T;10 + Tio1Tior =0 87)
and thus

Ti10 = Tior = 0. (88)
Other components of pure boost order zero tensors of rank 2 are

Ture TP 401" = Toui Tori + Toir Tino, (89)

Tupe T?a“n € = Tyo: Toi + TrioTion, (90)

Tupre T/" €0 = TiioTii0 + Tr0Thois On

Tupe Ty"*n ¢ = Toit Toi + Tro1 Toui- (92)

From the vanishing of equations (88)—(92), it follows that

Tori = Tioi = Thio = Toi = 0. 93)
Now we need only one last invariant

Tupe T = 2To1i Tioi + 2Toi1 Trio + 2Ti01 Thvo + Tijx Tiji (94)
which thanks to equations (88) and (93) vanishes only if

Tijx = 0. 95)

Thus, if T" has vanishing algebraical invariants then T" vanishes. |
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4.3.1. PP-N spacetimes. For PP-N spacetimes the Ricci tensor has the form [7]
Ry = K; (Eam;) + miaﬁb) + Al Ly, (96)
with K; # 0 for at least one value of i.
Now a tensor of rank 3
Tabc = Rab:URo;- (97)
has boost order zero, and thus (lemma 15) for VSI spacetimes all of its components with boost
weight zero have to vanish. By expressing the component

Tijk = KiLjoKy + LioK ; Ky, (98)
and multiplying this equation by L;, and by contracting k with j, we obtain

(K;Lio)* + LioLiocK;K; = 0 (99)
which implies

Lio =0; (100)

i.e., £ is geodesic, and thus also

Moy = 0. (101)

Assuming that equations (100) and (101) are satisfied, we find that the first covariant derivative
of the Ricci tensor R, has the boost order 0 and thus for VSI spacetimes all of its components
of boost weight zero must vanish. From

Riji = LjxKi + LyK; =0, (102)
and contracting i with j, it follows that

LiK; =0. (103)
Multiplying equation (102) by K; and using (103) leads to

K;K;Ly =0 (104)
which implies that

Lij=0; (105)

i.e., the expansion and twist matrices are zero.

4.3.2. PP-O spacetimes. For PP-O spacetimes the Ricci tensor has the form [7]

Rup = ALyl (106)
The covariant derivative R,;.., has boost order 0. The boost weight zero component

Rii.o = ALjo (107)
has to vanish from the VSI condition and thus

Liy=0 (108)

and £ is geodesic. We choose the affine parametrization with Lo = 0. Now, the second rank
tensor R, has boost order 0. Thus, the component with boost weight zero

Rija™ =2ALjLix (109)
has to vanish from the VSI condition and consequently
Li; =0, (110)

i.e., the expansion and twist matrices are zero.
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5. Discussion

We have proven that in N-dimensional Lorentzian spacetimes the boost order of the Riemann
tensor is negative along some aligned non-expanding, non-twisting, geodesic null direction
£ if and only if all scalar curvature invariants vanish (generalizing a previous theorem in 4D
[1]). We emphasize that even though our main focus has been the Lorentzian geometry case,
some results from the more general theory (N-dimensional, real vector space equipped with
an inner product g,, with no assumption about the signature) have been developed.

In the Lorentzian case, we have provided strong evidence for the following conjecture
(the algebraic VSI conjecture): any tensor with vanishing algebraic scalar invariants must
necessarily have negative boost order along some aligned null direction. We have given a
proof of this conjecture for arbitrary dimensions and for the following tensor types: bivectors
in proposition 27, symmetric rank 2 tensors in corollary 24, and for the general class of
curvature-like tensors in theorem 7. Lemmas 14 and 15 provide additional evidence for this
conjecture.

We note that all of the VSI spacetimes have a shear-free, non-expanding, non-twisting
geodesic null congruence £ = 9,, and hence belong to the ‘generalized Kundt’ class [7].

There is a number of potentially important physical applications of VSI spacetimes. For
example, it is known that a wide range of VSI spacetimes (in addition to the pp-wave spacetimes
[15, 16]) are exact solutions in string theory (to all perturbative orders in the string tension)
[17]. Recently, type IIB superstrings in pp-wave backgrounds with an RR five-form field were
also shown to be exactly solvable [18]. Indeed, many authors [15, 19] have investigated string
theory in pp-wave backgrounds in order to search for connections between quantum gravity
and gauge theory dynamics.

In the context of string theory, it is of considerable interest to study Lorentzian
spacetimes in higher dimensions. In particular, higher dimensional generalizations of
pp-wave backgrounds have been considered [19, 20], including string models corresponding
not only to the NS-NS but also to certain R-R backgrounds [21, 22], and pp-waves in
11- and 10-dimensional supergravity theory [23]. In addition, a number of classical solutions
of branes [24] in higher dimensional pp-wave backgrounds have been studied in order to better
understand the non-perturbative dynamics of string theories. In particular, a class of pp-wave
string spacetimes supported by non-constant NS-NS H3; or R—R F), form fields were shown
to be exact type II superstring solutions to all orders in the string tension [22, 25]. In this
class of 10-dimensional superstring theory models the pp-wave metric, the NS-NS 2-form
potential and the 3-form H; background, which depends on arbitrary harmonic functions
by (x) (8%b,, =0,m = 1,2, ...) of the transverse coordinates x;, are given by [22]

ds? = dudv + K (x) du? + dx? +dy?, i=1,...,d, m=d+1,...,8, (111)
By = b, (x)du A dy,,, H; = 0;b,,(x)dx; A du A dy, (112)

where the only non-zero component of the generalized curvature is

A

Ruiuj = _%aiajK_ %aibmajbm' (113)
These solutions are consequently of PP-type O and of principal (algebraic Weyl) type N.
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Appendix A. Indefinite signature inner products

Let 0 < p < g be integers, and let R”*¢ denote R”*? equipped with a signature (p, ¢) inner
product

P ptq
ZXWA - Z X Y, X%, Y* e RV,
2=1 r=p+1

Let SO, 4 be the corresponding group of (p, g)-orthogonal transformations. We consider a
collection X;* of mutually orthogonal null vectors. In other words, for all values of collection
indices 7, j we have

P pq
dDOXAXS - Y XPX =0 (114)
r=1 r=p+l

Proposition 16. A collection of mutually orthogonal null vectors, X;* € R, has at most p
linear independent elements.

Proposition 17. Let X;* € RP9 be a collection of p, or fewer, linear independent, mutually
orthogonal null vectors. Then, there exists a (p,q) isometry Tl’\L € SO, such that the
transformed collection of mutually orthogonal vectors

YiA — T)LMXi i

has the form Y;' = Y;"*P = 1, with all other components 0.

Corollary 18. Let X;* € R”? be an arbitrary collection of mutually orthogonal null vectors.
Then, there exists a (p, q) isometry T*, € S Op.q such that the transformed collection of
mutually orthogonal vectors

A A "
Yi — l " Xi
SCll‘iSﬁes

Y» =y, A=1,...,p, and V' =0, 1>2p.

Appendix B. The Petrov normal form

Even though our focus is Lorentzian geometry, some signature-independent results need
to be developed. Let gsc be an N-dimensional, non-degenerate inner product; we make
no assumptions about signature*. Let T = Tj. be a general, rank 2 tensor. For each

k=1,2,...,N—1let
o =T® =TT 5...T"
€] € €
denote the kth power invariant of T. The following is well known [29]:

Theorem 19. Every scalar invariant of T has a unique representation as a polynomial of the
power invariants oy, ..., ON_1.

4 As a notational reminder we will use 4, e, y to index tensors in the more general setting, and reserve a, b, ¢ as
indices of tensors in a Lorentzian setting.
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Corollary 20. A rank 2 tensor T has vanishing zeroth-order invariants (i.e., is VSIy) if and
only if it is nilpotent; i.e., T® = 0 for some k > 0.

Next, we consider a symmetric, rank 2 tensor Qsc = Q5. The normal forms described
below are a specialization of the normal forms described by Petrov [12], and the proof of the
following result can be found therein.

Theorem 21. If a symmetric tensor Qs. belongs to the VSl class, then there exists a basis,

AL
K., A=1,...,r; v=1,...,d;,

and a sequence of block signatures o; = £1, such that

v Ap
gae=ZGAK(5Ke), (115)
A
Ao+l Ap
Ose = Z o, K Ko, (116)
A,V
dy>1
where . = 1,...,r,wherev =1, ...,d,, and we are letting p = d, + 1 — v.

Corollary 22. Let Qs. be a symmetric, rank 2 tensor. If Q5. = 0, then

Poaoa P 5
Q5E=ZK5KE_ Z KzSKEa
r=1 A=p+l
A . P q
where the K, . =1, ..., p+q, are mutually orthogonal null vectors; i.e., K.K¢ = 0.

Proof. Conditions (115) and (116) are equivalent to the statement that the linear transformation
Q5€ has the action

A1 1.2 rds,

K.—->K.—>---— K.— 0. (117)
Since Q®;, = 0, we have that d, = 1 or 2 for all .. We then rearrange our basis so that
o,=1,d,=2forx=1,...,p,sothatoy, = —1,d,, =2forA=p+1,..., p+q, and so
that d, = 1 for A > p + ¢. We obtain the desired form by setting

2 12
K.=K,., A=1,...,p+gq. 0

Conditions (115) and (116) are equivalent to the assertion that gs. and Qs can be
simultaneously put into block diagonal form:
| 1

G 0
8se = T s Q5€ = T 5
G 0
such that the blocks have the form
O, 0
A . O N o 0
Oy Oy 0
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Thus, there are four kinds of blocks, depending on the block signature o, and on the block
parity—a block being called even or odd according to whether d; is even or odd. The
basis vectors of an even block are pairs of conjugate null vectors. The same is true for odd
blocks, save that the middle vector is either a unit spacelike or a timelike vector depending on
whether the signature o, is +1 or —1, respectively. The following table summarizes the four
possibilities, and the corresponding signatures of the blocks:

] A
05, Parity  Signature G Signature Q

+1  Even (%ds.%dy) (3dy, 3y — 1)

(3d. 3dy) (5dp — 1. 3dy)
+1 0dd (Y@ +D, L@ -1) (A -1, L@ D)
-1 odd (@ -0 l@d+1) (L@ -1 @ -D)

-1 Even

Summing the signatures of all the blocks we arrive at the following result.

Proposition 23. Suppose that a symmetric Qse has vanishing zeroth-order invariants (i.e., is
VSI1y). Then, the signature of the inner product gse is given by

N+o, N—o,
< 20 , 20), where o, = ZU,\; (118)
d;, 0dd
and the signature of Qsc by
N—-v+ N —v—
( ‘2} Ue, ; Ge), where o, = Z 0. (119)

d even

As a particular case of the above proposition, suppose that g,, has Lorentz signature,
(N — 1, 1). In this case, equation (118) is a very strong constraint on the size and number of
odd and even blocks. Indeed, there can be at most one block of size 2 and signature (1, 1), or
one block of size 3 and signature (2, 1). The possibilities are summarized below.

Corollary 24. Suppose that g,, has Lorentz signature. Then, there exists a null-frame
4, n®, m;“ relative to which a VSIy Q. takes on exactly one of the following normal forms:

Qa» = 0; (120)

Qap = £Loly; (121)

Oup = Lam’p). (122)
Appendix C. Bivectors

Henceforth, we assume that g,;, has Lorentz signature. A bivector is a rank 2 skew-symmetric
tensor. The vector inner product g,, naturally induces a bivector inner product

8ap = %(gacghd — 8ad&be)s a=(a,b), B=I(d).

We use o« = (a,b),a < b to denote a bivector index, and henceforth use «, B, y, ... to
denote bivector indices. A bivector index can take on N(N — 1)/2 possible values; this
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is the dimension of the vector space of all bivectors. The inner product of two bivectors
Jo = Jup, Ko = K, can also be characterized as the total contraction

gupJ KP = J,K® = T, K.

A bivector K, will be called null if K, K* = 0. Every null-frame £¢, n“, m;* induces a
basis of bivectors consisting of the N — 2 pairs of conjugate, null bivectors £,m’ ), nam'y;,
the negative-norm bivector £, and %(N — 2)(N — 3) positive-norm bivectors mfamj - It
follows that the bivector inner product gqg has signature (%(N —1)(N—-2),N — 1).

It can be shown [27] that for even N a bivector K, always admits at least one aligned, real
null direction, while for odd N it is possible that there is no real aligned null direction. The
boost weights of the components of K, given by

1 0 -1

K. = 2K0in[am’b] +2K01n[aﬁb] + K,-jm’[am’b] +2K1,-E[am’b] .

For an aligned (or singly aligned) bivector we can set Ky, = 0 (but K}; is not zero) and
for a bi-aligned bivector we can set Ko; = Kj; = 0. We can classify bivectors into alignment
types (using notation consistent with [8, 10]). We will say that a bivector is of type G if
Ko; cannot be made to vanish and of type I if Ky, = O (but K¢, does not vanish), and of
algebraically special type Il if Ko; = Ko; = K;; = 0. For type II, the bivector is aligned and
K,; cannot be made to vanish; i.e., there is no bi-aligned subclass. For type I, we will say
that the bivector is bi-aligned if Ko; = K|; = 0, and we shall refer to this case as type I; (this
case is akin to type II;; in the classification of the Weyl tensor [9] and could perhaps also be
referred to as type D). We also note that in 4D, types I; and II are referred to as types I and N,
respectively [28].

A
A collection of bivectors K, is null and mutually orthogonal if and only if

Ao Ao AR Ao
2K0,‘K1l+2K1,’K0l+ijKU —2Kn Ko =0 (123)

for all A, .

A
Proposition 25. Let K, A = 1,...,r be a collection of null, mutually orthogonal, linearly
independent bivectors. Then,r < N — 1.

Proof. This follows directly from proposition 16. ]

1
Proposition 26. Let K, be a collection of null, mutually orthogonal bivectors with a common
2
alignment, i.e., Ko; = 0. Then, there exists a null, bi-aligned bivector M, and scalars Cj
2 s
such that Kij = C)\Mij and Ky = C; My,.

Proof. Consider the sequence of type I; bivectors defined by

A A X A A Py
My =0, Mo = Ko, Mij = Kij, M =0.

For a fixed €¢, the vector space of type I; bivectors has signature (1, (N — 2)(N — 3)/2).
A

Hence, by proposition 16, the M, must be multiples of one another. ]

Proposition 27. A bivector K, has vanishing zeroth-order scalar invariants (VSIy) if and
only if it is of alignment type 11.
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Proof. Since an invariant has boost weight zero, a K, with negative boost order must have
vanishing scalar invariants. Let us now prove the converse; i.e., we assume that K, has
vanishing scalar invariants and prove that necessarily the boost order is negative.

Let us consider the symmetric rank 2 covariant

Rap = KachC'
By corollary 24, we can choose an aligned ¢¢ so that

Roo = Ro; = Ro1 = R;; =0.

Since
Roo = ) _(Koi)*,
we have that Ky = 0. I;rom
Rii = —2KoiK1i + Y _(Ki), Rot = K3, — ) KoiKu;.
P ,
we infer that K;; = Ko = 0, as was to be shown. | O

We note that these results may be of importance in the study of higher dimensional
spacetimes with Maxwell-like fields [26].

Appendix D. The proofs of the lemmas

Proof of lemma 8. Let R,,.; be a curvature-like tensor with terms of zero boost weight
only. We argue by contradiction, and suppose that R,.; has vanishing scalar invariants. By
proposition 20,

R(k)abcd =0

for a sufficiently large k. Consequently, R"),;., has vanishing zeroth-order invariants for all
j < k. Since RY),;4 is of pure boost weight zero we may, without loss of generality, suppose
that R(z)abcd =0.

We decompose the curvature-like tensor as follows:

Rapca = Aabed + Bapeds

where
Aabea = 8Ro10101alpnlay + 4Rorijniabym’ cm? gy + Rijpgm’ qm? ym* .m' 4y
Bupea = 8Roi1jniam' plom? gy.

Evidently,
AgsBP, = BygAP, =0,

and hence,

A(Z)abcd = B(Z)abcd =0. (124)

Now, there are two cases to consider; either A,g vanishes, or it does not. If it does vanish,
then
deb 2
Rapca R =4 E (Roi1j)
ij

is a non-vanishing invariant. Thus, without loss of generality, A,z # 0.
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Note that A,g is a quadratic combination of type I; bivectors. In appendix C, we showed
that the vector space of type I; bivectors has Lorentz signature. Hence, by equations (124) and
corollary 22,

Awp = £K, K,
where K, is a null, type I; bivector; i.e.,
—2(Ko1)* + K;; K7 = 0.
Consequently, K(; # 0, and hence,
Roto1 = Aoio1 = £(Ko1)* # 0.

The matrix X;; = By;; is nilpotent by (124), and hence, X' = 0. Let Rgp, = Ry be
the Ricci covariant. We have

Rot = —Roo1 + Roit' = —Agio1 + X' # 0.
Hence,

RupR™ = (Ro1)* + Ri; RV
is anon-vanishing invariant. We have established a contradiction and hence proved the lemma.

]

Proof of lemma 9. Corollary 24 gives normal forms for R,;, with vanishing invariants. We
choose an aligned ¢“ so that

Roo = Roi = Ro1 = R;; =0. (125)

If R,, = 0, then all contractions vanish. Assuming that R,, # 0, we can construct a
non-vanishing covariant of the form

Qabcd = eagheczd .

To obtain this covariant we use Ry, R.q or Ry R R.f R{;, depending on whether R, has the
form (121) or the form (122), respectively. The vanishing of the invariant

Q" Raeny R’ =) (Roio;)’

ij
implies that
Roio; = 0. (126)
We set Tps = R®,s and note that the vanishing of the invariant
O Ty To%” = X:(Tomj)2
ij
implies that
Toio; = RoiapRo;** = 0. (127)
We define the following sequence of bivectors:

i

K = Roiab;

these are aligned because of equation (126). Also, by equation (127), we have that

i
TOin = KO,K(X =0.
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By proposition 26, there exist M i, My and C; such that

MjxM7* —2My* =0, (128)
and such that

Roijk = K jx = CiM ji, Roior = Ko1 = Ci M. (129)
By equation (125),

R()j = ROIjO + Rol‘ji = —CjM()l + C,‘Mji =0.

Hence, since M; is skew-symmetric, we have

C/Ro; = —CICjMy + C;C;M"T = =My Y (C))* =0.
J

Hence either C; = 0 or My; = 0. In the second case, M;; = 0 and equation (128) is satisfied.
In both cases, by equation (129)

Roio1 = Roijx = 0.

Since components of negative weight cannot contribute to an invariant, lemma 8 implies that
the weight zero components of R,p.q also vanish. U

The proof of lemma 10 is given in [30].
Proof of lemma 11. Setting

Sahcd = R(a\ef\thefd)a
we have
Soooo = Y _ (Roio;)*.
ij

Using lemma 10, we choose £ such that Sooop = 0, and hence

Roioj = 0. (130)
By corollary 22,
LA P
Rug =ZKO,Kﬁ— Z KoK, (131)
A=l A=p+1

A
where, without loss of generality, p < ¢, and where the generating bivectors K, are linearly
independent, null and mutually orthogonal (123). Set

Xile}%o,-, A=1,...,p+q, i=2,....,n—1,
and note that, by equation (130),
P ptq
Rooj = ) XX = Y X/ X" =0,
a=1 A=p+1
foralli, j =2,..., N—1. Hence, by corollary 18 we may, without loss of generality, assume

that

A A+p A
KQI‘Z K(),', A:l,p, and K(),':O, )\>2p (132)
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Fora=1,..., p, weset
2 A At+p A A Atp
EazKa"'Kav Fa=Ka_Ka;
forA=p+1,...,q weset
X Ap
F,= K,.
Now, equation (131) may be re-expressed as
LA 00 2
Rozﬁ = Z2E<aFﬁ)+ Z FaFﬂ. (133)

r=1 A=p+1

A
By equation (132) the F,, are aligned. Since they are null and mutually orthogonal, we have
by proposition 26 that there exist F;;, Fp; and Cy such that

FijF7 —2Fy* =0, (134)
and such that

L )

Fij = C\Fy;, For = C) Fo1.

Setting
P A
Ey =) CiEa,
r=1

we have, by equation (133),
Roio1 = Eoi For, Roijk = Eoi Fji.
The assumption R,;, = 0 implies that
Roi = —Rojo1 + Roji’ — Roior = —Eo; For + Eo; Fi/ = 0.
However, Fj; is skew-symmetric, and hence

Eo Ry = —Eo Eg' Fo1 + Eqi Eo; F = —Fy, X:(Eo;)2 =0.

1

Therefore, either Ey; = 0, or Fy; = 0. In the latter case, by equation (128) F;; = 0 as well.
In either case, the components of weight 1 necessarily vanish: Ryjo1 = Ro;jx = 0. Hence, by
lemma 8, R4 has negative boost order. O

Proof of lemma 12. We define the following sequence of bivectors:

i

K = Rijap:

these are aligned because of the assumption of negative boost order. Also, by assumption, we
have

i
RP1; = KoK* = 0.
Since R;; = 0, we can adapt the argument at the end of lemma 9 to establish that

Rijo1 = Ryijir = 0. 0
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