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Abstract

We discuss the algebraic classification of the Weyl tensor in higher-dimensional
Lorentzian manifolds. Thisis done by characterizing algebraically special Weyl
tensors by means of the existence of aligned null vectors of various orders of
alignment. Further classification is obtained by specifying the alignment type
and utilizing the notion of reducibility. For a complete classification it is then
necessary to count aligned directions, the dimension of the alignment variety
and the multiplicity of principal directions. The present classification reduces
to the classical Petrov classification in four dimensions. Some applications are
briefly discussed.

PACS numbers: 04.20.Jb, 98.80.Cq

The study of higher-dimensional manifolds in gravity theory is currently of great interest
[1-3]. In particular, finding spacetime models in higher dimensions in the context of
string theory, especially in ten- and eleven-dimensional supergravity theories [4] and branes
embedded in higher-dimensional bulk manifolds [5], is of fundamental importance. Therefore,
a mathematical classification of higher-dimensional manifolds is of particular importance.
Recently, the algebraic structure of tensors in higher-dimensional Lorentian manifolds,
including the Riemann and Weyl tensors, has been discussed [6]. Here we shall concentrate
on the Weyl tensor and present a higher-dimensional algebraic classification which is a
generalization of the Petrov classification in four dimensions [7].

We shall consider a null frame £ = mg,n = m;,my,...,my_; (£, n null with
Ly = nng = 0,01, = 1, m; real and spacelike with m;“m;, = §;;; all other products
vanish) in an N-dimensional Lorentz-signature space(time), so that g,, = 2l np) + S‘ikmémﬁ.
Throughout, Roman indices a, b, ¢, A, B, C range from Oto N — 1. Lowercase indices indicate
an arbitrary basis, while the uppercase ones indicate a null frame. Spacelike indices i, j, k
also indicate a null frame, but vary from 2 to N — 1 only. We will use Einstein’s summation
convention for both these types of indices; however, note that for indices i, j ... there is no
difference between covariant and contravariant components and thus we will not distinguish
between subscripts and superscripts.
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The frame is covariant relative to the group of linear Lorentz transformations. A null
rotation about n is a Lorentz transformation of the form

n=n, ﬁli =m; +z;n, 2 =f— z,»mi — %Sijzizjn. (D)
A null rotation about £ has an analogous form. A boost is a transformation of the form

A7 'n, ; = m;, 2=, A #0. )

=
I

A spin is a transformation of the form
fi=n, i, = X/m;, =, 3)

where X / is an orthogonal matrix.

Let Tp,...a, be a rank p tensor. For a fixed list of indices Ay, ..., A,, we call the
corresponding Ty, . 4, a null-frame scalar. These scalars transform under a boost (2)
according to

yaees

A, = ATy, . Ay b=Dbp +---+ba,, 4)

where b =1, b; =0, by = —1. We call the above b the boost weight of the scalar. We
define the boost order of the tensor T to be the boost weight of its leading term.
We introduce the notation

T{pqrs} = %(Tlab][cd] + TlCd][ab])- (5)

We can decompose the Weyl tensor and sort the components of the Weyl tensor by boost
weight [6]:

2 1

- - - —
Capea = 4Coiojnam' pnem? gy +8Coroinilynem' gy +4Co;jxham' pm? .m" g
{4C0101ﬂ{a5hﬂc5d} +4Co1ijnilym' ;m’ g+ }

: , AT
8Coi1jniam' ptem! gy + Cijigmi,m! pm=.m’g)
—1 -2

+8C101i£{anb£cmid}+4Cl,-jk£{amibmjcmkd} + 4Cy1jlam' plem! gy . (6)

The boost weights for the scalars of the Weyl curvature tensor is given explicitly in (6)
(this is summarized concisely in table I in [6]). The Weyl tensor is generically of boost order
2. 1If all Cy;o; vanish, but some Cyjq;, or Co;jx do not, then the boost order is 1, etc. The
Weyl scalars also satisfy a number of additional relations, which follow from curvature tensor
symmetries and from the trace-free condition:

Coio' =0, Cooj = Coij', Cogjry =0, Coto1 = Coit's Cigry =0,
Coij = —1Cui* + 1Couyj. Coij = —Cujj', Ciiji =0, Ciit' =0.
(7

A null rotation about £ fixes the leading terms of a tensor, while boosts and spins subject
the leading terms to an invertible transformation. It follows that the boost order of a tensor
is a function of the null direction £ (only). We shall therefore denote boost order by B(¥£)
[6]. We will define a null vector £ to be aligned with the Weyl tensor whenever B(£) < 1
(and we shall refer to £ as a Weyl aligned null direction (WAND)). We will call the integer
1 — B®) € {0, 1,2,3} the order of alignment. The alignment equations are %N (N —3)
degree-4 polynomial equations in (N — 2) variables, which are in general overdetermined and
hence have no solutions for N > 4 (i.e., only when these equations are degenerate do we
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obtain algebraically special spacetimes). Grobner bases can be efficiently used to study this
variety and determine any WAND:s.

Principal classification. Following [6], we will say that the principal type of a Lorentzian
manifold is I, II, III, N according to whether there exists an aligned £ of alignment order
0,1,2,3 (i.e. B(#) = 1,0, —1, —2), respectively. If no aligned £ exists we will say that the
manifold is of (general) type G. If the Weyl tensor vanishes, we will say that the manifold is
of type O. The algebraically special types are summarized as follows (using (7)):

Typel: Coioj =0

Type Il . Coioj = Coijk =0

Type 11 . Coioj = Coijk = Ciju = Co1;j =0

Type N :  Coioj = Coijk = Cijut = Coij = Ciijx = 0.

®)

Secondary classification. (i) The existence of aligned null vectors of various orders of
alignment can be used to covariantly characterize algebraically special Weyl tensors. Further
categorization can be obtained by specifying the alignment type [6], whereby we try to
normalize the form of the Weyl tensor by choosing both £ and n in order to set the maximum
number of leading and trailing null frame scalars to zero. Let £ be a WAND whose order of
alignment is as large as possible. We then define the principal (or primary) alignment type of
the tensor to be by.x — b(€). Supposing such a WAND £ exists, we then let n be a null vector
of maximal alignment subject to £,n* = 1. We define the secondary alignment type of the
tensor to be by, — b(n). The alignment type of the Weyl tensor is then the pair consisting
of the principal and secondary alignment types. The possible alignment types of a higher-
dimensional Weyl tensor are categorized in table 4 of [6]. In general, for types I, II, III there
does not exist a secondary aligned n (in contrast to the situation in four dimensions), whence
the alignment type consists solely of the principal alignment type. Alignment types (1,1),
(2,1) and (3,1) therefore form algebraically special subclasses of types I, II, III respectively
(denoted types I;, II;, III;). There is one final subclass possible, namely type (2,2) which is
a further specialization of type (2,1); we shall denote this as type II;; or simply as type D.
Therefore, a type D Weyl tensor in canonical form has no terms of boost weights 2, 1, —1, —2
(i.e., all terms are of boost weight zero for type D).

(i1) The above classification(s) can be utilized for arbitrary Lorentzian manifolds. In the
case in which the Weyl tensor is reducible, it is possible to obtain much more information by
decomposing the Weyl tensor and classifying its irreducible parts. For example, we shall say
that C,peq 18 reducible if there exists a null frame and a constant M < N such that

Ncabcd = MCabcd + C‘(H;E‘J’ ©)
where the only non-vanishing components of V¥ C,.4 are
MCopea #0, 0<a,bc,d<M-—1; Ciped # 0, M <a,b,é,d <N —1.

That is, Cypeq 1s (algebraically) reducible if and only if it is the sum of two Weyl tensors.
A reducible Weyl tensor is said to be (geometrically) decomposable if and only if the
components belonging to M, (resp. M ;) depend on only x¢ (resp. y°) [8]: MCypeq is a
Weyl tensor of an (irreducible) Lorentzian spacetime of dimension M, C ;. is a Weyl tensor
of a Riemannian space of dimension N — M, and we can write symbolically: Cy = Cy @ C ;.
We can also write a decomposable Weyl tensor in the suggestive block diagonal form:
blockdiag{Cpcq(x¢), C 2529}, This can be trivially generalized to the case where M b
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is further reducible. Writing the Weyl tensor in terms of boost weights we obtain (6), with
indices a, b, c, . ... running from 0 — (M — 1), and an additional term

® | Crsgmigmimtomly 1. (10)
This term, corresponding to the Riemannian part of the Weyl tensor C, is either identically
zero (of type O) or has terms of boost weight zero only and hence is of type D.

An important auxiliary question is whether we can deduce anything about the manifold
structure if the Weyl tensor is reducible. For example, if M is a paracompact, Hausdorff,
simply connected smooth Lorentzian manifold, in the case of vacuum it follows that if the
Weyl tensor is reducible then it is also decomposable, whence there exists a real non-trivial
covariantly geometrical field which is necessarily invariant under the holonomy group (and
hence the manifold has a reducible holonomy group). It then follows that the metric in M is
the direct product of the metrics in My, and M y; and the manifold has a product structure
My =My xM g (N =M+ M), where M,; denotes an M-dimensional Lorentzian manifold
and M j; an M-dimensional Riemannian manifold [8].

Two conformally related manifolds have the same Weyl tensor, and therefore their
algebraic classifications will be equivalent. In particular, suppose the Lorentzian manifold is an
N-dimensional warped product manifold: My = My, x rM j;, with metric gy = gy ® rZy»
where the warp factor F is a function defined on M,,. This is conformal to the product
manifold with metric gy = F{gy @ &5}, and hence the warped manifold has the same Weyl
classification as the conformally related product manifold. We note that almost all higher-
dimensional manifolds of physical interest are either product or warped product manifolds
[4] (and often are product manifolds obtained by the simple lifting of a lower-dimensional
spacetime).

Let us assume that the Weyl tensor is reducible as in (9), where ¥C and C are the
M-dimensional irreducible Lorentzian and (N — M)-dimensional Riemannian parts. Then
associated with each part would be a principal type. The principal type of the Lorentzian
M would be G, I, IL, ITI, N, O. However, the principal type of the Riemannian C is either D
(type II, but necessarily all terms of negative boost weight are also zero) or O (the components
of C are identically zero). We denote the secondary type (ii) of a reducible Weyl tensor (9)
as Ty x T j; or simply by T; if the dimensions M, M are clear. For example, Ip denotes
a reducible Weyl tensor in which the irreducible Lorentzian part of the Weyl tensor is of
principal type I, and the irreducible Riemannian part of the Weyl tensor is non-zero. All
secondary types are possible, but we note that while Gp and Go, Ip and I, lIp and Il are of
principal types G, I, II, respectively, only types Illp, Ng, Og are of principal types III, N, O
(resp.); secondary types Illp, Np, Op are all of principal type II.

The secondary types of the form (i) and (ii) can of course be combined with the
obvious (albeit somewhat clumsy) notation. Note that although all the secondary type (ii)
IIp, Ip, Np, Op are of principal type II and the secondary type (i) II;; is possible, only
secondary type Ilp ;; is possible (while secondary types IlIp ;;, Np ;;, Op ;; are not possible).

Full classification. Alignment type by itself is insufficient for a complete classification of the
Weyl tensor. It is necessary to count aligned directions, the dimension of the alignment variety
and the multiplicity of principle directions. We note that unlike in the four-dimensional case,
it is possible to have an infinity of aligned directions. If a WAND is discrete, for consistency
with four-dimensional nomenclature we shall refer to it as a principal null direction (PND). We
can introduce extra normalizations and obtain further subclasses. The classification of higher-
dimensional Weyl tensors is made more straightforward by using the notion of reducibility,
since we only need classify each irreducible part (the classification of the irreducible Lorentzian
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piece is discussed here and in [6], and the classification of the Riemannian piece, which is
simpler, is discussed in [6, 9]). However, further complications in attempting to find canonical
forms arise due to gauge fixing (i.e., certain terms can be chosen to be zero by an appropriate
choice of frame through boosts and spatial rotations).

The full type of an irreducible Weyl tensor C,4 is defined by its principal and secondary
types, and includes all the information on subcases and multiplicities. We do not classify these
in full detail here (indeed, it may be necessary to consider different specific dimensions on a
case by case basis), but rather describe some of the key algebraically special subtypes below.

First, there are additional conditions for algebraic specializations: (i) in Type I (a)
Coioi = 0, (ii) in Type II (a) Coi01 = 0, (b) the traceless Ricci part of C;j; = 0, (c) the
Weyl part of C;ji; = 0, (d) Co1;; = 0, (iii) Type III (a) Co11; = 0. For example, there are
consequently two subcases of Type III, namely type III (general type) and type III (a) in which
Co11; = 0 (see below). Second, there are further specializations due to multiplicities. In types
IIT and N all WANDs are necessarily PNDs. For type III tensors, the PND of order 2 is unique.
There are no PNDs of order 1, and at most 1 PND of order 0. For N = 4 there is always
exactly 1 PND of order 0. For N > 4 this PND need not exist. For type N tensors, the order
3 PND is the only PND of any order.

We can write a canonical form for Weyl type N. From (6)—(8) we have that for type N:

Cabea = 4C 11 Lam’ plem? gy Ciii' =0. (11)

The general form of the Weyl tensor for type III is given by (6) subject to (7) and (8). In the
subclass III; we have that Cy;;; = 0 and hence

Cabea = 8Ci01:€ianplem’ gy +4C i jx ligm’ ym? .m* 4y, (12)
where Coi1; = —Cliji, Ciijky = 0, and not all of Cy;j; are zero (else it reduces to Weyl type
O). In the subclass III (a) we have that Co;;; = 0, so that

Cabed = 4C1,, Lam’ ym? ;m* gy + 4C1 € gm’ plem? gy, (13)
where Cy; ji = Cyijrn = Ci i1' = 0. There is a further subcase obtained by combining the two

cases above (essentially setting the final term in the last equation to zero).

The complete classification for N = 4 is relatively straightforward, due to the facts that
there always exists at least one aligned direction, that all such aligned directions are discrete,
normalization reduces the possible number of subclasses (leading to unique subcases) and since
reducibility is not an issue because a Weyl tensor defined over a vector space of dimension 3
or less must necessarily vanish. In [6] it was shown that the present classification reduces to
the classical Petrov classification in four dimensions.

It is fortunate that in most applications [1-5] the Weyl classification is relatively simple
and the details of the more complete classification are not necessary. In the future it
would be useful to find a more practical way of determining the Weyl type, such as, for
example, employing certain scalar higher-dimensional invariants. We also note that it may be
more practical in some situations to classify the Riemann tensor (see [10] for comments on
the classification of the Riemann tensor in four dimensions) since it is not considerably more
difficult to classify the Riemann tensor rather than the Weyl tensor in higher dimensions [6].

There are many applications of this classification scheme. Recently we have investigated
N-dimensional Lorentzian spacetimes in which all the scalar invariants constructed from the
Riemann tensor and its covariant derivatives are zero (thereby generalizing the theorem of
[11] to higher dimensions). These spacetimes are referred to as vanishing scalar-invariant
(VSI) spacetimes, and they can be regarded as higher-dimensional generalizations of N-
dimensional pp-wave spacetimes (which are of interest in the context of string theory in curved
backgrounds). In [12] we proved that the higher-dimensional VSI spacetimes are necessarily
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of Weyl type III, N or O (and we presented a canonical form for the Riemann and Weyl tensors
in a preferred null tetrad in arbitrary dimensions). For algebraically special vacuum type III
and N spacetimes in arbitrary dimensions we have proved that the null congruence is geodesic
and shear free [13]. Further progress towards a generalization of the Goldberg—Sachs theorem
is possible in higher dimensions. In [13] we also showed that the Weyl tensor in vacuum type
N spacetimes with non-vanishing expansion or twist is always reducible, with a nontrivial
four-dimensional Lorentz part and a vanishing N — 4 dimensional Euclidean part.

In future work we shall present the details of the full algebraic classification of higher-
dimensional Weyl tensors. In particular, we shall study the five-dimensional case in detail
(and relate this classification to a previous work [14]), and study type D spacetimes and
look for exact solutions that are generalizations of particular type D solutions in four
dimensions of special interest (these include generalizations of the Schwarzschild solution
in higher dimensions, which we note are warped product manifolds). For example, the higher-
dimensional spherically symmetric vacuum non-rotating black-hole solutions [3], which are
generalizations of the exact Schwarzschild solution in four dimensions, are of type D, while
the five-dimensional Sorkin—Gross—Perry—Davidson—Owen soliton solutions [2] are all of
(algebraically special) type I, except for the special case of a generalized Schwarzschild
black-hole solution which is again of type D.
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