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Abstract
We demonstrate the ‘peeling property’ of the Weyl tensor in higher dimensions
in the case of even dimensions (and with some additional assumptions), thereby
providing a first step towards an understanding of the general peeling behaviour
of the Weyl tensor, and the asymptotic structure at null infinity, in higher
dimensions.

PACS numbers: 04.50.+h, 04.20.Ha

1. Introduction

The study of higher dimensional manifolds in gravity theory is currently of great interest.
A natural question arises whose results concerning four-dimensional gravity may be
straighforwardly generalized to higher dimensions.

Recently the algebraic classification of the Weyl tensor in higher dimensional Lorentzian
manifolds was presented by characterizing algebraically special Weyl tensors by means of the
existence of aligned null vectors of various orders of alignment [1, 2]. This approach leads to
a dimensionally independent classification scheme and reduces to the Petrov classification in
four dimensions (4d).

Now it is of interest to determine whether some sort of peeling theorem is also valid
in higher dimensions. Asymptotic ‘peeling properties’ of the Weyl tensor in physical four-
dimensional spacetimes in general relativity can preferably be studied within the framework of
conformal null infinity [3, 4], which was recently introduced also for higher even dimensions
in [5] (see also [6] for a discussion of odd dimensions).

The purpose of this paper is to point out that under certain assumptions the peeling
theorem is also valid in higher dimensions. Let us emphasize that in 4d the peeling theorem
can be rigorously derived for asymptotically simple spacetimes using Einstein’s equations.
Here we simply assume that certain asymptotic properties of the spacetime are satisfied, which
may be true only in particular situations (e.g., even dimensions). A more rigorous analysis
of the peeling theorem in higher dimensions would be desirable. However, many necessary
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related concepts in higher dimensions are not well understood at present and even the physical
importance of the concept of conformal infinity in higher dimensions is unclear. Perhaps
the most promising approach would be to generalize the Bondi method [7, 8] for higher
dimensions, but this may require a study of each dimension separately. This note should
thus be regarded as a first step in the analysis of the validity of the peeling theorem in higher
dimensions.

2. Peeling property of the Weyl tensor

We consider a D-dimensional spacetime (M, gab), D even, that is weakly asymptotically
simple at null infinity [5]. The metric of an unphysical manifold (M̃, g̃ab) with boundary �, is
related to the physical metric by a conformal transformation g̃ab = �2gab, where � = 0 and
�;a �= 0 is null at �. We note that such a spacetime is vacuum near �.

We further assume that components of the unphysical Weyl tensor with respect to the
unphysical tetrad (see below) are of order O(�q) (with q � 1) in the neighbourhood of �.
In 4D this follows from Einstein’s equations (with q = 1). At this stage it is just a natural
assumption from which ‘peeling behaviour’ in higher dimensions follows, and we do not study
here to what extent it is satisfied in general. One possible method for studying the justifiability
of this assumption in a given dimension is to use a generalized Bondi metric [5] for analysing
asymptotic behaviour of the Weyl tensor. However, even in the simplest, six-dimensional,
case this approach leads to very complicated calculations.

Let γ̃ ⊂ (M̃, g̃ab) be a null geodesic in the unphysical manifold that has an affine
parameter r̃ ∼ −� near � and a tangent vector �̃ and γ ⊂ (M, gab) a corresponding null
geodesic in the physical manifold with an affine parameter r ∼ 1/� near � and a tangent
vector �. In the physical spacetime we will use the frame (�,n,m(i)) parallelly propagated
along γ with respect to gab. n and � are null vectors satisfying �ana = 1, and m(i) are
orthonormal spacelike vectors (i, j = 2, . . . , D − 1, a, b, c, d = 0, . . . , D − 1). We choose
the corresponding frame (�̃, ñ, m̃(i)) in the unphysical spacetime to be related to the physical
one by

�̃a = �a, m̃(i)
a = �m(i)

a , ña = �2na
(1)

→ �̃a = �−2�a, m̃(i)a = �−1m(i)a, ña = na.

The physical metric has the form

gab = 2�(anb) + δijm
(i)
a m

(j)

b (2)

that is preserved by null rotations

�̂ = � + zim
(i) − 1

2zizin, n̂ = n, m̂(i) = m(i) − zin, (3)

spins and boosts

�̂ = �, n̂ = n, m̂(i) = Xi
jm

(j); �̂ = λ�, n̂ = λ−1n, m̂(i) = m(i).

A quantity q is said to have a boost weight b if it transforms under a boost according to
q̂ = λbq.

Let us now define the operation {}
w{axbyczd} ≡ 1

2 (w[axb]y[czd] + w[cxd]y[azb])

which allows us to construct a basis from (�,n,m(i)) in a vector space of four-rank tensors
with symmetries Tabcd = 1

2 (T[ab][cd] + T[cd][ab]). The Weyl tensor can then be decomposed
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in its frame components with respect to the frame (� = m(1),n = m(0),m(i)) and these
components can be sorted by their boost weight [1, 2]

Cabcd =
2︷ ︸︸ ︷

4C0i0j n{am
(i)
b ncm

(j)

d } +

1︷ ︸︸ ︷
8C010in{a�bncm

(i)
d } + 4C0ijkn{am

(i)
b m(j)

c m
(k)
d }

+ 4C0101n{a�bnc�d } + 4C01ij n{a�bm
(i)
c m

(j)

d }
+ 8C0i1j n{am

(i)
b �cm

(j)

d } + Cijklm
(i)
{a m

(j)

b m(k)
c m

(l)
d }

}0

+

−1︷ ︸︸ ︷
8C101i�{anb�cm

(i)
d } + 4C1ijk�{am

(i)
b m(j)

c m
(k)
d } +

−2︷ ︸︸ ︷
4C1i1j �{am

(i)
b �cm

(j)

d } . (4)

Components C0i0j have boost weight 2 since they are proportional to Cabcd�
am(i)b�cm(j)d ,

and boost weights of other components may be determined similarly. Note that the frame
components of the Weyl tensor C0i0j , . . . , C1i1j are subject to a number of constraints following
from additional symmetries of the Weyl tensor and its tracelessness [1, 2].

Boost order of a tensor T is defined as the maximum boost weight of its frame components,
and it can be shown that it depends only on the choice of a null direction � [1, 2]. Boost order
of the Weyl tensor in a generic case is 2, but in algebraically special cases, there exist preferred
null directions for which the boost order of the Weyl tensor is less. In other words, in
algebraically special spacetimes, one can set all components of boost weight 2, C0i0j , to zero
by an appropriate null rotation (3) (we will call this case type I). Note than in four dimensions
this is always possible since the Weyl tensor in 4D always possesses principal null directions
and thus in 4D type I is generic, while for D � 5 type I is an algebraically special subclass of
the general class G. One can proceed further and say that the Weyl tensor at a given point is
of type II, III, and N if there exists a frame in which boost order of the Weyl tensor is 0, −1,
and −2, respectively.

For spacetimes satisfying the above-mentioned assumptions, the Weyl tensor’s
decomposition (4) and the relation (1) lead to

C̃abc
d = g̃deC̃abce = g̃de

[
4C̃0i0j ñ{am̃

(i)
b ñcm̃

(j)

e }
+8C̃010i ñ{a�̃bñcm̃

(i)
e }+4C̃0ijkñ{am̃

(i)
b m̃(j)

c m̃
(k)
e } +4C̃0101ñ{a�̃bñc�̃e }+4C̃01ij ñ{a�̃bm̃

(i)
c m̃

(j)

e }
+ 8C̃0i1j ñ{am̃

(i)
b �̃cm̃

(j)

e } + C̃ijklm̃
(i)
{a m̃

(j)

b m̃(k)
c m̃

(l)
e }

+ 8C̃101i �̃{añb�̃cm̃
(i)
e } + 4C̃1ijk �̃{am̃

(i)
b m̃(j)

c m̃
(k)
e } + 4C̃1i1j �̃{am̃

(i)
b �̃cm̃

(j)

e }
]

= �−2gde
[
�2+1+2+14C̃0i0j n{am

(i)
b ncm

(j)

e }
+ �2+2+18C̃010in{a�bncm

(i)
e } + �2+1+1+14C̃0ijkn{am

(i)
b m(j)

c m
(k)
e }

+ �2+24C̃0101n{a�bnc�e } + �2+1+14C̃01ij n{a�bm
(i)
c m

(j)

e }
+ �2+1+18C̃0i1j n{am

(i)
b �cm

(j)

e } + �1+1+1+1C̃ijklm
(i)
{a m

(j)

b m(k)
c m

(l)
e }

+ �2+18C̃101i�{anb�cm
(i)
e } + �1+1+14C̃1ijk�{am

(i)
b m(j)

c m
(k)
e }

+ �1+14C̃1i1j �{am
(i)
b �cm

(j)

e }
] = Cabc

d .

Since all unphysical components of the Weyl tensor C̃1i1j , C̃1ijk , C̃101i , C̃ijkl, C̃0i1j ,
C̃01ij , C̃0101, C̃0ijk , C̃010i , C̃0i0j are assumed to be of order O(�q), each physical component
is of order O(�boost weight+2+q), i.e., we obtain the peelling property
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C1i1j = O(�q), C1ijk, C101i = O(�q+1),

Cijkl, C0i1j , C01ij , C0101 = O(�q+2), (5)

C0ijk, C010i = O(�q+3), C0i0j = O(�q+4),

and thus

Cabc
d = �qC(N)

abc
d + �q+1C(III)

abc
d + �q+2C(II)

abc
d + �q+3C(I)

abc
d

+ �q+4C(G)
abc

d + O(�q+5). (6)

We have thus shown that from the assumptions outlined above the ‘peeling property’ of
the Weyl tensor in the case of even dimensions follows. We hope that this may provide a first
step in proving a peeling theorem in more generality.
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