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Abstract
We show that all static spacetimes in higher dimensions n > 4 are necessarily
of Weyl types G, Ii , D or O. This also applies to stationary spacetimes provided
additional conditions are fulfilled, as for most known black hole/ring solutions.
(The conclusions change when the Killing generator becomes null, such as at
Killing horizons, on which we briefly comment.) Next we demonstrate that
the same Weyl types characterize warped product spacetimes with a one-
dimensional Lorentzian (timelike) factor, whereas warped spacetimes with
a two-dimensional Lorentzian factor are restricted to the types D or O. By
exploring algebraic consequences of the Bianchi identities, we then analyze the
simplest non-trivial case from the above classes—type D vacuum spacetimes,
possibly with a cosmological constant, dropping, however, the assumptions
that the spacetime is static, stationary or warped. It is shown that for ‘generic’
type D vacuum spacetimes (as defined in the text) the corresponding principal
null directions are geodetic in arbitrary dimension (this in fact also applies to
type II spacetimes). For n � 5, however, there may exist particular cases of
type D vacuum spacetimes which admit non-geodetic multiple principal null
directions and we explicitly present such examples in any n � 7. Further
studies are restricted to five dimensions, where the type D Weyl tensor is fully
described by a 3 × 3 real matrix �ij . In the case with ‘twistfree’ (Aij = 0)

principal null geodesics we show that in a ‘generic’ case �ij is symmetric
and eigenvectors of �ij coincide with eigenvectors of the expansion matrix
Sij providing us thus in general with three preferred spacelike directions of
the spacetime. Similar results are also obtained when relaxing the twistfree
condition and assuming instead that �ij is symmetric. The five-dimensional
Myers–Perry black hole and Kerr–NUT–AdS metrics in arbitrary dimension
are also briefly studied as specific illustrative examples of type D vacuum
spacetimes.
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1. Introduction

Algebraically special spacetimes play an essential role in the field of exact solutions
of Einstein’s equations and many known exact solutions in four dimensions are indeed
algebraically special [1]. Recently, a generalization of the Petrov classification to higher
dimensions was developed in [2, 3] and it turned out that many higher-dimensional solutions
of Einstein’s equations are algebraically special as well (see, e.g., [4]), in fact so far there is
only one known solution identified [5] as algebraically general—the static charged black ring
[6].

There is, however, one important difference between four-dimensional and n > 4
dimensional cases—the Goldberg–Sachs theorem does not hold in higher dimensions. Recall
that for n = 4 the Goldberg–Sachs theorem implies that principal null directions of an
algebraically special vacuum spacetime are necessarily geodetic and shearfree. It was stressed
already in [7, 8] that the Goldberg–Sachs theorem cannot be straightforwardly extended to
higher dimensions. Namely in [7] it was pointed out that principal null directions (or Weyl-
aligned null directions (WANDs) [2]) of the n = 5 Myers–Perry black holes [9] are shearing
though the spacetime is of type D. In [8] it was shown that in fact all vacuum, n > 4, type N
and III expanding spacetimes are shearing. In [10] it was also shown that for n > 4, n odd,
all geodetic WANDs with non-vanishing twist are again shearing.

In this paper, we study various properties of algebraically special vacuum spacetimes, such
as geodeticity of multiple WANDs (not guaranteed in higher dimensions—another ‘violation’
of the Goldberg–Sachs theorem) and relationships between optical matrices Sij and Aij and
the Weyl tensor. Before approaching these problems, we study in the first part of the paper
(sections 3 and 4) constraints on Weyl types of the spacetime following from various
assumptions on the geometry.

In section 3, we show that in arbitrary dimension4 the only Weyl types compatible with
static spacetimes (and expanding stationary spacetimes with appropriate reflection symmetry)
are types G, Ii , D and O.

In section 4, we study direct or warped product spacetimes. It turns out that warped
spacetimes with a one-dimensional Lorentzian factor are again of types G, Ii , D and O and
that warped spacetimes with a two-dimensional Lorentzian factor are necessarily of type D or
O. This also implies that spherically symmetric spacetimes are of type D or O.

It follows that type D spacetimes play an important role as the simplest non-trivial
case compatible with the aforementioned assumptions. Therefore, in the second part of the
paper (sections 5 and 6) we focus on studying properties of type D Einstein spacetimes (i.e.,
vacuum with an arbitrary cosmological constant), dropping, however, the assumptions that the
spacetime is static, stationary or warped.

In section 5, we study type D spacetimes in arbitrary dimension and analyze geodeticity of
WANDs. It turns out that in a ‘generic’ case in vacuum the multiple WANDs are geodetic. Let
us also point out that negative boost weight Weyl components do not enter relevant equations
and thus the same results also hold for multiple WANDs in type II Einstein spacetimes.
Surprisingly, it also turns out that explicit examples of special vacuum type D spacetimes
not belonging to our ‘generic’ class and admitting non-geodetic multiple WANDs can easily
be constructed. Such examples for arbitrary dimension n � 7 are given in section 5.4. This
shows that there exist even more striking ‘violations’ of the Goldberg–Sachs theorem in higher
dimensions than the examples with non-zero shear discussed above. In section 5, we also
study various properties of shearfree type D vacuum spacetimes.

4 Note that for dimensions n < 4 the Weyl tensor vanishes and thus all statements about algebraical types are trivial.
Consequently, throughout the paper by ‘arbitrary dimension’ we mean arbitrary n � 4.
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Perhaps not surprisingly, the situation in five dimensions is considerably simpler than for
n > 5. In fact, it turns out that for n = 5 the Weyl tensor of type D is fully determined by
a 3 × 3 real matrix �ij . At the same time, five-dimensional gravity is already an interesting
arena where qualitatively new phenomena appear. We thus devote section 6 to five-dimensional
vacuum type D spacetimes. We study relationships between the Weyl tensor represented by �ij

and optical matrices Sij and Aij . One of the results is that for ‘generic’ spacetimes with non-
twisting WANDs (Aij = 0) the antisymmetric part of �ij ,�

A
ij , vanishes and the symmetric

part �S
ij is aligned with Sij (in the sense that the matrices �S

ij and Sij can be diagonalized
together). Similarly, in the ‘generic’ case the condition �A

ij = 0 implies vanishing of Aij .
Again, there exist particular cases for which the ‘generic’ proof does not hold, see section 6
for details. In this section, a simple explicit example of a five-dimensional vacuum type D
spacetime, the Myers–Perry metric, is also presented and Sij , Aij ,�

S
ij , and �A

ij are explicitly
given.

Finally, in section 7 we concisely summarize the main results and in the appendix we
briefly study the geometric optics of type D Kerr–NUT–AdS metrics in arbitrary dimension.

2. Preliminaries

Let us first briefly summarize our notation, further details can be found in [8]. In an n-
dimensional spacetime let us introduce a frame of n real vectors m(a) (a, b, . . . = 0, . . . , n−1):
two null vectors m(0) = m(1) = n,m(1) = m(0) = � and n−2 orthonormal spacelike vectors
m(i) = m(i) (i, j, . . . = 2, . . . , n − 1) satisfying

�a�a = nana = �am(i)
a = nam(i)

a = 0, �ana = 1, m(i)am(j)
a = δij . (1)

The metric now reads

gab = 2�(anb) + δijm
(i)
a m

(j)

b . (2)

We will use the following decomposition of the covariant derivative of the vector � and the
covariant derivative in the direction of �:

�a;b = Lcdm
(c)
a m

(d)
b , D ≡ �a∇a. (3)

Note that � is geodetic iff Li0 = 0 and for an affine parameterization also L10 = 0. We
will often use the symmetric and antisymmetric parts of Lij , Sij ≡ L(ij) (its trace S ≡ Sii),
Aij ≡ L[ij ]. In the case of geodetic �, the trace of Sij represents expansion θ ≡ 1

n−2S, the
tracefree part of Sij is shear σij ≡ Sij − θδij and the antisymmetric matrix Aij is twist5.
Optical scalars can be expressed in terms of � (when Li0 = 0 = L10):

σ 2 ≡ σijσji = �(a;b)�
(a;b) − 1

n−2

(
�a ;a

)2
, θ = 1

n−2�a ;a, ω2 ≡ AijAij = �[a;b]�
a;b. (4)

The decomposition of the Weyl tensor in the frame (1) in full generality is given by [8]

Cabcd = 4C0i0j n{am(i)
bncm

(j)
d} + 8C010in{a�bncm

(i)
d} + 4C0ijkn{am(i)

bm
(j)

cm
(k)

d}
+ 4C0101n{a�bnc�d} + 4C01ij n{a�bm

(i)
cm

(j)
d} + 8C0i1j n{am(i)

b�cm
(j)

d}
+ Cijklm

(i){am(j)
bm

(k)
cm

(l)
d} + 8C101i�{anb�cm

(i)
d}

+ 4C1ijk�{am
(i)
b m(j)

c m
(k)
d} + 4C1i1j �{am

(i)
b �cm

(j)

b} ,

where the operation { } is defined as w{axbyczd} ≡ 1
2 (w[axb]y[czd] + w[cxd]y[azb]).

5 For the sake of brevity, throughout the paper we shall refer to the corresponding quantities for non-geodetic
congruences as ‘expansion’, ‘shear’ and ‘twist’ (in inverted commas), keeping in mind that in that case expressions
(4) do not hold.
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In the second part of this paper we will focus on type D spacetimes, possessing (in an
adapted frame) only boost order zero components (see [8]) C0101, C01ij , C0i1j , Cijkl . For
simplicity, let us define the (n − 2) × (n − 2) real matrix

�ij ≡ C0i1j , (5)

with �S
ij ,�

A
ij and � ≡ �ii being the symmetric and antisymmetric parts of �ij and its

trace, respectively. Let us observe that for static spacetimes and for a large class of warped
geometries one has �A

ij = 0 (see section 4). Note also that the aforementioned boost order zero
components of the Weyl tensor are not completely independent. In fact, from the symmetries
and the tracelessness of the Weyl tensor (cf equations (7) and (9) in [8]) it follows that

C01ij = 2C0[i|1|j ] = 2�A
ij , C0(i|1|j) = �S

ij = − 1
2Cikjk, C0101 = − 1

2Cijij = �. (6)

The type D Weyl tensor is thus completely determined by m(m−1)

2 independent components of

�A
ij and m2(m2−1)

12 independent components of Cijkl , where n = m − 2.6

3. Static and stationary spacetimes

3.1. Static spacetimes

Algebraically special spacetimes in higher dimensions are characterized by the existence of
preferred null directions—Weyl-aligned null directions (WANDs). A necessary and sufficient
condition for a null vector � being WAND in arbitrary dimension is [3, 11]

�b�c�[eCa]bc[d�f ] = 0, (7)

where Cabcd is the Weyl tensor. Let us now assume that a spacetime of interest is algebraically
special and thus equation (7) possesses a null solution � = (�t , �A), A = 1, . . . , n − 1 (note
that necessarily �t �= 0 and at least one of the remaining components is also non-zero).

For static spacetimes the metric does not depend on the direction of time and consequently
the form of the metric and the Weyl tensor remains unchanged under the transformation
t̃ = −t . Therefore, in these new coordinates equation (7) has the same form as in the
original coordinates and admits a second solution ñ = (�t , �A). In the original coordinates
n = (−�t , �A). Thus for static spacetimes the existence of a WAND � implies the existence
of a distinct WAND n which in fact has the same order of alignment. The only Weyl types
compatible with this property are types G, Ii and D (or, trivially, O, i.e. conformally flat
spacetimes). Therefore,

Proposition 1. All static spacetimes in arbitrary dimension are of Weyl types G, Ii or D, unless
conformally flat.

In fact, explicit examples of static spacetimes of these Weyl types are known—charged
static black ring (type G, [5]), vacuum static black ring (type Ii , [11]), the Schwarzschild–
Tangherlini black hole (type D, [8]) and the Einstein universe R × Sn−1 (type O—compare
with the results summarized in section 4). Also compare with the static examples given in [4].

Note that in four dimensions there is no type G and type I is equivalent to type Ii [2, 3].
Thus for n = 4 only types I, D and O are compatible with static spacetimes. This was discussed
in [12] in the case of static, n = 4, vacuum spacetimes (see also additional comments in [13]
and in section 6.2 of [1]).

6 In the standard n = 4 (i.e., m = 2) case these are essentially the imaginary and real parts of �2. More specifically,
with the conventions of [1], one has �S

ij = 1
2 �δij with � = −2Re(�2), �

A
23 = �23 = −Im(�2) as the only essential

component of �A
ij , while Cijkl reduce to the only non-trivial component C2323 = −�.
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3.2. Stationary spacetimes

One can use the same arguments as above for stationary spacetimes with the metric
remaining unchanged under reflection symmetry involving time and some other coordinates.
For example, in Boyer–Lindquist coordinates the Kerr metric remains unchanged under
t̃ = −t, φ̃ = −φ and n = 5 Myers–Perry under t̃ = −t, φ̃ = −φ, ψ̃ = −ψ or, for a
general dimension, Myers–Perry under t̃ = −t, φ̃i = −φi . Note, however, that in contrast to
the static case, in some special stationary cases one could in principle get from the original
WAND � a ‘new’ WAND n = −� which represents the same null direction. In order
to deal with these special cases we note that the ‘divergence scalar’ (or, loosely speaking,
‘expansion’, since it does coincide with the standard expansion scalar in the case of geodetic,
affinely parameterized null directions) of both WANDs n and � related by reflection symmetry
is the same (as well as all the other optical scalars and the geodeticity parameters—this also
applies to the static case), i.e. �a ;a = na ;a while the ‘expansion’ of −� is equal to −�a ;a .
Therefore, for all ‘expanding’ spacetimes n �= −�. Thus,

Proposition 2. In arbitrary dimension, all stationary spacetimes with non-vanishing
divergence scalar (‘expansion’) and invariant under appropriate reflection symmetry are
of Weyl types G, Ii or D, unless conformally flat.

Note also that it is shown in [14] that Kerr–Schild spacetimes with the assumption R00 = 0
are of type II (or more special) in arbitrary dimension with the Kerr–Schild vector being the
multiple WAND. Therefore, all Kerr–Schild spacetimes that are either static or belong to the
aforementioned class of stationary spacetimes are necessarily of type D. In particular, the
Myers–Perry metric in arbitrary dimension is thus of type D.7

In addition to the rotating Myers–Perry black holes for n � 4, of type D, we can
mention a number of physically relevant solutions as explicit examples of spacetimes subject
to proposition 2.8 First, rotating vacuum black rings [17], of type Ii [11]. To our knowledge,
no stationary (non-static) type G solution has been so far explicitly identified. It is, however,
plausible to expect that a rotating charged black ring (so far unknown in the standard
Einstein–Maxwell theory) will be of type G as its static counterparts. Further interesting
examples fulfilling our assumptions are expanding stationary axisymmetric spacetimes with
n − 2 commuting Killing vector fields [18], which also contain, apart from the (n = 5)

black holes/rings mentioned above, e.g. the recently obtained ‘black saturn’ [19], doubly
spinning black rings [20] and black di-rings [21]. In any dimension rotating uniform black
strings/branes also satisfy the assumptions of proposition 2 (see section 4), and so does the
ansatz recently used in [22] for the numerical construction of corresponding n = 6 non-
uniform solutions. Other examples are all the stationary solutions discussed in [4] and the
various black ring solutions reviewed in [23].
7 This was already known in the case n = 5 [8, 4]. Furthermore, it has been demonstrated recently in [15] by
explicit computation of the full curvature tensor that the family [16] of higher-dimensional rotating black holes with
a cosmological constant and NUT parameter is of type D for any n. We observe in addition that, using the connection
1-forms given in [15], it is also straightforward to show (see the appendix) that the multiple WANDs (which are related
by reflection symmetry) of all such solutions are twisting, expanding and shearing (except that the shear vanishes for
n = 4). The fact that the WANDs found in [15] are complex is only due to the analytical continuation trick used in
[16] to cast the line element in a nicely symmetric form—the WANDs of the associated ‘physical’ spacetimes are
thus real after Wick-rotating back one of the coordinates.
8 It is straightforward to verify the ‘reflexion symmetry’ of the metric we mention in this context. The ‘expansion’
condition, instead, has not been verified explicitly in all cases. However, it is plausible that these spacetimes are
indeed ‘expanding’ since they contain as special limits or subcases solutions with expansion, e.g. Myers–Perry black
holes (cf section 6.4, [8] and the preceding footnote).
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3.3. Remarks and ‘limitations’ of the results

First, it is worth observing that we have not used any field equations for the gravitational field
in the considerations presented above and the results are thus purely geometrical.

Note that one cannot relax the assumption �a ;a �= 0 in the case of stationary spacetimes.
For example, the special pp-wave metric ds2 = gij dxi dxj − 2 du dv − 2H du2 such that
H,u = 0 (note that it is always H,v = 0 by the definition of pp-waves) and ∂u · ∂u = −2H < 0
represents stationary spacetimes (cf, e.g., [24] for the n = 4 vacuum case) that are invariant
under reflection symmetry (ũ = −u, ṽ = −v) and yet of type N [25]. In fact, the geodetic
multiple WAND � = ∂v is non-expanding (and n = −� is not a new WAND).

Furthermore, if we assume a null Killing vector field k instead of a timelike one we are led
to different conclusions. Namely, it is easy to show that k must be geodetic, shearfree and non-
expanding, which for Rabk

akb = 0 implies that k is a twistfree WAND [10]. We thus end up
with a subfamily of the Kundt class, for which (under the alignment requirement Rabk

a ∝ kb,
obeyed, e.g., in vacuum) the algebraic type is II or more special [10] (cf section 24.4 of [1]
for n = 4). In particular, a similar argument applies locally at Killing horizons, where the
type must thus again be II or more special (provided Rabk

a ∝ kb).9 This is in agreement with
the result of [26] for generic isolated horizons. As an explicit example, vacuum black rings
(which are of type Ii in the stationary region) become locally of type II on the horizon [11].

Finally, spacelike Killing vectors do not impose any constraint on the algebraic type of
the Weyl tensor, in general, and all types are in fact possible. For example, charged static
black rings are of type G, vacuum black rings of type Ii , vacuum black holes of type D, and
they all admit at least one spacelike Killing vector; Kundt spacetimes can be constructed that
admit axial symmetry with all types II, D, III and N being possible (see, e.g., [1] for n = 4).

4. Direct/warped product spacetimes

In this section, we show that the algebraic types discussed above also characterize certain
classes of direct/warped product geometries of physical relevance. In addition, we discuss
some optical properties of these spacetimes.

4.1. Weyl tensor

Let us consider two (pseudo-)Riemannian spaces (M1, g(1)) and (M2, g(2)) of dimension n1

and n2 (n1, n2 � 1 and n1 +n2 � 4), parameterized by coordinates xA (A,B = 0, . . . , n1 −1)

and xI (I, J = n1, . . . , n1 + n2 − 1), respectively. Using adapted coordinates xµ

(µ, ν = 0, . . . , n1 + n2 − 1) constructed from the coordinates xA of M1 and xI of M2,
we define the direct product (M, g) to be the product manifold M = M1 × M2, of dimension
n = n1 + n2, equipped with the metric tensor g(xµ) = g(1)(x

A)⊕g(2)(x
I ) defined (locally) by

gAB = g(1)AB, gIJ = g(2)IJ , gAI = 0. For the sake of definiteness, we shall assume hereafter
that (M1, g1) is Lorentzian and (M2, g2) is Riemannian.

In general, any geometric quantity which can be split like the product metric (i.e., with no
mixed components and with the A[I ] components depending only on the xA[xI ] coordinates)
is called a ‘product object’ (or ‘decomposable’). Various interesting geometrical properties
then follow [28] and, in particular, the Riemann and Ricci tensors and the Ricci scalar are all
decomposable. As a consequence, a product space is an Einstein space iff each factor is an
Einstein space and their Ricci scalars satisfy R(1)/n1 = R(2)/n2 [28].

9 The proof is a bit more tricky in this case since the Killing vector is null only at the horizon. Still, one can adapt
techniques used in [26, 27] for related investigations. Note that the horizon of higher-dimensional stationary black
holes is indeed a Killing horizon (at least in the non-degenerate case) [27].
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Using the above coordinates it follows from the standard definition that the mixed
components of the Weyl tensor are given by

CABCI = CABIJ = CAIJK = 0, (8)

CAIBJ = − 1

n − 2
(g(1)ABR(2)IJ + g(2)IJ R(1)AB) +

R(1) + R(2)

(n − 1)(n − 2)
g(1)ABg(2)IJ , (9)

where R(1)AB [R(2)IJ ] is the Ricci tensor of (M1, g1) [(M2, g2)]. For the non-mixed
components one has to distinguish the special cases n1 = 1, 2 (and the ‘symmetric’ cases
n2 = 1, 2, which we omit for brevity). If n1 = 1 there are of course no non-mixed components
CABCD since now xA span a one-dimensional space. If n1 = 2 there is only one independent
component, i.e. C0101 (note that here, exceptionally, 0 and 1 are not frame indices but refer to
the coordinates x0 and x1 in the factor space M1). For n1 � 3,

CABCD = C(1)ABCD +
2n2

(n − 2)(n1 − 2)
(g(1)A[CR(1)D]B − g(1)B[CR(1)D]A)

+
2

(n − 1)(n − 2)

[
R(2) − R(1)

n2(n2 + 2n1 − 3)

(n1 − 1)(n1 − 2)

]
g(1)A[Cg(1)D]B (n1 � 3),

(10)

where C(1)ABCD is the Weyl tensor of (M1, g1), whereas the remaining non-mixed components
are given for any n1 � 1 by

CIJKL = C(2)IJKL +
2n1

(n − 2)(n2 − 2)
(g(2)I [KR(2)L]J − g(2)J [KR(2)L]I )

+
2

(n − 1)(n − 2)

[
R(1) − R(2)

n1(n1 + 2n2 − 3)

(n2 − 1)(n2 − 2)

]
g(2)I [Kg(2)L]J (n2 � 3),

(11)

where C(2)IJKL is the Weyl tensor of (M2, g2). It is thus obvious that the Weyl tensor is not
decomposable, in general. It turns out that the Weyl tensor is decomposable iff both product
spaces are Einstein spaces and n2(n2 − 1)R(1) + n1(n1 − 1)R(2) = 0 (the latter condition is
identically satisfied whenever n1 = 1 or n2 = 1, while for n1 = 2 [n2 = 2] it implies that
(M1, g1) [(M2, g2)] must be of constant curvature). When the Weyl tensor is decomposable the
only non-vanishing components take the simple form CABCD = C(1)ABCD,CIJKL = C(2)IJKL.
Therefore, in particular, the product space is conformally flat iff both product spaces are of
constant curvature and n2(n2 − 1)R(1) + n1(n1 − 1)R(2) = 0.

Determining the possible algebraic types of the Weyl tensor requires considering various
possible choices for the dimension n1 of the Lorentzian factor.

If n1 = 1, the full metric can always be cast in the special static form ds2 =
−dt2 + gIJ dxI dxJ . Recalling the result of section 3, the Weyl tensor can thus only be
of type G, Ii , D or O. In particular, one can show that C0i1j = C0j1i , so that for direct product
spacetimes with n1 = 1 one has �A

ij = 0 identically.
If n1 � 2, it is convenient to adapt the null frame (1) to the natural product structure,

so that gab = 2�(anb) + δÂB̂m(Â)
a m

(B̂)
b + δÎ Ĵ m(Î )

a m
(Ĵ )
b (where Â, B̂ = 2, . . . , n1 − 1, Î , Ĵ =

n1, . . . , n − 1 are now frame indices, and the frame vectors do not have mixed coordinate
components, e.g., �I = 0 = nI , etc). From (10) and (11) it thus follows that CABCD and
CIJKL do not give rise to mixed frame components, and from (9) that CAIBJ does not give
rise to non-mixed frame components. Hence, the only non-vanishing mixed components are
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(ordered by boost weight)

C0Î0Ĵ = − 1

n − 2
R(1)00δÎ Ĵ , C0Î ÂĴ = − 1

n − 2
R(1)0ÂδÎ Ĵ ,

C0Î1Ĵ = − 1

n − 2
(R(2)Î Ĵ + R(1)01δÎ Ĵ ) +

R(1) + R(2)

(n − 1)(n − 2)
δÎ Ĵ ,

CÂÎ B̂Ĵ = − 1

n − 2
(R(2)Î Ĵ δÂB̂ + R(1)ÂB̂δÎ Ĵ ) +

R(1) + R(2)

(n − 1)(n − 2)
δÂB̂δÎ Ĵ ,

C1Î ÂĴ = − 1

n − 2
R(1)1ÂδÎ Ĵ , C1Î1Ĵ = − 1

n − 2
R(1)11δÎ Ĵ .

(12)

The non-mixed frame components are given for n1 = 2 by

C0101 = − 1

2(n2 + 1)

[
(n2 − 1)R(1) +

2R(2)

n2

]
(n1 = 2), (13)

and for n1 � 3 by

C0Â0B̂ = C(1)0Â0B̂ +
n2

(n − 2)(n1 − 2)
R(1)00δÂB̂ ,

C010Â = C(1)010Â − n2

(n − 2)(n1 − 2)
R(1)0Â,

C0ÂB̂Ĉ = C(1)0ÂB̂Ĉ − 2n2

(n − 2)(n1 − 2)
R(1)0[ĈδB̂]Â,

C0101 = C(1)0101 − 2n2

(n − 2)(n1 − 2)
R(1)01

− 1

(n − 1)(n − 2)

[
R(2) − R(1)

n2(n2 + 2n1 − 3)

(n1 − 1)(n1 − 2)

]
,

C01ÂB̂ = C(1)01ÂB̂ (n1 � 3),

C0Â1B̂ = C(1)0Â1B̂ +
n2

(n − 2)(n1 − 2)
(R(1)ÂB̂ + R(1)01δÂB̂)

+
1

(n − 1)(n − 2)

[
R(2) − R(1)

n2(n2 + 2n1 − 3)

(n1 − 1)(n1 − 2)

]
δÂB̂ ,

CÂB̂ĈD̂ = C(1)ÂB̂ĈD̂ +
2n2

(n − 2)(n1 − 2)
(R(1)B̂[D̂δĈ]Â − R(1)Â[D̂δĈ]B̂ )

+
2

(n − 1)(n − 2)

[
R(2) − R(1)

n2(n2 + 2n1 − 3)

(n1 − 1)(n1 − 2)

]
δB̂[D̂δĈ]Â,

CÎ Ĵ K̂L̂ = C(2)Î Ĵ K̂L̂ +
2n1

(n − 2)(n2 − 2)
(δÎ [K̂R(2)L̂]Ĵ − δĴ [K̂R(2)L̂]Î )

+
2

(n − 1)(n − 2)

[
R(1) − R(2)

n1(n1 + 2n2 − 3)

(n2 − 1)(n2 − 2)

]
δÎ [K̂δL̂]Ĵ ,

C1ÂB̂Ĉ = C(1)1ÂB̂Ĉ − 2n2

(n − 2)(n1 − 2)
R(1)1[ĈδB̂]Â,

C101Â = C(1)101Â − n2

(n − 2)(n1 − 2)
R(1)1Â,

C1Â1B̂ = C(1)1Â1B̂ +
n2

(n − 2)(n1 − 2)
R(1)11δÂB̂ .

(14)

(The expression for CÎĴ K̂L̂ holds only when n2 � 3, while for n2 = 2 one gets only one
component C2323 similar to (13).)
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For n1 = 2, the Weyl tensor of (M1, g1) of course vanishes, and in addition we have
R(1)00 = 0 = R(1)11 identically (any 2-space satisfies 2R(1)AB = R(1)g(1)AB). Therefore,
among the above components (12) and (13) only the boost weight zero components C0Î1Ĵ

and C0101 survive, so that the corresponding spacetime can be only of type D (or conformally
flat), and � and n, as chosen above, are multiple WANDs. Note also that �ij reduces to
�ÎĴ = C0Î1Ĵ = C0Ĵ1Î in this case, therefore �A

ij = 0. As an example, the higher-dimensional
electric Bertotti–Robinson solutions fall in this class, cf, e.g., [29, 30].

For n1 = 3, again the Weyl tensor of (M1, g1) vanishes. With the additional assumption
that (M1, g1) is Einstein, we get R(1)00 = R(1)11 = R(1)0Â = R(1)1Â = 0 (here Â = 2 only),
and as above the Weyl tensor is of type D with �A

ij = 0.
Similarly, for any n1 > 3, if (M1, g1) is an Einstein space the only non-zero mixed

Weyl components (12) will have boost weight zero, and the non-mixed components (14)
simplify considerably. As a particular consequence, if (M1, g1) is an Einstein space of type D,
(M, g) will also be of type D (but now �A

ij �= 0, in general)—this is the case, for example,
of uniform black strings/branes (either static or rotating, see also the discussion concluding
this section). If (M1, g1) is of constant curvature, (M, g) will be of type D with �A

ij = 0
(or O)—this includes the higher-dimensional magnetic Bertotti–Robinson solutions [29]. One
can consider other special cases using similar simple arguments.

A spacetime conformal to a direct product spacetime is called a warped product spacetime
if the conformal factor depends only on one of the two coordinate sets xA, xI (see, e.g., [1]).
Obviously, the algebraic type of two conformal spaces is the same10. Some of the results
presented above can thus be straightforwardly generalized to the more general case of warped
products. For example,

Proposition 3. In arbitrary dimension, a warped spacetime with a one-dimensional Lorentzian
(timelike) factor can only be of type G, Ii , D (with �A

ij = 0) or O.

This case includes, in particular, the conclusion of section 3 for static spacetimes. As
warped non-static/non-stationary examples we can mention the de Sitter universe (in global
coordinates) and FRW cosmologies. For n = 4 proposition 3 reduces to a result of [32].

Furthermore,

Proposition 4. In arbitrary dimension, a warped spacetime with a two-dimensional Lorentzian
factor can only be of type D (with �A

ij = 0) or O.

Again compare with [32] for n = 4. Note that in this case the line element can
always be cast in one of the two (conformally related) forms ds2 = 2A(u, v) du dv +
f (u, v)hIJ (x) dxI dxJ or ds2 = 2f̃ (x)A(u, v) du dv + gIJ (x) dxI dxJ (so that multiple
WANDs are given by ∂u and ∂v), which include a number of known spacetimes. For example,
the first possibility includes all spherically symmetric spacetimes, hence as a special case of
proposition 4 we have

Proposition 5. In arbitrary dimension, a spherically symmetric spacetime is of type D (with
�A

ij = 0) or O.

For n = 4 this has been known for a long time (see, e.g., [33] and sections 15.2, 15.3
of [1]), and in this case �A

ij = 0 means that �2 is real (see footnote 6). For n > 4, this result
has been proven in [34] in the static case.

Other properties of decomposable Weyl tensors were discussed in [2].

10 This is also true for doubly warped product spacetimes discussed in [31], so that propositions 3 and 4 also hold in
that case.
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4.2. ‘Factorized’ geodetic null vector fields

Let us define an n-dimensional spacetime (M, g) as the warped product of an n1-dimensional
Lorentzian space (M1, g(1)) and an n2-dimensional Riemannian space (M2, g(2)), with
n = n1 + n2 as in the preceding subsection. Hereafter we shall assume n1 � 2. Using
the adapted coordinates defined above, the metric can take one of the following two forms:

ds2 = gAB dxA dxB + f (xA)hIJ dxI dxJ , (15)

ds2 = f̃ (xI )hAB dxA dxB + gIJ dxI dxJ , (16)

where gAB, hAB = g(1)AB depend only on the xA coordinates and gIJ , hIJ = g(2)IJ only on
the xI coordinates.

Given a null vector �(1) = �A
(1)∂A of M1, this can be ‘lifted’ to define a null vector � of M

with covariant components �A = �(1)A (functions of xA only) and �I = 0. From equations (15),
(16) it follows that if �(1) is geodetic (and affinely parameterized) in M1 then � is automatically
geodetic (and affinely parameterized) in M. We can thus ‘compare’ the optical scalars of �(1)

in M1 with those of � in M. For the warped metric (15), with the definitions (4) one finds

σ 2 = σ 2
(1) +

(n1 − 2)n2

n1 + n2 − 2

[
θ(1) − 1

2
(ln f ),A�A

]2

,

θ = 1

n1 + n2 − 2

[
(n1 − 2)θ(1) +

n2

2
(ln f ),A�A

]
,

ω2 = ω2
(1),

(17)

where σ 2
(1), θ(1) and ω2

(1) are the optical scalars of �(1) in (M1, g(1)). For the warped metric (16)
one has

σ 2 = f̃ −2

[
σ 2

(1) +
(n1 − 2)n2

n1 + n2 − 2
θ2
(1)

]
,

θ = n1 − 2

n1 + n2 − 2
f̃ −1θ(1),

ω2 = f̃ −2ω2
(1).

(18)

The special case of direct products is recovered for f, f̃ = const (which can be rescaled
to 1), in which case the shear of the full spacetime originates in the shear and expansion of the
Lorentzian factor (while expansion and twist are essentially the same as in (M1, g(1))).

Note that for n1 = 2 the definitions (4) for σ 2
(1) and θ(1) become formally singular because

of the normalization, but for a Lorentzian 2-space (e.g., ds2 = 2A(u, v) du dv with the geodetic
null vector � = A−1∂v) one has �(a;b)�

(a;b) = �a ;a = �[a;b]�
a;b = 0, so that we can essentially

take σ 2
(1) = θ(1) = ω(1) = 0 and formulae (17), (18) still hold.

The results of this section can be applied to several known solutions. For example,
static [rotating] black strings and branes (i.e., direct products of Schwarzschild [Kerr] cross a
flat space) are type D vacuum spacetimes with two shearing, expanding, twistfree [twisting]
multiple WANDs. As such, they clearly ‘violate’ the Golberg–Sachs theorem. In addition,
spherically symmetric solutions in any dimensions (which necessarily take the metric form (15)
with n1 = 2) are type D spacetimes with two shearfree, expanding, twistfree multiple WANDs
(independently of any specific field equations; in the ‘exceptional case’ (ln f ),A�A = 0 the
vector � is non-expanding, e.g. for Bertotti–Robinson/Nariai geometries or for null generators
of horizons).
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5. Type D Einstein spacetimes in higher dimensions

From the results of the previous sections it follows that type D spacetimes are the simplest non-
trivial examples of static/stationary (‘expanding’ and with an appropriate reflection)/warped
spacetimes. Therefore, we will focus on type D spacetimes in general (without assuming
staticity etc). Recall that the quantities/symbols used below (e.g. �ij , Lij ,D) are defined in
section 2.

5.1. Algebraic conditions following from the Bianchi equations

Various contractions of Bianchi identities

Rabcd;e + Rabde;c + Rabec;d = 0 (19)

lead to a set of first-order PDEs for frame components of the Riemann tensor given in appendix
B of [8]. In the following we shall concentrate on Einstein spaces (defined by Rab = R

n
gab),

for which the same set of equations also holds unchanged for components of the Weyl tensor.
In the case of algebraically special spacetimes, some of these differential equations reduce
to algebraical equations due to the vanishing of some components of the Weyl tensor. Here,
we derive algebraic conditions following from the Bianchi equations for type D Einstein
spacetimes. These conditions will be employed in subsequent sections.

In particular, by contracting (19) with m(i), �,m(j),m(k) and � (equation (B.8) in [8])
and assuming to have a type D Einstein space we get the first algebraic condition

�ijLk − �ikLj + 2�A
kjLi − CisjkLs = 0, (20)

where we denoted Li0 by Li . We will also denote LiLi by L.
The second algebraic equation follows from equation (B.15, [8])

0 = 2
(
�A

jkLim + �A
mjLik + �A

kmLij + �ijAmk + �ikAjm + �imAkj

)
+ CisjkLsm + CismjLsk + CiskmLsj (21)

and contraction of k with i leads to

0 = S�A
mj + �Ajm − (

�S
mi + �A

mi

)
Sij +

(
�S

ji + �A
ji

)
Sim

+ 2
(
�A

imAij − �A
ijAim

)
+ 1

2CismjAsi . (22)

By contracting m with j in equation (B.12) from [8] we get

2D�S
ik = 4�A

ijAkj + �kjLij + �jiLjk − �kiS − �Lik − 2�S
isLsk

− 2�S
sk

s

Mi0 −2�S
is

s

Mk0 +CijksLsj , (23)

where we employed Ciskj

s

Mj0 +Cijks

s

Mj0= 0 (
s

Mj0 +
j

Ms0 = 0, cf [8]).
The symmetric part of equation (B.5, [8]) and equation (B.3) (that is equivalent to the

antisymmetric part of (B.5)) give, respectively,

2D�S
ik = −2�Sik + (−2�is + �si)Lsk + (−2�ks + �sk)Lsi − 2�S

sk

s

Mi0 −2�S
is

s

Mk0, (24)

2D�A
ik = −2�Aik + (−2�is + �si)Lsk − (−2�ks + �sk)Lsi − 2�A

sk

s

Mi0 +2�A
si

s

Mk0 . (25)

By subtracting (24) from (23) we finally obtain the third algebraic equation

0 = −�kiS + �Lki + �kjLij + 4�A
ijAkj + (2�kj − �jk)Lji + 2�A

ijLjk + CijksLsj . (26)



4418 V Pravda et al

Its antisymmetric part is, thanks to CikjmAmj = 2CijksAsj , equal to equation (22) and its
symmetric part reads

0 = −S�S
ik + �Sik + �S

ijSjk + �S
kjSij + 3

(
�A

ijSjk + �A
kjSji

)
+ CijksSsj . (27)

Equations (20), (22) and (27) will be extensively used in the following sections.
In passing, let us observe here in what sense the n = 4 case is unique. Recalling footnote 6,

from (20) we get Li = 0 (geodetic property) unless �ij = 0 (trivial case of zero Weyl
tensor); equation (22) is identically satisfied (noting that necessarily �A

ij ∝ Aij when n = 4);
equation (27) implies Sij ∝ δij (vanishing shear) again unless �ij = 0. Thus, for n = 4 we
correctly recover the standard Goldberg–Sachs result (here restricted to type D spacetimes)
that multiple WANDs (PNDs) are geodetic and shearfree in vacuum (and Einstein) spaces [1].
The situation in higher dimensions, which is qualitatively different from the n = 4 case, is
studied in the following sections.

5.2. WANDs in ‘generic’ vacuum type D and II spacetimes in arbitrary dimension are
geodetic

In this section, we study equation (20) in order to determine under which circumstances the
multiple WAND � is geodetic.

By contracting i with k in (20) and using (6) we get(
3�A

ij − �S
ij

)
Li = �Lj (28)

and after multiplying (28) by Lj we obtain

�S
ijLiLj = −�L. (29)

By multiplying (20) by LiLj and using (29) we get

L
(
3�A

ikLi + �S
ikLi + �Lk

) = 0. (30)

Thus, either L = 0 or(−3�A
ij − �S

ij

)
Li = �Lj . (31)

By adding and subtracting (28) and (31) we get

�S
ijLi = −�Lj, �A

ijLi = 0. (32)

Finally, multiplying (20) by Li and using (32) we get

L�A
ij = 0. (33)

This implies that for a type D vacuum spacetime with non-vanishing �A
ij in arbitrary dimension

corresponding WANDs are geodetic.
In the case with vanishing �A

ij , let us choose a frame in which �S
ij is diagonal

�S
ij = diag{p(2), p(3), . . . , p(n−1)}. Then from the first equation (32) it follows

(p(i) + �)Li = 0, (34)

where (from now on) we do not sum over indices in brackets. If p(i) �= −�,∀i, then
Li = 0,∀i, i.e. � is geodetic.

Note that so far we have employed only equation (20), which corresponds to equation
(B.8) in [8] and which does not contain Weyl tensor components with negative boost order.
Consequently, the same conclusions also hold for type II Einstein spacetimes.

Proposition 6. In arbitrary dimension, multiple WANDs of type II and D Einstein spacetimes
are geodetic if at least one of the following conditions is satisfied:
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(i) �A
ij is non-vanishing;

(ii) for all eigenvalues of �S
ij : p(i) �= −�.

Note that the above argument cannot be extended to more special algebraic classes of
spacetimes since it relies on the fact that some Weyl components with boost weight zero are
non-vanishing. However, it was already shown in [8] that multiple WANDs in type N and III
vacuum spacetimes are geodetic (in that case with no need of extra assumptions). Therefore,
we can conclude that under most ‘generic’ conditions multiple WANDs are geodetic. Note,
however, that certain special type D vacuum solutions with �A

ij = 0 and p(i) = −� (for some
i) admit non-geodetic multiple WANDs. An explicit example of such a spacetime is given in
section 5.4.

5.3. Vacuum type D spacetimes with a ‘shearfree’ WAND

The algebraic equations (22) and (27) are quite complicated in a general dimension and thus
here we will limit ourselves to the ‘shearfree’ case. This is of interest since it includes, for
instance, the Robinson–Trautman solutions containing static black holes [35].

With the ‘shearfree’ condition

Sij = S
n−2δij , (35)

equation (27) leads for S �= 0 to

�S
ij = �

n−2δij (S �= 0), (36)

whereas it is identically satisfied for S = 0. In the rest of this subsection, we thus consider
only the ‘expanding’ case S �= 0. For �S

ij in the form (36) with � �= 0 condition (ii) of
proposition 6 is satisfied and thus the WAND � is geodetic.

Proposition 7. In arbitrary dimension, multiple ‘shearfree’ and ‘expanding’ WAND in a type
D Einstein spacetime is geodetic whenever �ij �= 0.

Note that �ij has to be non-zero for type D spacetimes in four and five dimensions. Thus
all such shearfree WANDs are geodetic11. On the other hand, spacetimes with �ij = 0 are not
necessarily conformally flat for n > 5 (Cijkl can be non-vanishing, and in that case equation
(20) reduces to CisjkLs = 0) and in fact in section 5.4 we will present an example of such a
type D vacuum spacetime with a non-geodetic ‘shearfree’ multiple WAND.

Furthermore, using (35) and (36), equation (22) reads

0 = n−4
n−2S�A

ij + �Aji + 2
(
�A

kiAkj + �A
jkAki

)
+ 1

2CkmijAmk. (37)

As mentioned above this is identically satisfied for n = 4. For n > 4 (and S �= 0), if one
assumes Aij = 0 it gives �A

ij = 0, while assuming �A
ij = 0 leads to CkmijAmk = 2�Aij . On

the other hand, from equation (25) with (35) and (36) we see that �A
ij = 0 implies Aij = 0,

unless � = 0 (in which case the full �ij would be zero). We can thus summarize these results
in

Proposition 8. For a multiple ‘shearfree’ and ‘expanding’ WAND in a type D Einstein
spacetime in n > 4 dimensions the following implications hold:

(i) Aij = 0 ⇒ �A
ij = 0.

(ii) �A
ij = 0,�S

ij �= 0 ⇒ Aij = 0.
(iii) �A

ij = 0,�S
ij = 0 ⇒ CkmijAmk = 0.

11 In fact, for n = 4 from the Goldberg–Sachs theorem we already knew that all multiple WANDs are automatically
shearfree and geodetic.
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Note that for an arbitrary odd-dimensional spacetime with a geodetic and shearfree WAND
one has Aij = 0 [10] and thus in the expanding case, θ �= 0, by (i) �A

ij also necessarily vanish.
Note also that the assumptions of (i) (i.e., σij = 0 = Aij , θ �= 0) uniquely identify the
Robinson–Trautman spacetimes (which are of type D for n > 4) in any dimensions and
indeed �A

ij = 0 for the corresponding Weyl tensor [35]. In general, �S
ij = �

n−2δij �= 0
for Robinson–Trautman solutions [35] and by proposition 7 the multiple WANDs are thus
geodetic; however, in the next subsection we present a very special Robinson–Trautman
solution with vanishing �S

ij and with a non-geodetic WAND.

5.4. An example of type D vacuum spacetimes with a non-geodetic WAND

The conclusions in the preceding subsections about the geodetic character of multiple WANDs
cannot be (in contrast to the n = 4 case) extended to the most general case. In fact, here we
point out that a special subclass of the Robinson–Trautman solutions [35] in n � 7 dimensions
represents type D vacuum spacetimes (with a possible cosmological constant) for which one
of the multiple WANDs is non-geodetic. Namely, let us consider the vacuum family [35, 36]

ds2 = r2hij dxi dxj − 2 du dr − 2H du2,

2H = K − 2r(ln P),u − 2�

(n − 2)(n − 1)
r2 (K = 0,±1),

(38)

where P 2 = (det hij )
1/(2−n) and hij represents an arbitrary (n−2)-dimensional Einstein space

(i, j = 2, . . . , n−1 are, exceptionally, coordinate indices in this subsection). Using a suitable
frame based on the null vectors

� = ∂r , n = −∂u + H∂r, (39)

the only non-vanishing components of the Weyl tensor have boost weight zero and are given
by [35]

Cijkl = r2(Rijkl − 2Khi[khl]j ), (40)

where Rijkl is the Riemann tensor associated with hij . This implies that the spacetime (38)
is of type D, with �ij = 0, and that both � and n are multiple WANDs. Now, the vector � is
geodetic, shearfree and twistfree by construction [35]. Next, one can easily show that

∇nn = −H,rn + H,i dxi, (41)

where, by (38), H,i = −r(ln P),ui . Therefore, n is geodetic if and only if (ln P),ui = 0 ⇔
P = p1(u)p2(x

2, x3, . . .). For a general (non-factorized) function P the multiple WAND n is
thus non-geodetic (one can also easily check that it is ‘shearfree’, ‘twistfree’ and ‘expanding’).
A simple explicit example of such spacetimes is obtained by extending to any n � 7 the n = 7
dimensional solution discussed in [36], i.e. by taking in equation (38)

K = −1, P = f (u, z)−1/2[ρn−5(det ηαβ)1/2]1/(2−n),

hij dxi dxj = f (u, z)

[
dz2 + V (ρ) dτ 2 +

1

V (ρ)
dρ2 + ρ2ηαβ dxα dxβ

]
,

f (u, z) = 4b(u)e2z/l

l2[e2z/l − b(u)]2
, V (ρ) =

(
1 − µ

ρn−6
− ρ2

l2

)
,

(42)

where z ≡ x2, τ ≡ x3, ρ ≡ x4, ηαβ = ηαβ(x5, x6, . . .) is the metric of an (n− 5)-dimensional
unit sphere (α, β = 5, . . . , n − 1), µ and l are constants and b(u) > 0 is an arbitrary
function. The multiple WAND n is non-geodetic as long as db/du �= 0. Note that there is no
contradiction with the results of the previous subsections precisely because �ij = 0 here.
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6. Type D vacuum spacetimes in five dimensions

Let us now study the five-dimensional case. Note that the algebraic relation (6) between
−2�S

ij and Cijkl is equivalent to the relation between the Ricci and the Riemann tensor of an
(m − 2)-dimensional space. Therefore, in five dimensions Cijkl is equivalent to �S

ij and thus
a type D Weyl tensor in five dimensions is fully determined by �ij . In fact, for n = 5 it is
possible to solve the second constraint from (6) for Cijkl :

Cijkl
(n=5)= 2

(
δil�

S
jk − δik�

S
jl − δjl�

S
ik + δjk�

S
il

) − �(δilδjk − δikδjl). (43)

Thus, in the five-dimensional case the algebraic equations we consider, (20), (21), (22), (27),
can be expressed in terms of �ij , Li , and Lij . Plugging (43) into (20), recalling equation (32)
and contracting with Lk one finds the equation

L�S
ij + 2�LiLj − �Lδij = 0. (44)

For n = 5, equation (21) takes the form

0 = �A
jkLim +

(
�A

im + 3�S
im

)
Akj + �A

mjLik +
(
�A

ik + 3�S
ik

)
Ajm + �A

kmLij

+
(
�A

ij + 3�S
ij

)
Amk + δij

(
�S

msLsk − �S
ksLsm

)
+ δik

(
�S

jsLsm − �S
msLsj

)
+ δim

(
�S

ksLsj − �S
jsLsk

)
+ �[δijAkm + δikAmj + δimAjk]. (45)

Equation (22) reduces to

0 = �A
mjS + 2�Ajm + �A

ji(Sim + 2Aim) + �A
im(Sij + 2Aij )

+ �S
ji(Sim − 2Aim) + �S

mi(−Sij + 2Aij ), (46)

and equation (27) has the form

3
[(

�S
ij + �A

ij

)
Sjk +

(
�S

kj + �A
kj

)
Sji − S�S

ki

] = δik

(
2�S

jsSjs − �S
)
. (47)

In the following sections we study (non-)geodecity of multiple WANDs (section 6.1),
spacetimes admitting non-twisting WANDs Aij = 0 (section 6.2) and spacetimes with �A

ij = 0
(section 6.3).

6.1. Geodeticity of multiple WANDs

It is interesting to return now to equation (20), which is related to the (non-)geodetic character
of multiple WANDs and in five dimensions implies (44). Since we already know from
proposition 6 that WANDs are necessarily geodetic when �A

ij �= 0, let us focus here on the
case �A

ij = 0. If � = 0 we see that either L = 0 or �S
ij = 0, the latter case being now a

conformally flat spacetime. Therefore, an n = 5 type D Einstein spacetime requires (�A
ij = 0

and) � �= 0 in order to admit a non-geodetic multiple WAND. In this case, it follows from
(44) that there exists an eigenframe of �S

ij such that

�S
ij = �diag(1, 1,−1), L2 = L3 = 0, (48)

so that L4 �= 0 is responsible for the WAND � being non-geodetic. Such a spacetime is
necessarily shearing since the ‘canonical’ form of �S

ij given in equation (48) is not compatible
with that of equation (36). It would be interesting to find such a five-dimensional vacuum type
D spacetime with a non-geodetic WAND or prove that such a spacetime does not exist.

To summarize,

Proposition 9. In five dimensions, the only type D Einstein spacetimes with non-geodetic
multiple WAND � are those satisfying �A

ik = 0 and �S
ik �= 0,�S

ik = diag{�,�,−�}.
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6.2. ‘Non-twisting’ case Aij = 0

In the non-twisting case Aij = 0, equation (46) reduces to

�jiSim − �miSij + �A
mjS = 0. (49)

Now we can, without loss of generality, choose a frame in which the symmetric matrix
Sij is diagonal:

Sij = diag(s(2), s(3), s(4)). (50)

Then, equations (49) and (47) take the form (recall that we do not sum over indices in brackets)

�S
ik(s(k) − s(i)) + �A

ik(s(k) + s(i) − S) = 0,

�S
ik(s(k) + s(i) − S) + �A

ik(s(k) − s(i)) = 1
3δik

(
2�S

jsSjs − �S
)
.

(51)

Now let us study components of the two above equations for i �= k. By summing the two
above equations we get

(2s(k) − S)
(
�S

ik + �A
ik

) = 0 (i �= k). (52)

In the ‘generic’ case with 2s(i) �= S ∀i, this implies

�A
ik = 0 = �S

ik for i �= k. (53)

Consequently, �S
ij is also diagonal and from equation (51)

�S
ij = diag(p(2), p(3), p(4)), p(i) = 2�S

jsSjs − �S

3(2s(i) − S)
. (54)

Using (54), it is straightforward to express (two of) p(i) in terms of s(i) solving the linear
relations (which are not all independent):

(s(2) − s(3) − s(4))p(2) = (−s(2) + s(3) − s(4))p(3), (55)

(s(2) − s(3) − s(4))p(2) = (−s(2) − s(3) + s(4))p(4), (56)

(−s(2) + s(3) − s(4))p(3) = (−s(2) − s(3) + s(4))p(4). (57)

Thus,

Proposition 10. In five dimensions, in the ‘generic’ (2s(i) �= S ∀i) non-twisting (Aij = 0)

type D Einstein spacetime, �A
ij also vanishes and �S

ij can be diagonalized together with Sij .

Note that special cases with 2s(i) = S for some i have to be treated separately:

(1) If one of s(i) = S/2, e.g. s(4) = S/2, and the others differ from S/2, 0 then only �S
44 �= 0,

all other components of �S
ij = 0 and �A

ij = 0.
(2) If, e.g., s(2) = s(3) = S/2, s(4) = 0 then �S

24 = �S
34 = �S

44 = �A
24 = �A

34 = 0, the other
components

(
�S

22,�
S
33,�

S
23,�

A
23

)
are arbitrary.

6.3. Case �A
ij = 0

For �A
ij = 0, equations (46), (25) and (47) take the form

2
(
�S

miAij − �S
jiAim + �Ajm

)
+ �S

jiSim − �S
miSij = 0, (58)

−�S
imAij + �S

jiAim + 2�Ajm + �S
jiSim − �S

miSij = 0, (59)

3
(
�S

ijSjk + �S
kjSji − S�S

ki

) = δik

(
2�S

jlSjl − �S
)
. (60)
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In section 6.2, it was efficient to choose a frame in which Sij was diagonal; however, now
it is more efficient to choose a frame in which �S

ij is diagonal, �S
ij = diag{p(2), p(3), p(4)}.

Then, we obtain from (58)–(60) the following set of equations:

(2p(m) + 2p(j) − 2�)Amj + Smj (p(j) − p(m)) = 0, (61)

(−p(m) − p(j) − 2�)Amj + Smj (p(j) − p(m)) = 0, (62)

3(p(i) + p(k))Sik = δik

(
3Sp(i) + 2�S

jlSjl − �S
)
. (63)

In the ‘generic’ case p(i) + p(k) �= 0,∀i, k, from equation (63)

Sik = diag{s(2), s(3), s(4)}, s(i) = S

2
+

2�S
jlSjl − �S

6p(i)

. (64)

From (64) we get the relations (which can be solved to fix two of the si , if desired)

s(2)p(3)(p(2) + p(4)) = s(3)p(2)(p(3) + p(4)), (65)

s(2)p(4)(p(2) + p(3)) = s(4)p(2)(p(3) + p(4)), (66)

s(3)p(4)(p(2) + p(3)) = s(4)p(3)(p(2) + p(4)). (67)

Subtracting (61) and (62) we obtain (p(m) + p(j))Amj = 0 and thus in the ‘generic’ case
p(m) + p(j) �= 0,∀m, j ,

Amj = 0. (68)

Proposition 11. In five dimensions, the multiple WAND � in a ‘generic’ (p(i) +p(j) �= 0,∀i, j)

type D Einstein spacetime with �A
ik = 0 and �S

ik �= 0 is geodetic and non-twisting (Aij = 0)

and �S
ik and Sij can be diagonalized together.

There are some special cases to be treated:

• Case (a)—one p(i) = 0 and � �= 0: without loss of generality we choose p(2) = 0, then
from (61)–(63) 2�S

jlSjl − �S = 0, Sij = diag{0, S/2, S/2}, Amj = 0.
• Case (b)—only one p(i) �= 0: without loss of generality we choose p(4) �= 0, p(2) =

p(3) = 0 then from (61)–(63) 2�S
jlSjl − �S = 0, s(2) + s(3) = s(4) = S/2 and S23 is

arbitrary, Aij vanishes.
• Case (c)—only one pair satisfies p(m) + p(j) = 0, p(j) �= 0: without loss of generality we

choose p(3) + p(4) = 0, i.e. p(2) = �, then the diagonal components of Sij still satisfy
(64), from (61)–(63) S34 is arbitrary and

(p(m) + p(j))Amj = 0, 2�Amj = (p(j) − p(m))Smj (69)

and thus if � �= 0, A34 = −p(3)

�
S34. If � = 0, then S34 = 0 and Sij is diagonal and A23

is arbitrary.
• Case (d)—two pairs satisfy p(m) + p(j) = 0: without loss of generality we choose

p(2) = p(3) = −p(4) = �. From (64) it follows that the diagonal components of Sij , s(2)

and s(3) vanish and s(4) is arbitrary. Equation (63) implies that S24 and S34 are arbitrary
and from equation (69) we get A23 = 0, A24 = −S24, A34 = −S34. This case is the
non-geodetic case (48) from section 6.1.
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6.4. An example—Myers–Perry black hole

As an illustrative example we give Sij , Aij ,�
S
ij and �A

ij for the five-dimensional Myers–Perry
black hole [9]:

ds2 = ρ2

4�
dx2 + ρ2 dθ2 − dt2 + (x + a2) sin2 θ dφ2 + (x + b2) cos2 θ dψ2

+
r0

2

ρ2
(dt + a sin2 θ dφ + b cos2 θ dψ)2,

where

ρ2 = x + a2 cos2 θ + b2 sin2 θ, � = (x + a2)(x + b2) − r0
2x.

Two (multiple, geodetic) WANDs (related by reflection symmetry) are given by [7]

� = (x + a2)(x + b2)

�

[
∂t − a

x + a2
∂φ − b

x + b2
∂ψ

]
+ 2

√
x∂x, (70)

n = α

(
(x + a2)(x + b2)

�

[
∂t − a

x + a2
∂φ − b

x + b2
∂ψ

]
− 2

√
x∂x

)
, (71)

where we chose α = −�/2ρ2x in order to satisfy the normalization condition � · n = 1.
As a basis of spacelike vectors we choose three eigenvectors of Sij :

m(2) = 1

ρ
∂θ ,

m(3) = 1√
xχ

(−ab∂t + b∂φ + a∂ψ),

m(4) = 1

ρχ
[(a2 − b2) sin θ cos θ∂t − a tan−1 θ∂φ + b tan θ∂ψ ],

(72)

with χ =
√

a2 cos2 θ + b2 sin2 θ . In this frame,

Sij =




√
x

ρ2 0 0

0 1√
x

0

0 0
√

x

ρ2


 , Aij = χ

ρ2


 0 0 −1

0 0 0
1 0 0


 , (73)

and

�S
ij = r0

2

ρ4




ρ2−2x

ρ2 0 0

0 −1 0

0 0 ρ2−2x

ρ2


 , �A

ij = 2r2
0 χ

√
x

ρ6


 0 0 1

0 0 0
−1 0 0


 . (74)

Note that in the static (Schwarzschild) limit (a = 0 = b so that ρ2 = x) one has
Sij = δij /

√
x and σij = 0 = Aij , and indeed for �ij we recover the form discussed in

subsection 5.3 in the shearfree expanding case and in subsection 6.2 in the ‘generic’ non-
twisting case (with p(2) = p(3) = p(4)).

7. Discussion

Let us finally outline the main results presented in the paper.
In the first part of the paper (sections 3 and 4), we studied the constraints on Weyl types

of a spacetime following from various assumptions on geometry. It turns out that
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• Static spacetimes are of types G, Ii , D or conformally flat (proposition 1).
• ‘Expanding’ stationary spacetimes with appropriate reflection symmetry belong to these

types as well (proposition 2).
• Warped spacetimes with one-dimensional Lorentzian factor are again of types G, Ii , D

and O (proposition 3).
• Warped spacetimes with two-dimensional Lorentzian factor are necessarily of types D

or O (proposition 4), in particular this also applies to spherically symmetric spacetimes
(proposition 5).
These results may have useful practical applications in determining the algebraic type of

specific spacetimes (or at least in ruling out some types) just by ‘inspecting’ the given metric
and without performing any calculations. This is particularly important in higher dimensions,
where it is more difficult to determine the algebraic class of a given metric.

In the second part of the paper (sections 5 and 6), we study the properties of type D vacuum
spacetimes in general (without assuming that the spacetime is static, stationary or warped). In
five dimensions a type D Weyl tensor is determined by a 3 × 3 matrix �ij with symmetric and
antisymmetric parts being �A

ij and �S
ij , respectively. In general, in the non-twisting case �ij

is symmetric while in the twisting case antisymmetric part �A
ij appears. In higher dimensions

n > 5, the (n − 2) × (n − 2) matrix �ij does not contain complete information about the
Weyl tensor, but it still plays an important role. The matrix �ij can also be used for further
classification of type D or II spacetimes, for example according to possible degeneracy of
eigendirections of �ij . Special classes are also cases with �ij being symmetric or vanishing
(such examples for n � 7 are given in section 5.4), etc.

First, we focus on the geodeticity of multiple WANDs in type D vacuum spacetimes (these
are always geodetic for n = 4). It was shown that

• The multiple WAND in a vacuum spacetime is geodetic in the ‘generic’ case, i.e.
if �A

ij �= 0 or if all eigenvalues of �S
ij are distinct from minus the trace of �ij

(proposition 6).
• It is also geodetic in the type D, shearfree case whenever �ij �= 0 (proposition 7).
• However, explicit examples of vacuum type D spacetimes with non-geodetic multiple

WAND in n � 7 dimensions are given in section 5.4. This provides us with the first
examples of spacetimes ‘violating’ the geodetic part of the Goldberg–Sachs theorem.

• In five dimensions multiple WANDs are also geodetic when �A
ij = 0 and �S

ij �= 0 has a
‘generic’ form (proposition 11), special cases are discussed in section 6.3.
Properties of the matrix �ij , as well as the expansion and twist matrices Sij and Aij , have

also been studied:
• For warped spacetimes with a one/two-dimensional Lorentzian factor (thus also for static

spacetimes) the antisymmetric part of �ij ,�
A
ij , vanishes.

• In vacuum type D spacetimes admitting a shearfree expanding WAND, �S
ij is proportional

to δij and if Aij = 0 (this always holds in odd dimensions [10]) then �A
ij = 0 and in the

case with �S
ij �= 0 also vice versa (proposition 8).

• In five dimensions in a ‘generic’ Einstein type D non-twisting spacetime, �A
ij vanishes

and eigendirections of �ij coincide with those of Sij (proposition 10).
• In five dimensions in a ‘generic’ vacuum type D spacetime with symmetric �ij ,

the multiple WAND � is non-twisting and eigendirections of �ij and Sij coincide
(proposition 11).
These results provide interesting connections between geometric properties of principal

null congruences and Weyl curvature. Hopefully, they can also be used for constructing exact
type D solutions with particular properties.
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Appendix A. Optics of WANDs in Kerr–NUT–AdS spacetimes in arbitrary dimension

As discussed in section 3.3, the assumption about non-zero ‘expansion’ in proposition 2
is essential. In this appendix, we study optical properties of WANDs in Kerr–NUT–AdS
spacetimes in arbitrary dimension [16] and show that the ‘expansion’ in these cases is always
non-vanishing. These metrics are thus subject to proposition 2. Indeed, it has already
been shown in [15] that these spacetimes are of type D. In addition, since the expansion is
non-zero, we can expect that possible (still stationary) generalizations of these spacetimes
(such as charged black holes) with appropriate reflection symmetry are of types G, Ii or D
(see also footnotes 7 and 8). This appendix also extends our example of five-dimensional
Myers–Perry given in section 6.4 to the case with NUT parameters and cosmological constant
and to arbitrary dimension. Note, however, that now we use convenient but physically
less ‘transparent’ coordinates (x1, . . . , xm,ψ0, . . . , ψm−1) in even dimensions n = 2m and
(x1, . . . , xm,ψ0, . . . , ψm) in odd dimensions n = 2m + 1, introduced in [16]. In our
calculations, we employ results obtained in [15].

The metric of [16] for even and odd dimensions is, respectively,
n = 2m:

ds2 =
m∑

µ=1

dx2
µ

Qµ

+
m∑

µ=1

Qµ

(
m−1∑
k=0

A(k)
µ dψk

)2

, (A.1)

n = 2m + 1:

ds2 =
m∑

µ=1

dx2
µ

Qµ

+
m∑

µ=1

Qµ

(
m−1∑
k=0

A(k)
µ dψk

)2

+ S̃

(
m∑

k=0

A(k) dψk

)2

. (A.2)

The functions Qµ,A(k)
µ , A(k) and S̃ depend only on the coordinates (x1, . . . , xm) and their

explicit expressions are given in [15, 16].

A.1. Even dimensions, n = 2m

An orthonormal frame of 1-forms {e(A)} = {e(µ),e(m+µ)} with A = 1, 2, . . . , 2m,µ =
1, 2, . . . , m,

e(µ) = dxµ√
Qµ

, e(m+µ) = √
Qµ

(
m−1∑
k=0

A(k)
µ dψk

)
(A.3)

was introduced in [15]. Denoting the duals of these forms with lower indices, let us here also
define a null frame of vectors �,n,m(i) by

� = i√
2Qm

(e(m) + ie(2m)), n = −i

√
Qm

2
(e(m) − ie(2m)), (A.4)

with m(i) (i = 2, . . . , n − 1) corresponding to e(µ),e(m+µ) (µ = 1, . . . , m − 1 from now
on). One can show [15] that the null vectors �,n are multiple WANDs of the type D metric
(A.1) and that they are geodetic (and affinely parameterized). Both WANDs are complex in the
coordinates used above, but note that they become in fact real in ‘physical’ coordinates since the
metric (A.1) was obtained from a real Lorentzian metric by a Wick rotation with xm = ir in [16]



Type D Einstein spacetimes in higher dimensions 4427

and Qm < 0 in the outer stationary region, where ∂/∂r is spacelike. Thus
√

Qm = i
√|Qm|,

so that reintroducing r, both vectors ie(2m) and e(m) become real
(
eα
(m)(r) = iδαm

√
Qm

)
.

Let us now express the matrix Lij (defined in section 2) in terms of Ricci rotation
coefficients, which can be easily obtained from the connection 1-forms given in [15]:

Lij = �a;bma
(i)m

b
(j) = 1√

2Qm

(e(m)a;b + ie(2m)a;b)ma
(i)m

b
(j) = − 1√

2Qm

(
γ m

ij + iγ 2m
ij

)
, (A.5)

with

γ m
µµ = γ m

m+µ m+µ = −xm

√
Qm

x2
m − x2

µ

, (A.6)

γ 2m
m+µ µ = −γ 2m

µ m+µ = −xµ

√
Qm

x2
m − x2

µ

, (A.7)

and with remaining Ricci rotation coefficients entering (A.5) being zero. Then,

Sij = r√
2


δµν

1
r2+x2

µ
0

0 δµν
1

r2+x2
µ


 , Aij = 1√

2


 0 −δµν

xµ

r2+x2
µ

δµν
xµ

r2+x2
µ

0


 , (A.8)

where terms proportional to δµν symbolically represent an (m − 1) × (m − 1) diagonal block.
Note that Sij ∝ δij (that is, the shear is zero) iff n = 4. From this form of Sij it follows that
shear is non-zero for arbitrary even dimension n > 4 and expansion

S =
√

2r

m−1∑
µ=1

1

r2 + x2
µ

(A.9)

is non-zero in arbitrary even dimension n � 4. Note indeed that the WANDs � and n are
related by reflection symmetry, in agreement with the discussion in section 3. The twist
is also obviously non-zero for any n � 4. Recall [16] finally that for n = 4 the metric
(A.1) represents a subclass of the Plebański–Demiański family of type D spacetimes with two
expanding, twisting and non-shearing principal null directions [1].

A.2. Odd dimensions, n = 2m + 1

In odd dimensions, in addition to (A.3) we define

e(2m+1) =
√

S̃

(
m∑

k=0

A(k) dψk

)
. (A.10)

Then, the null frame consists of �,n given in (A.4), m(i) (i = 2, . . . , n − 1) corresponding
to e(µ),e(m+µ) (µ = 1, . . . , m − 1) and e(2m+1). Again, the null vectors � and n are geodetic
multiple WANDs of the type D metric (A.2) [15].

Now together with (A.7) we have

γ m
2m+1 2m+1 = −

√
Qm

xm

, (A.11)

and thus

Sij = 1√
2r




δµν
r2

r2+x2
µ

0 0

0 δµν
r2

r2+x2
µ

0

0 0 1


 , Aij = 1√

2




0 −δµν
xµ

r2+x2
µ

0

δµν
xµ

r2+x2
µ

0 0

0 0 0


 .

(A.12)

Shear, expansion and twist are thus non-zero for arbitrary odd dimension n > 4.
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[30] Cardoso V, Dias Ó J C and Lemos J P S 2004 Nariai, Bertotti–Robinson and anti-Nariai solutions in higher

dimensions Phys. Rev. D 70 024002
[31] Ramos M P M and Vaz E G L R 2003 Double warped space-times J. Math. Phys. 44 4839–65
[32] Carot J and da Costa J 1993 On the geometry of warped spacetimes Class. Quantum Grav. 10 461–82
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