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Abstract

We explore connections between geometrical properties of null congruences
and the algebraic structure of the Weyl tensor in n > 4 spacetime dimensions.
First, we present the full set of Ricci identities on a suitable ‘null’ frame,
thus completing the extension of the Newman—Penrose formalism to higher
dimensions. Then we specialize to geodetic null congruences and study specific
consequences of the Sachs equations. These imply, for example, that Kundt
spacetimes are of type II or more special (like for » = 4) and that for odd n a
twisting geodetic WAND must also be shearing (in contrast to the case n = 4).

PACS numbers: 04.50.+h, 04.20.—q, 04.20.Cv

1. Introduction

Thanks to the correspondence between geometrical properties of null geodesics and optical
properties of the gravitational field, the study of ray optics (see, e.g., [1, 2] and references
therein) has played a major role in the construction and classification of exact solutions of
Einstein’s equations in n = 4 dimensions. In this context, a fundamental connection between
geometric optics and the algebraic structure of the Weyl tensor is provided by the Goldberg—
Sachs theorem [3, 4], which states that a vacuum metric is algebraically special if and only if it
contains a shearfree geodetic null congruence (cf [1, 2] for related results and generalizations).

In recent years, possible extensions of the above concepts to arbitrary dimensions n > 4
have been investigated. The classification of the Weyl tensor has been presented in [5, 6], and
aspects of geometric optics have been studied in [7—10]. In particular, a partial extension of the
Goldberg—Sachs theorem to n > 4 has been proven in [8] by considering various contractions
of the Bianchi identities. One of the results was that the multiple’> WAND (Weyl aligned null
direction) of a type III or N vacuum spacetime is necessarily geodetic. Nevertheless, possible
‘violations’ of the Goldberg—Sachs theorem inn > 4 have been also pointed out. For example,

3 “Multiple’ WANDs are those WANDs whose order of alignment [5, 6] with the Weyl tensor is greater than zero.
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the principal null directions of n = 5 rotating black holes (which are of type D) are geodetic
but shearing [7, 8]. Furthermore, in n > 4 vacuum spacetimes of type III or N, a multiple
principal null direction with expansion necessarily has also non-zero shear [8].

This contribution makes further progress in the study of optical properties of the
gravitational field in higher dimensions. After summarizing our notation and presenting a
few preliminary results (section 2), we derive the full set of frame Ricci identities inn > 4
(section 3). This is a natural complement to the frame Bianchi identities given in [8], and
together with the expressions for commutators given in section 1.2 of [11] it generalizes the
Newman—Penrose formalism [1, 2, 4] for any n > 4. Consequently, one can explore which
of the four-dimensional applications of this formalism can be extended to higher dimensions.
Here, we focus on some of the consequences of the Ricci identities, such as an analogue of
the Sachs equations [1, 2, 12] for geodetic null congruences and their implications (section 4).

2. Null frames and Ricci rotation coefficients

In an n-dimensional spacetime we can set up a frame of 7 real vectors m(® which consists of
two null vectors m® = n, m® = £ and n — 2 orthonormal spacelike vectors m® [8]. From
nowon,a,b---=0,...,.n—1whilei, j--- =2,...,n — 1. We will observe Einstein’s
summation convention for both types of indices. For indices i, j, ... there is no difference
between covariant and contravariant components and thus we will not distinguish between
()
b

subscripts and superscripts. The metric reads g,, = 2€np) + 6; jmfli)m so that the scalar

products of the basis vectors are

Eaga — l’la}’la — Zam;i) — nﬂmg) — 0’ Eana = 1’ m(i)amflj) = (SU (1)

2.1. Ricci rotation coefficients

We are interested in properties of the covariant derivatives of the above frame vectors. Let us
i

define the Ricci rotation coefficients L, N, and M, by

: d)
Ea;b = Lc'dmZC)m;(, ) Ng:p = Nc‘dml(f)m

i)

d / d
b miy =M mPm?. @)

First derivatives of equations (1) lead to the following n*(n + 1)/2 relations [8]

i i i J
Los = Nig = Nog + L1a =Moa +Lia =M14 +Niq =Mja + M= 0, (3)

which reduce to n?(n — 1)/2 the number of independent rotation coefficients* and which will
be employed throughout the paper (see section 2.2 in [8] for details; rotation coefficients in a
standard orthonormal frame are discussed, e.g., in [13]).

We shall also employ covariant derivatives along the frame vectors

D =1V, A =nV,, 8 =mv,. 4)

4 Inn = 4 dimensions the Lgp, Ngp and 1114 ab are equivalent to the 12 complex Newman—Penrose spin coefficients.
Namely, with the notation ~/2m = m® — im® one has (different conventions in the literature may affect certain
coefficient signs): 2k = \/ﬂa;bm“@b = Loy — iL3p, —2p = 2£a;bm“rhb = Lo + L33 +2iLp3), —20 =
2Ka;;,m“m” = Loy — L33 —2iL(23), V2t = \/ﬂa;bmanb = Ly —iL3;,v/2v = ﬁna;hﬁz“nb = Ny +iN31,2u =
2na;bﬁlamb = Ny + N33 — 2iN[23], 20 = 2na;brh"ﬁlb = Ny — N33 + 2iN(23), x/zﬂ = ﬁna;bﬁlaeb = Nyo +1iN3g,
E+E = 76(,;bn"eb =—Ljp,e—¢= ma:brhaﬁb = i]\zlgo, y+y =ngpt? b= —Li,y—y= frha;bm“nb = i]l2431,

2 2
V2(B — @) = V2mgpmm® = Ms3 +iMza, —v2(B + @) = V2Uapnm® = Lo —iLy3.
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2.2. Transformation properties

Lorentz transformations of the basis m(® can be described in terms of null rotations (with £
or n fixed), spins (i.e., spatial rotations of the vectors m®) and boosts in the £-n plane [6].
Under null rotations with £ fixed

i=v¢, n=n+zm® — 172, m® =m® — ze, (5)

where the z; are real functions and z2 = z, 7', the rotation coefficients transform as

7 12 12 ?
Lyy =Ly +zi(Ly +Lit) +zizjLij — 52°L1o — 5272 Lio, Lo = Lo +zi Lo,
7 # 12
Lyi =Ly —ziLwo+z;Lji —zizjLjo, Liy = L +zjLij — 52" Lio,
Lio = Lio, Lij = Lij — z;Ljo,
J
9 12
Nit = N +zjNij+ziLiy +2; My — 52°(Nio + Lin) + z;z2;(Lyj + L j1)
i, J
+2j2Mix — 52%(ziL1o + 2 Lij + 2jMio) + zizjzi L ji
12 12 12
+32%(—zizjLjo + 52°Lio) + Azi + 2,8,z — 52° Dz, (6)
J

9 12
Nio = Nio+ziLio+zjMio +ziz;Ljo — 532" Lio + Dz,

k k
1,2
N,’j = N,'j +ZiL1j - ZjNi0+Zk1Wij - Zj(ZiLm +Zk]W,'0) +ZiZkij —3Z L,'j

2
—zizjzxlro + 32°2; Lio + 82 — 2, Dz,

i i i i

Y 1.2 2
My = My + 2z Liyg + ze Mg + 2z 21 Lie — 5% M;o — z°z1; Liyo,

i i i i i
M/O = Mj() + 2Z[jLi]0, Mjk = Mjk + ZZ[jLi]k — Zij() + ZZkZ[,‘Lj]O,

whereas null rotations with n fixed are obtained by interchanging £ <> n, L <> N and 0 < 1.
Under spins

L=v¢, n=mn, m® = X' ;mY, 7

where the X' j are (n — 2) x (n — 2) orthogonal matrices, one gets

Ly =Ly, Ly = Lo, Ly = X';Lyj, Li = X';Lj1, iiOZXiijo,
Lij = X"+X/ /Ly, Ni = X';Nj, Nig = X';Njo, Nij = X't X' 1Nu,

i Sk - i o - ®)
M = X" X/ My + X7 A X'y, Mjo = X" X/ My + X7 DX"y,

i o ! . ,
Mjk = XZZXJkaann +X]kan3nle-

Finally under boosts

P

2= e, fA=1"'n, m® =m®, )
where A is a real function, one finds
i]] :)L_IL11+)\._2A)\., i]o:)\.L10+D)\., ili =L|,‘+)x_l(3i)\., i,‘] :L,‘],

~ A A

Lio =L, Lij =xLjj, Nii =217Ny, Nio = Nio, Nij=x"'N;

i i i ] i
M =2""M;y, Mo = »Mjo, Mjx = Mjy.
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3. Ricci identities

Contractions of the Ricci identities Vg.pe — Vgich = Ryapev® with various combinations of
the frame vectors lead to the set of first order differential equations presented below, where
Lapes Nape and M, denote the Ricci identities for v¢ = €4, n* and mV¢, respectively. For
n = 4 these are equivalent to the standard Ricci identities arising in the Newman—Penrose
formalism [1], and for n = 3 to the equations of [14]. Note that some of these equations are
related by interchanging £ <> n, L <> N, D <> A and 0 <> 1 and in that case they are written
next to each other.

Lapen ™€ n® : DLy — ALyg = —2LyoLyy — Ly;Liy + Nio(Ly; + Lit) — LioNiy
— Coto1 + 25 Ro1 — o R (11a)
LapenmD¢ . DLy; — 8;L1g = —Ly1Lig — Lio(L1; + Nio) + 2L jj; Njjop

_Llj(Lji"'AgiO) — Couoi + =5 Roi, (11D)
NapelnPm D¢ ALy — 8; L1y = —LioN;j1 + Lii(Ly; — Lit) — 2L i Ny

_Llj(Nji"'Ajlil)"‘ClOli — LRy, (11¢)
Lapen m PP m D 81 Ly = —=LiiLyijy — LioNygjy — lef‘ljl[ij] — LigjiNui + 3Cou;,  (11d)
Lapem P 0n¢ : DLiy — ALjg = —2L11Lig + Lij(—Lj1 + Njo)

J
+2L jjoMij1y — Coror + =5 Roi. (11e)

NapemPn?€¢ : AN;g — DN;y = 2L1gNiy + Nij(—Njo + L))

+2Nj[11‘2io1—C101i+ﬁRli’ (115
LapemP€’m P - DLij — §;Lio = LioLi; — Lio(2L1; + Njo) — Lit L jo

+2Lk[0‘]‘k4i‘j] — Lig(Ly; + ll]jljo) — Coioj — 75 Roodij. (11g)

Napern*n"m' D¢ : ANi; — 8;Niy = —L11Njj — Nin(=2L1; + Lj1) = NioNj

k k
+ 2N My jy — Nix(Nij + Mj1) — Crinj — ﬁRn(Sij, (11h)

Lapem P n’m D¢ AL;j —8;Liy = Ly1Li; — LiLj1 — LioNjy +2Lk[llj‘ljfilj]

— Lix(Nyj + A];Ijl) — Coitj — 5 (Rij + Rt 8j) + mR&j, (117)
Napem P €m D¢ - DN;; — 8;N;jg = —L1oNij — NigNjo — Ni1L jo +2Nk[0|Ak4i|j]
RS, (1)

k
— Nie(Lj + Mjo) — Cojii — 723 (Rij + Roidip) + Gepyosy

. . 1
Lapern " mDPm ¢ 2 8 Liyy = LigjiLigg + Lis Lijig + LioNyin + L My

!
+ Ly ji My — %COijk - ,,ITZRO[j5k]i, (11k)
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Navem ' mP’m 5[ INijky = —LgjiNijky + NioNpjw) + Nit Lijig +N11M[jk1

+Nl[j\]Wi\k] — 1Ciijk — S Rgduys (110)

. i
Mahcm(j)agb}’lc N DMjl — AM]() = ZN,[HL”()] + 2L,[1|Nj|0] Ll()Mjl

- L11 i0 +2Mk[0|M 1+ jk(_Lkl + Nio) — Coij, (11m)

. i
Mabcm(/)”ebm(k)‘ DMjk — (Sij() = 2Lj[0|Nl‘k] + 2NJ[O|L,‘k] LkOMjl
i

]o(le + Nio) + 2Mz[0| ik — My (L + MkO)
— Corij — =52 R0 (I1n)

. i
./\/la;,cm“)“nbm(k)c N AM]( - (Sk jl1 = ZNJ[”L |k] + 2L][1|Nl‘k] - NklM]()

l
+M11(L1k —Lk1)+2Ml[u ik — ]l(le"'Mkl)
—Cuij — Tzle[i(sj]ka (I1o)

n

i

k)b ]
Mapem P *m P m e 5[k| Il]—Nt[lILJIk]+Lt[l|N1Ik]+L[kl] i1+ Ny M,

+Mp[k\MJu] + M/pM[kll — 3Ciju — 5 SRy — 8w Ruyp). (11p)

where Coio1, Corois - - - and Ry, Ry; are frame components of the Weyl and Ricci tensor,
respectively (see e.g. [6, 8]).

Further contractions do not lead to new equations because of equations (1) (for example,
taking the second derivative of £,n% = 1 leads to ng.pcj€* + L. pein® = 0, so that L,p.n® and
Npe£® are identical; other normalization conditions give similar constraints).

4. Null geodetic congruences and Sachs equations

In this section we consider the physically interesting case of a geodetic vector £. By (2),
Ea;bﬁb = Lo, + L,Om(’), so that £ is geodetic if and only if L;o = 0. In this case, the
matrix L;; acquires a special meaning since it is then invariant under the null rotations (5)
preserving £, see equation (6) (and it simply rescales with boost weight one under a boost (9),
cf equation (10)). It is then convenient to decompose L;; into its tracefree symmetric part o;;
(shear), its trace 0 (expansion) and its antisymmetric part A;; (twist) as [8] (cf also [7, 9])

L,‘j =O’,‘j+98,‘j+Ai]', (12)
oij = Lj) — ka5z;, 0= n]ijkv Ajj = Lyj). (13)

Along with 6, one can construct other scalar quantities out of £,., (see also footnote 5)
which are invariant under null and spatial rotations with fixed £, e.g. the shear and twist scalars
givenby the traces 0> = 0 = 0;;0); andw® = —A%, = —A;;Aj; (note thato;; =0 & 02 =0
and A,’j =0<% 0)2 = 0)

If £is affinely parametrized, i.e. L1y = 0 (as we shall assume in the following), the optical
scalars take the form
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a; a \2 a a;
0'2 = K(a;b)é( ) _ ﬁ(f ;a) s 0 = ﬁﬁ s (,()2 = Z[a;h]ﬁ ’b. (14)

It is worth observing that one can always choose n and m® to be parallely propagated
along the geodetic null congruence £. Namely, one can set Mjp = 0 and N;p = 0 by
performing an appropriate spin transformation (7) and then a null rotation (5). This simplifies

the Ricci identities considerably and may be convenient for certain calculations, but it will not
be assumed in the rest of this paper.

4.1. Sachs equations

Now, setting L;o = 0 = Lo in (11g) and splitting this identity into its tracefree symmetric
part, its trace and its antisymmetric part according to equation (12), one ends up with the set
of n-dimensional Sachs equations

k
Doij = — (0% — 715078;)) — (A} + 75078i;) — 2001 — 2004 M;y0 — Coi» (15a)
DO =~ 50° =6+ 50’ — 5 R, (15b)
k
DA;; = =20A;; — 2031 Aii + 2Ak Mj)o. (15¢)

Note that for n = 4 one has identically 0%;; — 550%8; = 0 = A}, + -50%5;; and

oxjAik =0 = 2Ak[[1lljlj]0 so that equations (15a) and (15¢) simplify considerably and take
the standard form [1, 2, 12]. Equation (15b) is instead essentially unchanged, and for n > 4
has been presented previously in [9, 10].

From equations (15a) and (15¢) one can also obtain the following scalar equations (which
characterize the propagation of £ independently of the other frame vectors®)

D(0?) = —20° — 20 A%, — 400 — 2Cj0;07). (16a)
D(w) = —40w” +40;; A3, (16b)
In the special case 0 = 0 = Ry one can integrate (15b) and (16b) as in [2, 4] to obtain

6y + r(@& + anza)(z)) wo

T le20+ 2@+ Lap) T T2+ (0 + Sad)

a7

where r is an affine parameter along £ and 6y, w, are the values of the scalars at » = 0 (in the
non-twisting case, wg = 0, this reduces to the result of [10]).

4.2. Consequences of the Sachs equations

A number of simple but important facts readily follow from the above equations. First, as
in n = 4, it is the Ricci component Ry of boost weight 2 which controls the propagation
of expansion/convergence, and the Weyl components Co;o; (also of boost weight 2) which
control the propagation of shear. On the other hand, the curvature tensor does not enter the
twist-propagation equation (15c).

> Note indeed that o3 = ojjojeon = g“iwanleat? — 3007 — (n — 2)6%, 07 A3
8 bt + 0 A and Coioj0ij = Capeat® L €7, The higher order optical scalars o and 0;; A%, entering
(16a) and (16b) vanish in n = 4. However, for n > 4 these and other higher order optical scalars may be in general
non-zero and independent of 6, o and w.

= 0ijAjkAki =
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From equations (15a) and (15b) one immediately finds

Proposition 1. Given a geodetic null congruence with tangent vector £ in an arbitrary
n-dimensional spacetime (n > 4), the following implications hold.:

(i) Roo=0,6 =0=Uij = Aij =0, COin =0.
(ll) ROO =0,0=0= Az] = ojj = 0, COin =0.

That is, when Roo = 0 if a geodetic null congruence is non-expanding and shearfree it
must be also twistfree, and it is automatically a WAND; if it is non-expanding and twistfree it
must be also shearfree, and again a WAND.

These are well-known properties in n = 4 [2]. For n > 4, the first conclusion in (ii) was
already pointed out in [9]. Note that the assumed condition Ryyp = O on the matter content is
satisfied in a large class of spacetimes such as vacuum (with a possible cosmological constant),
aligned pure radiation and aligned Maxwell fields.

It is worth observing that both the alternative assumptions in (i) and (ii) uniquely identify
the Kundt class of non-expanding, twistfree and shearfree spacetimes, i.e. with L;; = 0 (see
[15, 16] and references therein for related studies in higher dimensions). In view of (ii), we
conclude that one can not ‘generalize’ the Kundt solutions by allowing for a non-zero shear
(as long as Ryy = 0 and one insists on the non-expanding and twistfree conditions). This
should be contrasted with the existence of ‘generalized Robinson—Trautman solutions’ with
non-zero shear in n > 4 (which can be readily obtained by taking the direct product of a
four-dimensional Robinson-Trautman solution with a flat R?, ¢ > 1; see instead [10] for
standard Robinson-Trautman n > 4 solutions). Furthermore, in both above cases (i) and (ii),
the fact that the tangent vector £ is necessarily a WAND (because of Cy;g; = 0) implies for
n > 4 that the considered spacetime is algebraically special, i.e. it can not be of type G (this
was already noted in [8]). In addition, if we now substitute L;o = 0 = L;; in (11k) and we
further assume Ro; = 0, we obtain Cg;jz = 0. Recalling the identity Coio; = Coj;; [8] we find
also Co10; = 0, so that with proposition 1 we conclude:

Proposition 2. Under the assumption Ry = 0 = Ry; on the matter fields, n > 4 dimensional
Kundt spacetimes (i.e., Lo = 0 = L;;) are of type Il (or more special).

Next, one can observe that for odd n, Aizj + nlja)z&- i =0 & A;; = 0 (since one needs
(_n_lzwz)nfz = det (AIZJ) > 0). Thus, it follows from equation (15a) that

Proposition 3. In an n > 4-dimensional spacetime, n odd, for a geodetic WAND®
Aij#0 = o, #0,

i.e., a twisting geodetic WAND must also be shearing. Conversely, a twisting non-shearing
geodetic null direction cannot be a WAND.

The above result is a counterexample to a complete higher dimensional extension of
the Goldberg—Sachs theorem, according to which algebraically special vacuum spacetimes
are shearfree in n = 4. Myers-Perry black holes in n = 5 provide an explicit example of

6 Recall that in n = 4, by the Goldberg—Sachs theorem [1-4], a multiple principal null direction of a vacuum
gravitational fields is necessarily geodetic. Similarly, for n > 4 multiple WANDs are necessarily geodetic in the
case of type III and type N spacetimes [8]. In [17] we shall present a partial extension of this property to type II
and D vacuum spacetimes (under further assumptions on the Weyl tensor). However, we shall also point out that a
complete extension is not possible, namely there do exist multiple WANDs that are non-geodetic (as opposed to the
case n = 4).
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algebraically special (type D) twisting and shearing spacetimes [7, 8]. Note that the converse
implication 0;; # 0 = A;; # 0 does not hold: for example, static black strings/branes
(i.e., the product (p-dimensional Schwarzschild) x R?, with p > 4 and ¢ > 1) are type D
spacetimes with expanding, shearing but non-twisting geodetic multiple WANDs [17].

On the other hand, again using equation (15a) one has

Proposition 4. In any spacetime with n > 4, given a geodetic null congruence which is not a
WAND (in particular, an arbitrary geodetic null congruence in an algebraically general (type
G) spacetime)

0;j=0 = A;#0,

i.e., a shearfree null geodesic is necessarily twisting unless it is a WAND.
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