TIOP PUBLISHING

CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 25 (2008) 235008 (27pp) doi:10.1088/0264-9381/25/23/235008

The Newman-Penrose formalism in higher
dimensions: vacuum spacetimes with a non-twisting
geodetic multiple Weyl aligned null direction

A Pravdova and V Pravda
Mathematical Institute, Academy of Sciences, Zitnd 25, 115 67 Prague 1, Czech Republic

E-mail: pravdova@math.cas.cz and pravda@math.cas.cz

Received 18 June 2008, in final form 9 September 2008
Published 17 November 2008
Online at stacks.iop.org/CQG/25/235008

Abstract

Vacuum spacetimes admitting a non-twisting geodetic multiple Weyl aligned
null direction (WAND) are analysed in arbitrary dimension using a recently
developed higher-dimensional Newman—Penrose (NP) formalism. We
determine the dependence of the metric and of the Weyl tensor on the affine
parameter r along null geodesics generated by the WAND for type III and N
spacetimes and for a special class of type II and D spacetimes, containing e.g.
Schwarzschild—Tangherlini black holes and black strings and branes. For types
IIT and N, all metric components are at most quadratic polynomials in » while
for types Il and D the r-dependence of the metric as well as of the Weyl tensor is
determined by an integer m corresponding to the rank of the expansion matrix
S;;j. Itis shown that for non-vanishing expansion, all these spacetimes contain a
curvature singularity. As an illustrative example, a shearing expanding type N
five-dimensional vacuum solution is also re-derived using higher-dimensional
NP formalism. This solution can be, however, identified with a direct product
of a known four-dimensional type N metric with an extra dimension.

PACS numbers: 04.50.+h, 04.20.—q, 04.20.Cv

1. Introduction

The null frame Newman—Penrose (NP) formalism [1, 2] is a very useful tool for constructing
exact solutions of the four-dimensional general relativity. Although the number of equations
is considerably larger than in the standard coordinate approach (note, however, that many
equations in the NP formalism are redundant, see e.g. [3] and references therein), all differential
equations in this formalism are of the first order. Another advantage is that one can also use
gauge transformations of the frame in order to simplify the field equations. This is why the
formalism is especially powerful when studying algebraically special solutions according to
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the Petrov classification, since in this case some frame components of the Weyl tensor can be
set to zero by choosing an appropriate frame.

In recent years, solutions to the higher-dimensional Einstein field equations have attracted
alot of interest. A lot of effort went into generalizing the basic concepts, properties and results
of the four-dimensional general relativity to higher dimensions and there is growing awareness
that higher-dimensional gravity contains qualitatively new physics (see e.g. [4] and references
therein).

Generalization of the Petrov classification and of the NP formalism to higher dimensions
was developed in [5, 6], [7, 8], respectively. Using these methods, it can be shown
that in contrast to four dimensions, the Goldberg—Sachs theorem is not valid in higher
dimensions since a multiple Weyl aligned null direction (WAND) in higher-dimensional
vacuum algebraically special spacetimes can be shearing [7, 8]. For example, while in
four dimensions expanding vacuum type N and III spacetimes are never shearing, in higher
dimensions they are always shearing [7]. This presence of shear in higher dimensions can
substantially complicate the process of solving the field equations.

In the present paper, we apply the higher-dimensional NP formalism to the study of vacuum
spacetimes admitting a non-twisting and (possibly) shearing geodetic multiple WAND and
thus belonging to Weyl types II, D, III or N [5, 6]. After introductory remarks and necessary
definitions, in section 3, we study dependence of the metric of the above-mentioned classes of
spacetimes on the affine parameter r along null geodesics generated by the multiple WAND.
It is also pointed out that in fact main results of this section also apply to a special subclass
I(a) of the type 1. In appropriate coordinates, the r-dependence of all components of the metric
except of the component gg turns out to be at most quadratic in . The component g is again
quadratic in r for types III and N and more complicated for types II and D. These two cases
are thus studied separately.

In section 4 the r-dependence of goy and of the Weyl tensor for types III and N is
determined. It is also shown that when expansion 6 # 0 these spacetimes are singular. In
type N the second order curvature invariant / = C abed;rs Camen:rs C"™VY C g diverges in
arbitrary dimension at a point which can be set to r = 0. Similarly, a first order curvature
invariant is used for type III expanding spacetimes.

In section 5 we determine the r-dependence of goy and of the Weyl tensor for types II and
D. Since the problem of solving corresponding differential equations in arbitrary dimension
seems to be too complex, we focus on a special case with all non-vanishing eigenvalues of §;;
being equal and ‘antisymmetric’ part of the Weyl tensor chAj being zero. These assumptions
are satisfied, for example, for all non-twisting Kerr—Schild spacetimes [9], in particular for
Schwarzschild-Tangherlini black holes or corresponding black strings/branes. It also seems
to be reasonable to expect that the Weyl tensor in the case with distinct eigenvalues of §;; and
QD;‘} = 0 will have the same behaviour in the leading order asymptotically thanks to (3.1).

It turns out that the r-dependence of ggo for Weyl types II and D is determined by an
integer m corresponding to the rank of the expansion matrix S;;. In the expanding case, apart
from a quadratic polynomial in r, goo also contains a term proportional to '~ for m # 1
and Inr for m = 1.! Using similar arguments as in [9] it can be shown that in the expanding
case the Kretschmann curvature invariant Rp.q R**¢¢ diverges for r = 0 and that it is regular
there in the non-expanding case. We also briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n — 2 (Robinson—Trautman spacetimes). In contrast
to the four-dimensional general relativity, in the m = n — 2 > 2 case, boost weight —1 and
! Note that since we do not employ all field equations of the NP formalism, it may in fact turn out that solutions
corresponding to the case m = 1 do not exist. In four dimensions the case m = 1 is forbidden by the Goldberg—Sachs

theorem.
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—2 components of the Weyl tensor necessarily vanish and the spacetime is thus of type D in
agreement with [10].

In section 6, in order to provide an illustrative example of the use of the higher-dimensional
NP formalism, we focus on solving the full set of the field equations for type N. To considerably
simplify resulting equations, we make several additional assumptions on the metric and arrive
at an exact vacuum solution. However, after a coordinate transformation it can be found
that the resulting solution could be obtained as a direct product of a four-dimensional type N
Robinson—Trautman metric with an extra dimension.

The higher-dimensional vacuum Ricci [8] and Bianchi [7] equations, extensively used
throughout this paper, are given in a parallelly propagated frame with a multiple WAND in
appendix A and appendix B, respectively.

2. Preliminaries

2.1. Algebraic classification of the Weyl tensor and Newman—Penrose formalism in higher
dimensions

For convenience, let us briefly summarize basic aspects of algebraic classification of the Weyl
tensor and the Newman—Penrose formalism in higher dimensions needed in the following
sections. More information can be found in original references [5, 6] (classification) and
[7, 8] (NP-formalism). Algebraic classification of the Weyl tensor in higher dimensions was
also reviewed in [11].

We introduce a null frame with two null vectors m"’ = m, = £, m©® = m, = n,
and n — 2 orthonormal spacelike vectors m) = my; subject to

0 =nn, = 'mP = nml =0, n, =1, mDim) = 5;;. (2.1
The metric reads
Sab = 2eanpy + 8;;mPm). 2.2)

Indices a, b, ... take values from O ton — 1, while i, j, ... from 2 ton — 1. Note also that since
indices i, j, ... are raised/lowered by §;; there is no need to distinguish between subscripts
and superscripts of this type.

Lorentz transformations are generated by null rotations

=0, A =mn+zmi— 2%, m® =m® — ze, (2.3)
with 72 = z;7', spins

=2, A =n, m® = X' ;mY, (2.4)
with X'; being orthogonal matrices and boosts

2=t A =1"'n, m® = m®. (2.5)

If a quantity ¢ transforms under a boost (2.5) as § = A’q we say that ¢ has a boost
weight b.

The Ricci rotation coefficients L, N, and Al/lab are defined by [7]
y ) i / y
Ea;b = Lcdm;‘)m; ), na;b = chmg)mz ), m((l’;)b = Mcdmg‘)ml(, ) (26)

and their transformation properties under (2.3)—(2.5) are given in [8]. These quantities satisfy
constraints

Lo, = Nig =0, 2.7
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i i i J
Nog + L1, =0, Moa+ Lig =0, M1+ Nig =0, Mja+Mia:0~ (28)

i
In four dimensions, L., N, and M, are equivalent to standard complex NP spin coefficients
K, o, p, etc (see [8] for the correspondence).
Covariant derivatives along the frame vectors are defined as

D = (v, A =n'V,, 8 =mv,. (2.9)
By introducing the notation
Tipgrsy = 3 (Tablica) + Ticatiab)- (2.10)
we can decompose the Weyl tensor and sort its components by boost weight [6]
2

, T
Capea = 4C0i0jn{amg)ncmdj})

1

. —
+ 8C01ol-n{a€bncmf;)} +4Co,-jkn{am§,l)m£])m£l})

G .
+4Co101n(, by Ly ) +4Coujn  bym ) }

() O]

. D
+8C0i1jn{aml(f)ﬂcmd} + Cijklm(l)mbj mE.k)md}

{a
-1

: —
+ 8C1o1:l gy Lemy) +4C1lmy mPm )

-2

+ 4C1i1j€{amg)ﬁcmff}),
where boost weight of various components is indicated by integers (—2, ..., 2). Note that

frame components of the Weyl tensor are subject to constraints [7] following from symmetries
of the Weyl tensor:

Coiijoj1 = 0,
Coijvy = Coijr + Corij + Cojri =0,
Cijii = Ciijuy, Cijii + Cigji + Cirgj = 0, Coiij = 2Con1, (2.11)
Ciiiiy = Crijk + Ciiij + Crjri =0,
Ciinjy =0
and from its tracelessness
Coioi = Crii =0,
Coroi = Cojij, Cioni = Cyjij, (2.12)
2Coi1; = Coiij — Cikjk Coio1 = —3Cijij-
We obtain the following numbers of independent Weyl tensor frame components of various

boost weights [7]
2,-2 1,-1 0

(n(n—3)> ((n—l)(n—Z)(n—3)) n—22*n—1n-3 (n-2)(n-3)
2\ —— ) +2 + +

2 3 12 2 '

which is in agreement with the number of independent components of the Weyl tensor being
m+2)(n+ nn —3)/12.
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We define boost order of a tensor 7' to be boost weight of its leading term. It turns out
that boost order of a tensor depends only on vector £, being independent on the choice of n
and m® [6]. Therefore, given a tensor 7', preferred null directions may exist for which boost
order of T is less than for a generic choice of £. Algebraic classification of tensors in higher
dimensions [6] is based on existence (and multiplicity) of these preferred null directions in a
given spacetime. In the case of the Weyl tensor, we call them Weyl aligned null directions
(WANDs) and spacetime is said to be of principal type G (general) if there are no WAND:s,
and of principal type I, II, IIT and N if there are WANDS of multiplicity 1, 2, 3, 4, respectively.
Therefore in type I, II, IIT and N spacetimes all Weyl tensor components with boost weight
higher orequal to 2, 1, 0, —1, respectively can be transformed away by an appropriate choice of
the frame vector £. In some cases one can also set trailing frame components to zero, and this
is the basis of the secondary classification. For instance in type D (principal type II, secondary
type ii), only boost weight zero components are non-vanishing in an appropriately chosen
frame. In four dimensions, principal and secondary classification reduce to the well-known
Petrov classification.

In agreement with [7] we introduce a notation appropriate for type III and N spacetimes

V; = Ciouis Wik = 3Cij, W = 1C1j, (2.13)
where from (2.11), (2.12) ¥;, W;; and W;; satisfy
V; =2V, Wik = —Wjir, Wik + Wiy + Wi =0, Wi =Wy, v; =0.
(2.14)

Thus, e.g., in type N spacetimes, the Weyl tensor is given by
Cabea = 8Wijl,gmy tm§) (2.15)
and is determined by
\I}l‘ e
For describing boost weight zero components of the Weyl tensor we will introduce the
real matrix ®;; as in [12]

@ components of the symmetric traceless (n — 2) x (n — 2) matrix

(bij = COilj- (216)
Then from (2.11), (2.12)
Conij = 2Copij) = 297, Coinjy = P} = =3 Cixji Coior = —3Cijij = @,
2.17)

with <I>,.Sj, q){}, and ® = ®;; being the symmetric and antisymmetric parts of ®;; and its trace,
respectively. Boost weight zero components of the Weyl tensor are thus determined by ®;;

and Cijkl-

2.2. Spacetimes admitting non-twisting WANDs

We consider an n-dimensional vacuum spacetime admitting a non-twisting geodetic’> null
congruence generated by a multiple WAND £. Thus £ is normal and tangent to null
hypersurfaces u = const (g°°u,,u,, =0,a,b =0, ...n — 1) and the WAND £ = g%y, is
thus indeed geodetic and affinely parametrized, £.4 £ = 0.

Similarly as in [1, 10], we choose a coordinate x° = u, a coordinate x' = r, where r
is an affine parameter along null geodesics generated by £, and ‘transverse’ coordinates x*

2 Note that in vacuum type N and III spacetimes a multiple WAND is always geodetic [7], while in type IT and D it
is geodetic in the ‘generic’ case (see [12] for details).
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(¢ =2...n — 1) labelling the null geodesics on hypersurfaces u = const and being constant
along each geodesic. For the contravariant components of the metric tensor it follows that
g" =1, g% =0 = g%. Then the frame £, n and m” = my;, satisfying (2.1) can be given
as

¢ =1[0,1,0,...,0], L, =11,0,...,0], (2.18)
n[l = [17 U’ XW]’ na = [V9 17 YO(]’ (2'19)
mfy = [0, o, §']. m® =[Q",0,n.]. (2.20)

Equations (2.1) imply

0=U+V+X"Y,, (2.21)
0= w; +£Y,, (2.22)
0= +n, X", (2.23)
5/ = &n]. (2.24)

By multiplying (2.24) by n', we get 8/ ny = n}; = (y3E*)n} which gives
85 =&y, (2.25)

Since £ is geodetic and affinely parametrized, L;o = 0 = L. Let us choose a frame
i

that is parallelly propagated, i.e. Njo = 0 = M jo. For geodetic £, L;; can be decomposed
[7] (cf also [8]) into shear o;; (trace-free symmetric part), expansion 6 (trace) and twist A;;
(antisymmetric part) as
Lij =0,<j+98,-j+A,»j. (226)

We will also often denote symmetric part of L;; as expansion matrix §;;. Obviously
S,'j = 0jj +9(S,‘j.

When acting on a function f, the operators (2.9) and their commutators [13] can be
expressed as

D =o,, A=203,+Ud, +X%0, 8 = w0, + &7y (2.27)
and
(AD — DAY f = L Df + Lud: f, (2.28)
6D — Dé;)f =LiDf +Lj;;é,f, (2.29)
G A—=A§)f=NuDf+(Lin— L) A f+ Ny — A£1j1)5jf, (2.30)
(6;6; —8;8) f =(WNijj = N;)Df +(Ljj — Lji)) A f + (Aj4ki - Ailkj)akf- (2.31)

Apart from Bianchi equations [7] and Ricci equations [8] we need relations between
metric components and the Ricci rotation coefficients. Such relations may be obtained by
applying the commutators (2.28)—(2.31) on coordinates u, r, x*. For f = u, (2.30) and (2.31)
imply

0=0L;1 — Ly, (2.32)
0=L;;—Lj. (2.33)
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For f = r, (2.28)~(2.31) lead to

—DU =L + Ljw;, (234)

—Da),» = L],‘ + Lj,-a)j, (235)

iU — Aw; = Nig + (Nji — Mj1)w;, (2.36)
J i

Siwj —8jwi = Nij — Nji + (Myi — Myj) ok, (2.37)

and for f = x%, (2.28)—(2.31) give

—DX* = Lj§7, (2.38)
—Dg = L;i£7, (2.39)

i
5 X — A& = (Nji — M j1)E] (2.40)

J i
§iE} — 88" = (M — Mi)E - (2.41)

2.3. Indices

For convenience let us summarize the types of indices used throughout this paper. Apart from
indicesa, b,...=0,...,n—1,andi, j,...=2,...,n— 1l introduced in section 2.1, we also
introduce indices o, 8 = 2,...,n — 1 numbering spacelike coordinates and corresponding

components in section 2.2.

In four dimensions, the expansion matrix S;; is of rank 2 in the expanding case due to
the Goldberg—Sachs theorem. However, in higher dimensions m < n — 2, where m is rank
of §;;. In following sections we will often need to distinguish between indices corresponding
to non-vanishing (o, p,q,s = 2,...,m + 1) and vanishing (v, w,y,z=m+2,...,n—1)
eigenvalues of §;;.

In following calculations it also turns out to be practical to modify Einstein’s summation
convention for indices o, p, g, s: in an expression there is summation over repeated indices if
there are two indices without brackets among them (thus, e.g., in né’ongoX PO®r + agp)? there
is summation over p while in ®,,s(,) we do not sum over p).

3. Radial integration for non-twisting vacuum Weyl type II, D, III, N spacetimes

In the present paper we study r-dependence of the metric functions, the Ricci rotation
coefficients and the Weyl tensor, which, however, is in general different for various algebraic
types. In order to avoid repetition, in this section we focus on those metric functions and Ricci
rotation coefficients that have the same r-dependence for all algebraic types studied. Note
that in contrast to section 5, here we do not assume that all non-vanishing eigenvalues of the
expansion matrix S;; are equal.

Without loss of generality we choose the frame (2.18)—(2.20) in such a way that S;;
is diagonal, S;; = diag{s), ..., S@m+1),0,...,0}, where m denotes number of non-zero
eigenvalues of S;;. As is shown in [14], this assumption is compatible with the frame
being parallelly transported. As mentioned in section 2.3, indices o, p, ¢, s corresponding to
non-vanishing eigenvalues of §;; run from 2 to m + 1 and indices v, w, y, z corresponding to
vanishing eigenvalues of §;; run fromm +2,...,n — 1.
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In our case, from Ricci equations (A.7) for non-vanishing eigenvalues of S;;, s(,) # 0, it
follows

1
S(p) = 0 (31)
r+ag,
where a?p) is an arbitrary function of # and x*, independent on r. Similarly, throughout this
paper, the superscript ‘0’ will suggest that the function under consideration does not depend
on r.

Ricci equations (A.2) = (A.5), DL; = —Ly;s(), lead to
I
_ p _ 0
Llp - r+a0 P Llw _llw' (32)

There is still freedom to perform a null rotation with fixed £ (2.3). To preserve parallel
propagation of the frame, z; is subject to

Choosing z, = —l?p,

we can set L1, to zero by (see [8])
Liy=1Li,+z;Lj =0. (3.4)

In what follows we omit the hat symbol Note that parameters z,, can be used to further
simplify the metric, e.g. one can set ®? to zero as in sectlons 5.2.1 and 6.

From Ricci equations (A.14), reduced to D M ki = — M kiS)» (2.39) and (2.35), we obtain

/ k J j
Mip = —25—, Miw = M, 3.5
r+ag,
a0
o P a _ a0
& = T vl £y =& 3.6)
p)
0
4]
w, = p oy =10 r +a?, 3.7
r+ a(
p)
respectively and from (2.38)
—10,E20r + X0 (3.8)

To compute the covariant components of the metric one has to solve (2.21)—(2.24) for
r;fx, Yy, QF, V. From (2.21)—(2.24) also using (2.25) and (3.6)—(3.8), it follows

nl =0’ +ag)), e =n’, (3.9)
Yo = —njwi = [,n2"r — (n)°w) +nywy), (3.10)
QP = —nlX* = =X +a), (3.11)
QY =X =10 r —n0x, (3.12)
V=—U+1,10,r* = (o, + 02" X)), r + X (n2°0), + 0 wl). (3.13)

As will be discussed below, the r-dependence of the function U has to be studied separately
for types II, D and III, N.

8
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The covariant components of the metric tensor (cf (2.2)) thus read
g1 =0, gor =1, 81 =0, (3.14)
goo = 2V + Q" =2V + 2 X“OntO X (r + a()?
+ (l?wr . n;»OXaO) (l(l)wr _ ngJOXﬁO)’ (3.15)
800 = Yo + Q1]

0 2 )
= —né’(’né’ X% + ag))” + ZI?wng’Or — (ngowg + ng’owg + nawongoXﬁO)

= Vart VT Y (3.16)
0
Zop = Myl = N0 7+ a)® + 105" = Yoy + Vor + Vo, (3.17)

therefore the vacuum metric with a non-twisting geodetic multiple WAND has the form
ds? = goodu® +2dudr +2 (yjr2 +yhr+ yo?) du dx® + (yjﬁr2 + yalﬁr + yo([)ﬂ) dx® dx?,
(3.18)

where functions Vo% and yofv, N =0, 1, 2, introduced in (3.16), (3.17) do not depend on r.
Differentiating equation (2.34) with respect to r and using (2.35), (3.13) and the Ricci
equation (A.1) for L, we arrive at

COIOI = _V,rr~ (319)

Consequently, for type III and N spacetimes (where Cyjo; has to vanish) V is linear in r, while
for type Il and D spacetimes the r-dependence of V' (and hence of U) can be more complicated.
Types II, D and III, N will be thus discussed separately in the following sections. Note that
for deriving the metric (3.18) only assumptions Cop;o; = Coio; = 0 on the Weyl tensor are
necessary and it was not necessary to assume Cpi;; = 0. Therefore, the metric (3.18) also
applies to the special class of type I spacetimes with Cyjo; = 0 denoted by I(a) in [5]. As for
the Ricci tensor, in fact up to now we have assumed only Ry = Ry; = O.

Note that it was shown that for type III and N expanding vacuum spacetimes m = 2 in
arbitrary dimension and that s5) = s(3) [7]. If all non-vanishing eigenvalues of S;; are equal,
ie.from (3.1) s¢py = 1/(r + a®(u, x%)) for all p, one can perform a coordinate transformation
[10] that leaves unchanged null hypersurfaces u = const and preserves the affine character of
the parameter r:

F=r+a’(u,x%). (3.20)
Then from Ricci equations (A.11) (fori =k =gq, j = p)

) = 0. (321)
In the following, for simplicity we omit the tilde symbol over r and over absolute terms, such

0 ya0 70 0, 0 .0
as w,, X, 0, U°, mi°, n;|.

4. Type III, N

In this section, vacuum type III and N spacetimes are considered and r-dependence of the

2
remaining metric component goo, the Ricci rotation coefficients Ly, N;;, and M ;; and the
Weyl tensor is determined. These spacetimes are either non-expanding (Kundt class) with

9
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m = 0 or expanding with m = 2 [7], where, in appropriate coordinates sy = s3) = 1/r, as
mentioned above.
From Ricci equations (A.1) and (2.34) it follows

Ly = _l?wl(l)wr +1101’ 4.1
U= 10001 — (10,410, + U (42)

For future reference let us note that one can still perform a null rotation with fixed £ (2.3)
with z, = 0 for p = 2, 3, z,, arbitrary and subject to (3.3)

illp =0, illw = Ly, (43)
o, =0, Oy = =1}, r + ), — 2y = =[], 5 + &), (4.4)
] j
My = My +2z Ly, 4.5)
£ =g, (4.6)
illl = L11 + Zi(Lli + Lil) + ZiZjLij = —l(l)wl?wr +l(1)l + 2Zwl?w = _l?wl?wr +i?1 (47)
U= l?wl(l)wr2 — [l?1 + l?w (a)& + zw)] r+U°%+ zwa)g — %Zwa
=10, 10,r* = (19 +10,00)r + 0°. (4.8)
By choosing appropriate z,,, w = 4, ..., n—1, one can simplify w,,, U or/;; (see section 5.2.1
and 6).
From Ricci equations (A.10), (A.13)
n?
Nip= -2, Niw =10, 4.9)
r
My =—mp, B +mj°. (4.10)

Let us conclude this section by writing down the metric for the Weyl types III, N. From
(3.13), using (4.2), we arrive at
V= (1Y, — {02 X)r — U+ X*n°w). 4.11)
Substituting the metric component
goo = 2V + Q" = (n20n X OXPO + 10,10, )r? + 2r [19) — 210,20 X 0] - 2U°
+2X0n1000 + n;"ongoX“OXﬁO =yt +ylr+y°, (4.12)
into (3.15), from (3.18) we find that vacuum type IlIl or N metric with non-twisting multiple
WAND has the form
ds’ =2t +y'r+ O du? +2dudr + 2(7/51’2 + yalr + yo?) du dx* + (yjﬂrz + yli)ﬂ) dx® dx?,
(4.13)
where the functions y" yofv and ya';, N =0, 1, 2, are introduced in (4.12), (3.16) and (3.17),
respectively.
In fact to derive the metric (4.13) only the following assumptions on the Ricci tensor have
been made: Ryo = Ro; = 2Rp1 — R/(n — 1) =0.
Note that in the non-expanding case, i.e. form = 0, yaz and yjﬂ vanish (see (3.16), (3.17))
and the metric (4.13) is compatible with higher-dimensional Kundt metrics given in [15, 16].

10
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In the expanding case, i.e. m = 2, the metric (4.13) is compatible with four-dimensional
vacuum type III and N Robinson—Trautman solutions (see, e.g., [2]) and with direct products
of these metrics with a flat space.

In the following sections we study r-dependence of the Weyl tensor separately for types
N and III.

4.1. The Weyl tensor for type N

In this section r-dependence of the remaining quantities entering the Ricci and Bianchi
equations is derived for vacuum type N spacetimes. In an appropriately chosen frame there
are only Weyl components of boost weight —2, ¥;; = %Cm j- As was shown in [7], ¥;; can
be diagonalized together with §;; and admits a form W;; = diag.{p, —p, 0---0}. Similarly as
in [14], it can be shown that the condition of both W¥;; and S;; being diagonal is compatible
with the frame being parallelly propagated.
Equations (A.6) and (B.4) lead to
Nyt = —(nd, 10, )r +n?), (4.14)

w

p=2 (4.15)

r

As was shown in [13] the curvature invariant

Iy = Calblasz;ClczCaldlazdz;clczCmdlez{lz;flszflblezb2§flf2 (4.16)
reduces for non-twisting type N vacuum spacetimes to
Iy = 36(n — 2)%0% (W;; W;)*. (4.17)

Iy clearly diverges at r = 0 in the expanding case and therefore a curvature singularity is
located there. The non-expanding (Kundt) case belongs to VSI spacetimes [13], i.e. spacetimes
with vanishing curvature invariants of all orders, and therefore curvature invariants cannot be
used for locating possible singularities.

4.2. The Weyl tensor for type II1

Let us now examine r-dependence of the Weyl tensor for type III vacuum spacetimes. In an
appropriately chosen frame, there are only Weyl tensor components of boost weight —1 and
—2,i.e. ¥, W, and W;;, respectively (see (2.13), (2.14)).

Bianchi equations (B.1), (B.9) and (B.4) read (note that in our case (B.6) is equivalent
to (B.9))

D\If,‘ = _2qjeLei = —2‘1—’,‘5‘(1‘), (418)

DV = WieiLlej — VjeiLex = —Vjri (s(jy +5w), (4.19)
e

2D‘-IJ,']' — (S_/'\IJ,' = z\p_ieiLel — 2lpieLej + ‘I/eM,'j. (4.20)

Equations (4.18), (4.19) imply

_ _r —_wo
v, =L, W, =90, 4.21)
0 ) \IJO .
0 wi ri
“pwvi = \I’wvi, lI/pwi =L s \I/pri p2 . (422)

11
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From (4.21), (4.22) and (2.14) it follows
"I’prw = "I’wup =0, lI/wrp = \I’[wprv "I’pvw = \Ilpwvv \Ilpww =0= \pwpp~
(4.23)

Note that some of the Bianchi identities reduce to algebraical equations, studied in detail
in [7]. Here we use results of [7] to simplify the Weyl tensor (4.21), (4.22). Namely,
equations (54) in [7] for (i = w, j = v, k = p) lead to

W, =0 (4.24)
and for i, j, k = v, w, z in the expanding case 6 # 0 equations (58) in [7] give
Uy, =0 = Y, =0. (4.25)

To summarize: non-vanishing boost weight —1 Weyl tensor components for 6 # 0 are
(cf (C.20) in [7])

N2 vy
Wy =233 = —, U3 =2W3 = —,
r r
0 \IIO
2 23
Wy = —Wy33 = —2=, W3 = Wy = —=,

while for the non-expanding case W,, = W? and ¥,,,, = ¥?

From equations (4.20) in the non-expanding case 6 = 0 the boost weight —2 components
of the Weyl tensor are

r z
U, = E(ggowg,a +2W0 10+ Wim,, ) + Wl (4.26)
while in the expanding case with (4.25)
1 p
\Ilwv = “IJO - _lyomwvoy 4.27
wv 29 P ( )
1o I 0a o
\ijl’ = wp ﬁqquwp
1 q 1
0 0 g0 o £a0y,0 0 0 0,0
=V =V, — Z(lew\llp +&, W, o+ W, mpy ) + ﬁa)w\llp, (4.28)
0
w, =g oy e L(\1101% 04 £2090 ) (4.29)
rqg — wgp”lw r 2}’2 o"""pq q p.al: .
Considering ¥;; = W;;, we get
0 _ g0 0 _ 0 _ o
Voo = VYo, v, =0, V=Y (4.30)
0 0 3,0 4 £a0,g,0 ol 0
Wy, = —5 (200, W) + 500, +Wimp,"), 4.31)
WO, = Wom,,, (4.32)
q
wim,," = —w) ¥, (4.33)
W, + £SOV, = Wiy, + £ . (4.34)
From (A.6) one can also determine the remaining Ricci rotation coefficients
\IJO
Ny1 = (—ng,vl?v + \Ilgc‘imo)r + n?vl, Ny = —ngul?vr + n(l),1 — Tp (4.35)

12
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As was shown in [13], the curvature invariant
aybyaybyse dicidrcrse
IIII = CcHnaen Icalclazcz;elc e zcdlbldzbz;ez (436)

can be expressed as (74) in [13]*
Iy = 6459y + 27y (Opp + Opr) +28(Opp + Opp)’] (4.37)
= 4(n — 204 [99* + 2797 (Wym® + Wy032) +28(Wym? + W,032) 7], (4.38)

where 2 = W; W;. Note that all terms entering (4.38) are non-negative and thus singularity
in one of these terms implies that the curvature invariant I;;; is singular. For non-vanishing
expansion this is always the case for r = 0 and thus a curvature singularity is located there.
For type III Kundt spacetimes, the invariant I;;; (and in fact all curvature invariants of all
orders) identically vanishes [13].

5. Type D and 11

5.1. Type D

In an adapted frame, the type D Weyl tensor has only boost weight zero components determined
by ®@;; and C;jy, see (2.16), (2.17).

For vacuum type D spacetimes with a parallelly propagated frame and with the matrix
S;; set to a diagonal form, Bianchi equations (B.3), (B.5) and (B.12) can be rewritten using
(2.16), (2.17), cf also equations (24), (25) in [12]

2Dq)3 = —3@;}(5(,‘) +S(j)) — q);sj(S(j) — S(i)), (5.1)
2D®]; = 3D/ (sq) — sjy) — D (sjy +56)) — 2Ps5) S (5.2)
DCijin = —Prjsiy8im — Pmis(jySjk + PriS(jySjm + Pmjs@ySik — Cijrm (Som) + Sk))- (5.3)

Equations (5.1) imply ®;,, = ®;9. For simplicity let us assume ®;; = 0 and in what follows
we thus identify ®;; with <I>lsj Note that for Kerr—Schild spacetimes A;; = 0 = d>fj =019],
however, this implication need not hold for general spacetimes. Then equations (5.1) yield

®,, =0, (5.4)

D@ (Siq) = S(p) =0, (5.5)

thus Cqu = 0 for S(q) #* S(p)-
From equations (5.2), (5.5), for p # q and s(4) = s(p)

2D®,, =0 = &, =% (5.6)
2D® )y = =)y (sp) +S(g) = 2P pyS(p)
q)0
= Dp=—"2 for p#q. s =50 5.7
r+a

3 Equation (4.37) is expressed using the notation of [13], while in (4.38) it is rewritten in terms of the quantities
introduced in the present paper. Note also there is a misprint in equation (74) in [13]. It was obtained in Maple using
definition ¥ = ¥; W;, while standard definition, used also in [13] and in the present paper, is w2 = W; ¥;. Therefore
¥ in equation (74) from [13] has to be replaced by /2.
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The trace of equations (5.2) together with (5.6) leads to

D® =D®,, = —DS;; — Djisg) = —(Ppp + P,,) Sii — PppS(p)s (5.8)
while the diagonal terms of (5.2) read
DO p) = _(®pp + (ngw + d>(p)(p))s(p)- (5.9)
From now on we assume that s,y = 1/r for all p.* Then equation (5.8) reduces to
0 \ M 1 o0 mael
DCD:Dd>pp=—(d>1,p+cl>ww)7—<bpp; = Cbppzm— 1 (5.10)
and thus
o0 90
b =— e 5.11
rmtl m+ 1 ( )
Then equations (5.9) imply
o0 @Y
_ ww
D) p) = — (rm_+1 ot q’(p)(p)) S(p)
0 Py P
o = s e 5.12
= P = . " (5.12)
Comparing (5.12) with (5.10) yields
0 _
®,,=0. (5.13)

Now we can combine (5.12) with (5.7) in

Y @0 @0
®,, = % +8,4 (m— — ﬂ) . (5.14)

rm+l m+1

From equations (5.3) for various combinations of indices we get

Cijun = Cliuy: (5.15)
0
Cijug = =2, i,j#4q. (5.16)
’ r
CO
Couwig = M, (5.17)
CO
Cogmig = — 20 + @, (5.18)
CO
Cupg = =3 (5.19)
CO
Cuopg = % (5.20)
Fu(r)y @Y
0f'm
Csopg = —2(85p80g — SopBsq) <<I> 2t 2(mu:-01)
CEUP‘] 1 0 0 0 0
+ r2 + ;(q>p380‘1 + q>q085P - (bp085[] - q)qs60p)9 (521)
4 In fact under this assumption from equations (5.1) ®4 = ®49/;3 however, in what follows we still assume

K Pq Pq
®;; =0.

14
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where

1
F,(r)=—Inr for m=1, F,r=—m——— for m#1. (5.22)
m(m — 1)rm—1
Note that some of the equations (5.15)—(5.21) are not compatible with symmetries of the Weyl
tensor unless corresponding components vanish, thus

pruz = Cvzwp =0, (5.23)
vapq = Cpqu =0, (5.24)
Cwapq = Cpqwo =0 (5.25)

and from equations (2.11) and (5.24)
c . =C° (5.26)

vpwq vqwp*
Let us point out that for expanding type D (and in general not for type II) spacetimes,
Bianchi equations (B.6), with ol # 0, lead to

19 =0. (5.27)

1w
However, we will not use this relation further in this section in order to obtain expressions

also valid for type II.
Using the identity ®;; = —%Cikjk (2.12) for the Weyl tensor we arrive at

=0, (5.28)
CY . =—(m+2)d% (5.29)
Chogo =0 for m # 1, (5.30)
o' =0 for m=1, (5.31)
Copug = —m . (5.32)

0

pwqw = 0 and thus from

Note that when m = n — 2 (i.e. there are no ‘w-type’ indices), then C
(5.32) Cng =0.

To summarize: non-vanishing boost weight zero components of the Weyl tensor for type
D (and II, see section 5.2) vacuum spacetimes with a non-twisting geodetic multiple WAND
under the assumption CDLAj = 0 are ®,,, and ®,, given in (5.6), (5.14), respectively,

Couyz = Copy.o (5.33)
CO
Cupug = =L+ D), 8,4, (5.34)
r
and Cy,p, given in (5.21) with (5.22), subject to (5.13), (5.26), (5.28)~(5.32).
From Ricci equations (A.1) and (2.34) with (5.11)
1 @0
Ly =— (z?wz?w i c1>‘3m> T4 —t 19, (5.35)
1
U= (z?wz?w + mcb?vw) r = (1) +1),00)r + @°F, (r) + U° (5.36)
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and from (3.13)
1
V= RGN @0 2+ (1, — 19,7 X*0) — @°F, (r) — U° + X“'n2°0),. (5.37)

Then the metric component ggo (3.15) reads

1 0
go0 = <_ —eT @), + X Ong X0 + z?wl?w>r2 +2r (17, =219, ny° X*°)

o o

—20°F,, (r) — 2U° + 2X“"n%0, + 0y 0 X*Ony0 X PO

= (;ﬂ - <1>2W> r?+ylr+y° = 20°F,(r), (5.38)
(m+1)
where yV, N = 0, 1, 2 are defined in (4.12). The metric for type D vacuum spacetimes with a
non-twisting geodetic multiple WAND then has the form (3.18) with (5.38), (3.16), (3.17) with
a?p) =0and l(l)w = 0. Note that (5.38) is valid for type II spacetimes as well (see section 5.2).
Let us now examine the Kretschmann scalar in vacuum

Rapea R = 4RZ o, + Rijui Rijir + 8Roj1i Roitj — 4Rovij Rouij
= 4@2 + CijkICi.,-kl + 8@3 q);S; — 24@3 CDI/} (5.39)

As was pointed out in [9], under the assumption <I>iAj = 0, it reduces to a sum of squares. Thus
if any term ®°, ®,,°, C Spw g orC 30[, , 18 non-zero, then there is a scalar curvature singularity
atr =0.
Note also that for asymptotically flat spacetimes the Kretschmann scalar vanishes for
r — oo and thus in this case
e =0=C?

wuyz*

(5.40)

5.2. Type Il

Apart from boost weight zero components of the Weyl tensor, in type II spacetimes boost
weight —1 components, ¥;, ¥;jx, and boost weight —2 components, W;;, also appear (see
(2.13), (2.14)). However, these negative boost weight components do not enter Bianchi
equations (5.1)—=(5.3) and thus assuming again s,y = 1/r for all p and <I>iAj = 0 all results
obtained in section 5.1 for type D spacetimes except of (5.27) are valid for type II spacetimes
as well.

In order to determine r-dependence of negative boost weight components of the Weyl
tensor, we analyse Bianchi equations (B.1), (B.6), (B.9) and (B.4), which can be rewritten as

DV, — §;® = —2W;s;), — ®L;; — &3, Ly, (5.41)

—ZD\I-’ijk = 2\I'ijks(k) + Z\I/[iSj]kS(k) + 2@}3[1-141‘]1 — Cklilel» (5.42)
I I

2DW i + 280 D5y = 2Wjis(y — 2Wjkisqe + 2P0 Miyjy — 295 M ji» (5.43)

l
ZD\I—’,] — A(I);S} — (qu-/, = —2\I/,]S(j) +2‘~IfjliL11 + ‘IJZMij + (DN’J

N N ! N !
+q>]iNlj+q)leil +CI>[,‘MJ‘]. (544)
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Using previous results, from (5.41)

1
vy, =r [_(Egoq)gv’a - l?quSU) - q)owvl(l)v:| + leO

m+1 w
0 4,0 a0 3,0 1 L0
= (@ m 4 £1000 )k el @, (5.45)
1 1 mF,,(r)
\Ij - ()t()cDO o _\IIO _ (XOCD() o m 546
P o(m + 1)§p ww? +r2 p =& O 2 (5.46)
and from (5.42)
Wpgw = Yo (5.47)
\I/va = ‘.I,Spw7 (548)
1
Womw = 5 (P, = Ol + Copocy )r + W, (5.49)
1
Voup =~ Wy, (5.50)
_ r @0 4,0 (a0 70 0 0 0 1o
‘Iprq - _mgw cbvv’ﬂt 8171] + E(q:)pqllw + quwpllz - \ij(SP‘I) + ;\Ilwpq
8pa .0 a0 a0 g0 1Fm() 8pq 0 4,0
= B[, @ m + 1) +£5000 | T 4 ) 0, (5.51)
1 0 a0 a0 0 1 1 0 0
Yogp = 4(m—+1)q>ww’a (Bopy” — 8pq€s") + Wogp - + ﬁ(rS,,,,\IJO — 8,000)
Fou(r) a o
+ 000 5 (808y" = 8paS"). (5.52)

The Weyl components ¥; and W, j; as given in (5.45)—(5.52) are subject to (2.14) and therefore

0 _ 0 _ 0 _ 0 0 _ 0

), =0, v, =0, W, =V =V (5.53)

0= W), + Wy + Wiy (5.54)
_ 0 0 0

0= \ijqo + qjom + lI‘qu’ (5.55)
0 0 _ M*+2 6.0 m+2 , g

vawvlly - méw 700 T m+1) lw*zz0 (5.56)

20p . =01.CO,, + VY (m+1), (5.57)

1

\IJSW = El?wcbo and 2110wd>0 + ggoqno,a =0 for m=1, (5.58)

wl,, =0 and 2ml) @0 +£7°0°,, =0 for m > 1, (5.59)
0o _ m a0 5,0

\ijww - méﬁ q)wwvoc ’ (5.60)
0o _

v, =0, (5.61)

=0 and  £°9°,=0  for m=1, (5.62)

Wm—-2)=0  and  (m—-2§°9°,=0  for m>1. (5.63)
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In order to determine r-dependence of W;; from equations (5.44), first we need to find

Al/l j1 and N;;. Note that for @;‘} = 0, the Ricci equations (A.13) reduce to those of the Weyl
type III with solution given in (4.10). From Ricci equations (A.10),

0

n
pr = n?,w» va = _q)?m,r +ngw» pr = %a (564)
0 0
n [ F,.(r)
Ny, =—0° + 2245 ww__ 4 0" ) 5.65
ra A YT r (5.65)
Now r-dependence of W;; can be determined from equations (5.44)
P 0g0
My Y p Inr +1
Wy = P2, U0, + W, — =, U600 by
1 1
D E F
+mFE,(r)V,, + r_m\va * pml Wi (5.66)

Inr 1
2\yA B C D E F
\Ilpw =r \Ilpw r\ppw \Ilpw Inr \Ilpw r 81m\ppw r \Ilpw

Inr 1 1 1 1

G H I 7 K
+r—251m\11pw+r—2\llpw+rm—_llllpw+r—m\11pw+rm+] [ (5.67)
Inr 1 Inr
_ 2gA B c D E Fl G
Wyg =1V, 8pg +r¥,, +1Inrdy, W, +WV, + p v+ \Ilpwr + 2 Sim¥
1 1 1 1
H I J K

- r_ijpq + Fm—1 Yoy + Wlppq + i+l Vg (5.68)
where W/, W/, ..., W[ do not depend on r. Since in this paper we are mainly interested in

the r-dependence of the metric and the Weyl tensor we do not give here quite complicated
explicit expressions for \IJ{}, \Ililj. e, \Ililj )

5.2.1. The case with L;; = 0. When (5.27) is satisfied (for type D and special cases of other
Weyl types considered here) then w,, can be transformed away by null rotation with fixed £
(2.3) with z,, = a)g (4.4) and thus (assuming all s, are the same) w; = O for all i. Since now
g'% = X0 we introduce ¥* = ¥*(x?, u) as in [10], leaving unchanged null hypersurfaces

u = const and preserving the affine character of the parameter 7, to set '* = 0, i.e. (omitting
the tilde symbol)
X =0. (5.69)
Then from (3.10)—(3.13) and (5.37) we get
1 ‘
V=-U=—-——0° r?+rl) — ®"F,(r) — U°, Q' =0, Y, =0. (5.70)
2(m+1)
Equations (3.14)—(3.17) now reduce to
gn =20, go1 =1, g1a =0, 8oo =2V, 8o =0, (5.71)
0 w w
8ap = Nty = nE0nG T+ niOnk0 =yt + v, (5.72)

and thus the metric of vacuum spacetimes with a non-twisting geodetic multiple WAND (i.e.
types II, D, IlIT or N) with Ly; = O can be set into the form

ds? = 2Vdu® +2dudr + (yg5r” + yyp) dx® dx”, (5.73)

where functions yo%, N = 0,2, introduced in (5.72) do not depend on r and V is given in
(5.70).
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5.2.2. The shearfree case. Let us now briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n — 2 (Robinson-Trautman spacetimes [10]).

Kundt spacetimes in vacuum are necessarily of type II or more special [8] and they thus
form the m = 0 subclass of spacetimes studied in the present paper. Note that in contrast to
the expanding case, the components of the metric (3.18), including g, are at most quadratic
polynomials in r. Similarly as in four dimensions boost weight 0, —1 and —2 components of
the Weyl tensor are independent on r, linear and quadratic in r, respectively.

In the m = n — 2 case in four dimensions, equations (5.63) are identically satisfied
and consequently the corresponding class of Robinson—Trautman spacetimes is very rich and
includes e.g. radiative type N and III spacetimes as well as type D C-metric describing
uniformly accelerated black holes emitting gravitational radiation. However, in higher
dimensions equations (5.63) imply \Ilg = 0 and using (2.25) ®°,, = 0. From (5.32) Cng =0
and then from (A.12) or (5.43) we get \Ilgq p = 0. Therefore all components of the Weyl tensor
with boost weight —1 vanish. Similarly it can be shown that boost weight —2 components
of the Weyl tensor vanish aswell. Thus in higher dimensions vacuum shear-free spacetimes
admitting non-twisting geodetic multiple WAND are necessarily of type D in agreement with
[10]. The Weyl tensor is now given by

0
q)O F(n72) (V) + Csopq
2 2 7

quq = Spqmv C.Yopq = _2(8sp80q - 80[78sq)cb0 (5.74)

0

sopq
this term, corresponding essentially to the curvature of the spatial part of the metric yjﬁ [10],
in general does not vanish. Therefore the r-dependence of the Weyl tensor and thus also the
asymptotic behaviour of gravitational field in higher dimensions is more complex than in four
dimensions’. This is, however, beyond the scope of the present paper and will be studied

elsewhere.

Note that in four dimensions equation (5.30) implies C = 0, while in higher dimensions

. . . . . . . . . 0
6. Construction of an explicit expanding type N solution in five dimensions with [7, =

Apart from usual motivation coming from higher-dimensional general relativity, there is an
additional reason for studying type N vacuum spacetimes. For these spacetimes all curvature
invariants involving metric, the Riemann tensor and its first covariant derivatives vanish. Such
solutions thus belong to the VSI; class of spacetimes [17], which are solutions of various
field theories to all orders with a specific effective action containing only certain higher order
correction terms (see [17]).

Let us explicitly mention the Einstein-Gauss—Bonnet equations

Rab - %Rgab =a (%EGBgab - ZRRab + 4RacRbc + 4RacbdRCd - 2RucdeRdee) s (61)

where LG8 = R?* — 4R, R*’ + Rupeq R and « is the Gauss—Bonnet coupling constant. It
can be seen directly that vacuum type N solutions to the Einstein equations solve vacuum
Einstein—Gauss—Bonnet equations (6.1) as well since for these spacetimes Rucge Ry =0 =
Rahcd Rabcd .

In this section, we attempt to derive an expanding non-twisting type N vacuum solution
and we limit ourselves to a five-dimensional case with an additional assumption / ‘1)4 = 0. Since
resulting metrics we have obtained so far can be obtained by taking a direct product of four-
dimensional type N vacuum metrics with an extra dimension, the main purpose of this section

3 Note that in boost weight zero Weyl components in the m < n — 2 case terms proportional to 7 and r~! also
appear.
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is thus to illustrate the use of the higher-dimensional NP formalism for constructing exact
vacuum solutions. Note that corresponding Bianchi and Ricci equations are quite complex
and thus at several points of the calculation we make various assumptions in order to simplify
them. This, however, obviously comes with the price of possibly reducing the resulting class
of solutions.

For explicit calculations it turns out to be more convenient to relax the assumption of
diagonal W;; from section 4.1 and so now there are two independent components of the
Weyl tensor W33 = —Wy), W3, = W3 with the rest of the components vanishing. Therefore
we cannot use the form of the Weyl tensor obtained in (4.15) and instead from the Bianchi
equations (B.4)

p() HO
Wy = —Ws33 = gt W3 = W3 = - YV, =0=V,,. (6.2)

Assuming /9, = 0, NP equations simplify considerably and are given in appendix C. In

fact the following quantities vanish:

2 3 2 3

0 0 0 0

My3™ = Nyy = NMyy = My, = O, (63)
0 _,0 _ 2 0_3 0 0 0 0_ 0 —0 (6.4)

N4 = N3y = Ngp” =My =Nz =N3p = W) = @3 =L, :

Similarly as in section 5.2.1 we transform away wff. However, here we do not transform
away the functions X @0 Then from equations (C.9)

4 4
0 =mp® =my" =0, (6.5)
and from (C.30)—~(C.32) and (C.36)
ngz = ng3 = n24 = ”21 =0. (6.6)

From (C.4) we get U® = nY, = nY; and then equations (C.45)~(C.47) (now identical with
(C.15)~(C.17)) imply

U°=nd, =Uw). (6.7)

Let us assume U = n), = const.

Apart from / ?4 = 0 we make the following simplifying assumptions:

2 0
M3y =O, (68)

£ =—£2#£0, £ #0, all other £ = 0. (6.9)

2
Note that m3,° always vanishes for diagonal W;;, see (C.51).

Under the assumptions (6.9) from (C.38), (C.39), (C.14), (C.23), (C.26), (C.27), (C.28),
(C39), (C42), (C50), (C.51) we obtain that & = & l?l,n21,n3l,7;1220,11213g0,r%1310,

X0, x30, p I1° do not depend on x? = z. From (C.38)—(C.41) it also follows that S
0(u 2), X40 X*0(u, 7) are functions of u, z only.
Equations (C.37), (C.29) can be rewritten using (6.9)

£ 3 = iy, (6.10)
£20 ) = —mss", 6.11)
30(E0,0+8%5) — (522072)2 —(&°,5 )2 =2n,. (6.12)
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2

Assuming §22° to have a form of a polynomial in x> = x and x> = y, after an appropriate

translation in x, y, we arrive at
2 3
220 = AoP(x,y), Px,y)=( +ex? +ey2), m330 = —2Apex, m220 = 2Apey,
(6.13)

where we set Ag = 1/ V2and e = ny; is assumed to be independent on u#. From (C.40) and
(C.41) it follows

X20’2= X30’39 X3072= _X20537 (6.14)
with the integrability condition X 20 5, +X20 33 = 0 and from (C.40)
2e(x X% + yX3°
l?l — —M+X20,x. (6.15)
P(x,y)

Then (C.12), (C.13) determine n9,, n%,

2 X204 yx30
My = —£P(x, XD V26X 43X —yX2 ) = 2v2ex 22 (6.16)
2 P(x,y)
2 X2+ yx*
n3 = £P(x, y)XZO,xy —2e(x? +xX20,y +y X0 )+ Zﬁeyx—y. (6.17)
2 P(x,y)
From equation (C.21) or (C.25) and from (C.22) or (C.24) we get
P’ =—1X% 1k P(x, 9)% (6.18)
M’ =1x%,. P(x, y)° (6.19)
Equations (3.10)~(3.13) lead to V = —U.Y; = 0, Q' = —n{) X®0 = —X® /&{) The
contravariant frame vectors now read
¢ =10,1,0,0,0], (6.20)
2e(x X% + yXx3°
nt = [1, _ (—M + X2°,x> r+e X2, X%, X4°} , 6.21)
P(x,y)
1
mfy = AgP(x,y)-[0,0,1,0,0], 6.22)
r
1
mﬁ(l3) = _AOP(-xv y)_[os 07 07 19 0]7 (623)
r
m{y = £.°[0,0,0,0, 1]; (6.24)
and the covariant frame vectors are
Ea = [17 07 05 07 0]7 (6.25)
2e(x X% 4+ yx30
n, = [(—M+X”,x>r—e,l,0, 0,0}, (6.26)
P(x,y)
m®=—"__ [-x%0,1,0,0], (6.27)
AgP(x,y)
m®=__—"___[_x% 0010, (6.28)

a AgP(x,y)
21
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40
m® = [—X— 0,0,0 i} (6.29)
a :0 9 b 9 9 10 9

where 540 X4 are subject to (C.42), i.e.
—£/0,, — XY, +£°XY 4= 0. (6.30)

The metric thus reads
X40 2
ds? = |:2l“r — e+ <$ ) (X272 + (X39?) + ( ) }dﬁ +2dudr
2 4

—2du|:< )(xzodx+x*°dy)+< ! )X40dz] ( )(dx2+dy )+< ! )dz
£5° 4 3 g0

(6.31)
Introducing Z = [ 1/£{°dz and using (6.30) the metric (6.31) reduces to
ds? = [21?, —2e+ <$ ) (X202 + (X392 )} du* +2du dr
2
2 2
—2du ( 20) (X*dx + X dy) + (E ) (dx® +dy?) +dz? (6.32)
2 2
where
1 X40

So the metric (6.32) represents a direct product of a four-dimensional Robinson—Trautman
type N vacuum solution with an extra dimension.
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Appendix A. Ricci identities

The Ricci equations, i.e. contractions of the Ricci identities v,:pc — Vg:co = Ryapcv® With the
frame vectors (2.1), in higher dimensions, given in full generality in equations (11a)—(11p) in
[8], are rewritten here for vacuum spacetimes with a geodetic multiple WAND (Weyl types II,
D, IIT or N) in a parallelly propagated frame

DLy = —Ly;Li1 — Coror, (A1)
DLy = —Ly;Lj, (A.2)
J
ALy —68;Lyy =Ly (Ly — Lit) = 2L Njjip — Li;(Nji + Mi1) + Crotis (A.3)
k
8iji Ly = —LniLyijy — LueMuijy — Liji Nei + 5 Cotij» (A.4)
DL;y = —Li;Lj1, (A.S)
—DN;; = N;;L;1 — Cyoyi, (A.6)
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DL;; = —LyLyj, (A7)

A Njj —8;Nit = —L1iNij — Na(=2L,j + L ;1)

+2Nk[]\ﬂk4i\j] —Nik(Nkj+A];Ij1)—C1i1j, (A.8)
ALij—8;Liy =LnLij —LaLj+ 2Lk[1\]‘kli\j] — Lix(Nyj + 1\](41'1) — Coinj, (A.9)
DN;; = =Ny Ly; — Coj1i, (A.10)
djiLiky = Lugj i Ligy + Lir Ljig + Lizlll/l[jk] + Lz[j|1\14i|k], (A.11)
8jiNikr = —Lagji Ny + Nt Lijig + Nul\lflukl + Nl[jIAl/[ilk] —1Cij (A.12)
Dﬁi4j1 = _Ai4jkLk1 — Couij, (A.13)
Dl\iljk = —]lilj/le, (A.14)

i i i il
A Mk —8Mji = 2N Lijgy + 2L ji1 Nijgg + M j1(Lig — L) +2Mip M jiig

i !
— M ji(Ni + Mi1) — Cigijs (A.15)

i i i 14 i P
8t M jiy = NigLjiey + Ligg Njyg + LM j1 + M ppg M jiiy + M jp My — 5 Cijua- (A.16)

Appendix B. Bianchi equations

We present here Bianchi identities projected onto a parallelly propagated null frame (2.1) for
vacuum spacetimes with a geodetic multiple WAND. General form of these identities can be
found in appendix B in [7]:

DCio1; — 6;Coro1 = —Cor01Li1 — CotisLs1 — 2C1015Lsi — Coits Ly, (B.1)

—A Couij + 2815 Cronji1 = 2Cr011j 1 L1jip + 2C1011i Ly ji1 + 2C1ins Ly j1 + Cusij Lst
N s

+2Co101 Nyjiy + 2Coits Nsyjy + 2Cos11j) Nsjiy + 2Co1pis M jn + 2C101s M iy, (B.2)
—DCoiij = 2Co101L1ij1 + 2Co11ijs L j1 + 2Copins Ly 1, (B.3)
DCyi1j — ACopj1i — 8;Cro1i = 2C101: L1 j1 + 2Chigjis L1y + Co101NVij

s N N

— Co1isNyj + Cos1i Ngj + CojisMit +2Coc1i M j1 + Cro1s M, (B.4)
DCoi1; = —Cor01Lij — CoirsLsj — CouisLy;j, (B.5)
—DCij — 8 Cotij = —Cotij L1 +2Cok1i L jj1 +2C 1011 L ji

N

+2C115ij Lsig + 2Cotits M ik (B.6)

281x1Coi11j) = 2Coigj1Lik1 — CotjrLit + 2C1o011j) Liky + 2Cjis Lsy 1
N N
— CisjrLs1 +2Coi1s Mij1 + 2Cos11x M) 15 B.7)
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0=0,
N N
DCijx + 28 Cojnii = 2C101: Lijig + 2Chigkis Lsij1 + 2Cowns Mijj1 — 2Cos1i M i)
A Cujji + 260 Crinjy = 2C 1 Lign +4Cuw Lyj1 — Cujr L + Coijr Nit
+2Coj11i Njig1 + 2C1011x Nijj1 + 2C101i Niwj + 2Chitkgs Nspj1 + 2C11k)is Ny )

N N s s
— CisjxNs1 — 2C1i1sMijrg + 2C1is Migj1 + 2C1Lgs M jin — Crsjx Mt

5 N

—68(i1Co11jky = Cro1i L jry — Cro1(i Lijy + Cusiiji Lsiey + Corijs M jxy — Cotits M iijy»
—DCijim = 2Cotij Ligm + 2Co1j Liym) + 2Copmiti L jig + 2Cijiris Lsim
—A Cijin + 281 Criymyij = 2C1mL jiig + 2C11kLyjiym + 2C1jkpm Ling + 2C1xij Liim

+2C1mij Lty — 2Co1ij Nikm) + 2Copi11m Ny j1k + 2Cor 11k Nyitm + 2Ciijk)s Nyjm)

s 5 s N 5

+2C1k(iis M jim + 2C1mgjis M itk + 2C 150 Mkm) + 2C;j1kis Mimt + 2Ctiiskm M j11 5

3(j1Critmky = Critj Lmky — CrirgjLimy + Crigjxi L1iimy + Cotjm Nijky — Cogjiti Njgm)
5 5 5
+ Cogj11i Nimky + Cis(jk Nsimy — Crigjis Mimky + Crigjis Myimy + Cis(jki Mim)»

0 = Coigjx1Lijmy — CoitgjLimy + Coitgj Lmky + Cisjx| Lsimys

3ik1Cijinmy = Ctjtkm Litny — Critkm| L jiny — Crixtij Lymny + Crixjij Linmy

S N N N
+ Cijtkis Mimny — Cijtiis M inmy + Cistiom) M jiny — Cjstiom Mijny -

(B.8)

(B.9)

(B.10)

(B.11)
(B.12)

(B.13)

(B.14)
(B.15)

(B.16)

Appendix C. The Ricci and Bianchi equations for five-dimensional type N spacetimes

with all Lli =0

Ricci equations (A.4)

0 _ 0
N3y = Na3s
0 _
nyy =0,
0 _
ny, = 0.

Ricci equations (A.9)
0 0 0
U™ = ny =n3;,
0 0
ny =0=ny,

2
0=nY, +my°,

3
0 0
0= Ny, + My
Ricci equations (A.11)
wg =0= a)g,
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(C.7)
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4 4
w§ = myp" =mz°, (C9
2 3.9
myz” =0=my", (C.10)
2 3
ma’ =0 = mu°. (C.11)
Ricci equations (A.3)
ESLY, o= —nY,, (C.12)
S8 e = —n3), (C.13)
5%, ,4 = 0. (C.14)
Ricci equations (A.12) with n,4 = n34 = 0 from (C.2), (C.3), with (6.8)
4
£5°1%) 0 = nma°, (C.15)
4
E9%N9, 0 = n93my°, (C.16)
4
2019, = nQumn°, (C.17)
2 3
E8°%) 0 —&5°nY5.0 = nymz — niymos°, (C.18)
e —E8%9,,,=0, (C.19)
$'n44a —E83.0 = 0. (C.20)
Ricci equations (A.8), with nyy = n3q =0,
3
19w + X130 —E5°09, 0 = —219,n9, + n%mxn" — p°, (C.21)
2
£9°n3) .0 = ngymz" + T°, (C.22)
09,4 =0, (C.23)
3
$0n) 0 = n9ymx’ + 11, (C.24)
4 2
19w + X130 —E5°09, 0 = —200,n%, + nd mn" +nd m3® + p°,  (C.25)
2On, 4= 0. (C.26)
Ricci equations (A.16)
2
£8%m 30, =0, (C.27)
2
£8%m33°,, = 0, (C.28)
« 2 o 2 4 2 2 2 2 2
£5%3" — E5°m330, 0 = 2n3, + (m°)” + (m3°)” + (m33°)", (C.29)
4
£5%m",, = —nY,, (C.30)
4
£5%m",, = —nls, (C.31)

25



Class. Quantum Grav. 25 (2008) 235008 A Pravdova and V Pravda

200 o = —nl,. (C.32)

Ricci equations (A.15)

2 2 2 2 2 42
0 02 o 02 o 0,0 , 0 02 o
ms-,, +Xmsy g —E5° M3 g = —M3p 1y + 03 + M3z ma;, (C.33)
2 2 2 2 2 42
0 02 o 02 o 070 0 02 0
msz-,, +Xms3",q —E5°M3) g = —M33°l| — Ny — M3y M3;°, (C.34)
2
02 0
&, °m31 ¢ =0, (C.35)
7420, + X140 070 4 10 C.36
my”,y +Xmy o = —m42 TRAOTE (C.36)

Commutators (2.41)

3 2
POea0 o P00 5 — my%g0 — im0, (C.37)
4
POEe0, 5 —£1650 5 = £5%m)°, (C.38)
gP0g00  _g0ge0 | palpy 0 (C.39)
commutators (2.40)
0 o o o 2 o
50, —XPOELO 4 gfOxe0 = £0010 4 G, £20 _ sy S0, (C.40)
2
g0, —XPOEO 5 1 EfOX O = £2010 + nE00 + s 0820, (C.41)
20 —XPOE 5 + £ X0 = £20n,, (C.42)
commutators (2.37)
D,y = —nY, (C.43)
D0,y = —nY, (C.44)

commutators (2.36)

£°0°,, = n}o], (C.45)
£5°U°,, = n0], (C.46)
—0), = XY, +£X°0°,, = n%0) +m 00+

4ou 4ra T 64 v = Hlyq @y 22 by ”41 (C.47)

Bianchi equations (B.10)

—&50p°, —£5°11°,, = 2PO'721330 + 21—10"31220, (C.48)
0P, — ESOTIO,, = 2p%ma0 + 2M0ms3", (C.49)
00 = 2M0ms,”, (C.50)
o, = —P0"21340, (C.51)
PO’%BO = PO’;‘1320 =0, (C.52)
MOm3° = MOy = 0, (C.53)

2 3 3 2
Pomgs® + gy’ = — pPmgs® + %myy° = 0. (C.54)
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