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Abstract

Vacuum spacetimes admitting a non-twisting geodetic multiple Weyl aligned
null direction (WAND) are analysed in arbitrary dimension using a recently
developed higher-dimensional Newman–Penrose (NP) formalism. We
determine the dependence of the metric and of the Weyl tensor on the affine
parameter r along null geodesics generated by the WAND for type III and N
spacetimes and for a special class of type II and D spacetimes, containing e.g.
Schwarzschild–Tangherlini black holes and black strings and branes. For types
III and N, all metric components are at most quadratic polynomials in r while
for types II and D the r-dependence of the metric as well as of the Weyl tensor is
determined by an integer m corresponding to the rank of the expansion matrix
Sij . It is shown that for non-vanishing expansion, all these spacetimes contain a
curvature singularity. As an illustrative example, a shearing expanding type N
five-dimensional vacuum solution is also re-derived using higher-dimensional
NP formalism. This solution can be, however, identified with a direct product
of a known four-dimensional type N metric with an extra dimension.

PACS numbers: 04.50.+h, 04.20.−q, 04.20.Cv

1. Introduction

The null frame Newman–Penrose (NP) formalism [1, 2] is a very useful tool for constructing
exact solutions of the four-dimensional general relativity. Although the number of equations
is considerably larger than in the standard coordinate approach (note, however, that many
equations in the NP formalism are redundant, see e.g. [3] and references therein), all differential
equations in this formalism are of the first order. Another advantage is that one can also use
gauge transformations of the frame in order to simplify the field equations. This is why the
formalism is especially powerful when studying algebraically special solutions according to
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the Petrov classification, since in this case some frame components of the Weyl tensor can be
set to zero by choosing an appropriate frame.

In recent years, solutions to the higher-dimensional Einstein field equations have attracted
a lot of interest. A lot of effort went into generalizing the basic concepts, properties and results
of the four-dimensional general relativity to higher dimensions and there is growing awareness
that higher-dimensional gravity contains qualitatively new physics (see e.g. [4] and references
therein).

Generalization of the Petrov classification and of the NP formalism to higher dimensions
was developed in [5, 6], [7, 8], respectively. Using these methods, it can be shown
that in contrast to four dimensions, the Goldberg–Sachs theorem is not valid in higher
dimensions since a multiple Weyl aligned null direction (WAND) in higher-dimensional
vacuum algebraically special spacetimes can be shearing [7, 8]. For example, while in
four dimensions expanding vacuum type N and III spacetimes are never shearing, in higher
dimensions they are always shearing [7]. This presence of shear in higher dimensions can
substantially complicate the process of solving the field equations.

In the present paper, we apply the higher-dimensional NP formalism to the study of vacuum
spacetimes admitting a non-twisting and (possibly) shearing geodetic multiple WAND and
thus belonging to Weyl types II, D, III or N [5, 6]. After introductory remarks and necessary
definitions, in section 3, we study dependence of the metric of the above-mentioned classes of
spacetimes on the affine parameter r along null geodesics generated by the multiple WAND.
It is also pointed out that in fact main results of this section also apply to a special subclass
I(a) of the type I. In appropriate coordinates, the r-dependence of all components of the metric
except of the component g00 turns out to be at most quadratic in r. The component g00 is again
quadratic in r for types III and N and more complicated for types II and D. These two cases
are thus studied separately.

In section 4 the r-dependence of g00 and of the Weyl tensor for types III and N is
determined. It is also shown that when expansion θ �= 0 these spacetimes are singular. In
type N the second order curvature invariant I = Cabcd;rsCamcn;rsCtmun;vwCtbud;vw diverges in
arbitrary dimension at a point which can be set to r = 0. Similarly, a first order curvature
invariant is used for type III expanding spacetimes.

In section 5 we determine the r-dependence of g00 and of the Weyl tensor for types II and
D. Since the problem of solving corresponding differential equations in arbitrary dimension
seems to be too complex, we focus on a special case with all non-vanishing eigenvalues of Sij

being equal and ‘antisymmetric’ part of the Weyl tensor �A
ij being zero. These assumptions

are satisfied, for example, for all non-twisting Kerr–Schild spacetimes [9], in particular for
Schwarzschild–Tangherlini black holes or corresponding black strings/branes. It also seems
to be reasonable to expect that the Weyl tensor in the case with distinct eigenvalues of Sij and
�A

ij = 0 will have the same behaviour in the leading order asymptotically thanks to (3.1).
It turns out that the r-dependence of g00 for Weyl types II and D is determined by an

integer m corresponding to the rank of the expansion matrix Sij . In the expanding case, apart
from a quadratic polynomial in r, g00 also contains a term proportional to r1−m for m �= 1
and ln r for m = 1.1 Using similar arguments as in [9] it can be shown that in the expanding
case the Kretschmann curvature invariant RabcdR

abcd diverges for r = 0 and that it is regular
there in the non-expanding case. We also briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n − 2 (Robinson–Trautman spacetimes). In contrast
to the four-dimensional general relativity, in the m = n − 2 > 2 case, boost weight −1 and

1 Note that since we do not employ all field equations of the NP formalism, it may in fact turn out that solutions
corresponding to the case m = 1 do not exist. In four dimensions the case m = 1 is forbidden by the Goldberg–Sachs
theorem.
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−2 components of the Weyl tensor necessarily vanish and the spacetime is thus of type D in
agreement with [10].

In section 6, in order to provide an illustrative example of the use of the higher-dimensional
NP formalism, we focus on solving the full set of the field equations for type N. To considerably
simplify resulting equations, we make several additional assumptions on the metric and arrive
at an exact vacuum solution. However, after a coordinate transformation it can be found
that the resulting solution could be obtained as a direct product of a four-dimensional type N
Robinson–Trautman metric with an extra dimension.

The higher-dimensional vacuum Ricci [8] and Bianchi [7] equations, extensively used
throughout this paper, are given in a parallelly propagated frame with a multiple WAND in
appendix A and appendix B, respectively.

2. Preliminaries

2.1. Algebraic classification of the Weyl tensor and Newman–Penrose formalism in higher
dimensions

For convenience, let us briefly summarize basic aspects of algebraic classification of the Weyl
tensor and the Newman–Penrose formalism in higher dimensions needed in the following
sections. More information can be found in original references [5, 6] (classification) and
[7, 8] (NP-formalism). Algebraic classification of the Weyl tensor in higher dimensions was
also reviewed in [11].

We introduce a null frame with two null vectors m(1) = m(0) = �,m(0) = m(1) = n,
and n − 2 orthonormal spacelike vectors m(i) = m(i) subject to

�a�a = nana = �am(i)
a = nam(i)

a = 0, �ana = 1, m(i)am(j)
a = δij . (2.1)

The metric reads

gab = 2�(anb) + δijm
(i)
a m

(j)

b . (2.2)

Indices a, b, . . . take values from 0 to n−1, while i, j, . . . from 2 to n−1. Note also that since
indices i, j, . . . are raised/lowered by δij there is no need to distinguish between subscripts
and superscripts of this type.

Lorentz transformations are generated by null rotations

�̂ = �, n̂ = n + zimi − 1
2z2�, m̂(i) = m(i) − zi�, (2.3)

with z2 ≡ ziz
i , spins

�̂ = �, n̂ = n, m̂(i) = Xi
jm

(j), (2.4)

with Xi
j being orthogonal matrices and boosts

�̂ = λ�, n̂ = λ−1n, m̂(i) = m(i). (2.5)

If a quantity q transforms under a boost (2.5) as q̂ = λbq we say that q has a boost
weight b.

The Ricci rotation coefficients Lab,Nab and
i

Mab are defined by [7]

�a;b = Lcdm
(c)
a m

(d)
b , na;b = Ncdm

(c)
a m

(d)
b , m

(i)

a;b = i

Mcdm
(c)
a m

(d)
b (2.6)

and their transformation properties under (2.3)–(2.5) are given in [8]. These quantities satisfy
constraints

L0a = N1a = 0, (2.7)
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N0a + L1a = 0,
i

M0a + Lia = 0,
i

M1a + Nia = 0,
i

Mja +
j

Mia = 0. (2.8)

In four dimensions, Lab,Nab and
i

Mab are equivalent to standard complex NP spin coefficients
κ, σ, ρ, etc (see [8] for the correspondence).

Covariant derivatives along the frame vectors are defined as

D ≡ �a∇a, � ≡ na∇a, δi ≡ m(i)a∇a. (2.9)

By introducing the notation

T{pqrs} = 1
2 (T[ab][cd] + T[cd][ab]), (2.10)

we can decompose the Weyl tensor and sort its components by boost weight [6]

Cabcd =
2︷ ︸︸ ︷

4C0i0j n{am
(i)
b ncm

(j)

d }

+

1︷ ︸︸ ︷
8C010in{a�bncm

(i)
d } + 4C0ijkn{am

(i)
b m(j)

c m
(k)
d }

+ 4C0101n{a�bnc�d } + 4C01ij n{a�bm
(i)
c m

(j)

d }

+ 8C0i1j n{am
(i)
b �cm

(j)

d } + Cijklm
(i)
{a m

(j)

b m(k)
c m

(l)
d }

}0

+

−1︷ ︸︸ ︷
8C101i�{anb�cm

(i)
d } + 4C1ijk�{am

(i)
b m(j)

c m
(k)
d }

+

−2︷ ︸︸ ︷
4C1i1j �{am

(i)
b �cm

(j)

d } ,

where boost weight of various components is indicated by integers (−2, . . . , 2). Note that
frame components of the Weyl tensor are subject to constraints [7] following from symmetries
of the Weyl tensor:

C0[i|0|j ] = 0,

C0i(jk) = C0ijk + C0kij + C0jki = 0,

Cijkl = C{ijkl}, Cijkl + Ciljk + Ciklj = 0, C01ij = 2C0[i|1|j ],

C1i(jk) = C1ijk + C1kij + C1jki = 0,

C1[i|1|j ] = 0

(2.11)

and from its tracelessness
C0i0i = C1i1i = 0,

C010i = C0jij , C101i = C1jij ,

2C0i1j = C01ij − Cikjk, C0101 = − 1
2Cijij .

(2.12)

We obtain the following numbers of independent Weyl tensor frame components of various
boost weights [7]

2,−2︷ ︸︸ ︷
2

(
n(n − 3)

2

)
+

1,−1︷ ︸︸ ︷
2

(
(n − 1)(n − 2)(n − 3)

3

)
+

0︷ ︸︸ ︷
(n − 2)2(n − 1)(n − 3)

12
+

(n − 2)(n − 3)

2
,

which is in agreement with the number of independent components of the Weyl tensor being
(n + 2)(n + 1)n(n − 3)/12.
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We define boost order of a tensor T to be boost weight of its leading term. It turns out
that boost order of a tensor depends only on vector �, being independent on the choice of n
and m(i) [6]. Therefore, given a tensor T , preferred null directions may exist for which boost
order of T is less than for a generic choice of �. Algebraic classification of tensors in higher
dimensions [6] is based on existence (and multiplicity) of these preferred null directions in a
given spacetime. In the case of the Weyl tensor, we call them Weyl aligned null directions
(WANDs) and spacetime is said to be of principal type G (general) if there are no WANDs,
and of principal type I, II, III and N if there are WANDS of multiplicity 1, 2, 3, 4, respectively.
Therefore in type I, II, III and N spacetimes all Weyl tensor components with boost weight
higher or equal to 2, 1, 0, −1, respectively can be transformed away by an appropriate choice of
the frame vector �. In some cases one can also set trailing frame components to zero, and this
is the basis of the secondary classification. For instance in type D (principal type II, secondary
type ii), only boost weight zero components are non-vanishing in an appropriately chosen
frame. In four dimensions, principal and secondary classification reduce to the well-known
Petrov classification.

In agreement with [7] we introduce a notation appropriate for type III and N spacetimes


i ≡ C101i , 
ijk ≡ 1
2C1kij , 
ij ≡ 1

2C1i1j , (2.13)

where from (2.11), (2.12) 
i,
ijk and 
ij satisfy


i = 2
ijj , 
ijk = −
jik, 
ijk + 
kij + 
jki = 0, 
ij = 
ji, 
ii = 0.

(2.14)

Thus, e.g., in type N spacetimes, the Weyl tensor is given by

Cabcd = 8
ij�{am
(i)
b �cm

(j)

d } (2.15)

and is determined by n(n−3)

2 components of the symmetric traceless (n − 2) × (n − 2) matrix

ij .

For describing boost weight zero components of the Weyl tensor we will introduce the
real matrix �ij as in [12]

�ij ≡ C0i1j . (2.16)

Then from (2.11), (2.12)

C01ij = 2C0[i|1|j ] = 2�A
ij , C0(i|1|j) = �S

ij = − 1
2Cikjk, C0101 = − 1

2Cijij = �,

(2.17)

with �S
ij ,�

A
ij , and � ≡ �ii being the symmetric and antisymmetric parts of �ij and its trace,

respectively. Boost weight zero components of the Weyl tensor are thus determined by �ij

and Cijkl .

2.2. Spacetimes admitting non-twisting WANDs

We consider an n-dimensional vacuum spacetime admitting a non-twisting geodetic2 null
congruence generated by a multiple WAND �. Thus � is normal and tangent to null
hypersurfaces u = const (gabu,a u,b = 0, a, b = 0, . . . n − 1) and the WAND �a = gabu,b is
thus indeed geodetic and affinely parametrized, �;ba �b = 0.

Similarly as in [1, 10], we choose a coordinate x0 ≡ u, a coordinate x1 ≡ r , where r
is an affine parameter along null geodesics generated by �, and ‘transverse’ coordinates xα

2 Note that in vacuum type N and III spacetimes a multiple WAND is always geodetic [7], while in type II and D it
is geodetic in the ‘generic’ case (see [12] for details).

5



Class. Quantum Grav. 25 (2008) 235008 A Pravdová and V Pravda

(α = 2 . . . n − 1) labelling the null geodesics on hypersurfaces u = const and being constant
along each geodesic. For the contravariant components of the metric tensor it follows that
g01 = 1, g00 = 0 = g0α . Then the frame �,n and m(i) = m(i) satisfying (2.1) can be given
as

�a = [0, 1, 0, . . . , 0], �a = [1, 0, . . . , 0], (2.18)

na = [1, U,Xα], na = [V, 1, Yα], (2.19)

ma
(i) = [

0, ωi, ξ
α
i

]
, m(i)

a = [
�i, 0, ηi

α

]
. (2.20)

Equations (2.1) imply

0 = U + V + XαYα, (2.21)

0 = ωi + ξα
i Yα, (2.22)

0 = �i + ηi
αXα, (2.23)

δ
j

i = ξα
i ηj

α. (2.24)

By multiplying (2.24) by ηi
β we get δ

j

i η
i
β = η

j

β = (
ηi

βξα
i

)
η

j
α which gives

δα
β = ξα

i ηi
β . (2.25)

Since � is geodetic and affinely parametrized, Li0 = 0 = L10. Let us choose a frame

that is parallelly propagated, i.e. Ni0 = 0 = i

Mj0. For geodetic �, Lij can be decomposed
[7] (cf also [8]) into shear σij (trace-free symmetric part), expansion θ (trace) and twist Aij

(antisymmetric part) as

Lij = σij + θδij + Aij . (2.26)

We will also often denote symmetric part of Lij as expansion matrix Sij . Obviously
Sij = σij + θδij .

When acting on a function f , the operators (2.9) and their commutators [13] can be
expressed as

D = ∂r , � = ∂u + U∂r + Xα∂α, δi = ωi∂r + ξα
i ∂α (2.27)

and

(�D − D�)f = L11Df + Li1δif, (2.28)

(δiD − Dδi)f = L1iDf + Ljiδjf, (2.29)

(δi � − � δi)f = Ni1Df + (Li1 − L1i ) � f + (Nji − i

Mj1)δjf, (2.30)

(δiδj − δj δi)f = (Nij − Nji)Df + (Lij − Lji) � f + (
j

Mki − i

Mkj )δkf. (2.31)

Apart from Bianchi equations [7] and Ricci equations [8] we need relations between
metric components and the Ricci rotation coefficients. Such relations may be obtained by
applying the commutators (2.28)–(2.31) on coordinates u, r, xα . For f = u, (2.30) and (2.31)
imply

0 = Li1 − L1i , (2.32)

0 = Lij − Lji. (2.33)
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For f = r , (2.28)–(2.31) lead to

−DU = L11 + Li1ωi, (2.34)

−Dωi = L1i + Ljiωj , (2.35)

δiU − �ωi = Ni1 + (Nji − i

Mj1)ωj , (2.36)

δiωj − δjωi = Nij − Nji + (
j

Mki − i

Mkj )ωk, (2.37)

and for f = xα , (2.28)–(2.31) give

−DXα = Lj1ξ
α
j , (2.38)

−Dξα
i = Ljiξ

α
j , (2.39)

δiX
α − �ξα

i = (Nji − i

Mj1)ξ
α
j , (2.40)

δiξ
α
j − δj ξ

α
i = (

j

Mki − i

Mkj )ξ
α
k . (2.41)

2.3. Indices

For convenience let us summarize the types of indices used throughout this paper. Apart from
indices a, b, . . . = 0, . . . , n−1, and i, j, . . . = 2, . . . , n−1 introduced in section 2.1, we also
introduce indices α, β = 2, . . . , n − 1 numbering spacelike coordinates and corresponding
components in section 2.2.

In four dimensions, the expansion matrix Sij is of rank 2 in the expanding case due to
the Goldberg–Sachs theorem. However, in higher dimensions m � n − 2, where m is rank
of Sij . In following sections we will often need to distinguish between indices corresponding
to non-vanishing (o, p, q, s = 2, . . . , m + 1) and vanishing (v,w, y, z = m + 2, . . . , n − 1)

eigenvalues of Sij .
In following calculations it also turns out to be practical to modify Einstein’s summation

convention for indices o, p, q, s: in an expression there is summation over repeated indices if
there are two indices without brackets among them (thus, e.g., in η

p0
α η

p0
β Xβ0(r + a(p))

2 there
is summation over p while in �pqs(p) we do not sum over p).

3. Radial integration for non-twisting vacuum Weyl type II, D, III, N spacetimes

In the present paper we study r-dependence of the metric functions, the Ricci rotation
coefficients and the Weyl tensor, which, however, is in general different for various algebraic
types. In order to avoid repetition, in this section we focus on those metric functions and Ricci
rotation coefficients that have the same r-dependence for all algebraic types studied. Note
that in contrast to section 5, here we do not assume that all non-vanishing eigenvalues of the
expansion matrix Sij are equal.

Without loss of generality we choose the frame (2.18)–(2.20) in such a way that Sij

is diagonal, Sij = diag{s(2), . . . , s(m+1), 0, . . . , 0}, where m denotes number of non-zero
eigenvalues of Sij . As is shown in [14], this assumption is compatible with the frame
being parallelly transported. As mentioned in section 2.3, indices o, p, q, s corresponding to
non-vanishing eigenvalues of Sij run from 2 to m + 1 and indices v,w, y, z corresponding to
vanishing eigenvalues of Sij run from m + 2, . . . , n − 1.

7
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In our case, from Ricci equations (A.7) for non-vanishing eigenvalues of Sij , s(p) �= 0, it
follows

s(p) = 1

r + a0
(p)

, (3.1)

where a0
(p) is an arbitrary function of u and xα , independent on r. Similarly, throughout this

paper, the superscript ‘0’ will suggest that the function under consideration does not depend
on r.

Ricci equations (A.2) = (A.5), DL1i = −L1i s(i), lead to

L1p = l0
1p

r + a0
(p)

, L1w = l0
1w. (3.2)

There is still freedom to perform a null rotation with fixed � (2.3). To preserve parallel
propagation of the frame, zi is subject to

Dzi = 0. (3.3)

Choosing zp = −l0
1p, we can set L1p to zero by (see [8])

L̂1p = L1p + zjLji = 0. (3.4)

In what follows we omit the hat symbol. Note that parameters zw can be used to further
simplify the metric, e.g. one can set ω0

w to zero as in sections 5.2.1 and 6.

From Ricci equations (A.14), reduced to D
j

Mki = − j

Mkis(i), (2.39) and (2.35), we obtain

j

Mkp =
j
mkp

0

r + a0
(p)

,
j

Mkw = j
mkw

0, (3.5)

ξα
p = ξα0

p

r + a0
(p)

, ξα
w = ξα0

w , (3.6)

ωp = ω0
p

r + a0
(p)

, ωw = −l0
1wr + ω0

w, (3.7)

respectively and from (2.38)

Xα = −l0
1wξα0

w r + Xα0. (3.8)

To compute the covariant components of the metric one has to solve (2.21)–(2.24) for
ηi

α, Yα,�p, V . From (2.21)–(2.24) also using (2.25) and (3.6)–(3.8), it follows

ηp
α = ηp0

α (r + a(p)), ηw
α = ηw0

α , (3.9)

Yα = −ηi
αωi = l0

1wηw0
α r − (

ηp0
α ω0

p + ηw0
α ω0

w

)
, (3.10)

�p = −ηp
αXα = −ηp0

α Xα0(r + a(p)), (3.11)

�w = −ηw
α Xα = l0

1wr − ηw0
α Xα0, (3.12)

V = −U + l0
1wl0

1wr2 − (
ω0

w + ηw0
α Xα0)l0

1wr + Xα0(ηp0
α ω0

p + ηw0
α ω0

w

)
. (3.13)

As will be discussed below, the r-dependence of the function U has to be studied separately
for types II, D and III, N.
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The covariant components of the metric tensor (cf (2.2)) thus read

g11 = 0, g01 = 1, g1α = 0, (3.14)

g00 = 2V + �i�i = 2V + ηp0
α Xα0η

p0
β Xβ0(r + a(p))

2

+
(
l0
1wr − ηw0

α Xα0)(l0
1wr − ηw0

β Xβ0), (3.15)

g0α = Yα + �jηj
α

= −ηp0
α η

p0
β Xβ0(r + a(p))

2 + 2l0
1wηw0

α r − (
ηp0

α ω0
p + ηw0

α ω0
w + ηw0

α ηw0
β Xβ0)

= γ 2
α r2 + γ 1

α r + γ 0
α , (3.16)

gαβ = ηk
αηk

β = ηp0
α η

p0
β (r + a(p))

2 + ηw0
α ηw0

β = γ 2
αβr2 + γ 1

αβr + γ 0
αβ, (3.17)

therefore the vacuum metric with a non-twisting geodetic multiple WAND has the form

ds2 = g00 du2 + 2 du dr + 2
(
γ 2

α r2 + γ 1
α r + γ 0

α

)
du dxα +

(
γ 2

αβr2 + γ 1
αβr + γ 0

αβ

)
dxα dxβ,

(3.18)

where functions γ N
αβ and γ N

α ,N = 0, 1, 2, introduced in (3.16), (3.17) do not depend on r.
Differentiating equation (2.34) with respect to r and using (2.35), (3.13) and the Ricci

equation (A.1) for L11, we arrive at

C0101 = −V,rr . (3.19)

Consequently, for type III and N spacetimes (where C0101 has to vanish) V is linear in r, while
for type II and D spacetimes the r-dependence of V (and hence of U) can be more complicated.
Types II, D and III, N will be thus discussed separately in the following sections. Note that
for deriving the metric (3.18) only assumptions C0i0j = C010i = 0 on the Weyl tensor are
necessary and it was not necessary to assume C0kij = 0. Therefore, the metric (3.18) also
applies to the special class of type I spacetimes with C010i = 0 denoted by I(a) in [5]. As for
the Ricci tensor, in fact up to now we have assumed only R00 = R0i = 0.

Note that it was shown that for type III and N expanding vacuum spacetimes m = 2 in
arbitrary dimension and that s(2) = s(3) [7]. If all non-vanishing eigenvalues of Sij are equal,
i.e. from (3.1) s(p) = 1/(r + a0(u, xα)) for all p, one can perform a coordinate transformation
[10] that leaves unchanged null hypersurfaces u = const and preserves the affine character of
the parameter r:

r̃ = r + a0(u, xα). (3.20)

Then from Ricci equations (A.11) (for i = k = q, j = p)

ω0
p = 0. (3.21)

In the following, for simplicity we omit the tilde symbol over r and over absolute terms, such

as ω0
w,Xα0, l0

11, U
0,

i
mj1

0, n0
i1.

4. Type III, N

In this section, vacuum type III and N spacetimes are considered and r-dependence of the

remaining metric component g00, the Ricci rotation coefficients L11, Nij , and
i

Mj1 and the
Weyl tensor is determined. These spacetimes are either non-expanding (Kundt class) with

9
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m = 0 or expanding with m = 2 [7], where, in appropriate coordinates s(2) = s(3) = 1/r , as
mentioned above.

From Ricci equations (A.1) and (2.34) it follows

L11 = −l0
1wl0

1wr + l0
11, (4.1)

U = l0
1wl0

1wr2 − (
l0
11 + l0

1wω0
w

)
r + U 0. (4.2)

For future reference let us note that one can still perform a null rotation with fixed � (2.3)
with zp = 0 for p = 2, 3, zw arbitrary and subject to (3.3)

L̂1p = 0, L̂1w = L1w, (4.3)

ω̂p = 0, ω̂w = −l0
1wr + ω0

w − zw = −l0
1wr + ω̂0

w, (4.4)

j

M̂ki = j

Mki + 2z[kLj ]i , (4.5)

ξ̂ α
i = ξα

i , (4.6)

L̂11 = L11 + zi(L1i + Li1) + zizjLij = −l0
1wl0

1wr + l0
11 + 2zwl0

1w = −l0
1wl0

1wr + l̂0
11 (4.7)

Û = l0
1wl0

1wr2 − [
l0
11 + l0

1w

(
ω0

w + zw

)]
r + U 0 + zwω0

w − 1
2zwzw

= l0
1wl0

1wr2 − (
l̂0
11 + l0

1wω̂0
w

)
r + Û 0. (4.8)

By choosing appropriate zw,w = 4, . . . , n−1, one can simplify ωw,U or l11 (see section 5.2.1
and 6).

From Ricci equations (A.10), (A.13)

Nip = n0
ip

r
, Niw = n0

iw, (4.9)

i

Mj1 = − i
mjw

0l0
1wr +

i
mj1

0. (4.10)

Let us conclude this section by writing down the metric for the Weyl types III, N. From
(3.13), using (4.2), we arrive at

V = (
l0
11 − l0

1vη
v0
α Xα0)r − U 0 + Xα0ηw0

α ω0
w. (4.11)

Substituting the metric component

g00 = 2V + �i�i = (
ηp0

α η
p0
β Xα0Xβ0 + l0

1wl0
1w

)
r2 + 2r

[
l0
11 − 2l0

1vη
v0
α Xα0] − 2U 0

+ 2Xα0ηw0
α ω0

w + ηw0
α ηw0

β Xα0Xβ0 = γ 2r2 + γ 1r + γ 0, (4.12)

into (3.15), from (3.18) we find that vacuum type III or N metric with non-twisting multiple
WAND has the form

ds2 = (γ 2r2 + γ 1r + γ 0) du2 + 2 du dr + 2
(
γ 2

α r2 + γ 1
α r + γ 0

α

)
du dxα +

(
γ 2

αβr2 + γ 0
αβ

)
dxα dxβ,

(4.13)

where the functions γ N, γ N
α and γ N

αβ,N = 0, 1, 2, are introduced in (4.12), (3.16) and (3.17),
respectively.

In fact to derive the metric (4.13) only the following assumptions on the Ricci tensor have
been made: R00 = R0i = 2R01 − R/(n − 1) = 0.

Note that in the non-expanding case, i.e. for m = 0, γ 2
α and γ 2

αβ vanish (see (3.16), (3.17))
and the metric (4.13) is compatible with higher-dimensional Kundt metrics given in [15, 16].

10
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In the expanding case, i.e. m = 2, the metric (4.13) is compatible with four-dimensional
vacuum type III and N Robinson–Trautman solutions (see, e.g., [2]) and with direct products
of these metrics with a flat space.

In the following sections we study r-dependence of the Weyl tensor separately for types
N and III.

4.1. The Weyl tensor for type N

In this section r-dependence of the remaining quantities entering the Ricci and Bianchi
equations is derived for vacuum type N spacetimes. In an appropriately chosen frame there
are only Weyl components of boost weight −2, 
ij ≡ 1

2C1i1j . As was shown in [7], 
ij can
be diagonalized together with Sij and admits a form 
ij = diag.{p,−p, 0 · · · 0}. Similarly as
in [14], it can be shown that the condition of both 
ij and Sij being diagonal is compatible
with the frame being parallelly propagated.

Equations (A.6) and (B.4) lead to

Ni1 = −(
n0

iwl0
1w

)
r + n0

i1, (4.14)

p = p0

r
. (4.15)

As was shown in [13] the curvature invariant

IN ≡ Ca1b1a2b2;c1c2Ca1d1a2d2;c1c2C
e1d1e2d2;f1f2Ce1b1e2b2;f1f2 (4.16)

reduces for non-twisting type N vacuum spacetimes to

IN = 36(n − 2)8θ8(
ij
ij )
2. (4.17)

IN clearly diverges at r = 0 in the expanding case and therefore a curvature singularity is
located there. The non-expanding (Kundt) case belongs to VSI spacetimes [13], i.e. spacetimes
with vanishing curvature invariants of all orders, and therefore curvature invariants cannot be
used for locating possible singularities.

4.2. The Weyl tensor for type III

Let us now examine r-dependence of the Weyl tensor for type III vacuum spacetimes. In an
appropriately chosen frame, there are only Weyl tensor components of boost weight −1 and
−2, i.e. 
i,
ijk and 
ij , respectively (see (2.13), (2.14)).

Bianchi equations (B.1), (B.9) and (B.4) read (note that in our case (B.6) is equivalent
to (B.9))

D
i = −2
eLei = −2
is(i), (4.18)

D
jki = 
keiLej − 
jeiLek = −
jki(s(j) + s(k)), (4.19)

2D
ij − δj
i = 2
jeiLe1 − 2
ieLej + 
e

e

Mij . (4.20)

Equations (4.18), (4.19) imply


p = 
0
p

r2
, 
w = 
0

w, (4.21)


wvi = 
0
wvi, 
pwi = 
0

pwi

r
, 
pri = 
0

pri

r2
. (4.22)

11
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From (4.21), (4.22) and (2.14) it follows


prw = 
wvp = 0, 
wrp = 
wpr, 
pvw = 
pwv, 
pww = 0 = 
wpp.

(4.23)

Note that some of the Bianchi identities reduce to algebraical equations, studied in detail
in [7]. Here we use results of [7] to simplify the Weyl tensor (4.21), (4.22). Namely,
equations (54) in [7] for (i = w, j = v, k = p) lead to


pwv = 0 (4.24)

and for i, j, k = v,w, z in the expanding case θ �= 0 equations (58) in [7] give


vwz = 0 ⇒ 
w = 0. (4.25)

To summarize: non-vanishing boost weight −1 Weyl tensor components for θ �= 0 are
(cf (C.20) in [7])


2 = 2
233 = 
0
2

r2
, 
3 = 2
322 = 
0

3

r2
,


w22 = −
w33 = 
0
w22

r
, 
w23 = 
w32 = 
0

w23

r
,

while for the non-expanding case 
w = 
0
w and 
wvz = 
0

wvz.
From equations (4.20) in the non-expanding case θ = 0 the boost weight −2 components

of the Weyl tensor are


wv = r

2

(
ξα0
v 
0

w,α + 2
0
vzwl0

1z + 
0
z

z
mwv

0) + 
0
wv, (4.26)

while in the expanding case with (4.25)


wv = 
0
wv − 1

2r

0

p

p
mwv

0, (4.27)


wp = 1

r

0

wp − 1

2r2

0

q

q
mwp

0

= 
pw = 
0
pw − 1

2r

(
2l0

1w
0
p + ξα0

w 
0
p,α + 
0

q

q
mpw

0) +
1

2r2
ω0

w
0
p, (4.28)


pq = −
0
wqpl0

1w +

0

pq

r
− 1

2r2

(

0

o

o
mpq

0 + ξα0
q 
0

p,α

)
. (4.29)

Considering 
ij = 
ji , we get


0
wv = 
0

vw, 
0
pw = 0, 
0

pq = 
0
qp, (4.30)


0
wp = − 1

2

(
2l0

1w
0
p + ξα0

w 
0
p,α + 
0

q

q
mpw

0), (4.31)


0
p

p
mwv

0 = 
0
p

p
mvw

0, (4.32)


0
q

q
mwp

0 = −ω0
w
0

p, (4.33)


0
o

o
mpq

0 + ξα0
q 
0

p,α = 
0
o

o
mqp

0 + ξα0
p 
0

q,α. (4.34)

From (A.6) one can also determine the remaining Ricci rotation coefficients

Nw1 = (−n0
wvl

0
1v + 
0

wδm0
)
r + n0

w1, Np1 = −n0
pvl

0
1vr + n0

p1 − 
0
p

r
. (4.35)

12
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As was shown in [13], the curvature invariant

IIII = Ca1b1a2b2;e1Ca1c1a2c2;e1C
d1c1d2c2;e2Cd1b1d2b2;e2 (4.36)

can be expressed as (74) in [13]3

IIII = 64S4[9ψ4 + 27ψ2(OPP + OPF ) + 28(OPP + OPF )2] (4.37)

= 4(n − 2)4θ4[9ψ4 + 27ψ2(
w22
2 + 
w23

2) + 28
(

w22

2 + 
w23
2)2]

, (4.38)

where ψ2 = 
i
i . Note that all terms entering (4.38) are non-negative and thus singularity
in one of these terms implies that the curvature invariant IIII is singular. For non-vanishing
expansion this is always the case for r = 0 and thus a curvature singularity is located there.
For type III Kundt spacetimes, the invariant IIII (and in fact all curvature invariants of all
orders) identically vanishes [13].

5. Type D and II

5.1. Type D

In an adapted frame, the type D Weyl tensor has only boost weight zero components determined
by �ij and Cijkl , see (2.16), (2.17).

For vacuum type D spacetimes with a parallelly propagated frame and with the matrix
Sij set to a diagonal form, Bianchi equations (B.3), (B.5) and (B.12) can be rewritten using
(2.16), (2.17), cf also equations (24), (25) in [12]

2D�A
ij = −3�A

ij (s(i) + s(j)) − �S
ij (s(j) − s(i)), (5.1)

2D�S
ij = 3�A

ij (s(i) − s(j)) − �S
ij (s(j) + s(i)) − 2�s(i)δij , (5.2)

DCijkm = −�kj s(i)δim − �mis(j)δjk + �kis(j)δjm + �mjs(i)δik − Cijkm(s(m) + s(k)). (5.3)

Equations (5.1) imply �A
wv = �A0

wv . For simplicity let us assume �A
ij = 0 and in what follows

we thus identify �ij with �S
ij . Note that for Kerr–Schild spacetimes Aij = 0 ⇒ �A

ij = 0 [9],
however, this implication need not hold for general spacetimes. Then equations (5.1) yield

�pw = 0, (5.4)

�pq(s(q) − s(p)) = 0, (5.5)

thus �pq = 0 for s(q) �= s(p).
From equations (5.2), (5.5), for p �= q and s(q) = s(p)

2D�wv = 0 ⇒ �wv = �0
wv, (5.6)

2D�pq = −�pq(s(p) + s(q)) = −2�pqs(p)

⇒ �pq = �0
pq

r + a0
(p)

for p �= q, s(q) = s(p). (5.7)

3 Equation (4.37) is expressed using the notation of [13], while in (4.38) it is rewritten in terms of the quantities
introduced in the present paper. Note also there is a misprint in equation (74) in [13]. It was obtained in Maple using
definition ψ = 
i
i , while standard definition, used also in [13] and in the present paper, is ψ2 = 
i
i . Therefore
ψ in equation (74) from [13] has to be replaced by ψ2.
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The trace of equations (5.2) together with (5.6) leads to

D� = D�pp = −�Sii − �iis(i) = −(
�pp + �0

ww

)
Sii − �pps(p), (5.8)

while the diagonal terms of (5.2) read

D�(p)(p) = −(
�pp + �0

ww + �(p)(p)

)
s(p). (5.9)

From now on we assume that s(p) = 1/r for all p.4 Then equation (5.8) reduces to

D� = D�pp = − (
�pp + �0

ww

) m

r
− �pp

1

r
⇒ �pp = �0

rm+1
− m�0

ww

m + 1
(5.10)

and thus

� = �0

rm+1
+

�0
ww

m + 1
. (5.11)

Then equations (5.9) imply

D�(p)(p) = −
(

�0

rm+1
+

�0
ww

m + 1
+ �(p)(p)

)
s(p)

⇒ �(p)(p) = �0

mrm+1
+

�0
(p)(p)

r
− �0

ww

m + 1
. (5.12)

Comparing (5.12) with (5.10) yields

�0
pp = 0. (5.13)

Now we can combine (5.12) with (5.7) in

�pq = �0
pq

r
+ δpq

(
�0

mrm+1
− �0

ww

m + 1

)
. (5.14)

From equations (5.3) for various combinations of indices we get

Cijwv = C0
ijwv, (5.15)

Cijwq = C0
ijwq

r
, i, j �= q, (5.16)

Cp(q)w(q) = C0
p(q)w(q)

r
, (5.17)

Cv(q)w(q) = C0
v(q)w(q)

r
+ �0

wv, (5.18)

Cwvpq = C0
wvpq

r2
, (5.19)

Cwopq = C0
wopq

r2
, (5.20)

Csopq = −2(δspδoq − δopδsq)

(
�0 Fm(r)

r2
+

�0
ww

2(m + 1)

)

+
C0

sopq

r2
+

1

r

(
�0

psδoq + �0
qoδsp − �0

poδsq − �0
qsδop

)
, (5.21)

4 In fact under this assumption from equations (5.1) �A
pq = �A0

pq/r3, however, in what follows we still assume

�A
ij = 0.
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where

Fm(r) = − ln r for m = 1, Fm(r) = 1

m(m − 1)rm−1
for m �= 1. (5.22)

Note that some of the equations (5.15)–(5.21) are not compatible with symmetries of the Weyl
tensor unless corresponding components vanish, thus

Cwpvz = Cvzwp = 0, (5.23)

Cwvpq = Cpqwv = 0, (5.24)

Cwopq = Cpqwo = 0 (5.25)

and from equations (2.11) and (5.24)

C0
vpwq = C0

vqwp. (5.26)

Let us point out that for expanding type D (and in general not for type II) spacetimes,
Bianchi equations (B.6), with �0 �= 0, lead to

l0
1w = 0. (5.27)

However, we will not use this relation further in this section in order to obtain expressions
also valid for type II.

Using the identity �ij = − 1
2Cikjk (2.12) for the Weyl tensor we arrive at

C0
vpwp = 0, (5.28)

C0
wzvz = −(m + 2)�0

wv, (5.29)

C0
poqo = 0 for m �= 1, (5.30)

�0 = 0 for m = 1, (5.31)

C0
wpwq = −m�0

pq. (5.32)

Note that when m = n − 2 (i.e. there are no ‘w-type’ indices), then C0
pwqw = 0 and thus from

(5.32) �0
pq = 0.

To summarize: non-vanishing boost weight zero components of the Weyl tensor for type
D (and II, see section 5.2) vacuum spacetimes with a non-twisting geodetic multiple WAND
under the assumption �A

ij = 0 are �wv and �pq given in (5.6), (5.14), respectively,

Cvwyz = C0
vwyz, (5.33)

Cvpwq = C0
vpwq

r
+ �0

wvδpq, (5.34)

and Csopq given in (5.21) with (5.22), subject to (5.13), (5.26), (5.28)–(5.32).
From Ricci equations (A.1) and (2.34) with (5.11)

L11 = −
(

l0
1wl0

1w +
1

m + 1
�0

ww

)
r +

�0

mrm
+ l0

11, (5.35)

U =
(

l0
1wl0

1w +
1

2(m + 1)
�0

ww

)
r2 − (

l0
11 + l0

1wω0
w

)
r + �0Fm(r) + U 0 (5.36)
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and from (3.13)

V = − 1

2(m + 1)
�0

wwr2 + r
(
l0
11 − l0

1wηw0
α Xα0) − �0Fm(r) − U 0 + Xα0ηw0

α ω0
w. (5.37)

Then the metric component g00 (3.15) reads

g00 =
(

− 1

(m + 1)
�0

ww + ηp0
α Xα0η

p0
β Xβ0 + l0

1wl0
1w

)
r2 + 2r

(
l0
11 − 2l0

1wηw0
α Xα0)

− 2�0Fm(r) − 2U 0 + 2Xα0ηw0
α ω0

w + ηw0
α Xα0ηw0

β Xβ0

=
(

γ 2 − 1

(m + 1)
�0

ww

)
r2 + γ 1r + γ 0 − 2�0Fm(r), (5.38)

where γ N,N = 0, 1, 2 are defined in (4.12). The metric for type D vacuum spacetimes with a
non-twisting geodetic multiple WAND then has the form (3.18) with (5.38), (3.16), (3.17) with
a0

(p) = 0 and l0
1w = 0. Note that (5.38) is valid for type II spacetimes as well (see section 5.2).

Let us now examine the Kretschmann scalar in vacuum

RabcdR
abcd = 4R2

0101 + RijklRijkl + 8R0j1iR0i1j − 4R01ijR01ij

= 4�2 + CijklCijkl + 8�S
ij�

S
ij − 24�A

ij�
A
ij . (5.39)

As was pointed out in [9], under the assumption �A
ij = 0, it reduces to a sum of squares. Thus

if any term �0,�pq
0, C0

vpwq or C0
nopq is non-zero, then there is a scalar curvature singularity

at r = 0.
Note also that for asymptotically flat spacetimes the Kretschmann scalar vanishes for

r → ∞ and thus in this case

�0
wv = 0 = C0

wvyz. (5.40)

5.2. Type II

Apart from boost weight zero components of the Weyl tensor, in type II spacetimes boost
weight −1 components, 
i,
ijk , and boost weight −2 components, 
ij , also appear (see
(2.13), (2.14)). However, these negative boost weight components do not enter Bianchi
equations (5.1)–(5.3) and thus assuming again s(p) = 1/r for all p and �A

ij = 0 all results
obtained in section 5.1 for type D spacetimes except of (5.27) are valid for type II spacetimes
as well.

In order to determine r-dependence of negative boost weight components of the Weyl
tensor, we analyse Bianchi equations (B.1), (B.6), (B.9) and (B.4), which can be rewritten as

D
i − δi� = −2
is(i) − �Li1 − �S
ikLk1, (5.41)

−2D
ijk = 2
ijks(k) + 2
[iδj ]ks(k) + 2�S
k[iLj ]1 − CklijLl1, (5.42)

2D
jki + 2δ[k�
S
j ]i = 2
kjis(j) − 2
jkis(k) + 2�S

[k|l
l

Mi|j ] − 2�S
li

l

M [jk], (5.43)

2D
ij − ��S
ij − δj
i = −2
ij s(j) + 2
jliLl1 + 
l

l

Mij + �Nij

+ �S
liNlj + �S

jl

l

Mi1 + �S
li

l

Mj1. (5.44)
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Using previous results, from (5.41)


w = r

[
1

m + 1

(
ξα0
w �0

vv,α − l0
1w�0

vv

) − �0
wvl

0
1v

]
+ 
0

w

− (
l0
1w�0m + ξα0

w �0,α
) 1

mrm
+

1

rm+1
ω0

w�0, (5.45)


p = 1

2(m + 1)
ξα0
p �0

ww,α +
1

r2

0

p − ξα0
p �0,α

mFm(r)

r2
(5.46)

and from (5.42)


pqw = 
0
pqw, (5.47)


vpw = 
0
vpw, (5.48)


vzw = 1

2

(
�0

wzl
0
1v − �0

wvl
0
1z + C0

wyvzl
0
1y

)
r + 
0

vzw, (5.49)


vwp = 1

r

0

vwp, (5.50)


wpq = − r

4(m + 1)
ξα0
w �0

vv,α δpq + 1
2

(
�0

pql
0
1w + C0

qzwpl0
1z − 
0

wδpq

)
+

1

r

0

wpq

− δpq

2

[
l0
1w�0(m + 1) + ξα0

w �0,α
]Fm(r)

r
+

δpq

2mrm+1
ω0

w�0, (5.51)


oqp = 1

4(m + 1)
�0

ww,α
(
δopξα0

q − δpqξ
α0
o

)
+ 
0

oqp

1

r
+

1

2r2

(
δpq


0
o − δpo


0
q

)
+ �0,α

Fm(r)

2r2

(
δpoξ

α0
q − δpqξ

α0
o

)
. (5.52)

The Weyl components 
i and 
ijk as given in (5.45)–(5.52) are subject to (2.14) and therefore


0
wvp = 0, 
0

pqw = 0, 
0
pwv = 
0

pvw, 
0
wpq = 
0

wqp, (5.53)

0 = 
0
vwz + 
0

zvw + 
0
wzv, (5.54)

0 = 
0
pqo + 
0

opq + 
0
qop, (5.55)

C0
vywvl

0
1y = m + 2

2(m + 1)
ξα0
w �0

zz,α − m + 2

(m + 1)
l0
1w�0

zz, (5.56)

2
0
wzz = l0

1zC
0
zpwp + 
0

w(m + 1), (5.57)


0
wpp = 1

2
l0
1w�0 and 2l0

1w�0 + ξα0
w �0,α = 0 for m = 1, (5.58)


0
wpp = 0 and 2ml0

1w�0 + ξα0
w �0,α = 0 for m > 1, (5.59)


0
pww = m

4(m + 1)
ξα0
p �0

ww,α , (5.60)


0
pqq = 0, (5.61)


0
p = 0 and ξα0

p �0,α = 0 for m = 1, (5.62)


0
p(m − 2) = 0 and (m − 2)ξα0

p �0,α = 0 for m > 1. (5.63)
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In order to determine r-dependence of 
ij from equations (5.44), first we need to find
i

Mj1 and Nij . Note that for �A
ij = 0, the Ricci equations (A.13) reduce to those of the Weyl

type III with solution given in (4.10). From Ricci equations (A.10),

Npw = n0
pw, Nvw = −�0

wvr + n0
vw, Nwp = n0

wp

r
, (5.64)

Npq = −�0
pq +

n0
pq

r
+ δpq

[
r

�0
ww

2(m + 1)
+ �0 Fm(r)

r

]
. (5.65)

Now r-dependence of 
ij can be determined from equations (5.44)


vw = r2
A
vw + r
B

vw + 
C
vw −

p
mvw

0
0
p

2r
− p

mvw
0ξα0

p �0,α
ln r + 1

2r
δ1m

+ mFm(r)
D
vw +

1

rm

E

vw +
1

rm+1

F

vw, (5.66)


pw = r2
A
pw + r
B

pw + 
C
pw ln r + 
D

pw +
ln r

r
δ1m
E

pw +
1

r

F

pw

+
ln r

r2
δ1m
G

pw +
1

r2

H

pw +
1

rm−1

I

pw +
1

rm

J

pw +
1

rm+1

K

pw, (5.67)


pq = r2
A
pqδpq + r
B

pq + ln rδ1m
C
pq + 
D

pq +
ln r

r

E

pq + 
F
pw

1

r
+

ln r

r2
δ1m
G

pq

− 1

r2

H

pq +
1

rm−1

I

pq +
1

rm

J

pq +
1

rm+1

K

pq, (5.68)

where 
A
ij ,


B
ij , . . . , 


K
ij do not depend on r. Since in this paper we are mainly interested in

the r-dependence of the metric and the Weyl tensor we do not give here quite complicated
explicit expressions for 
A

ij ,

B
ij , . . . , 


K
ij .

5.2.1. The case with L1i = 0. When (5.27) is satisfied (for type D and special cases of other
Weyl types considered here) then ωw can be transformed away by null rotation with fixed �
(2.3) with zw = ω0

w (4.4) and thus (assuming all s(p) are the same) ωi = 0 for all i. Since now
g1α = Xα0, we introduce x̃α = x̃α(xβ, u) as in [10], leaving unchanged null hypersurfaces
u = const and preserving the affine character of the parameter r, to set g̃1α = 0, i.e. (omitting
the tilde symbol)

Xα0 = 0. (5.69)

Then from (3.10)–(3.13) and (5.37) we get

V = −U = − 1

2(m + 1)
�0

wwr2 + rl0
11 − �0Fm(r) − U 0, �i = 0, Yα = 0. (5.70)

Equations (3.14)–(3.17) now reduce to

g11 = 0, g01 = 1, g1α = 0, g00 = 2V, g0α = 0, (5.71)

gαβ = ηk
αηk

β = ηp0
α η

p0
β r2 + ηw0

α ηw0
β = γ 2

αβr2 + γ 0
αβ, (5.72)

and thus the metric of vacuum spacetimes with a non-twisting geodetic multiple WAND (i.e.
types II, D, III or N) with L1i = 0 can be set into the form

ds2 = 2V du2 + 2 du dr +
(
γ 2

αβr2 + γ 0
αβ

)
dxα dxβ, (5.73)

where functions γ N
αβ,N = 0, 2, introduced in (5.72) do not depend on r and V is given in

(5.70).
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5.2.2. The shearfree case. Let us now briefly discuss the shear-free case which occurs for
m = 0 (Kundt spacetimes) and for m = n − 2 (Robinson–Trautman spacetimes [10]).

Kundt spacetimes in vacuum are necessarily of type II or more special [8] and they thus
form the m = 0 subclass of spacetimes studied in the present paper. Note that in contrast to
the expanding case, the components of the metric (3.18), including g00, are at most quadratic
polynomials in r. Similarly as in four dimensions boost weight 0, −1 and −2 components of
the Weyl tensor are independent on r, linear and quadratic in r, respectively.

In the m = n − 2 case in four dimensions, equations (5.63) are identically satisfied
and consequently the corresponding class of Robinson–Trautman spacetimes is very rich and
includes e.g. radiative type N and III spacetimes as well as type D C-metric describing
uniformly accelerated black holes emitting gravitational radiation. However, in higher
dimensions equations (5.63) imply 
0

p = 0 and using (2.25) �0,α = 0. From (5.32) �0
pq = 0

and then from (A.12) or (5.43) we get 
0
oqp = 0. Therefore all components of the Weyl tensor

with boost weight −1 vanish. Similarly it can be shown that boost weight −2 components
of the Weyl tensor vanish aswell. Thus in higher dimensions vacuum shear-free spacetimes
admitting non-twisting geodetic multiple WAND are necessarily of type D in agreement with
[10]. The Weyl tensor is now given by

�pq = δpq

�0

(n − 2)rn−1
, Csopq = −2(δspδoq − δopδsq)�

0 F(n−2)(r)

r2
+

C0
sopq

r2
. (5.74)

Note that in four dimensions equation (5.30) implies C0
sopq = 0, while in higher dimensions

this term, corresponding essentially to the curvature of the spatial part of the metric γ 2
αβ [10],

in general does not vanish. Therefore the r-dependence of the Weyl tensor and thus also the
asymptotic behaviour of gravitational field in higher dimensions is more complex than in four
dimensions5. This is, however, beyond the scope of the present paper and will be studied
elsewhere.

6. Construction of an explicit expanding type N solution in five dimensions with l0
14 = 0

Apart from usual motivation coming from higher-dimensional general relativity, there is an
additional reason for studying type N vacuum spacetimes. For these spacetimes all curvature
invariants involving metric, the Riemann tensor and its first covariant derivatives vanish. Such
solutions thus belong to the VSI1 class of spacetimes [17], which are solutions of various
field theories to all orders with a specific effective action containing only certain higher order
correction terms (see [17]).

Let us explicitly mention the Einstein–Gauss–Bonnet equations

Rab − 1
2Rgab = α

(
1
2LGBgab − 2RRab + 4RacR

c
b + 4RacbdR

cd − 2RacdeRb
cde

)
, (6.1)

where LGB = R2 − 4RabR
ab + RabcdR

abcd and α is the Gauss–Bonnet coupling constant. It
can be seen directly that vacuum type N solutions to the Einstein equations solve vacuum
Einstein–Gauss–Bonnet equations (6.1) as well since for these spacetimes RacdeRb

cde = 0 =
RabcdR

abcd .
In this section, we attempt to derive an expanding non-twisting type N vacuum solution

and we limit ourselves to a five-dimensional case with an additional assumption l0
14 = 0. Since

resulting metrics we have obtained so far can be obtained by taking a direct product of four-
dimensional type N vacuum metrics with an extra dimension, the main purpose of this section

5 Note that in boost weight zero Weyl components in the m < n − 2 case terms proportional to r0 and r−1 also
appear.
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is thus to illustrate the use of the higher-dimensional NP formalism for constructing exact
vacuum solutions. Note that corresponding Bianchi and Ricci equations are quite complex
and thus at several points of the calculation we make various assumptions in order to simplify
them. This, however, obviously comes with the price of possibly reducing the resulting class
of solutions.

For explicit calculations it turns out to be more convenient to relax the assumption of
diagonal 
ij from section 4.1 and so now there are two independent components of the
Weyl tensor 
33 = −
22, 
32 = 
23 with the rest of the components vanishing. Therefore
we cannot use the form of the Weyl tensor obtained in (4.15) and instead from the Bianchi
equations (B.4)


22 = −
33 = p0

r
, 
23 = 
32 = �0

r
, 
pw = 0 = 
wv. (6.2)

Assuming l0
14 = 0, NP equations simplify considerably and are given in appendix C. In

fact the following quantities vanish:

2
m43

0 = 3
m42

0 = 2
m44

0 = 3
m44

0 = 0, (6.3)

n0
24 = n0

34 = 2
m41

0 = 3
m41

0 = n0
23 = n0

32 = ω0
2 = ω0

3 = 0. (6.4)

Similarly as in section 5.2.1 we transform away ω0
4. However, here we do not transform

away the functions Xα0. Then from equations (C.9)

ω0
4 = 4

m22
0 = 4

m33
0 = 0, (6.5)

and from (C.30)–(C.32) and (C.36)

n0
42 = n0

43 = n0
44 = n0

41 = 0. (6.6)

From (C.4) we get U 0 = n0
22 = n0

33 and then equations (C.45)–(C.47) (now identical with
(C.15)–(C.17)) imply

U 0 = n0
22 = U 0(u). (6.7)

Let us assume U 0 = n0
22 = const.

Apart from l0
14 = 0 we make the following simplifying assumptions:

2
m34

0 = 0, (6.8)

ξ 3
3 = −ξ 2

2 �= 0, ξ 4
4 �= 0, all other ξα

k = 0. (6.9)

Note that
2
m34

0 always vanishes for diagonal 
ij , see (C.51).
Under the assumptions (6.9) from (C.38), (C.39), (C.14), (C.23), (C.26), (C.27), (C.28),

(C.35), (C.42), (C.50), (C.51) we obtain that ξ 20
2 = −ξ 30

3 , l0
11, n

0
21, n

0
31,

3
m22

0,
2
m33

0,
2
m31

0,

X20, X30, p0,�0 do not depend on x3 = z. From (C.38)–(C.41) it also follows that ξ 40
4 =

ξ 40
4 (u, z),X40 = X40(u, z) are functions of u, z only.

Equations (C.37), (C.29) can be rewritten using (6.9)

ξ 20
2 ,3 = 3

m22
0, (6.10)

ξ 20
2 ,2 = − 2

m33
0, (6.11)

ξ 20
2

(
ξ 20

2 ,22 +ξ 20
2 ,33

) − (
ξ 20

2 ,2
)2 − (

ξ 20
2 ,3

)2 = 2n0
22. (6.12)
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Assuming ξ 20
2 to have a form of a polynomial in x2 = x and x3 = y, after an appropriate

translation in x, y, we arrive at

ξ 20
2 = A0P(x, y), P (x, y) = (1 + ex2 + ey2),

2
m33

0 = −2A0ex,
3
m22

0 = 2A0ey,

(6.13)

where we set A0 = 1/
√

2 and e = n22 is assumed to be independent on u. From (C.40) and
(C.41) it follows

X20,2 = X30,3 , X30,2 = −X20,3 , (6.14)

with the integrability condition X20,22 +X20,33 = 0 and from (C.40)

l0
11 = −2e(xX20 + yX30)

P (x, y)
+ X20,x . (6.15)

Then (C.12), (C.13) determine n0
21, n

0
31

n21 = −
√

2

2
P(x, y)X20,xx +

√
2e(X20 + xX20,x −yX20,y ) − 2

√
2ex

xX20 + yX30

P(x, y)
, (6.16)

n31 =
√

2

2
P(x, y)X20,xy −

√
2e(X30 + xX20,y +yX20,x ) + 2

√
2ey

xX20 + yX30

P(x, y)
. (6.17)

From equation (C.21) or (C.25) and from (C.22) or (C.24) we get

p0 = − 1
2X20,xxx P (x, y)2, (6.18)

�0 = 1
2X20,xxy P (x, y)2. (6.19)

Equations (3.10)–(3.13) lead to V = −U, Yj = 0,�i = −η
(i)

(i)X
(i)0 = −X(i)

/
ξ

(i)

(i) . The
contravariant frame vectors now read

�a = [0, 1, 0, 0, 0], (6.20)

na =
[

1,−
(

−2e(xX20 + yX30)

P (x, y)
+ X20,x

)
r + e,X20, X30, X40

]
, (6.21)

ma
(2) = A0P(x, y)

1

r
[0, 0, 1, 0, 0], (6.22)

ma
(3) = −A0P(x, y)

1

r
[0, 0, 0, 1, 0], (6.23)

ma
(4) = ξ 40

4 [0, 0, 0, 0, 1]; (6.24)

and the covariant frame vectors are

�a = [1, 0, 0, 0, 0], (6.25)

na =
[(

−2e(xX20 + yX30)

P (x, y)
+ X20,x

)
r − e, 1, 0, 0, 0

]
, (6.26)

m(2)
a = r

A0P(x, y)
[−X20, 0, 1, 0, 0], (6.27)

m(3)
a = − r

A0P(x, y)
[−X30, 0, 0, 1, 0], (6.28)
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m(4)
a =

[
−X40

ξ 40
4

, 0, 0, 0,
1

ξ 40
4

]
, (6.29)

where ξ 40
4 , X40 are subject to (C.42), i.e.

−ξ 40
4 ,u −X40ξ 40

4 ,4 + ξ 40
4 X40,4 = 0. (6.30)

The metric thus reads

ds2 =
[

2l0
11r − 2e +

(
r

ξ 20
2

)2

((X20)2 + (X30)2) +

(
X40

ξ 40
4

)2]
du2 + 2 du dr

− 2 du

[(
r

ξ 20
2

)2

(X20 dx + X30 dy) +

(
1

ξ 40
4

)2

X40 dz

]
+

(
r

ξ 20
2

)2

(dx2 + dy2) +

(
1

ξ 40
4

)2

dz2.

(6.31)

Introducing z̃ = ∫
1/ξ 40

4 dz and using (6.30) the metric (6.31) reduces to

ds2 =
[

2l0
11r − 2e +

(
r

ξ 20
2

)2

((X20)2 + (X30)2)

]
du2 + 2 du dr

− 2 du

(
r

ξ 20
2

)2

(X20 dx + X30 dy) +

(
r

ξ 20
2

)2

(dx2 + dy2) + dz̃2, (6.32)

where

dz̃ = 1

ξ 40
4

dz − X40

ξ 40
4

du. (6.33)

So the metric (6.32) represents a direct product of a four-dimensional Robinson–Trautman
type N vacuum solution with an extra dimension.
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Appendix A. Ricci identities

The Ricci equations, i.e. contractions of the Ricci identities va;bc − va;cb = Rsabcv
s with the

frame vectors (2.1), in higher dimensions, given in full generality in equations (11a)–(11p) in
[8], are rewritten here for vacuum spacetimes with a geodetic multiple WAND (Weyl types II,
D, III or N) in a parallelly propagated frame

DL11 = −L1iLi1 − C0101, (A.1)

DL1i = −L1jLji, (A.2)

� L1i − δiL11 = L11(L1i − Li1) − 2Lj [1|Nj |i] − L1j (Nji +
j

Mi1) + C101i , (A.3)

δ[j |L1|i] = −L11L[ij ] − L1k

k

M [ij ] − Lk[j |Nk|i] + 1
2C01ij , (A.4)

DLi1 = −LijLj1, (A.5)

−DNi1 = NijLj1 − C101i , (A.6)
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DLij = −LikLkj , (A.7)

� Nij − δjNi1 = −L11Nij − Ni1(−2L1j + Lj1)

+ 2Nk[1|
k

Mi|j ] − Nik(Nkj +
k

Mj1) − C1i1j , (A.8)

� Lij − δjLi1 = L11Lij − Li1Lj1 + 2Lk[1|
k

Mi|j ] − Lik(Nkj +
k

Mj1) − C0i1j , (A.9)

DNij = −NikLkj − C0j1i , (A.10)

δ[j |Li|k] = L1[j |Li|k] + Li1L[jk] + Lil

l

M [jk] + Ll[j |
l

Mi|k], (A.11)

δ[j |Ni|k] = −L1[j |Ni|k] + Ni1L[jk] + Nil

l

M [jk] + Nl[j |
l

Mi|k] − 1
2C1ijk, (A.12)

D
i

Mj1 = − i

MjkLk1 − C01ij , (A.13)

D
i

Mjk = − i

MjlLlk, (A.14)

� i

Mjk − δk

i

Mj1 = 2Nj [1|Li|k] + 2Lj [1|Ni|k] +
i

Mj1(L1k − Lk1) + 2
i

Ml[1|
l

Mj |k]

− i

Mjl(Nlk +
l

Mk1) − C1kij , (A.15)

δ[k|
i

Mj |l] = Ni[l|Lj |k] + Li[l|Nj |k] + L[kl]
i

Mj1 +
i

Mp[k|
p

Mj |l] +
i

Mjp

p

M [kl] − 1
2Cijkl . (A.16)

Appendix B. Bianchi equations

We present here Bianchi identities projected onto a parallelly propagated null frame (2.1) for
vacuum spacetimes with a geodetic multiple WAND. General form of these identities can be
found in appendix B in [7]:

DC101i − δiC0101 = −C0101Li1 − C01isLs1 − 2C101sLsi − C0i1sLs1, (B.1)

−� C01ij + 2δ[j |C101|i] = 2C101[j |L1|i] + 2C101[i|L|j ]1 + 2C1[i|1sLs|j ] + C1sijLs1

+ 2C0101N[ji] + 2C01[i|sNs|j ] + 2C0s1[j |Ns|i] + 2C01[i|s
s

M |j ]1 + 2C101s

s

M [ji], (B.2)

−DC01ij = 2C0101L[ij ] + 2C01[i|sLs|j ] + 2C0[i|1sLs|j ], (B.3)

DC1i1j − �C0j1i − δjC101i = 2C101iL[1j ] + 2C1i[j |sLs|1] + C0101Nij

−C01isNsj + C0s1iNsj + C0j1s

s

Mi1 + 2C0s1i

s

Mj1 + C101s

s

Mij , (B.4)

DC0i1j = −C0101Lij − C0i1sLsj − C01isLsj , (B.5)

−DC1kij − δkC01ij = −C01ijLk1 + 2C0k1[iLj ]1 + 2C101[iLj ]k

+ 2C[1|sijLs|k] + 2C01[i|s
s

M |j ]k, (B.6)

2δ[k|C0i1|j ] = 2C0i1[j |L|k]1 − C01jkLi1 + 2C101[j |Li|k] + 2C1[k|isLs|j ]

−CisjkLs1 + 2C0i1s

s

M [kj ] + 2C0s1[k|
s

Mi|j ], (B.7)
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0 = 0, (B.8)

DC1ijk + 2δ[k|C0|j ]1i = 2C101iL[jk] + 2C1i[k|sLs|j ] + 2C0[k|1s

s

Mi|j ] − 2C0s1i

s

M [jk], (B.9)

� C1ijk + 2δ[k|C1i1|j ] = 2C1i1[jLk]1 + 4C1i1[k|L1|j ] − C1ijkL11 + C01jkNi1

+ 2C0[j |1iN|k]1 + 2C101[k|Ni|j ] + 2C101iN[kj ] + 2C1i[k|sNs|j ] + 2C1[k|isNs|j ]

−CisjkNs1 − 2C1i1s

s

M [jk] + 2C1[k|1s

s

Mi|j ] + 2C1i[k|s
s

M |j ]1 − C1sjk

s

Mi1, (B.10)

−δ{i|C01|jk} = C101{iLjk} − C101{iLkj} + C1s{ij |Ls|k} + C01{i|s
s

M |jk} − C01{i|s
s

M |kj}, (B.11)

−DCijkm = 2C01ijL[km] + 2C0[k|1jLi|m] + 2C0[m|1iLj |k] + 2Cij [k|sLs|m], (B.12)

−� Cijkm + 2δ[k|C1|m]ij = 2C1i[1|mLj |k] + 2C1[j |1kL|i]m + 2C1j [k|mLi|1] + 2C1kijL[1m]

+ 2C1mijL[k1] − 2C01ijN[km] + 2C0[i|1mN|j ]k + 2C0[j |1kN|i]m + 2Cij [k|sNs|m]

+ 2C1k[i|s
s

M |j ]m + 2C1m[j |s
s

M |i]k + 2C1sij

s

M [km] + 2Cij [k|s
s

M |m]1 + 2C[i|skm

s

M |j ]1, (B.13)

δ{j |C1i|mk} = C1i1{jLmk} − C1i1{jLkm} + C1i{jk|L1|m} + C01{jm|Ni|k} − C0{j |1iN|km}

+ C0{j |1iN|mk} + Cis{jk|Ns|m} − C1i{j |s
s

M |mk} + C1i{j |s
s

M |km} + C1s{jk|
s

Mi|m}, (B.14)

0 = C01{jk|Li|m} − C0i1{jLkm} + C0i1{jLmk} + Cis{jk|Ls|m}, (B.15)

δ{k|Cij |nm} = C1j{km|Li|n} − C1i{km|Lj |n} − C1{k|ijL|mn} + C1{k|ijL|nm}

+ Cij{k|s
s

M |mn} − Cij{k|s
s

M |nm} + Cis{km|
s

Mj |n} − Cjs{km|
s

Mi|n}. (B.16)

Appendix C. The Ricci and Bianchi equations for five-dimensional type N spacetimes

with all L1i = 0

Ricci equations (A.4)

n0
32 = n0

23, (C.1)

n0
24 = 0, (C.2)

n0
34 = 0. (C.3)

Ricci equations (A.9)

U 0 = n0
22 = n0

33, (C.4)

n0
23 = 0 = n0

32, (C.5)

0 = n0
24 +

2
m41

0, (C.6)

0 = n0
34 +

3
m41

0. (C.7)

Ricci equations (A.11)

ω0
2 = 0 = ω0

3, (C.8)
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ω0
4 = 4

m22
0 = 4

m33
0, (C.9)

2
m43

0 = 0 = 3
m42

0, (C.10)

2
m44

0 = 0 = 3
m44

0. (C.11)

Ricci equations (A.3)

ξα0
2 l0

11,α = −n0
21, (C.12)

ξα0
3 l0

11,α = −n0
31, (C.13)

ξα0
4 l0

11,α = 0. (C.14)

Ricci equations (A.12) with n24 = n34 = 0 from (C.2), (C.3), with (6.8)

ξα0
2 n0

22,α = n0
42

4
m22

0, (C.15)

ξα0
3 n0

22,α = n0
43

4
m22

0, (C.16)

ξα0
4 n0

22,α = n0
44

4
m22

0, (C.17)

ξα0
3 n0

42,α − ξα0
2 n0

43,α = n0
42

2
m32

0 − n0
43

3
m23

0, (C.18)

ξα0
2 n0

44,α − ξα0
4 n0

42,α = 0, (C.19)

ξα0
3 n0

44,α − ξα0
4 n0

43,α = 0. (C.20)

Ricci equations (A.8), with n24 = n34 = 0,

n0
22,u + Xα0n0

22,α − ξα0
2 n0

21,α = −2l0
11n

0
22 + n0

31
3
m22

0 − p0, (C.21)

ξα0
3 n0

21,α = n0
31

2
m33

0 + �0, (C.22)

ξα0
4 n0

21,α = 0, (C.23)

ξα0
2 n0

31,α = n0
21

3
m22

0 + �0, (C.24)

n0
22,u + Xα0n0

22,α − ξα0
3 n0

31,α = −2l0
11n

0
22 + n0

41
4
m22

0 + n0
21

2
m33

0 + p0, (C.25)

ξα0
4 n0

31,α = 0. (C.26)

Ricci equations (A.16)

ξα0
4

2
m32

0,α = 0, (C.27)

ξα0
4

2
m33

0,α = 0, (C.28)

ξα0
3

2
m32

0,α − ξα0
2

2
m33

0,α = 2n0
22 +

( 4
m22

0)2
+

( 2
m32

0)2
+

( 2
m33

0)2
, (C.29)

ξα0
2

4
m22

0,α = −n0
42, (C.30)

ξα0
3

4
m22

0,α = −n0
43, (C.31)
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ξα0
4

4
m22

0,α = −n0
44. (C.32)

Ricci equations (A.15)

2
m32

0,u + Xα0 2
m32

0,α − ξα0
2

2
m31

0,α = − 2
m32

0l0
11 + n0

31 +
2
m33

0 2
m31

0, (C.33)

2
m33

0,u + Xα0 2
m33

0,α − ξα0
3

2
m31

0,α = − 2
m33

0l0
11 − n0

21 − 2
m32

0 2
m31

0, (C.34)

ξα0
4

2
m31

0,α = 0, (C.35)

2
m42

0,u + Xα0 2
m42

0,α = − 2
m42

0l0
11 + n0

41. (C.36)

Commutators (2.41)

ξ
β0
2 ξα0

3 ,β − ξ
β0
3 ξα0

2 ,β = 3
m22

0ξα0
2 − 2

m33
0ξα0

3 , (C.37)

ξ
β0
2 ξα0

4 ,β −ξ
β0
4 ξα0

2 ,β = ξα0
2

4
m22

0, (C.38)

ξ
β0
3 ξα0

4 ,β −ξ
β0
4 ξα0

3 ,β = ξα0
3

4
m22

0, (C.39)

commutators (2.40)

−ξα0
2 ,u −Xβ0ξα0

2 ,β + ξ
β0
2 Xα0,β = ξα0

2 l0
11 + n0

42ξ
α0
4 − 2

m31
0ξα0

3 , (C.40)

−ξα0
3 ,u −Xβ0ξα0

3 ,β + ξ
β0
3 Xα0,β = ξα0

3 l0
11 + n0

43ξ
α0
4 +

2
m31

0ξα0
2 , (C.41)

−ξα0
4 ,u −Xβ0ξα0

4 ,β + ξ
β0
4 Xα0,β = ξα0

4 n0
44, (C.42)

commutators (2.37)

ξα0
2 ω0

4,α = −n0
42, (C.43)

ξα0
3 ω0

4,α = −n0
43, (C.44)

commutators (2.36)

ξα0
2 U 0,α = n0

42ω
0
4, (C.45)

ξα0
3 U 0,α = n0

43ω
0
4, (C.46)

−ω0
4,u −Xα0ω0

4,α + ξα0
4 U 0,α = n0

44ω
0
4 +

4
m22

0l0
11 + n0

41. (C.47)

Bianchi equations (B.10)

−ξα0
2 p0,α − ξα0

3 �0,α = 2p0 2
m33

0 + 2�0 3
m22

0, (C.48)

ξα0
3 p0,α − ξα0

2 �0,α = 2p0 2
m32

0 + 2�0 2
m33

0, (C.49)

ξα0
4 p0,α = 2�0 2

m34
0, (C.50)

ξα0
4 �0,α = −p0 2

m34
0, (C.51)

p0 4
m23

0 = p0 4
m32

0 = 0, (C.52)

�0 4
m32

0 = �0 4
m23

0 = 0, (C.53)

p0 2
m44

0 + �0 3
m44

0 = −p0 3
m44

0 + �0 2
m44

0 = 0. (C.54)
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References

[1] Newman E T and Penrose R 1962 An approach to gravitational radiation by a method of spin coefficients
J. Math. Phys. 3 566–78

See also Newman E and Penrose R 1963 An approach to gravitational radiation by a method of spin coefficients
J. Math. Phys. 4 998 (erratum)

[2] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s Field
Equations 2nd edn (Cambridge: Cambridge University Press)

[3] Edgar B 1992 Integration methods within existing tetrad formalisms in general relativity Gen. Rel. Grav.
24 1267–95

[4] Emparan R and Reall H S 2008 Black holes in higher dimensions Living Rev. Rel. 11 6
(http://www.livingreviews.org/lrr-2008-6)
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