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Abstract

We investigate general properties of Kerr–Schild (KS) metrics in n > 4
spacetime dimensions. First, we show that the Weyl tensor is of type II or more
special if the null KS vector k is geodetic (or, equivalently, if Tabk

akb = 0). We
subsequently specialize to vacuum KS solutions, which naturally split into two
families of non-expanding and expanding metrics. After demonstrating that
non-expanding solutions are equivalent to the known class of vacuum Kundt
solutions of Weyl type N, we analyze expanding solutions in detail. We show
that they can only be of the type II or D, and we characterize optical properties of
the multiple Weyl aligned null direction (WAND) k. In general, k has caustics
corresponding to curvature singularities. In addition, it is generically shearing.
Nevertheless, we arrive at a possible ‘weak’ n > 4 extension of the Goldberg–
Sachs theorem, limited to the KS class, which matches previous conclusions
for general type III/N solutions. In passing, properties of Myers–Perry black
holes and black rings related to our results are also briefly discussed.

PACS numbers: 04.50.−h, 04.20.−q, 04.20.Cv

1. Introduction

Kerr–Schild spacetimes [1] have played an important role in four-dimensional general
relativity. In particular, all vacuum KS solutions have been known for some time [1–3]. They
are a subset of algebraically special spacetimes, and the corresponding KS null congruence
is a geodetic, shearfree, repeated principal null direction of the Weyl tensor. Notably, they
include the Kerr metric, arguably one of the physically most important known exact solutions
of Einstein’s equations in vacuum. Other well-known vacuum solutions which can be put in
the KS form are, for example, pp-waves and type N Kundt waves. In addition, the KS class
can also admit (aligned) electromagnetic or matter fields, so as to include, for instance, the
Kerr–Newmann metric, the Vaidya solution and pp-waves coupled to a null Maxwell field or
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to pure radiation. (We refer the reader to [4] for a comprehensive review and for a number of
original references.)

In recent years, gravity in more than four spacetime dimensions has become an active
area of ongoing studies, mainly motivated by the increasing interest in string theory and
extra-dimensional scenarios. In this context, the KS ansatz led to the remarkable discovery of
rotating vacuum black holes in an arbitrary dimension n > 4 [5]. However, several features of
higher-dimensional gravity have proven to be substantially different from the four-dimensional
case, and more insight would be desirable. In this paper we explore systematically general
properties of KS metrics in higher dimensions. The main focus will be on Einstein’s theory
in vacuum, bearing in mind, however, that some of our results may have applications also in
different contexts.

In addition to the intrinsic interest for possible specific KS solutions, an advantage of
the KS ansatz is its mathematical tractability, which enables one to study it analytically in
full generality. We thus present it also to illustrate a concrete application of the recently
developed higher-dimensional classification of the Weyl tensor [6, 7] and Newman–Penrose
formalism [8, 9] (cf [10] for another very recent application). This will also enable us
to present a partial extension (restricted to KS solutions) of the Goldberg–Sachs theorem
[11, 12] to higher dimensions, thus making contact with the previous results of [8]. The plan
of this paper is as follows.

In section 2 we consider general KS spacetimes and study constraints on the compatible
form of the energy–momentum tensor. In particular, we show that the null KS vector k is
geodetic if and only if Tabk

akb = 0 (similarly as in four dimensions [4]).
In section 3 we specialize to the case with a geodetic KS vector k and show that in this

case the spacetime is of Weyl type II or more special.
In the rest of the paper we further restrict ourselves to vacuum solutions. These naturally

split into a non-expanding and an expanding class. In section 4 we study the non-expanding
class and show that it is equivalent to type N Kundt vacuum solutions. As a consequence, we
also observe that n > 4 pp-waves cannot always be cast in the KS form, as opposed to the
four-dimensional case.

The more complex expanding case is analyzed in section 5. From a subset of the vacuum
equations we obtain an optical constraint, i.e. a purely geometric condition on the KS null
congruence k in the flat background. This is then used to show that expanding vacuum KS
spacetimes are necessarily of Weyl type II or D. By integration of the Ricci identities we
subsequently determine the dependence of the Ricci rotation coefficients (in particular, of
optical quantities) on an affine parameter r along the KS congruence. This enables us also
to find the r-dependence of the KS function and thus to study general basic properties of
KS geometries. In particular, we discuss a ‘weak’ extension of the Goldberg–Sachs theorem
valid for vacuum KS spacetimes, which are generically shearing. We also demonstrate, in the
‘generic’ case, the presence of a curvature singularity at a caustic of k. This is in particular
true for all expanding non-twisting spacetimes, on which we comment as a special subset of
KS solutions.

We conclude in section 6 with a summary and final remarks. In appendix A frame
components of the Riemann tensor are given for KS spacetimes with a geodetic k. Subsequent
appendices B–D contain several proofs and technical details related to the results presented in
the main text.

1.1. Preliminaries

We use the notation of [8] (see also [9]) and, in particular, we introduce a null frame
m(0) = n, m(1) = �, m(i) (i = 2, . . . , n − 1). The only non-zero scalar products are
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�ana = 1 and m(i)am
(j)
a = δij (a, b = 0, 1, . . . , n − 1), and the spacetime metric reads

gab = 2�(anb) + δijm
(i)
a m

(j)

b (sum over i, j ). Directional derivatives along frame vectors will
be denoted by D ≡ �a∇a,� ≡ na∇a, δi ≡ m(i)a∇a . The full set of the corresponding
Ricci rotation coefficients is defined in [8, 9]. In particular, we will often use the definition
�a;b = Lcdm

(c)
a m

(d)
b (sum over c, d). In fact, it will be convenient to adapt the frame vector

� to coincide with the KS null vector k. When k is geodetic, we will denote by r the
corresponding affine parameter. Quantities that do not depend on r will be denoted by a
subscript or superscript index 0 (e.g., H0, s

0
(i), etc).

Let us also anticipate here that we will be using five types of indices with different ranges,
namely

a, b, c, . . . = 0, 1, . . . , n − 1, i, j, k, . . . = 2, . . . , n − 1,

α, β, . . . = 2p + 2, . . . , m + 1, ρ, σ, . . . = m + 2, . . . , n − 1, (1)

μ, ν = 1, . . . , p, with 0 � 2p � m � n − 2,

where p and m are fixed integers defined later on. Einstein’s summation convention is
employed except for indices μ, ν (for which summation will be indicated explicitly), or when
at least one of the repeated indices is in brackets (e.g., there will be no summation over i in
DAij = −2s(i)Aij ), unless (only in very few exceptional cases) stated otherwise. Note that
for indices i, j, . . . we will not distinguish between subscripts and superscripts since there is
no difference between covariant and contravariant components.

When referring to equations presented in previous papers it will be sometimes convenient
to denote them by the corresponding equation number followed by the reference number, e.g.
equation (11f, [9]).

2. General case

In this section we define KS spacetimes and study their general properties, without imposing
Einstein’s equations and without requiring the KS null congruence to be geodetic.

2.1. Ansatz and geodetic condition

We study an n-dimensional spacetime with a metric in the KS form

gab = ηab − 2Hkakb, (2)

with ηab being the Minkowski metric diag(−1, 1, . . . , 1),H a scalar function and ka a 1-
form that is assumed to be null with respect to ηab, i.e. ηabkakb = 0 (ηab is defined as the
inverse of ηab and ηab �= gacgbdηcd ). From (2) it follows for the corresponding vector that
ka ≡ ηabkb = gabkb, so that ka is null also with respect to gab, and that the inverse metric has
the form

gab = ηab + 2Hkakb. (3)

One also gets for the metric determinant

g = η = −1. (4)

Straightforwardly from the definition of the Christoffel symbols we obtain


a
bc = −(Hkakb),c − (Hkakc),b + ηad(Hkbkc),d + 2Hkakd(Hkbkc),d , (5)

from which


a
bck

bkc = 0, 
a
bckak

b = 0, 
a
ab = 0, (6)
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and consequently also

ka;bkb = ka,bk
b, ka ;bkb = ka

,bk
b. (7)

In particular, this implies that ka is geodetic in the flat geometry ηab iff it is geodetic in the full
geometry gab. We also have


a
bcka = (Hkbkc);dkd, 
a

bck
b = −(Hkakc);dkd, (8)

ka;cka = ka,c ka = 0, ka;bck
a + ka;bka ;c = ka,bc ka + ka,b ka,c = 0. (9)

Since 
a
ab = 0, we can express the Ricci tensor as

Rab = 
c
ab,c − 
c

db

d
ac. (10)

After employing the above formulae, Einstein’s equations for the projected component Rabk
akb

read

Rabk
akb = 2Hgab(ka;ckc)(kb;dkd) = κ0Tabk

akb. (11)

From now on, when using a null frame �, n, m(i), we will make the convenient choice

� = k, (12)

adapted to the KS ansatz.
Using equation (11) and (see [8])

ka;bkb = L10ka + Li0m
(i)
a (13)

(sum over i), we can formulate the following

Proposition 1. The null vector k in the KS metric (2) of an arbitrary dimension is geodetic if
and only if the energy–momentum tensor satisfies Tabk

akb = 0.

Then, using frame indices, the condition of proposition 1 reads T00 = 0 (or, equivalently,
R00 = 0) and it holds iff the null frame components of Tab do not include a term proportional
to nanb. This condition is of course satisfied in the case of vacuum spacetimes, also with a
possible cosmological constant, or in the presence of matter fields aligned with the KS vector
k, such as an aligned Maxwell field (defined by Fabk

a ∼ kb) or aligned pure radiation (i.e.,
Tab ∼ kakb).

2.2. Optics of the KS vector field

It is interesting to discuss how the optical properties of ka in the two geometries gab and ηab

are related, i.e. to compare the Ricci rotation coefficients [8, 9] Lab and L̃ab defined with
respect to gab and ηab, respectively. In order to do so one has to set up ‘null’ frames for both
metrics. Let k, n, m(i) be the frame for the full spacetime metric gab as discussed above.
Then, from equation (2) it follows that ηab = 2k(a[nb) + Hkb)] + δijm

(i)
a m

(j)

b (sum over i, j ).
Thus, k, ñ, m(i) is now a convenient frame for the flat metric ηab, provided one takes

ña = na + Hka. (14)

Now, from equations (8) and (13) one gets

ka;b = ka,b − (DH + 2HL10)kakb − 2HLi0m
(i)

(a kb) (15)

(sum over i). Expanding ka;b on the frame k, n, m(i) and ka,b on the frame k, ñ, m(i) in
terms of Lab and L̃ab, respectively, and using (14) one finds that Lab = L̃ab except for
L11 = L̃11 − DH − HL̃10 and L1i = L̃1i − HL̃i0. In particular, one has Li0 = L̃i0 (so that
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k is geodetic with respect to gab iff it is geodetic with respect to ηab, as already observed in
section 2), and the matrix

Lij ≡ ka;bm(i)am(j)b = ka,bm
(i)am(j)b (16)

is the same with respect to both metrics. The optical scalars shear, twist and expansion [8, 9]
are thus unchanged1 (note that when k is geodetic this statement is independent of the particular
choice (14) since Lij is then invariant under null rotations with k fixed [9]).

3. The case of a geodetic KS vector field

In the rest of the paper we will assume that the null KS vector k is geodetic and affinely
parametrized (i.e., Li0 = 0 = L10), which seems to be the simplest and physically most
interesting case (recall proposition 1). The following definitions [8, 9] will thus be useful:

Sij ≡ L(ij) = σij + θδij , Aij ≡ L[ij ],
(17)

θ ≡ 1

n − 2
Sii, σ 2 ≡ σijσij , ω2 ≡ AijAij .

We shall refer to Sij , σij and Aij as the expansion, shear and twist matrices, respectively, and
to θ , σ and ω as the corresponding scalars.

Under the geodetic assumption, equation (15) reduces to

ka;b = ka,b − (DH)kakb, (18)

which will be employed in the following. Using ka
,b = ηackc,b (and, from now on, denoting

(),d ηcd by (),c, e.g. ka
,b = ηbcka,c etc) one easily finds ka,bk

a,c = ka;bka;c, ka,bk
c,a =

ka;bkc;a, ka
,bka

,c = ka
;bka ;c, ka,bc kb = −ka,b kb,c , ka,bc kbkc = 0 and similar identities, also

to be used in the following calculations. In addition, certain expressions will take a more
compact form if we write them in terms of the Ricci rotation coefficients and of the directional
derivatives as

ka
,a = Lii = Sii, ka,bk

a,b = LijLij , ka,bk
b,a = LijLji,

(19)
H,ak

a = DH, H,abk
akb = D2H.

From equation (5) we thus get


e
ab,e = (Hkakb)

e
, e − (Hkak

e),be − (Hkbk
e),ae + 2[HD2H + (DH + HLii)DH]kakb, (20)


e
f b


f
ae = 2[(DH)2 − 2H2ω2]kakb. (21)

The Ricci tensor then reads2

Rab = (Hkakb)
e
, e − (Hkak

e),be − (Hkbk
e),ae + 2H[D2H + LiiDH + 2Hω2]kakb. (22)

Consequently, k is an eigenvector of the Ricci tensor, i.e.

Rabk
b = −[D2H + (n − 2)θDH + 2Hω2]ka. (23)

For certain applications it may be useful to observe that the mixed Ricci components, i.e.
Ra

b = (Hkakb)
s
, s − (Hkaks),bs − (Hkbk

s) a
, s , are linear in H [14, 15]. The Ricci scalar is

thus also linear and reads
1 Cf [13] in the case n = 4.
2 This formula for Rab is equivalent to equation (32.10) given in [4] for n = 4, up to rewriting partial derivatives as
covariant ones.
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R = −2[D2H + 2(n − 2)θDH + H(n − 2)(n − 3)θ2 + H(ω2 − σ 2)]. (24)

So far we have worked in Minkowski coordinates adapted to the flat background metric
ηij . Note, however, that expressions for scalars, such as frame components of tensors, do not
depend on that choice.

3.1. Frame components of the Ricci tensor

From equation (22), one finds the non-vanishing frame components of the Ricci tensor

R01 = −[D2H + (n − 2)θDH + 2Hω2], (25)

Rij = 2HLikLjk − 2[DH + (n − 2)θH]Sij , (26)

R11 = δi(δiH) + (Nii − 2HLii)DH + (4L1j − 2Lj1 − i

Mji)δjH − Lii�H

+ 2H(2δiL[1i] + 4L1iL[1i] + Li1Li1 − L11Lii

+ 2L[1j ]

j

Mii − 2AijNij − 2Hω2), (27)

R1i = −δi(DH) + 2L[i1]DH + 2Lij δjH − Ljj δiH

+ 2H(δjAij + Aij

j

Mkk − Akj

i

Mkj − LjjL1i + 3LijL[1j ] + LjiL(1j)). (28)

Note that R00 = 0 = R0i identically.

3.2. Algebraic type of the Weyl tensor

The full set of the frame components of the Riemann tensor is given in appendix A for any
KS geometry with a geodetic, affinely parametrized KS vector. Thanks to R0i0j = R010i =
R0ijk = 0 and to R00 = R0i = 0, for the Weyl tensor we find immediately

C0i0j = 0, C010i = 0, C0ijk = 0. (29)

The Weyl tensor components with boost orders 2 and 1 are thus identically zero, which enables
us to conclude:

Proposition 2. Kerr–Schild spacetimes (2) in arbitrary dimension with a geodetic KS vector
k are of Weyl type II (or more special), with k being a WAND of order of alignment � 1.

Note that the KS null vector k must indeed be geodetic for a wide class of matter fields,
in particular in vacuum (cf proposition 1), so that proposition 2 applies in those cases.

Another interesting result follows from the observation [16] that spacetimes (not
necessarily of the KS class) which are either static or stationary with ‘expansion’ and ‘reflection
symmetry’ can be only of the Weyl types G, I i , D or O (see [16] for details and precise
definitions). Taking the ‘intersection’ of this family with the set of KS spacetimes considered
in proposition 2, we can conclude that in arbitrary dimension n � 4:

Proposition 3. All static spacetimes of the KS class with a geodetic k are of Weyl type D or
O. All stationary spacetimes of the KS class with ‘reflection symmetry’ and with a geodetic,
expanding k are of Weyl type D or O. In both cases, if the Weyl tensor is non-zero, k is a
multiple WAND.
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As an immediate consequence, the higher-dimensional rotating black holes of Myers
and Perry (indeed obtained using the KS ansatz [5]) are necessarily of Weyl type D in any
dimension, as we anticipated in [16] (this had previously been demonstrated by an explicit
calculation of the Weyl tensor in [17]). This also applies to uniform black strings, since
adding flat dimensions to a KS metric clearly preserves the KS structure. On the other
hand, proposition 2 implies that five-dimensional vacuum black rings [18] do not admit a KS
representation, since they are of Weyl type I i [19]. Let us also emphasize that proposition 3 is
not restricted to vacuum KS solutions. For instance, it can also be used to conclude that static
black holes with electric charge (and, possibly, a cosmological constant) [20] are also of Weyl
type D.

3.3. Vacuum equations

Vacuum solutions must satisfy Rab = 0. We note from equations (25)–(28) that the Ricci
tensor components R01 and Rij are simple and do not involve Ricci rotation coefficients other
than Lij , which characterize the optical properties of k. It is thus natural to start from the
corresponding vacuum equations. Imposing Rij = 0 gives3

(D lnH)Sij = LikLjk − (n − 2)θSij . (30)

Contracting equation (30) with δij we obtain

(n − 2)θ(D lnH) = LikLik − (n − 2)2θ2

= σ 2 + ω2 − (n − 2)(n − 3)θ2, (31)

while its tracefree part (i.e., Rij − Rkk

n−2δij = 0) is4

(D lnH)σij =
(

σ 2
ij − 1

n − 2
σ 2δij

)
−

(
A2

ij +
1

n − 2
ω2δij

)
+ 2σk(iAj)k − (n − 4)θσij .

(32)

Next, the equation R01 = 0 requires

D2H + (n − 2)θDH + 2Hω2 = 0. (33)

Using equation (31), this can also be rewritten as D2H = [−σ 2 − 3ω2 + (n − 2)(n − 3)θ2]H.
Note that equation (31) involves the function H in a non-trivial way only when θ �= 0.

It will thus be convenient to study non-expanding and expanding solutions separately in the
following sections. The remaining vacuum equations seem to be of little help in a general
study, and there is no need to write them down at this stage.

4. Non-expanding vacuum solutions

4.1. Einstein’s equations

The case θ = 0 turns out to be somewhat special, since from equation (31) we immediately
get σ = 0 = ω, and thus

Lij = 0, (34)

and from this and equation (33)

D2H = 0, (35)

3 Hereafter, for brevity we shall write H−1DH = D lnH, where it is understood that lnH should be replaced by
ln |H| whenever H < 0.
4 For n = 4 this reduces to (D lnH)σij = 2σk(iAj)k .
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i.e., H = H0 + G0r (recall that in our notation r denotes an affine parameter along k and
DH0 = 0 = DG0). The vacuum equations Rij = 0 and R01 = 0 are thus identically satisfied.
Note, in particular, that the sole non-expanding condition implies that we are restricted to a
subset of the higher-dimensional Kundt class of non-expanding, non-shearing and non-twisting
vacuum solutions.

Setting Lij = 0 in the Ricci components (27) and (28), the remaining vacuum equations
read

δi(δiH) + NiiDH + (4L1j − 2Lj1 − i

Mji)δjH

+ 2H(2δiL[1i] + 4L1iL[1i] + Li1Li1 + 2L[1j ]

j

Mii) = 0, (36)

δi(DH) − 2L[i1]DH = 0. (37)

4.2. Equivalence with Kundt solutions of type N

4.2.1. Non-expanding KS solutions are of type N. We have seen above that vacuum non-
expanding KS solutions are Kundt spacetimes. In general, the higher-dimensional Kundt class
is known to be of Weyl type II or more special, provided R00 = 0 = R0i (thus in particular in
vacuum) [9]. However, here we show that, in arbitrary dimension, vacuum KS spacetimes of
the Kundt class are restricted to the type N. In fact, it has already been shown in section 3 that
the components of the Weyl tensor with boost weights 2 and 1 vanish. Using equations (34),
(35) and (37) together with equations (A.2)–(A.6) we also find that all Weyl components with
boost weights 0 and −1 are zero (since in vacuum Rabcd = Cabcd ). The Weyl tensor is thus of
type N, �

4.2.2. Kundt solutions of type N are KS. We have thus demonstrated that vacuum solutions
of the KS class with a non-expanding KS vector are a subset of Kundt spacetimes of Weyl
type N. We now show that the converse is also true, namely that vacuum Kundt solutions of
Weyl type N are of the KS form, so that the two families of solutions coincide.

Vacuum Kundt solutions of Weyl type N belong to the family of spacetimes with vanishing
scalar invariants (VSI) [21, 22]. We can thus begin with the higher-dimensional VSI metric
[22, 23]

ds2 = 2 du[dr + H(r, u, xk) du + Wi(r, u, xk) dxi] + δij dxi dxj , (38)

with i, j, k = 2, . . . , n − 1, ka dxa = du being the multiple WAND.
Similarly as for n = 4, higher-dimensional vacuum Kundt spacetimes of Weyl type N

consist of two invariantly defined subfamilies [22, 23]: Kundt waves (with L1i = Li1 �= 0)
and pp-waves (for which L1i = Li1 = 0 = L11). It is convenient to discuss these subfamilies
separately.

The metric functions H and Wi for higher-dimensional type N Kundt waves are [22]

W2 = −2
r

x2
,

Ws = xqBqs(u) + Cs(u), (39)

H = r2

2(x2)2
+ H 0(u, xi),

where s, q = 3, . . . , n − 1, Bqs = −Bsq and H 0 must obey a field equation given in [22]. As
shown in [22], metric (38) and (39) is flat for

H 0(u, xi) = H 0
flat = 1

2

n−1∑
s=3

W 2
s + x2F0(u) + x2xiFi(u), (40)

8
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where F0(u) and Fi(u) are arbitrary functions of u. Therefore metric (38) and (39) is
in the KS form for an arbitrary choice of H 0(u, xi), since it can always be rewritten as
ds2 = ds2

flat +
(
H 0 − H 0

flat

)
du2.

A similar argument can be used to show that also higher-dimensional type N pp-waves
belong to the KS class—the corresponding metric functions Wi and H 0

flat entering (38) can be
found in [22]5.

We can thus summarize the results of this section in the following (see theorem 32.6 of
[4] for n = 4):

Proposition 4. In arbitrary dimension n � 4, the Kerr–Schild vacuum spacetimes with a
non-expanding KS congruence k coincide with the class of vacuum Kundt solutions of Weyl
type N.

4.2.3. KS does not include all pp-waves for n > 4. A comment on some differences between
n = 4 and n > 4 dimensional pp-waves is now in order. By a natural extension of the n = 4
terminology of [4], in any dimension pp-waves are defined as spacetimes (not necessarily of
the KS form) admitting a covariantly constant null vector �, i.e. �a;b = 0. It then follows
directly from the definition of the Riemann tensor that

Rabcd�
d = 0. (41)

For four-dimensional vacuum spacetimes this is equivalent to the definition of the type N
[4]. It is also known that, in addition to being of Weyl type N, all four-dimensional vacuum
pp-waves can be cast in the KS form [4].

By contrast, in higher dimensions equation (41) is only a necessary, but not sufficient
condition for type N. It only says that the type is II (or more special) [19], and in fact for n > 4
one can easily construct explicit vacuum pp-waves of the types III, II and D, as we now briefly
discuss.

Vacuum pp-wave metrics of Weyl type III can be obtained directly by specializing results
of [22] to the vacuum case. One simple five-dimensional example is metric (38) with

W2 = 0, W3 = h(u)x2x4, W4 = h(u)x2x3, (42)

H = H0 = h(u)2

[
1

24
((x3)4 + (x4)4) + h0(x2, x3, x4)

]
, (43)

where h0(x2, x3, x4) is linear in x2, x3, x4.
In addition, one can also construct (n1 + n2)-dimensional vacuum pp-waves of Weyl type

II, e.g., by taking a direct product of a n1-dimensional vacuum pp-wave of Weyl type N or
III with an Euclidean n2-dimensional Ricci-flat (but non-flat) metric (with both n1, n2 � 4,
and n1 � 5 if the n1-dimensional pp-wave is of type III)6. Similarly, (n1 + n2)-dimensional
vacuum pp-waves of Weyl type D arise if one takes a direct product of a n1-dimensional flat
spacetime with an Euclidean n2-dimensional curved, Ricci-flat space (with n1 � 2, n2 � 4).

5 There is a typo in equation (96) of [22]: just drop the inequality m � n in the second sum. We thank Nicos Pelavas
for correspondence on this point.
6 The proof of these statements is straightforward and we just sketch it. First, all the mentioned products are really
pp-waves since a covariantly constant vector field � defined in the n1-dimensional geometry can be trivially lifted to the
(n1 + n2)-dimensional product geometry, in which it will still be covariantly constant. Such products are necessarily
of Weyl type II or more special (with the lifted � being a multiple WAND), as follows from the decomposable form
of the Weyl tensor of product geometries [6, 16]. They cannot be of Weyl type III or N since they inherit non-zero
curvature invariants (e.g., Kretschmann) from the n2-dimensional Euclidean space. They cannot be of type D since,
starting from a frame adapted to the canonical form of the (type N or III) Weyl tensor of the n1-dimensional spacetime,
the components of negative boost weight turn out to be unchanged under null rotations, and thus cannot be set to zero.
The only possible Weyl type is thus indeed II.

9
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Table 1. Properties of various types of vacuum pp-waves.

Weyl type KS VSI

4D N
√ √

HD N
√ √

HD III X
√

HD II (D) X X

As a direct consequence of proposition 4, such n > 4 pp-waves of Weyl type II, D or III
do not admit a KS form. They thus represent a ‘counterexample’ to both the n = 4 results,
namely they are (higher-dimensional) vacuum pp-waves that are neither of the type N nor of
the KS form.

Note, in addition, that pp-waves of Weyl type II and D cannot belong to the VSI class
of spacetimes (which is compatible only with the types III, N and O [21]), and therefore
they necessarily possess some non-vanishing curvature invariants. In table 1 we summarize
the aforementioned properties of various types of vacuum pp-waves in four (4D) and higher
dimensions (HD).7

5. Expanding vacuum solutions

Non-expanding vacuum solutions of the KS class have been fully classified according to the
discussion of the previous section. Let us now consider solutions with an expanding k, i.e.
θ �= 0.

5.1. Consequences of Einstein’s equations

For θ �= 0, from (31) one can write D lnH as

D lnH = LikLik

(n − 2)θ
− (n − 2)θ. (44)

Substituting into (30) one gets

LikLjk = LlkLlk

(n − 2)θ
Sij . (45)

Interestingly, this equation is independent of the KS function H and it is thus a purely
geometric condition on the KS null congruence k in the Minkowskian ‘background’ ηab

(recall the discussion of subsection 2.2). We will thus refer to it as the optical constraint8. Its
consequences on the form of Lij will be studied in detail in appendices C and D, and they will
be employed in the following sections.

7 In fact, in view of our previous comments a similar table applies to all Kundt solutions, in which case type III
appears also in 4D [4], again VSI but not KS.
8 This constraint is of course identically satisfied in the trivial case σ = 0 = ω (i.e., Lij = Sij = θδij ) which
includes, e.g., the Schwarzschild–Tangherlini solution [20]. Less trivial examples are provided by the KS congruence
of static black strings, for which σ �= 0 and ω = 0, or of rotating black strings and Myers–Perry black holes
(which were indeed constructed in [5] using the KS anstatz), both having σ �= 0 �= ω. (To explicitly verify these
statements one may use the corresponding optical quantities calculated in any dimension in [8, 16].) On the other
hand, a simple example of a geodetic null congruence violating the optical constraint is provided by the vector field
k =

√
1 + f 2(φ)∂t + f (φ)∂ρ + ∂z in the flat geometry ds2 = −dt2 + dρ2 + ρ2 dφ2 + dz2 + δAB dyA dyB (with

A, B = 1, . . . , n − 4). This geodetic null congruence is expanding and shearing for f �= 0, and violates the optical
constraint if f,φ �= 0, in which case it is also twisting.

10
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Using (17), equation (45) can also be rewritten in terms of the shear and twist matrices
as

(n − 2)θ

[(
σ 2

ij − 1

n − 2
σ 2δij

)
−

(
A2

ij +
1

n − 2
ω2δij

)
+ 2σk(iAj)k

]

= [σ 2 + ω2 − (n − 2)θ2]σij . (46)

This traceless equation is in fact equivalent to (32), after using (44) (since the trace of
equation (45) is obviously an identity)9. Contracting (46) with σij one finds the scalar
constraint

σ 2[σ 2 + ω2 − (n − 2)θ2] − (n − 2)θ
[
σ 2

ij σij − σijA
2
ji

] = 0. (47)

So far we have discussed consequences of the vacuum equation Rij = 0. Next, one has
to make sure that equation (33) (i.e., R01 = 0) is now compatible with (44). In fact, taking the
D-derivative of (44) and using the scalar Sachs equations of [9] and equation (47), one exactly
recovers equation (33). This is thus automatically satisfied, provided the preceding equations
hold. Of course, when looking for an explicit solution one should also solve the remaining
Einstein equations, namely R11 = 0 and R1i = 0. These are, however, too involved unless
one makes some further assumptions (such as the presence of symmetries, etc). In any case,
they are not required in the following discussion.

5.2. Algebraic type

From the general result of proposition 2, we already know that the Weyl tensor of any KS
metric with a geodetic k is of type II or more special. Here we show that, in fact, the types III
and N are not possible for vacuum expanding solutions.

By reductio ad absurdum, let us thus assume that all components of the Riemann (Weyl)
tensor with boost weigh zero, i.e. (A.2)–(A.4), vanish. In particular, we can multiply R0i1j by
Llj . Using the optical constraint (45), the condition R0i1jLlj = 0 gives

SilD lnH = −2AkiSkl, (48)

where we have dropped an overall factor LjkLjk = σ 2 + ω2 + (n − 2)θ2 > 0. Using as
a ‘spatial’ basis an eigenframe of Sij , we have Sij = diag(s(2), s(3), s(4), . . .). At least one
eigenvalue must be non-zero, say s(2) �= 0. Then from (48) with i = l = 2 we get

s(2)D lnH = −2s(2)A22, (49)

which obviously can never be satisfied since A22 = 0 (and since the case DH = 0 is
‘forbidden’, cf appendix B). This contradiction completes the proof of

Proposition 5. In arbitrary dimension n � 4, Kerr–Schild vacuum spacetimes with an
expanding KS congruence k are of algebraic type II or D.

For a similar result for n = 4 cf [4, 24].

9 In odd dimensions, it implies that one cannot have σij = 0 if Aij �= 0 (this was already known in a more general
context [9]).
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5.3. Fixing the r-dependence

As detailed in appendices C and D, the optical constraint (45) and the Sachs equations [9]

imply that there exists an appropriate frame, satisfying
i

Mj0 = 0, such that the matrix Lij

takes the block diagonal form

Lij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(1)

. . .

L(p)

L̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

The first p blocks are 2 × 2 and the last block L̃ is a (n− 2 − 2p)× (n− 2 − 2p)-dimensional
diagonal matrix. They are given by

L(μ) =
(

s(2μ) A2μ,2μ+1

−A2μ,2μ+1 s(2μ)

)
(μ = 1, . . . , p),

s(2μ) = r

r2 +
(
a0

(2μ)

)2 , A2μ,2μ+1 = a0
(2μ)

r2 +
(
a0

(2μ)

)2 ,

(51)

L̃ = 1

r
diag(1, . . . , 1︸ ︷︷ ︸

(m−2p)

, 0, . . . , 0︸ ︷︷ ︸
(n−2−m)

), (52)

with 0 � 2p � m � n−2. The integer m denotes the rank of Lij , so that Lij is non-degenerate
when m = n − 2.

Accordingly, the optical scalars are given by

(n − 2)θ = 2
p∑

μ=1

r

r2 +
(
a0

(2μ)

)2 +
m − 2p

r
, (53)

ω2 = 2
p∑

μ=1

(
a0

(2μ)

r2 +
(
a0

(2μ)

)2

)2

, (54)

σ 2 = 2
p∑

μ=1

(
r

r2 +
(
a0

(2μ)

)2 − θ

)2

+ (m − 2p)

(
1

r
− θ

)2

+ (n − 2 − m)θ2. (55)

Note, in particular, that the expansion θ indicates the presence of a caustic at r = 0, except
when 2p = m (with m even). Note also that shear is generically non-zero (the special case
σ = 0 will be discussed below). Twist is zero if and only if p = 0 (or, equivalently, all a0

(2μ)

vanish).
One can similarly fix the r-dependence of all Ricci rotation coefficients (at least with the

additional ‘gauge’ condition Ni0 = 0). Since this is not required in the following discussion,
the corresponding results are relegated to appendix D.

Knowing the form of Lij enables us to solve the vacuum equation (44), where now
LikLik = (n − 2)θr−1. The r-dependence of H is thus given by

H = H0

rm−2p−1

p∏
μ=1

1

r2 +
(
a0

(2μ)

)2 . (56)

12



Class. Quantum Grav. 26 (2009) 025008 M Ortaggio et al

This includes in particular the solution of (44) in the case when its rhs vanishes, i.e. DH = 0,
which happens for m = 1 (implying p = 0). This is, however, incompatible with the Bianchi
identities [8] as explained in appendix B. Hence, in the following we shall restrict to

2 � m � n − 2. (57)

For example, the r-dependence in the special case of Myers–Perry solutions is obtained
by setting m = n − 2 in (56) (note, however, that function (56) is more readily compared with
that of [5] using the parametrization (6) of [25] for the direction cosines). Black holes with
only one non-zero spin [5], in particular, correspond to the further choice p = 1, and static
black holes to p = 0 (see also subsection 5.7).

In general, the asymptotic behavior of H for r → ∞ is given by

H = H0

rm−1
+ O(r−m−1), (58)

i.e., the function H behaves as a Newtonian potential in (m + 1) space dimensions with r as a
radial coordinate.

5.4. On the Goldberg–Sachs theorem

Let us now use the above results to comment on a partial extension to higher dimensions
(but restricted to the KS solution) of the Goldberg–Sachs theorem. In four dimensions, this
is a well-known theorem stating that in a vacuum (non-flat) spacetime, a null congruence is
geodetic and shearfree if and only if it is a multiple principal null direction of the Weyl tensor
[4, 11, 12].

For n = 4, the matrix Lij associated with a generic null vector � [8] is 2 × 2 and can be
written in terms of the standard Newman–Penrose notation [4] as [9]10

Lij = −1

2

(
(ρ + ρ̄) + (σ + σ̄ ) −i(ρ − ρ̄) + i(σ − σ̄ )

i(ρ − ρ̄) + i(σ − σ̄ ) (ρ + ρ̄) − (σ + σ̄ )

)
. (59)

In vacuum, when � is a multiple principal null direction of the Weyl tensor the Goldberg–
Sachs theorem implies σ = 0, so that Lij reduces to

Lij = −1

2

(
ρ + ρ̄ −i(ρ − ρ̄)

i(ρ − ρ̄) ρ + ρ̄

)
. (60)

We have observed in previous sections that for vacuum KS spacetimes the KS vector
� = k is indeed a (geodetic) multiple WAND for any n � 4. Accordingly, in the special case
n = 4, equations (50)–(52) must be of the shearfree form (60). It is easy to verify that this is
indeed the case, since for n = 4 we necessarily have m = 2 (cf (57)) and therefore Lij either
coincides with one of the blocks L(μ) (for p = 1, i.e. ρ − ρ̄ �= 0) or is proportional to the
two-dimensional identity matrix (for p = 0, i.e. ρ − ρ̄ = 0).

However, it has been pointed out [5, 8, 9, 16, 26] that the Goldberg–Sachs theorem
cannot be extended to higher dimensions in the most direct formulation ‘multiple WANDs
are geodetic and shearfree in vacuum’. Indeed, we have already noted that k is generically
shearing. Nevertheless, for any n > 4 our result (50)–(52) can be viewed as a ‘weaker’ higher-
dimensional Goldberg–Sachs theorem, albeit restricted to KS spacetimes: in a suitable basis,
the matrix Lij (associated with the geodetic, multiple WAND k) consists of 2×2 blocks that are
‘shearfree’, i.e. reflecting the four-dimensional shearfree condition (60) in various orthogonal

10 Note that, exceptionally in this subsection only, the complex shear σ does not coincide with the real shear scalar
defined in section 3 and used throughout the paper (although they are simply related), but it is the usual Newman–
Penrose spin coefficient.
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2-planes11. The only ‘exceptions’ to this of course arise in odd spacetime dimensions (there
will be an isolated one-dimensional block) and in the degenerate case det L = 0, in which
one may add an arbitrary number of zeros along the diagonal (most simply, by just taking a
direct product with flat dimensions). This ‘generalized Goldberg–Sachs condition’ can also
be expressed in a basis-independent form simply as (dropping the matrix indices)

[S,A] = 0, A2 = S2 − FS, (61)

where S = (L + LT )/2 and A = (L − LT )/2 are the symmetric and antisymmetric parts of
L, and F can be fixed as in (C.1) by taking the trace. The first equation in (61) is clearly
equivalent to the condition [L,LT ] = 0, i.e. L is a (real) normal matrix. The second equation
in (61) is just a consequence of the first one when n = 4.

Let us also emphasize that the above ‘weak Goldberg–Sachs theorem’ has, in fact, been
proven in more generality (i.e., without the KS assumption) for higher-dimensional vacuum
spacetimes of Weyl type III and N: the WANDs of such spacetimes must be geodetic, and the
associated matrix Lij is indeed of the form (50), with only one non-zero 2 × 2 block and zeros
elsewhere [8]12.

For a possible complete extension of the Goldberg–Sachs theorem, one should study the
remaining possibilities, i.e. n > 4 vacuum spacetimes of Weyl type II and D that do not
belong to the KS family. In addition, one should also analyze the inverse implication, that is,
whether in vacuum the existence of a geodetic null congruence with an associated matrix Lij

of the form (50) implies that the algebraic type is II or more special (this is already known
in the simple Kundt case Lij = 0 [9]). Let us recall that the ‘geodetic part’ of the n > 4
Goldberg–Sachs theorem has been discussed in [16].

It is worth mentioning that a n > 4 extension of the Robinson theorem has been proven in
even dimensions [27] assuming a generalization of the shearfree condition (see also [28–31])
different from ours. The relation to our work will be discussed elsewhere.

5.5. Weyl tensor components of boost weight zero

The r-dependence of the matrix Lij determines explicitly also the r-dependence of the Weyl
components with boost weight 0 (cf appendix A). In order to express these components
compactly, it is convenient to introduce a (n − 2) × (n − 2) matrix �ij ≡ C0i1j along with
its symmetric and antisymmetric parts �S

ij ≡ �(ij) and �A
ij ≡ �[ij ]. All boost order zero

components of the Weyl tensor are then determined in terms of the (n−2)(n−3)/2 independent
components of �A

ij and the (n− 1)(n− 2)2(n− 3)/12 independent components of Cijkl , since

�S
ij = − 1

2Cikjk, C01ij = 2�A
ij , C0101 = � ≡ �ii [8, 16].

It follows from appendix A that, using the adapted frame of appendix C, the matrix �ij

inherits the block structure of Lij with the only non-zero components and trace given by

�2μ,2μ = �2μ+1,2μ+1 = −2HA2
2μ,2μ+1 − s(2μ)DH, (62)

�2μ,2μ+1 = �A
2μ,2μ+1 = −D(HA2μ,2μ+1), (63)

�αβ = −1

r
δαβDH, � = D2H = −(n − 2)θDH − 2Hω2. (64)

11 Let us recall that we have been focusing on the expanding case θ �= 0, since θ = 0 ⇒ Lij = 0 for vacuum KS
spacetimes (see section 4).
12 More precisely, this has been proven for all n > 4 solutions of Weyl type N, for n > 4 non-twisting solutions of
type III, and for all n = 5 solutions of type III. For twisting type III solutions with n > 5 an extra assumption on the
Weyl tensor was necessary [8].
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Up to index permutations, the non-zero Cijkl components are

C2μ,2μ+1,2μ,2μ+1 = 2H
(
3A2

2μ,2μ+1 − s2
(2μ)

)
, (65)

C2μ,2μ+1,2ν,2ν+1 = 2C2μ,2ν,2μ+1,2ν+1 = −2C2μ,2ν+1,2μ+1,2ν

= 4HA2μ,2μ+1A2ν,2ν+1, (66)

C2μ,2ν,2μ,2ν = C2μ,2ν+1,2μ,2ν+1 = −2Hs(2μ)s(2ν), (67)

C(α)(i)(α)(i) = −2Hs(i)r
−1, (68)

where ν �= μ.
Let us observe that all the above components fall off at r → ∞ as 1/rm+1 or faster (in the

non-twisting case, i.e. when all A2μ,2μ+1 vanish, only 1/rm+1 terms are present, cf also [10]).
Since (as shown above) expanding KS spacetime can be only of Weyl type II or D in

vacuum, Weyl components of boost weight 0 fully determine the Kretschmann scalar, i.e.

RabcdR
abcd = 4(R0101)

2 + RijklRijkl + 8R0j1iR0i1j − 4R01ijR01ij . (69)

In vacuum Rabcd = Cabcd , and we can use the above compact notation to re-express

RabcdR
abcd = 4�2 + CijklCijkl + 8�S

ij�
S
ij − 24�A

ij�
A
ij . (70)

This will be useful soon in the discussion of singularities.
To conclude, let us observe that Weyl components of boost weights −1 and −2 contain

also derivatives different from D, and we cannot study their r-dependence at this general level.

5.5.1. Type D KS spacetimes: also the second multiple WAND is geodetic. Type D KS
spacetimes are a special subclass of general KS metrics. By definition of type D, only boost
weight 0 components of the Weyl tensor (as given above) are non-zero in an adapted frame,
i.e. they admit a second multiple WAND not parallel to the KS (geodetic) vector k. Here
we show that this second WAND is also geodetic (as already known in the special case of
Myers–Perry black holes [17], see also [16]).

First, note that, from (63), one has �A
ij = 0 ⇔ ω2 = 0 (cf equations (51) and (56)). In

addition, since �S
ij �= 0 (cf (64) and appendix B), for ω = 0 (i.e., p = 0) it is easy to see

from (64) that �(i)(i) �= −� for all values of i. Thus, for type D KS spacetimes proposition
6 of [16] implies that the second multiple WAND is indeed geodetic (since one can always

align the frame vector n to it, and this is compatible with the assumed condition
i

Mj0 = 0).
This is a general consequence of the Goldberg–Sachs theorem in four dimensions, but it is a
non-trivial result for n > 4 (cf [16]). Therefore, it can be viewed as another partial extension
of the Goldberg–Sachs theorem, again limited to KS spacetimes.

5.6. Singularities

The form (56) of the KS function suggests that there may be singularities at r = 0, except for
the cases 2p = m (m even) and 2p = m − 1 (m odd). In order to invariantly identify possible
curvature singularities, let us analyze the behavior of the Kretschmann scalar (70).

Equation (70) clearly consists of a sum of squares, except for the last term, which is
negative. For our purposes, it suffices to focus on the first and the last terms determined by
(63) and (64) with (51) and (56).
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5.6.1. ‘Generic’ case (2p �= m, 2p �= m − 1). Excluding for now the special cases 2p = m

and 2p = m − 1, from (56) one easily finds that for r ∼ 0

H ∼ r−(m−2p−1), DH ∼ r−(m−2p), D2H ∼ r−(m−2p+1). (71)

Inserting this into (63) and the second of equations (64), it is clear that the first term in (70)
will dominate over the last term near r ∼ 0, and therefore the Kretschmann scalar will diverge
at r = 0, thus confirming the presence of a curvature singularity. Note that this ‘generic’ case
includes, in particular, all non-twisting solutions, for which p = 0 (and �A

ij = 0).
As an explicit example, n > 5 Myers–Perry black holes with only one non-zero spin

(m = n − 2, p = 1) fall in this subclass, and in appropriate coordinates [5] one has
2H = −μr5−n/(r2 + a2 cos2 θ) (a is the angular momentum parameter). See [5] for a
detailed discussion, including other possible examples with more than one rotation parameter.

5.6.2. Special cases 2p = m and 2p = m − 1. Let us now comment on the cases
2p = m (m even) and 2p = m − 1 (m odd), for which H = rH0

∏m/2
μ=1

[
r2 +

(
a0

(2μ)

)2]−1

and H = H0
∏(m−1)/2

μ=1

[
r2 +

(
a0

(2μ)

)2]−1
, respectively. With these assumptions H and its D-

derivatives are clearly non-singular at r = 0 (since p denotes the number of non-vanishing
terms a0

(2μ) in (56)). However, in general, a0
(2μ) may be functions of spacetime coordinates

different from r. Given a specific KS solution, there may thus exist ‘special points’ where
some of the a0

(2μ) vanish. Let us say, e.g., that q (with q � 1) of such terms a0
(2μ) vanish

simultaneously there. Then, proceeding as above one finds that at those special points, when
r → 0

H ∼ r−2q+1, DH ∼ r−2q, D2H ∼ r−2q−1 (2p = m), (72)

H ∼ r−2q, DH ∼ r−2q−1, D2H ∼ r−2q−2 (2p = m − 1). (73)

Again, the first term in (70) will dominate over the last one and the Kretschmann scalar
will diverge at the ‘special points’ when r → 0.

For example, for both the n = 4 Kerr solution (m = 2, p = 1) and the n = 5 Myers–Perry
metric with only one spin (m = 3, p = 1) the only non-zero a0

(2μ) function is determined

by
(
a0

(2)

)2 = a2 cos2 θ . Hence, there is a curvature singularity at r = 0 and θ = π/2
(this is the well-known ring-shaped singularity of the Kerr spacetime). By contrast, the
n = 5 Myers–Perry solution with two non-zero spins (again, m = 3, p = 1) contains(
a0

(2)

)2 = a2 cos2 θ + b2 sin2 θ (in the notation of, e.g., [26]), which never vanishes. Possible
singularities of rotating black hole spacetimes are studied in more generality in [5].

5.7. Special subfamilies

We now briefly comment on special subfamilies of expanding KS solutions characterized by a
non-twisting or a non-shearing KS vector k. In relation to the first possibility, let us note that
general properties of higher-dimensional non-twisting vacuum spacetimes (not necessarily
KS) have been recently studied in [10], and that all such solutions are explicitly known with
the additional assumptions of non-zero expansion and vanishing shear (‘Robinson–Trautman
spacetimes’) [32, 33].

5.7.1. Non-twisting solutions. The KS vector k is non-twisting if and only if Lij is a
symmetric matrix, i.e. for p = 0. This clearly gives

Lij = Sij = 1

r
diag(1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
(n−2−m)

), (74)
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so that (cf (53)–(55))

θ = 1

r

m

n − 2
, ω = 0, σ 2 = 1

r2

m(n − 2 − m)

n − 2
. (75)

From equation (56), the r-dependence of H becomes simply

H = H0

rm−1
. (76)

For Weyl components with boost weight 0 we now have the non-zero components

�αβ = �S
αβ = H0

rm+1
(m − 1)δαβ, (77)

C(α)(β)(α)(β) = − 2H0

rm+1
. (78)

As mentioned above, all non-twisting KS solutions contain a curvature singularity at
r = 0.

Explicit n-dimensional examples of non-twisting KS spacetimes with m � 2 are static
(uniform) black strings and black branes constructed as a direct product of a (m + 2)-
dimensional Schwarzschild black hole with (n − m − 2)-dimensional flat space (which are of
Weyl type D [16]). In suitable coordinates, these can be written as

ds2 = [−(2 dr + K du) du + r2 d�2
m + δAB dyA dyB

]
+

μ

rm−1
du2, (79)

where the metric in square brackets represents a flat n-dimensional spacetime (with A,B =
1, . . . , n − m − 2, and d�2

m being the line element of a m-dimensional space of constant
curvature K), ka dxa = du and 2H = −μr−m+1.

The above non-twisting KS solutions are, in addition, non-shearing iff m = n − 2 (the
Kundt case m = 0 is ruled out here by the assumption θ �= 0). In this case, they must belong
to the family of higher dimensional Robinson–Trautman spacetimes [32]. In fact, one can see
from the results of [32] that the only Robinson–Trautman solutions that are also KS are given
by static Schwarzschild–Tangherlini black holes, i.e. by metric (79) with m = n− 2 (in which
case a cosmological constant can also be added [32] while still preserving the KS form)13.

5.7.2. Non-shearing solutions (n even). Non-shearing, non-twisting solutions belong to the
already-discussed KS–Robinson–Trautman class, so that we can now focus on non-shearing
but twisting solutions. Recall [9] that σ = 0 and ω �= 0 can occur only for even n (and for
θ �= 0).

We see from (55) that σ = 0 requires m = n − 2 (i.e., Lij must be non-degenerate), so
that m is also necessarily even. Then, we have to consider two possible situations.

(1) If 2p = n − 2, k is shearfree iff s(2μ) = θ for any μ = 1, 2, . . . , (n − 2)/2 (cf (55)), so
that a0

(2) = a0
(4) = . . . a0

(n−2) ≡ a0, and

θ = r

r2 + a2
0

, ω = √
n − 2

a0

r2 + a2
0

. (80)

This agrees with the general behavior found in [9] (note also that AikAjk = ω2

n−2δij , as
expected from the optical constraint (45) with σ = 0).

13 The n > 4 Robinson–Trautman family contains, in addition, generalized black holes with non-constant curvature
horizons [32], and ‘exceptional’ solutions with ‘zero mass’ μ = 0 [32, 33] (see also [16]). These cannot be KS
spacetimes because their Weyl components Cijkl contain a r−2 term which is absent from (78).
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The function H reduces to

H = rH0(
r2 + a2

0

) n−2
2

. (81)

This includes, for instance, the n = 4 Kerr solution. Explicit solutions for n > 4 seem to
be presently unknown.

(2) If 2p < n − 2, we have the additional condition θ = 1/r . This implies ω = a0 = 0,
which is the already-discussed non-twisting case.

6. Conclusions

We have presented a systematic study of geometric properties of KS metrics in higher
dimensions. We have preliminary discussed general results that do not require any further
assumptions. Namely, the KS vector k is geodetic if and only if the energy–momentum tensor
satisfies Tabk

akb = 0 (proposition 1). When this happens (e.g., in vacuum) the Weyl tensor is
of type II (or more special) and k is a multiple WAND (proposition 2). Furthermore, we have
shown that optical properties of k are the same with respect to both the flat background and
the full metric. Subsequently, our analysis has focused on vacuum solutions.

For non-expanding metrics the most general KS solution is now known, since they are
equivalent to the type N Kundt class in vacuum (proposition 4). Expanding solutions required
a more detailed analysis. Again, they turned out to be algebraically special, but the only
possible types are II and D (proposition 5). We have also shown that the choice of a possible
KS congruence is restricted in vacuum by an ‘optical constraint’. In n = 4 dimensions this
requires k to be a shearfree congruence, in agreement with the standard Goldberg–Sachs
theorem. For n > 4 we have proven a partial and apparently weaker extension of this theorem,
which however naturally reduces to the familiar result when n = 4. This extension has
been derived here only for KS solutions but, interestingly, it agrees with previous results for
general vacuum type III/N spacetimes [8]. Moreover, by integration of the Ricci identities
we have fixed the dependence of the optical matrix Lij and of the KS function H on the
affine parameter r along k. This enabled us to prove the presence of a curvature singularity in
‘generic’ expanding KS spacetimes. As a side remark, let us note that we were interested in
the n > 4 case, but our analysis also applies to the n = 4 case, for which we have rederived
various known results previously scattered in several publications (many reviewed, however,
in [4]).

In future work, it will be interesting to employ our results to possibly find new expanding
KS solutions and to understand to what extent the Myers–Perry metrics exhaust the expanding
vacuum KS class. In addition, further investigation will admit non-zero matter fields and
generalized KS solutions, in which the background is not necessarily flat. These include other
important spacetimes such as rotating black holes in (A)dS [34, 35] and their NUT extensions
[25].
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Appendix A. Frame components of the Riemann tensor (k geodetic)

When k is geodesic and affinely parametrized we find the following frame components of the
Riemann tensor corresponding to the line element (2):

R0i0j = 0, R010i = 0, R0ijk = 0, (A.1)

R0101 = D2H, R01ij = 2AjiDH + 4HSk[jAi]k, (A.2)

R0i1j = −LijDH − 2HAkiLkj , (A.3)

Rijkl = 4H(AijAkl + Ak[jAi]l + Sl[iSj ]k), (A.4)

R011i = −δi(DH) + 2L[i1]DH + LjiδjH + 2H(2LjiL[1j ] + Lj1Aji), (A.5)

R1ijk = 2L[j |iδ|k]H + 2AjkδiH − 2H
(
δiAkj + L1jLki − L1kLji

−Lj1Aki + Lk1Aji + 2L[1i]Akj + Alj

l

Mki − Alk

l

Mji

)
, (A.6)

R1i1j = δ(i(δj)H) +
k

M(ij)δkH + (2L1j − Lj1)δiH
+ (2L1i − Li1)δjH + N(ij)DH − Sij�H + 2H

(
δ(i|L1|j)

−�Sij − 2L1(iLj)1 + 2L1iL1j − Lk(i|Nk|j) − 2HLk(iAj)k

+ L1k

k

M(ij) − 2HAikAjk − Lk(i

k

Mj)1 − L(i|k
k

M |j)1
)
. (A.7)

For certain calculations, it may be useful to note that, using the Ricci identities (11k, [9]),
the above component R1ijk can also be transformed to the somewhat different form

R1ijk = 2AjkδiH − LkiδjH + LjiδkH + 2H(2δ[kSj ]i + 2
l

M [jk] Sil

− 2
l

Mi[j Sk]l + 2L1iAjk − 2L1[jAk]i ). (A.8)

Let us finally emphasize that throughout sections 4 and 5 and in appendix D we restrict
to vacuum spacetimes, so that Cabcd = Rabcd and the Weyl tensor is there given simply by the
above expressions.

Appendix B. Expanding solutions with DH = 0 do not exist in vacuum

In the special case when DH = 0, from the vacuum equation (33) we get ω = 0, i.e. Lij = Sij .
Then equation (30) reads

SikSjk = (n − 2)θSij . (B.1)

Using an eigenframe of Sij , it is easy to see that the only possible solution has the form

Sij = s(2)diag(1, 0, 0, . . .), (B.2)

with s(2) = (n − 2)θ . Now, putting DH = 0, Aij = 0, Lij = Sij and equation (B.2) into
equations (A.2)–(A.4), we find that all components of the Riemann (Weyl) tensor with non-
negative boost weight vanish. The algebraic type must thus be III or N. However, by analyzing
the Bianchi identities it has been proven in [8] that the canonical form of the expansion matrix
Sij for type N and (non-twisting) type III spacetimes in vacuum is Sij = s(2)diag(1, 1, 0, 0 . . .)

(cf equations (50) and (C.20) of [8]). This is clearly incompatible with (B.2). Therefore, there
do not exist vacuum solutions of the KS class with θ �= 0 and DH = 0.
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Appendix C. Solving the optical constraint

In this appendix we provide a solution of the optical constraint (45) for the matrix Lij , in the
case of an expanding KS vector, i.e. θ �= 0. We introduce the compact notation

F = LlkLlk

(n − 2)θ
= σ 2 + ω2 + (n − 2)θ2

(n − 2)θ
, (C.1)

so that (45) simply reads

LilLjl = FSij . (C.2)

In the following, it will be convenient to analyze separately the two possible cases
det L �= 0 and det L = 0.

C.1. Non-degenerate case

Let us start with the non-degenerate case det L �= 0, so that there exists a matrix inverse of
Lij . Let us denote by L−1

ij such an inverse matrix (or, sometimes, its (ij)-element—there
will be no ambiguity according to the context). It is also convenient to define symbols for its
antisymmetric and symmetric parts, i.e.

Bij = L−1
[ij ], Cij = L−1

(ij). (C.3)

Now, multiplying (C.2) by L−1
kj one gets

Lik = FSijL
−1
kj , (C.4)

and by further multiplication by L−1
li we find δlk = FClk , so that

L−1
ij = F−1δij + Bij . (C.5)

Equation (C.4) thus becomes

Lik = Sik + FSijBkj . (C.6)

The symmetric and anti-symmetric parts of this equation give rise, respectively, to

BkjSji + BijSjk = 0, (C.7)

2Aik = F(BkjSji − BijSjk). (C.8)

The symmetric matrix Sij defines a natural frame of orthonormal eigenvectors. It
is thus convenient to identify our basis vectors m(i) with such eigenvectors14, so that
Sij = diag(s(2), s(3), s(4), . . .). Equations (C.7) and (C.8) then read

Bki(s(i) − s(k)) = 0, (C.9)

2Aik = FBki(s(i) + s(k)). (C.10)

If Bki = 0 for all values of the indices, then equations (C.9) and (C.10) are identically
satisfied and, by (C.5), Lij = Fδij , and all eigenvalues of Sij take the same value s(i) = F .

If, instead, for some components Bk̄ī �= 0, equation (C.9) implies that the corresponding
eigenvalues of Sij coincide (i.e., s(ī) = s(k̄)). After ordering the basis vectors so as to have
multiple eigenvalues next to each other on the diagonal of Sij , the matrix Bki must thus be

14 A priori, there is no reason to expect that this frame is parallely propagated along k, a condition that we do not
require here. However, we shall see in the following appendix that such an eigenframe is, in fact, compatible with
parallel transport.
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composed of (antisymmetric) blocks with their diagonal on the main diagonal, each block
corresponding to a repeated s(ī) (e.g., B23 �= 0 implies s(3) = s(2) and then, if s(4) �= s(2), we
have B24 = 0, etc). Moreover, there can be at most one eigenvalue of Sij with multiplicity 1,
and this must equal F (supposing, e.g., that s(2) �= s(k̂) for k̂ = 3, . . . , n − 1, then one gets
B2k̂ = 0, so that, by (C.5), L−1

2k̂
= 0 = L−1

k̂2
, L−1

22 = F−1, and thus s(2) = F ; and of course
there cannot be distinct eigenvalues both equal to F).

Indices ī, j̄ , k̄, . . . take values within a given block (and thus s(ī) = s(k̄)), so that equation
(C.10) now splits into separate equations for each block of the matrix Bki , i.e.

Aīk̄ = s(ī)FBk̄ī , (C.11)

and components of Aij with indices referring to different blocks necessarily vanish (since thus
does Bij ). The matrix Aij has thus the same block structure of Bij (or simpler, if some of
the s(i) vanish). Equation (C.11) also implies that all eigenvalues s(i) (for all blocks) must be
non-zero, since we now consider the case det L �= 0.

Using (C.5), (C.6) and (C.11) within each block we can thus write

L−1
ī j̄

= F−1δīj̄ + Bīj̄ , Līj̄ = s(ī)(δīj̄ + FBj̄ī). (C.12)

But since these two blocks must be inverse to each other (and since s(ī) �= 0 takes the same
value for any ī within a block), we necessarily have

Bīk̄Bj̄ k̄ = F − s(ī)

F2s(ī)

δīj̄ . (C.13)

This implies that any block-matrix Bīj̄ must be even-dimensional (and that (F−s(ī))s(ī) >

0), unless it vanishes. When this happens, one has simply L−1
ī j̄

= F−1δīj̄ and Līj̄ = s(ī)δīj̄ , so
that

s(ī) = F (⇔ Bīj̄ = 0). (C.14)

Hence, if there exist more than one block satisfying Bīj̄ = 0, to such values of the indices
there corresponds only one possible eigenvalue s(ī) = F of the matrix Sij , i.e. Sij contains a
diagonal block given by F diag(1, 1, . . . , 1).

Within each even-dimensional block with Bīj̄ �= 0, Sīj̄ = s(ī)δīj̄ and we can thus finally
perform a rotation so as to put this anti-symmetric matrix in a canonical form with two-
dimensional anti-symmetric blocks (constrained by (C.13)) along the diagonal and zeros
elsewhere.

To summarize, we have shown that the matrix L−1
ij can always be written in a block-

diagonal form. If its antisymmetric part Bij does not vanish identically, there is a number
p � (n − 2)/2 of two-dimensional blocks of the form

L−1
(μ) =

(
F−1 −F−1

(F−s(2μ)

s(2μ)

)1/2

F−1
(F−s(2μ)

s(2μ)

)1/2 F−1

)
,

(C.15)
μ = 1, . . . , p, 0 � p � n − 2

2
.

s(2μ) need not be all distinct and thus some two-blocks may be identical.
In addition, there is a (n − 2 − 2p) × (n − 2 − 2p)-dimensional diagonal block

L̃−1 = F−1diag(1, 1, . . . , 1). (C.16)

Since each block can be inverted separately, finding the explicit form of the matrix Lij is
now straightforward. This consists of p blocks of the form

L(μ) =
(

s(2μ) [s(2μ)(F − s(2μ))]1/2

−[s(2μ)(F − s(2μ))]1/2 s(2μ)

)
, (C.17)
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and of one (n − 2 − 2p) × (n − 2 − 2p)-dimensional diagonal block

L̃ = F diag(1, 1, . . . , 1︸ ︷︷ ︸
(n−2−2p)

). (C.18)

More explicitly, the matrix Lij thus takes the form

Lij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(1)

L(2)

. . .

L(p)

L̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.19)

A.2. Degenerate case

Let us now study the degenerate case det L = 0 = det LT . This implies that there exists a
non-zero vector v (living in the ‘transverse’ space spanned by vectors m(i)) such that LT v = 0.
By (C.2) this gives also Lv = 0. If we now choose an orthonormal basis such that, say, m(n−1)

corresponds to v, we can rewrite LT v = 0 = Lv as

L(n−1),i = 0 = Li,(n−1). (C.20)

In addition, the optical constraint (C.2) now reduces to Līk̄Lj̄ k̄ = FSīj̄ , with the barred indices
ranging from 2 to (n− 2) only. In other words, we have the same equation in a reduced space.
We can then distinguish the two cases det Līj̄ �= 0 and det Līj̄ = 0, and similarly proceed until
we find a subspace with a non-degenerate reduced matrix L. Finally, we can proceed exactly as
in the non-degenerate case. It is thus obvious that the general form of Lij will have the same
block diagonal form (C.19), except that now the diagonal block contains also (n − 2 − m)

zeros,

L̃ = F diag(1, . . . , 1︸ ︷︷ ︸
(m−2p)

, 0, . . . , 0︸ ︷︷ ︸
(n−2−m)

), (C.21)

where m ≡ rank(L) and 0 � 2p � m. The non-degenerate case clearly corresponds to
m = n − 2.

Appendix D. Integration of the Ricci identities

The general form of the Ricci identities in higher dimensions has been given in [9]. Here we
consider them only in the case θ �= 0 and in a form simplified by the fact that � = k is geodetic
and affinely parametrized. Further simplification could be achieved by using a null frame that

is parallely transported along k (which is always a possible choice [9]), i.e.,
i

Mj0 = 0 = Ni0.
For certain purposes, however, it is desirable to retain the full freedom of null rotations of n,
and for now we thus only impose

i

Mj0 = 0. (D.1)

We also employ the special form that the Riemann tensor takes in the case of KS
spacetimes, as given in appendix A, and use the compact notation (62)–(64) (strictly speaking,
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this is defined for the Weyl tensor, but in vacuum we can equivalently apply it to the Riemann
tensor). Moreover, we keep into account consequences of the vacuum equations discussed in
appendix C.

D.1. Sachs equations: form of Lij

Under the above assumptions, equation (11 g, [9]) becomes

DLij = −LikLkj . (D.2)

D.1.1. Non-degenerate case. By methods similar to those of [12], the solution to (D.2) can
be written in terms of its inverse as [36]

L−1
ij = rδij + (L0)−1

ij , (D.3)

where (L0)−1
ij represents L−1

ij at r = 0. For compatibility with the optical constraint, the

‘initial value’ (L0)−1
ij must be of the canonical form obtained in appendix C. The solution for

any r can then be obtained immediately by adding a term rδij to equations (C.15) and (C.16)
evaluated at r = 0.

Hence, the inverse matrix L−1
ij consists of p two-blocks and one (n−2−2p)×(n−2−2p)-

dimensional block of the form, respectively,

L−1
(μ) =

⎛
⎜⎝ F−1

0 + r −F−1
0

(F0−s0
(2μ)

s0
(2μ)

)1/2

F−1
0

(F0−s0
(2μ)

s0
(2μ)

)1/2
F−1

0 + r

⎞
⎟⎠ , (D.4)

L̃−1 = (
F−1

0 + r
)
diag(1, 1, . . . , 1). (D.5)

Correspondingly, the matrix Lij (C.19) consists of blocks

L(μ) = 1

1 + 2rs0
(2μ) + r2s0

(2μ)F0

(
s0
(2μ)(1 + rF0)

[
s0
(2μ)

(
F0 − s0

(2μ)

)]1/2

−[
s0
(2μ)

(
F0 − s0

(2μ)

)]1/2
s0
(2μ)(1 + rF0)

)
, (D.6)

L̃ = F0

1 + rF0
diag(1, 1, . . . , 1). (D.7)

By construction, this matrix Lij satisfies the optical constraint at r = 0. However, note
that the last two equations are of the same form of (C.17) and (C.18), respectively, provided
one rewrites them using

s(2μ) = s0
(2μ)(1 + rF0)

1 + 2rs0
(2μ) + r2s0

(2μ)F0
, F = F0

1 + rF0
. (D.8)

This implies that Lij automatically satisfies the optical constraint for any r. In other words,
the canonical frame determined by the optical constraint is compatible with the condition
i

Mj0 = 0 (and, in particular, with parallel transport along k if Ni0 = 0 is also required).
For practical purposes it will be convenient to simplify the above equations by shifting

the affine parameter as r = r̃ − 1/F0 and simultaneously defining the new quantities
a0

(2μ) = [
s0
(2μ)

(
F0 − s0

(2μ)

)]1/2/(
s0
(2μ)F0

)
. Then one has (dropping tildes over r)

L(μ) = 1

r2 +
(
a0

(2μ)

)2

(
r a0

(2μ)

−a0
(2μ) r

)
, L̃ = 1

r
diag(1, 1, . . . , 1). (D.9)

This general structure of Lij agrees with the results of [16] (up to reordering the basis
vectors) for the specific case of Myers–Perry black holes.
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D.1.2. Degenerate case. When det L = 0, it is easy to see that the vector v (that satisfies
Lv = 0) can be parallely transported along k [36]. We can therefore proceed as in the non-
degenerate case to solve the Sachs equations in the ‘non-zero block’ of Lij , the remaining part
of the matrix keeping its zero form. We thus do not repeat the results here, just replace the
last (n − 2 − m) entries of L̃ by zeros in (D.9).

D.1.3. Summary. In the following, we will often need to refer to the elements of the matrices
Sij and Aij , and we will need a notation that enables us to handle both the non-degenerate and
the degenerate case simultaneously. It will also be convenient to distinguish between indices
α, β, . . . referring to the non-zero eigenvalues of L̃ and ρ, σ , . . . to its zero eigenvalues. For
further compactness, we also use a complex notation (with i being the imaginary unit) and we
summarize the non-zero elements of Lij as

s(2μ) + iA2μ,2μ+1 = r + ia0
(2μ)

r2 +
(
a0

(2μ)

)2 , (μ = 1, . . . , p) (D.10)

s(α) = 1

r
(α = 2p + 2, . . . , m + 1), (D.11)

s(ρ) = 0 (ρ = m + 2, . . . , n − 1). (D.12)

D.2. Remaining Ricci rotation coefficients

The above results for Lij enable us to find the r-dependence of all Ricci rotation coefficients
by integrating the corresponding Ricci identities [9] that contain a derivative along k. From
now on, however, in addition to (D.1) we also use the null rotation freedom on n to set

Ni0 = 0, (D.13)

i.e. we use a null frame that is parallely transported along k.

D.2.1. Form of L1i and Li1. Let us start from equation (11b, [9]), which now takes the form

DL1i = −L1jLji . (D.14)

These equations decouple according to the block structure of Lij , and the resulting coefficients
can be compactly written in a complex form as

L1,2μ + iL1,2μ+1 = (
l0
1,2μ + il0

1,2μ+1

)
(s(2μ) + iA2μ,2μ+1), (D.15)

where l0
1,2μ and l0

1,2μ+1 are real integration ‘constants’, and s(2μ) and A2μ,2μ+1 are given in
(D.10).

The solution for coefficients L1i with i corresponding to the diagonal block of Lij is
simply

L1α = l0
1α

r
, L1ρ = l0

1ρ. (D.16)

Ricci equations (11e, [9]), i.e.

DLi1 = −LijLj1, (D.17)

lead to similar expressions for the coefficients Li1, namely

L2μ,1 + iL2μ+1,1 = (
l0
2μ,1 + il0

2μ+1,1

)
(s(2μ) − iA2μ,2μ+1), (D.18)

Lα1 = l0
α1

r
, Lρ1 = l0

ρ1. (D.19)
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D.2.2. Form of
i

Mjk . Next, the coefficients
i

Mjk are analogously determined by equation
(11n, [9]), which here takes the form

D
i

Mjk = − i

MjlLlk. (D.20)

Again, the solutions can be given in natural pairs, each for each block of Lij , as distinguished
by the value of the last index k, i.e.

i

Mj,2μ + i
i

Mj,2μ+1 = (
i 0

mj,2μ + i
i 0

mj,2μ+1)(s(2μ) + iA2μ,2μ+1), (D.21)

with real integration ‘constants’. When k corresponds to the diagonal part of Lij we have
simply

i

Mjα =
i 0

mjα

r
,

i

Mjρ = i 0
mjρ. (D.22)

Because of the index symmetries of
i

Mjk [8], we require
i 0

mjk +
j 0
m ik = 0 for any

i, j, k = 2, . . . , n − 1.

D.2.3. Form of
i

Mj1. Equation (11m, [9]) here becomes

D
i

Mj1 = − i

MjkLk1 − 2�A
ij . (D.23)

From (D.10), one has DAij = −2s(i)Aij and thus, by (A.2), �A
ij = −D(HAij ). Using also

previous results for
i

Mjk we find

i

Mj1 =
p∑

μ=1

[
r

r2 +
(
a0

(2μ)

)2

( i 0
mj,2μl0

2μ,1 +
i 0

mj,2μ+1l2μ+1,1
)

+
a0

(2μ)

r2 +
(
a0

(2μ)

)2

( i 0
mj,2μl0

2μ+1,1 − i 0
mj,2μ+1l2μ,1

)]

+

i 0
mjαl0

α1

r
− i 0

mjρl
0
ρ1r + 2AijH +

i 0
mj1, (D.24)

where the real ‘constants’ satisfy
i 0

mj1 +
j 0
m i1 = 0.

D.2.4. Form of L11. One can also easily integrate (11a, [9]), here reduced to

DL11 = −L1iLi1 − R0101, (D.25)

to fix the r-dependence of L11, i.e.

L11 = −DH + l0
11 +

p∑
μ=1

[(
l0
1,2μl0

2μ,1 + l0
1,2μ+1l

0
2μ+1,1

)
s(2μ)

+
(
l0
1,2μl0

2μ+1,1 − l0
1,2μ+1l

0
2μ,1

)
A2μ,2μ+1

]
+

l0
1αl0

α1

r
− l0

1ρl
0
ρ1r. (D.26)
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D.2.5. Form of Nij . Equation (11j, [9]) here reads

DNjk = −NjlLlk − �kj . (D.27)

Note that, for k = 2μ, 2μ + 1, it is more natural to deal with a complex unknown, namely
Nj,2μ + iNj,2μ+1. Then, using (62), (63) and (D.10)–(D.12), equation (D.27) can be solved
obtaining

Nj,2μ + iNj,2μ+1 = (
n0

j,2μ + in0
j,2μ+1

)
(s(2μ) + iA2μ,2μ+1)

+H(s(2μ) − iA2μ,2μ+1)(δj,2μ + iδj,2μ+1), (D.28)

Njα = 1

r

(
n0

jα + Hδjα

)
, Njρ = n0

jρ, (D.29)

where n0
ij are real ‘constants’.

D.2.6. Form of Ni1 in an adapted parallely transported frame. So far, the frame vector n has
not been specified except for the requirement that it be parallely transported along k. While
retaining the latter condition, we can still perform a null rotation

k̂ = k, n̂ = n + zim
(i) − 1

2zkzk�, m̂(i) = m(i) − zi�, (D.30)

provided Dzi = 0, so as to simplify some of the Ricci rotation coefficients. In particular, if
we choose

zi = −l0
i1 (for i = 2, . . . , m + 1), zρ = 0, (D.31)

we obtain (see the transformation properties given in [9]—we drop hats from the transformed
coefficients)

Li1 = 0 (i = 2, . . . , m + 1), (D.32)

which is equivalent to l0
2μ,1 = l0

2μ+1,1 = l0
α1 = 0, while Lρ1 = l0

ρ1 are unchanged.
(Alternatively, one can also set L1i = 0, but this appears to be less convenient in what
follows.)

With this choice, equation (11f, [9]) becomes

DNi1 = −n0
iρ l

0
ρ1 + R101i . (D.33)

In addition, using equation (D.14) and the commutator (22, [21]), equation (A.5) reduces
to

R011i = −D(δiH) − 2D(L1iH) (i = 2, . . . , m + 1), (D.34)

R011ρ = −D(δρH) − 2D(L1ρH) + l0
ρ1DH. (D.35)

We can thus straightforwardly integrate equation (D.33) and find

Ni1 = −n0
iσ l0

σ1r + δiH + 2L1iH + n0
i1, (i = 2, . . . , m + 1) (D.36)

Nρ1 = −n0
ρσ l0

σ1r + δρH +
(
2l0

1ρ − l0
ρ1

)
H + n0

ρ1, (D.37)

where H and L1i are specified by (56) and (D.15), (D.16). For certain applications it may be
useful to recall that the coefficients Ni1 vanish if and only if the frame vector n is geodetic
(an affine parameter corresponding to L11 = 0).

Note finally that, when l0
2μ,1 = l0

2μ+1,1 = l0
α1 = 0, equation (D.24) simplifies to

i

Mj1 = − i 0
mjρl

0
ρ1r + 2AijH +

i 0
mj1, (D.38)

and equation (D.26) becomes

L11 = −DH + l0
11 − l0

1ρl
0
ρ1r. (D.39)
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