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We analyze asymptotic properties of higher-dimensional vacuum spacetimes admitting a ‘‘nondegen-

erate’’ geodetic multiple Weyl aligned null direction. After imposing a fall-off condition necessary for

asymptotic flatness, we determine the behavior of the Weyl tensor as null infinity is approached along the

Weyl aligned null direction. This demonstrates that these spacetimes do not ‘‘peel off’’ and do not contain

gravitational radiation (in contrast to their four-dimensional counterparts). In the nontwisting case, the

uniqueness of the Schwarzschild-Tangherlini metric is also proven.
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I. INTRODUCTION

Asymptotically flat spacetimes describe the gravita-
tional field of isolated systems in general relativity, and
their behavior near (spacelike or null) infinity encodes
essential information about physical quantities such as
mass, angular momentum, and flux of radiation. The de-
velopment of relevant techniques has proven fundamental
in understanding general properties of the theory, since it
enables one to characterize large classes of solutions in a
unified way. However, in recent years the interest in higher-
dimensional gravity has grown considerably (see, e.g., [1]
and references therein). This was motivated by modern
unified theories, AdS/CFT, and recent brane world scenar-
ios, which opened a possible direct link to rich and quali-
tatively new observable phenomenology. Notions such as
the total energy of an isolated system and energy flux are
thus fundamental also in higher-dimensional theories [2–
4]. In addition, since properties of gravitational waves
depend on the model under consideration (in particular,
on spacetime dimensions [5]), the study of radiation in
higher dimensions may ultimately enable one to distin-
guish different models.

It was noticed a long ago [6] that four-dimensional
algebraically special spacetimes, while leading to signifi-
cant mathematical simplification, still asymptotically re-
tain the essential features of (outgoing) radiation fields
generated by more realistic sources. As discussed above,
it is now natural to explore similar ideas for n > 4 space-
time dimensions. The recently developed n > 4 general-
ization of the Petrov classification [7] provides us with the
necessary formalism. According to the possible existence
of WANDs (Weyl aligned null directions) and their multi-
plicity, spacetimes of arbitrary dimension are invariantly
classified into the principal types G, I, II (D), III, N, and O
(type II specializes to the secondary type D when two
distinct multiple WANDs are present). As in four dimen-

sions, more special types lead in general to simpler field
equations, when expressed in the generalized Newman-
Penrose formalism [8,9]. Hence, it is the purpose of the
present paper to analyze higher-dimensional asymptoti-
cally flat vacuum spacetimes of type II (or more special)
as a first step towards a more general study. This choice is
also motivated by the fact that while in four dimensions a
number of explicit such solutions are known (e.g., the Kerr
metric and its accelerated generalizations, radiative
Robinson-Trautman solutions, etc. [10]), a corresponding
catalog is at present much poorer for n > 4. Our conclu-
sions will also partly explain why it is so, at least in the
nontwisting case.
Apart from algebraic types, one can also characterize

algebraically special spacetimes in terms of geometrical
properties of the null congruence(s) generated by the
WAND(s). Under quite general conditions a multiple
WAND of a vacuum spacetime must be geodetic [8,11].
Moreover, it has been proven recently that any n > 4
Einstein spacetime that admits a nongeodetic multiple
WAND must also admit a geodetic one [12], and we shall
restrict our analysis to the case of geodetic multiple
WANDs. Geometrical properties of geodetic null con-
gruences are encoded in the ðn� 2Þ � ðn� 2Þ matrix L
and, in particular, in its invariants expansion, shear, and
twist [8,9] (see the definitions below). Since we are inter-
ested in asymptotically flat spacetimes, in the following we
will assume detL � 0, i.e., that the matrix L is ‘‘non-
degenerate.’’1 In view of the results of [8], we can already
anticipate that this condition will rule out spacetimes of
types III and N, leaving us with the genuine type II (D)
only. This does not appear to be a major limitation here,
since type II (D) is the simplest principal class allowing for
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1A rigorous proof that WANDs of asymptotically flat space-
times must satisfy such a condition needs to be given. This seems
to be, however, quite plausible, since detL ¼ 0 means that some
spacelike dimensions are geometrically preferred, which is
rather typical, e.g., of Kaluza-Klein asymptotics (for instance,
the field generated by black strings/black branes, see [13]).
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black holes [11], and indeed the well-known Myers-Perry
black holes [14] belong to this class [11,15].

For clarity, let us summarize our assumptions: We study
asymptotically flat vacuum spacetimes admitting a geo-
detic multiple WAND l with detL � 0. We follow the
notation of [7–9,11], and employ a frame consisting of
two null vectors mð0Þ ¼ l (aligned with the multiple

WAND) and mð1Þ ¼ n, and n� 2 orthonormal spacelike

vectors mðiÞ, with frame indices 0,1 and i; j; . . . ¼
2; . . . ; n� 1. Derivatives along the frame vectors l, n,
and mðiÞ are denoted by D, �, and �i, respectively. The

frame will be parallelly transported along l. The optical
matrix L of l has matrix elements Lij ¼ la;bm

a
ðiÞm

b
ðjÞ, with

(anti)symmetric parts Sij ¼ LðijÞ and Aij ¼ L½ij�, and other
Ricci rotation coefficients are defined similarly [8,9]. The
optical scalars expansion, �, shear, �, and twist, !, are
defined by � ¼ Lii=ðn� 2Þ, �2 ¼ ðSij � ��ijÞ�
ðSij � ��ijÞ, and !2 ¼ AijAij. For the frame components

of the Weyl tensor we use the compact symbols

�ij ¼ C0i1j; �i ¼ C101i;

�ijk ¼ 1
2C1kij; �ij ¼ 1

2C1i1j;
(1)

denoting by �S
ij, �

A
ij, and � � �ii the symmetric and

antisymmetric parts of �ij and its trace, respectively.

From the symmetries and the tracelessness of the Weyl
tensor one has the identities C01ij ¼ 2C0½ij1jj� ¼ 2�A

ij,

2C0ðij1jjÞ ¼ 2�S
ij ¼ �Cikjk, 2C0101 ¼ �Cijij ¼ 2�, �i ¼

2�ijj,�fijkg ¼ 0,�ijk ¼ ��jik,�ij ¼ �ji, and�ii ¼ 0,

which will be employed throughout the paper.

II. GENERAL ASYMPTOTICS

By exploiting the interplay between the Ricci and
Bianchi equations [8,9], which govern the ‘‘propagation’’
of the Ricci rotation coefficients and of the Riemann
(Weyl) tensor, we determine in this section the dependence
of the Weyl tensor on an affine parameter r along the
geodetic multiple WAND l ¼ @=@r. The results will be
discussed in the subsequent final section.

A. Sachs equation

The starting point of our analysis is the higher-
dimensional Sachs equation for L, since this matrix will
then enter all the relevant Bianchi equations. Under the
above assumptions it reads (see Eq. (11g) of [9])

DL ¼ �L2: (2)

Since detL � 0, Eq. (2) can be rewritten as
L�1ðDLÞL�1 ¼ �I, where I is the identity matrix. Then
using 0 ¼ DðL�1LÞ ¼ ðDL�1ÞLþ L�1DL we immedi-
ately get DL�1 ¼ I, so that (cf. [16])

L�1 ¼ rI � b; (3)

where the ‘‘constant’’ matrix b (i.e., Db ¼ 0) specifies the

‘‘initial conditions.’’ By taking the inverse matrix, Eq. (3)
uniquely fixes the r dependence of L ¼ ðrI � bÞ�1. In
particular, since L�1

½ij� ¼ �b½ij�, we have

Aij ¼ 0 , b½ij� ¼ 0; (4)

i.e., b½ij� is responsible for the twist of l (but it also enters

Sij).

From Eq. (3), the behavior of L for large r follows (after
restoring matrix indices)

Lij ¼
Xp

m¼0

ðbmÞij
rmþ1

þOðr�p�2Þ ¼ 1

r
�ij þ 1

r2
bij þOðr�3Þ;

(5)

which, to the leading order, simply becomes Lij � r�1�ij

(and the expansion � is clearly nonzero).

B. Asymptotics of the Weyl tensor

We can now fix the r dependence of the Weyl tensor by
integrating the Bianchi identities containing D derivatives.
As it turns out, it is convenient to consider them in order of
decreasing boost weight, i.e., in the sequence 0, �1, �2
(components of positive boost weight vanish by our
assumptions).

1. Components of boost weight zero

Since l is geodetic the relevant Bianchi equations for
zero boost weight components decouple from those for
negative boost weight and can thus be solved indepen-
dently. In particular Eqs. (B5) and (B12) of [8] reduce to

D�ij ¼ ��Lij ��ikLkj � 2�A
ikLkj; (6)

DCijkm ¼ ��kjLim þ�mjLik ��miLjk þ�kiLjm

� CijklLlm þ CijmlLlk � 4�A
ijAkm: (7)

In order to study the asymptotics (r ! 1) of these
components, we expand them in nonpositive powers of r
(positive powers would lead to a parallelly propagated
curvature singularity and can thus be excluded). Then we
have

�ij ¼
Xp

m¼0

ð�ðmÞ
ij þ �ðmÞ

ij Þr�m þOðr�ðpþ1ÞÞ;

Cijkl ¼
Xp

m¼0

cðmÞ
ijklr

�m þOðr�ðpþ1ÞÞ;
(8)

where, from now on, symbols with a superscript ðmÞ do not
depend on r, �ðmÞ

ij ¼ �ðmÞ
ji , �ðmÞ

ij ¼ ��ðmÞ
ji , �ðmÞ � �ðmÞ

ii , and

2�ðmÞ
ij ¼ �cðmÞ

ikjk. Substituting these expressions into the

Bianchi equations (6) (multiplied by L�1
jm ) and (7) and

comparing different powers of r will determine the various
coefficients of the expansions to any desired order. By
doing so we arrive at
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�ð0Þij ¼ �ð1Þij ¼ �ð2Þij ¼ ðn� 4Þ�ð3Þij ¼ 0;

�ð0Þ
ij ¼ �ð1Þ

ij ¼ �ð2Þ
ij ¼ 0; cð0Þijkm ¼ cð1Þijkm ¼ 0:

(9)

In general, for n > 4 the first nonvanishing terms are cð2Þijkm

and �ð3Þ
ij , subject to the constraint

�ð3Þ
ki ðn� 4Þ ¼ cð2Þijklb½lj�: (10)

Since we are interested here in asymptotically flat space-
times, it is natural to demand that terms of order 1=r2 in (8)
vanish, since this is the case already in four dimensions2

and the falloff will be faster in higher dimensions. This is
confirmed more rigorously (at least in even dimensions) by
a study of the asymptotic behavior of gravitational pertur-
bations [2–4]. Thus from now on we set

cð2Þijkl ¼ 0: (11)

By (10), for n > 4 this also implies �ð3Þ
ki ¼ 0. Hereafter we

shall always assume n > 4.
By comparing higher order coefficients, we obtain that

for vacuum asymptotically flat n � 5-dimensional space-
times of types II and D admitting a geodetic multiple
WAND with detL � 0, the leading terms of the boost
weight zero components of the Weyl tensor are

�S
ij ¼

�ðn�1Þ�ij

n� 2

1

rn�1
þOðr�nÞ;

�A
ij ¼

ðn� 1Þ�ðn�1Þb½ij�
ðn� 2Þðn� 3Þ

1

rn
þOðr�n�1Þ;

(12)

Cijkm ¼ 2�ðn�1Þð�jk�im � �jm�ikÞ
ðn� 2Þðn� 3Þ

1

rn�1
þOðr�nÞ: (13)

Subleading terms can similarly be determined to any de-

sired order [18], and �ðn�1Þ and b are the only integration
‘‘constants’’ characterizing the expansions (8). It suffices
here to observe that, by analyzing the next subleading order

in (7), one finds (if �ðn�1Þ � 0)

bðijÞ ¼ bkk
n� 2

�ij: (14)

Let us first briefly discuss the case of a nontwisting
WAND (i.e., with Aij ¼ 0), for which b is symmetric.

Equations (14) and (3) then imply that Lij is proportional

to the identity matrix and therefore shear-free. Hence such
spacetimes belong to the n > 4 Robinson-Trautman class
and are thus of type D [19]. Furthermore, with no need of
further calculations it follows from [19] that the only

asymptotically flat metric within that family is the
Schwarzschild-Tangherlini solution [20]. We conclude
that Schwarzschild-Tangherlini black holes are the only
‘‘asymptotically flat’’ spacetimes within the class of vac-
uum metrics admitting a nontwisting, nondegenerate geo-
detic multiple WAND.3 This should be contrasted with the
four-dimensional case, where all vacuum Robinson-
Trautman solutions [10] in fact satisfy such assumptions.
Note also that, although partly related, this result tells us
something different from the fact [21,22] that the
Schwarzschild-Tangherlini metric represents the unique
asymptotically flat static vacuum black hole. Finally, it is
worth observing that properties of vacuum spacetimes with
a nontwisting geodetic multiple WAND have been studied

in [23] without the assumptions detL � 0 and cð2Þijkl ¼ 0.

For the twisting case, there are in general also compo-
nents of the Weyl tensor with negative boost weight, which
will now be analyzed.

2. Components of negative boost weight

Similarly as for boost weight zero components, we ex-
pand Weyl tensor components of boost weight �1 as

�i ¼
Xp

m¼0

c ðmÞ
i r�m þOðr�ðpþ1ÞÞ;

�ijk ¼
Xp

m¼0

c ðmÞ
ijk r

�m þOðr�ðpþ1ÞÞ:
(15)

Their asymptotic behavior can then be determined from
Bianchi equations (B.1), (B.6), and (B.9) of [8]:

D�i ¼ �2�sLsi þ �i���Li1 � 2�A
isLs1 ��isLs1;

(16)

2D�ijk ¼ �2�ijsLsk ��iLjk þ�jLik � 2�k�
A
ij

þ 2�A
ijLk1 ��kiLj1 þ�kjLi1 þ CksijLs1

� 4�A
½ijsM

s

j�k; (17)

D�jki ¼ 2�½kjsiLsjj� þ�iAjk � �½k�j�i þ�½kjsM
s

ijj�

��siM
s

½jk�: (18)

First, it is now evident that the knowledge of the r depen-
dence of Lij is not sufficient in this case, and one needs to

determine the asymptotics of the Ricci rotation coefficients

Li1 andM
i

jk and of the operator �i. This can be done using

appropriate Ricci equations [9] and commutators [24].
These imply that, asymptotically,

2In the case of n ¼ 4 vacuum algebraically special spacetimes
this is not an assumption but follows from the Ricci/Bianchi
identities [6]. For general vacuum spacetimes it is related to the
vanishing of the unphysical Weyl tensor on scri, which holds if
asymptotic flatness is assumed [17].

3By ‘‘asymptotically flat’’ we just mean the condition cð2Þijkl ¼
0, which is of course weaker than asymptotic flatness in the strict
sense.
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Li1 ¼ Oðr�1Þ; M
i

jk ¼ Oðr�1Þ;
�i ¼ Oðr0Þ @

@r
þOðr�1Þ @

@xA
;

(19)

where the xA represent any set of (n� 1) scalar functions
(which need not be further specified for our purposes) such
that ðr; xAÞ is a well-behaved coordinate system. More
details on the specific form of (19) will be given elsewhere
in a more general context [18].

Substituting expansions (8) and (15) [with (12), (13),
and (19)] into (16)–(18) and comparing different powers of
r leads to

c ð0Þ
i ¼ c ð1Þ

i ¼ c ð0Þ
ijk ¼ c ð1Þ

ijk ¼ 0; ðn� 4Þc ð2Þ
i ¼ 0:

(20)

The last equation indicates that there is a fundamental
difference between four and higher dimensions. As a con-
sequence, by studying higher orders in 1=r in the expan-
sion of (16)–(18), we find that all terms in the expansion of

the Weyl tensor components up to c ðn�2Þ
i and c ðn�2Þ

ijk

vanish for n > 4, i.e.,

c ð2Þ
i ¼ . . . ¼ c ðn�2Þ

i ¼ 0;

c ð2Þ
ijk ¼ . . . ¼ c ðn�2Þ

ijk ¼ 0 ðn > 4Þ:
(21)

Finally, the relevant Bianchi equation for determining
the asymptotic behavior of boost weight �2 components
�ij is Eq. (B.4) of [8]:

2D�ij ¼ �2�isLsj þ ��ji þ �j�i þ 2�iL½1j�

þ 2�jsiLs1 þ�Nij � 2�A
isNsj þ�siNsj

þ�jsM
s

i1 þ�siM
s

j1 þ�sM
s

ij: (22)

We again expand �ij as

�ij ¼
Xp

m¼0

c ðmÞ
ij r�m þOðr�ðpþ1ÞÞ: (23)

Clearly, one has first to determine the asymptotic behavior

of the Ricci rotation coefficients L1j, M
s

i1, Nij and of the

operator �. As before, appropriate Ricci identities and
commutators give

L1j ¼ Oðr�1Þ; M
s

i1 ¼ Oðr0Þ;
Nij ¼ Oðr�1Þ; � ¼ OðrÞ @

@r
þOðr0Þ @

@xA
:

(24)

(Again, see [18] for more technicalities.) With these and
(B.13) of [8], one finally arrives at

c ð0Þ
ij ¼ . . . ¼ c ðn�2Þ

ij ¼ 0 ðn > 4Þ: (25)

Note that all higher order terms of negative boost weight
also vanish in the nontwisting case (which indeed is of type
D, as mentioned above—cf. also [23]). In the twisting case
higher order terms are possibly nonzero and can be deter-
mined to any desired order [18] (in particular, one finds that

if�ðn�1Þ ¼ 0 the spacetime is flat). The result (21) and (25)
is however sufficient for our analysis, as we now discuss.

III. DISCUSSION

To summarize, we have shown that for the considered
class of spacetimes, the asymptotic behavior of various
components of the Weyl tensor along a geodetic multiple
WAND is determined by Eqs. (12) and (13) (which in turn
can be used to recursively fix higher order terms and
negative boost weight components [18]). Perhaps surpris-
ingly, the first nonzero components are, irrespective of
their boost weight, of order 1=rn�1 (or higher). On the
other hand, for radiative solutions (in even dimensions) one
expects a much slower falloff [3] (cf. also [18]). In physical
terms, our results thus imply that higher-dimensional
asymptotically flat vacuum spacetimes admitting a non-
degenerate, geodetic multiple WAND do not contain gravi-
tational radiation. This conclusion is in striking contrast
with the four-dimensional case, for which the Weyl tensor
of a generic algebraically special vacuum spacetime whose
multiple PND is nondegenerate contains a radiative con-
tribution and exhibits the well-known peeling property [6]

�2 ¼ Oðr�3Þ; �3 ¼ Oðr�2Þ;
�4 ¼ Oðr�1Þ ðn ¼ 4Þ;

(26)

where the components of boost weight 0, �1, and �2 are
represented by the standard Newman-Penrose scalars.4

We have also shown (see Sec. II B 1) that in the non-
twisting case the multiple WAND is shear-free, which
leads to the uniqueness of Schwarzschild-Tangerlini black
holes within that class of spacetimes.
The interest in the approach used in this paper goes

beyond the specific results discussed above. Similar tech-
niques can be applied also in a more general context (i.e.,
type I or G spacetimes) and will possibly provide some
insight into properties of radiating solutions. This is now
being studied and will be presented elsewhere.
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4It is worth emphasizing again that for n ¼ 4 it is not neces-
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Sachs theorem.
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