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Abstract

Geroch, Held and Penrose invented a formalism for studying spacetimes
admitting one or two preferred null directions. This approach is very useful
for studying algebraically special spacetimes and their perturbations. In this
paper, the formalism is generalized to higher dimensional spacetimes. This
new formalism leads to equations that are considerably simpler than those
of the higher dimensional Newman–Penrose formalism employed previously.
The dynamics of p-form test fields is analysed using the new formalism and
some results concerning algebraically special p-form fields are proved.

PACS numbers: 04.20.Jb, 04.50.−h

1. Introduction

The study of gravity in more than four spacetime dimensions has attracted significant interest
in recent years, and it has become apparent that solutions of general relativity exhibit much
richer behaviour in more than four dimensions. This motivates the development of new
mathematical tools for obtaining new solutions and studying properties of known solutions.
In this paper, we shall present a generalization of a very useful four-dimensional technique,
the Geroch–Held–Penrose (GHP) formalism [1], to arbitrary dimension d � 4.

The GHP formalism is a modification of the earlier Newman–Penrose (NP) formalism [2].
In the latter approach, one introduces a basis consisting of a pair of null vectors �, n and a pair
of complex conjugate vectors m, m̄ (whose real and imaginary parts are spacelike). One then
writes out all equations explicitly on this basis. The main advantage of the NP formalism is
that all derivatives are reduced to partial derivatives, which often makes practical calculations
far simpler. A downside is that a large number of different symbols must be carried around,
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and simple identities (e.g. the Bianchi identity for the Riemann tensor) become large sets of
coupled equations.

Often one wishes to study a spacetime with two preferred null directions �, n, but with no
preferred spatial directions (e.g., a type D spacetime). In such cases, any information within
the NP quantities that is dependent on the choice of the spatial vectors is essentially redundant,
which leads to unnecessary complexity. Instead, one would like to maintain covariance with
respect to different choices of m, i.e. rotations of the spatial basis. Furthermore, there is no
natural normalization of � and n so it is natural to want to maintain covariance with respect
to rescaling of these vectors. The NP formalism is not covariant under either rotations or
rescalings. The GHP formalism is designed to be covariant under these transformations.
This is done by defining new derivative operators that differ from the corresponding NP
derivatives by certain connection terms. The result is a formalism that involves considerably
fewer quantities, and simpler equations than the NP approach. Even if one has only a
single preferred null direction �, and makes an arbitrary choice for n, the GHP formalism
often still leads to simpler equations. Introductions to the 4D GHP formalism are given in
[3, 4].

Turning to higher dimensions, Coley et al [5] obtained a generalization to d dimensions
of the Petrov classification of the Weyl tensor. They used a basis containing a pair of null
vector fields, as well as d − 2 orthonormal spacelike vector fields. The study of the calculus
of these vector fields, which forms a higher dimensional generalization of the NP formalism,
was developed in [6–8].

In this paper, we shall present a higher dimensional generalization of the GHP formalism,
that maintains covariance with respect to rescaling of the null basis vectors, and rotations of
the spatial basis vectors. The formalism is developed in section 2. A major advantage of this
formalism is the reduction in the number and complexity of different components of the NP
and Bianchi equations that need to be written out explicitly. We give these equations, both in
the case of a vacuum spacetime (with cosmological constant), and in the presence of arbitrary
matter. We present the commutators of GHP derivative operators. The appendix gives the
simplified versions of all of these equations for the important special case of an algebraically
special Einstein spacetime.

In section 3, we study Maxwell form fields deriving the GHP form of the Maxwell
equations, and discuss the concept of an algebraically special Maxwell field, i.e. one admitting
a ‘multiply aligned’ null vector field (a concept defined below). We show that a null vector
field multiply aligned with a (non-zero) Maxwell field must be geodesic, and satisfy a certain
condition on its shear. For d > 4, this latter condition is incompatible with the vector field
being multiply aligned with the Weyl tensor of, e.g., the Schwarzschild solution (except
possibly for the special case of even d with a Maxwell field strength of rank d/2). This is in
contrast with d = 4, for which the conditions for a vector field to be multiply aligned with a
Maxwell test field and with the Weyl tensor (of a vacuum solution) are identical.

Finally, section 4 gives some additional applications of the GHP formalism. Following
GHP [1], we demonstrate its usefulness in studying codimension-2 spacelike submanifolds of
spacetime. We also use it to simplify the proof of a known result for higher dimensional type
N spacetimes [6].

A powerful motivation for developing this formalism is its usefulness in studying
perturbations of algebraically special spacetimes. For example, Stewart and Walker [9] used
the GHP formalism to decouple linearized gravitational perturbations of type D spacetimes.
Their equations are simpler than the corresponding NP equations derived earlier by Teukolsky
[10]. The study of perturbations of higher dimensional spacetimes using the GHP formalism
developed in the present paper will be discussed in future work.
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2. Higher dimensional GHP formalism

2.1. Higher dimensional NP formalism

In a d-dimensional spacetime, we introduce (locally) a basis (null frame)

{� ≡ e(0) = e(1), n ≡ e(1) = e(0), m(i) ≡ e(i) = e(i)} (2.1)

for the tangent space, where indices i, j, k, . . . run from 2 to d − 1, � and n are null vector
fields, m(i) are spacelike vector fields, and the only non-vanishing scalar products of basis
vectors are � · n = 1 = η01 and m(i) · m(j) = δij = ηij . d-dimensional tangent space indices
will be denoted by a, b, . . ., taking values from 0 to d − 1, while μ, ν, . . . are d-dimensional
coordinate indices. We will sometimes drop spatial indices i, j, . . . on quantities such as vi ,
and will use bold font v to indicate this. The Einstein summation convention is used except
where explicitly stated.

Any tensor T can be expanded with respect to this basis by defining

Tab...c = e
μ

(a)e
ν
(b) . . . e

ρ

(c)Tμν...ρ, (2.2)

so, for example, (lowered) indices 0 correspond to contractions with �. The objects Tab...c are
spacetime scalars, but transform as tensor components under local Lorentz transformations,
corresponding to changes in the choice of basis vectors3.

We write the covariant derivatives of the basis vectors as

Lμν = ∇ν�μ, Nμν = ∇νnμ,
i

Mμν = ∇νm(i)μ, (2.3)

and then project into the basis to obtain the scalars Lab, Nab,
i

Mab. From the orthogonality
properties of the basis vectors we have the identities

N0a + L1a = 0,
i

M0a + Lia = 0,
i

M1a + Nia = 0,
i

Mja +
j

Mia = 0, (2.4)

and

L0a = N1a = i

Mia = 0. (2.5)

The optics of � are often particularly important. In this notation, � is tangent to a null geodesic
congruence if and only if

κi ≡ Li0 = 0, (2.6)

and if this is the case we say that � is geodesic. The expansion, shear and twist of the congruence
are described by the trace, trace-free symmetric and antisymmetric parts respectively of the
matrix

ρij ≡ Lij . (2.7)

Finally, we decompose the covariant derivative operator in the null frame as

D ≡ � · ∇, � ≡ n · ∇ and δi ≡ m(i) · ∇. (2.8)

The d > 4 generalization of the 4D NP formalism is developed using the above notation in
[6–8]. The d > 4 analogues of the 4D NP equations are presented in [7]. The Bianchi identity
is given in [6]. Commutators of the above derivatives are given in [8].

3 This is if the tensor Tμν...ρ is independent of the choice of the null frame. The transformation of tensors constructed
from the frame vectors themselves is more complicated, as we shall discuss in the next section.
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2.2. GHP scalars

We now describe our new formalism in detail. We follow as closely as possible the approach
of GHP [1]. As discussed in the introduction, the basic approach is to adapt our notation to a
situation in which there is a preferred choice of a pair of null directions, removing the need
to discuss any quantities that do not transform covariantly under rotations of the spatial basis
m(i), or rescalings of the null vector fields � and n pointing in the preferred directions.

We shall refer to these rotations and rescalings as spins and boosts respectively. In more
detail, they are defined as follows.

Spins. These are SO(d − 2) rotations of the spatial basis vectors m(i):

m(i) �→ Xijm(j), (2.9)

where Xij is a (position dependent) orthogonal matrix.

Boosts. These are rescalings of the null basis vectors that preserve the scalar product � ·n = 1:

� �→ λ�, n �→ λ−1n, m(i) �→ m(i), (2.10)

where λ is an arbitrary non-zero function. We shall say that �, n and m(i) have boost weights
+1, −1 and 0 respectively.

We can now make the following important definition.

Definition 1. An object T is a GHP scalar of spin s and boost weight b if and only if it
transforms as

Ti1...is �→ Xi1j1 . . . Xisjs
Tj1...js

(2.11)

under spins X ∈ SO(d − 2) and as

Ti1...is �→ λbTi1...is (2.12)

under boosts.

Note that the outer product of a GHP scalar of spin s1 and boost weight b1 with another
of spin s2 and boost weight b2 is a GHP scalar of spin s1 + s2 and boost weight b1 + b2. The
sum of two GHP scalars is a GHP scalar only if s1 = s2 and b1 = b2, in which case the result
has spin s1 and boost weight b1.

Not all quantities that appear in the higher dimensional NP formalism are GHP scalars.
In particular,

L10 = −N00, L11 = −N01 and L1i = −N0i (2.13)

do not transform covariantly under boosts, while
i

Mj0,
i

Mj1 and
i

Mjk (2.14)

are not covariant under spins. However, the remaining quantities are GHP scalars. We shall
introduce new notation for these quantities that reflects, as far as possible, the notation that is
used for the same objects in the 4D NP and GHP formalisms4. This is summarized in table 1.

2.3. GHP derivatives

If T is a GHP scalar then, in general, DT, �T and δiT are not. GHP showed how one can
combine this lack of covariance of the NP derivatives with the lack of covariance of the NP
scalars (2.13) and (2.14) to define new derivative operators that are covariant. These are
straightforward to generalize to higher dimensions as follows5.
4 Note that ρij is the d > 4 analogue of the d = 4 NP scalars ρ and σ . We shall use ρ without indices to denote the
trace of ρij , which differs from the d = 4 usage.
5 The characters ‘eth’ � and ‘thorn’ þ come from the Icelandic alphabet.
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Table 1. GHP scalars constructed from first derivatives of the null basis vectors.

Quantity Notation Boost weight b Spin s Interpretation

Lij ρij 1 2 Expansion, shear and twist of �

Lii ρ = ρii 1 0 Expansion of �

Li0 κi 2 1 Non-geodesity of �

Li1 τi 0 1 Transport of � along n
Nij ρ ′

ij −1 2 Expansion, shear and twist of n

Nii ρ ′ = ρ ′
ii −1 0 Expansion of n

Ni1 κ ′
i −2 1 Non-geodesity of n

Ni0 τ ′
i 0 1 Transport of n along l

Definition 2. The GHP derivative operators þ, þ′, �i act on a GHP scalar T of boost weight
b and spin s as

þTi1i2...is ≡ DTi1i2...is − bL10Ti1i2...is +
s∑

r=1

k

Mir 0Ti1...ir−1kir+1...is , (2.15)

þ′Ti1i2...is ≡ �Ti1i2...is − bL11Ti1i2...is +
s∑

r=1

k

Mir 1Ti1...ir−1kir+1...is , (2.16)

�iTj1j2...js
≡ δiTj1j2...js

− bL1iTj1j2...js
+

s∑
r=1

k

Mjr iTj1...jr−1kjr+1...js
. (2.17)

So, for example

þρij = Dρij − L10ρij +
k

Mi0ρkj +
k

Mj0ρik, (2.18)

�iτj = δiτj +
k

Mjiτk. (2.19)

These derivative operators have various useful properties, which are easy to verify by explicit
computation.

(1) They are GHP covariant. That is, if Ti1i2...is is a GHP scalar of boost weight b and spin
s, then þTi1i2...is , þ′Ti1i2...is and �j Ti1i2...is are all GHP scalars, with boost weights (b + 1,
b − 1, b) and spins (s, s, s + 1), respectively.

(2) The Leibniz rule holds, that is,

þ(Ti1i2...is Uj1j2...jt
) = (þTi1i2...is )Uj1j2...jt

+ Ti1i2...is (þUj1j2...jt
)

for all GHP scalars T and U, and similarly with þ replaced by þ′ or �k .
(3) They are metric for δij , in the sense that þδij = þ′δij = 0 and �iδjk = 0.

2.4. Curvature tensors

The Riemann tensor can be decomposed into the Weyl tensor Cμνρσ and the Ricci tensor Rμν .
All null frame components of each of these are GHP scalars. We define new notation for the
Weyl tensor components in table 2.

The various identities given are consequences of the symmetries and tracelessness of the
Weyl tensor. The right-hand column shows how many independent components there are of
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Table 2. Decomposition of the Weyl tensor by boost weight b and spin s for a d � 4-dimensional
spacetime (cf [5]).

b Component Notation Spin s Identities Independent component

2 C0i0j �ij 2 �ij = �ji , �ii = 0 1
2 d(d − 3)

1 C0ijk 
ijk 3 
ijk = −
ikj , 
[ijk] = 0 1
3 (d − 1)(d − 2)(d − 3)

C010i 
i 1 
i = 
kik .

0 Cijkl �ijkl 4 �ijkl = �[ij ][kl] = �klij , �i[jkl] = 0 1
12 (d − 1)(d − 2)2(d − 3)

C0i1j �ij 2 �(ij) ≡ �S
ij = − 1

2 �ikjk

C01ij 2�A
ij 2 �A

ij ≡ �[ij ]
1
2 (d − 2)(d − 3)

C0101 � 0 � = �ii

−1 C1ijk 
 ′
ijk 3 
 ′

ijk = −
 ′
ikj , 
 ′

[ijk] = 0 1
3 (d − 1)(d − 2)(d − 3)

C101i 
 ′
i 1 
 ′

i = 
 ′
kik .

−2 C1i1j �′
ij 2 �′

ij = �′
ji , �′

ii = 0 1
2 d(d − 3)

Table 3. Decomposition of the Ricci tensor in the frame basis. We use the convention that Ricci
components use the lower case version of the Greek letter representing the Weyl components of
the same boost weight.

Component Notation Boost weight b Spin s Comment

R00 ω 2 0
R0i ψi 1 1
Rij φij 0 2 φij = φji

R01 φ 0 0 φ �= φii

R1i ψ ′
i −1 1

R11 ω′ −2 0

each type; the sum of these numbers gives the total number of independent components of the
Weyl tensor for a d-dimensional manifold6. Note that it is possible to decompose further the
Weyl tensor into objects that transform irreducibly under SO(d − 2). For example, we could
decompose 
ijk , �ijkl and �S

ij into traceless and pure trace parts [13]. However, this would
make the Bianchi equations look more complicated so we shall not do it here.

The Ricci tensor also can be decomposed in the frame basis. Table 3 describes our
notation in this case.

2.5. Algebraic classification of the Weyl tensor

Although it does not rely on the GHP formalism, it is convenient for later sections to review the
algebraic classification of the Weyl tensor in d dimensions. We recall the following definitions
[5].

6 In d = 4 dimensions, there are exactly two independent components of each boost weight, for example
�22 = �33 = − 1

2 C2323 and �23 = −�32 are the only independent b = 0 components. The components of
each boost weight are then usually expressed in terms of complex scalars 
A. In d = 5 dimensions, �ijkl is uniquely
fixed in terms of �S

ij via �ijkl = 2(δil�
S
jk − δik�

S
j l − δjl�

S
ik + δjk�

S
il ) − �(δilδjk − δikδjl ).

6
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Definition 3. A null vector field � is a Weyl-aligned null direction (WAND) iff all boost
weight +2 components of the Weyl tensor vanish everywhere in a frame containing �. (In four
dimensions this is equivalent to � being a principal null direction (PND)).

It can be shown that this definition does not depend on the choice of n and m(i) [5]. In
four dimensions, all spacetimes with non-vanishing Weyl tensor admit exactly four WANDs
(possibly repeated). This is not the case in higher dimensions; a spacetime may admit no
WANDs, a finite number of WANDs, or infinitely many WANDs.

Definition 4. � is a multiple WAND iff all boost weight +2 and +1 components of the Weyl
tensor vanish everywhere. (In four dimensions this is equivalent to � being a repeated PND.)

Definition 5. A spacetime is algebraically special if it admits a multiple WAND7.

Algebraically special spacetimes are classified first by looking for a choice of � that
eliminates as many as possible high boost weight Weyl components. A spacetime is type O if
its Weyl tensor vanishes everywhere. It is type N if it is not type O and there exists a choice
of � for which all b = 2, 1, 0,−1 Weyl tensor components vanish everywhere. It is type III
if it is not type O or N and there exists a choice of � for which all b = 2, 1, 0 Weyl tensor
components vanish everywhere. It is type II if it is algebraically special but not type O, N
or III. One can also define a spacetime to be type I if it admits a WAND, but not a multiple
WAND, and type G if it does not admit a WAND.

This classification, which depends only on �, is the primary classification of the spacetime.
Having fixed �, one can define a secondary classification by choosing n so that as many low
boost weight components as possible vanish. For example, a type D spacetime is a spacetime
of primary type II for which one can choose n such that the b = −2,−1 components of the
Weyl tensor vanish, so only the b = 0 components are non-vanishing. In other words, both �

and n are multiple WANDs in a type D spacetime.

2.6. Null rotations

Boosts and spins together generate a R × SO(d − 2) subgroup of the Lorentz group. The full
Lorentz group can be recovered by including another kind of Lorentz transformation:

Null rotations. Rotations of one of the null basis vectors about the other. A null rotation
about � takes the form

� �→ �, n �→ n + zim(i) − 1
2z2�, m(i) �→ m(i) − zi�, (2.20)

where z2 ≡ zizi , and z is a GHP scalar with boost weight −1 and spin 1.
GHP scalars transform in a simple way under boosts and spins but not, in general, under

null rotations. Consider a null rotation about � with parameters zi . For convenience, we define
Zij ≡ zizj − 1

2z2δij . The effect on the various spin coefficients is as follows8:

κi �→ κi, (2.21)

κ ′
i �→ κ ′

i + ρ ′
ij zj + Zij τj − 1

2z2τ ′
i + Zijρjkzk − 1

2z2Zijκj + þ′zi + zj�j zi − 1
2z2þzi, (2.22)

7 Note that this last definition is different from that used in many earlier papers on algebraic classification in higher
dimensions, for example [5], which define a spacetime to be algebraically special if it admits a WAND (not necessarily
multiple). However, the definition that we make here seems to be more useful. It reduces to the standard definition of
algebraically special in 4D. Furthermore, for d > 4, there exist examples of analytic spacetimes that admit a WAND
in some open region, but not in another (see, for example, [11, 12]).
8 The NP versions of the following equations have appeared in various places previously. For example, the spin
coefficient rotations are described in [7], and the Weyl components in [13].
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τi �→ τi + ρij zj − 1
2z2κi, (2.23)

τ ′
i �→ τ ′

i + Zijκj + þzi, (2.24)

ρij �→ ρij − κizj , (2.25)

ρ ′
ij �→ ρ ′

ij − τ ′
i zj + Zikρkj − Zikκkzj + �j zi − zjþzi, (2.26)

and the Weyl tensor transforms as

�ij �→ �ij , (2.27)


i �→ 
i + �ij zj , (2.28)


ijk �→ 
ijk + 2�i[j zk], (2.29)

� �→ � + 2zi
i + zi�ij zj , (2.30)

�ij �→ �ij + zj
i + zk
ikj + Zjk�ik, (2.31)

�ijkl �→ �ijkl − 2z[k
l]ij − 2z[i
j ]kl − 2zj z[k�l]i + 2ziz[k�l]j , (2.32)


 ′
i �→ 
 ′

i − zi� + 3�A
ij zj − �S

ij zj − 2Zij
j − Zjk
jki − zjZik�jk, (2.33)


 ′
ijk �→ 
 ′

ijk + 2z[k�j ]i + 2zi�
A
jk + zl�lijk + 2ziz[k
j ] + 2zlz[k
j ]li + Zil
ljk + 2Zilz[k�j ]l ,

(2.34)

�′
ij �→ �′

ij − 2z(j

′
i) + 2zk


′
(i|k|j) + 2Z(i|k�k|j) + zizj� − 4zkz(i�

A
j)k + zkzl�kilj

+ 2z(iZj)k
k + 2zlZ(i|k
kl|j) + ZikZjl�kl. (2.35)

2.7. Priming operation

Following GHP, we have used a prime ′ to distinguish between certain quantities in the notation
introduced above. This has a significance: if we define

�′ = n, n′ = �, m(i)
′ = m(i), (2.36)

then one can interpret the prime as an operator which interchanges � and n. For example:

(ρij )
′ = (m(i)

μm(j)
ν∇ν�μ)′ = m(i)

μm(j)
ν∇νnμ = ρ ′

ij . (2.37)

If a scalar T has boost weight b and spin s, then T′ has boost weight −b and spin s. Clearly
T′′ = T.

If � and n are treated symmetrically then use of the prime leads to a significant reduction
in the number of independent components e.g. of the Bianchi identity. Note that this is no
longer true if the symmetry between � and n is broken. For example, in an algebraically special
spacetime, one can choose � to be a multiple WAND. This is endowing � with a property not
enjoyed by n and hence the priming symmetry is broken and one must write out all of the
equations explicitly9.

Note that the action of ′ on the boost weight 0 components of the Weyl tensor contains
one subtlety:

�′
ij = (C0i1j )

′ = C1i0j = �ji = �S
ij − �A

ij . (2.38)

The other boost weight zero Weyl components �ijkl are invariant under the priming operation,
as are the boost weight zero Ricci tensor components.

In four dimensions, there are two other discrete symmetries of the system available:
complex conjugation and *-symmetry (see [1]). Neither of these extends to an arbitrary
number of dimensions in a natural way.
9 In a type D spacetime, one can choose both � and n to be multiple WANDs and the priming symmetry is unbroken.

8
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2.8. Newman–Penrose equations

The curvature tensors can be related to the spin coefficients by evaluating the Ricci equation

(∇μ∇ν − ∇ν∇μ)Vρ = RμνρσV σ (2.39)

for the basis vectors V = �, n,m(i). The corresponding equations are written out in the higher
dimensional NP formalism in [7]. In the GHP approach, some of these equations (e.g. those for
V = m(i)) do not transform as scalars and can be neglected. The equations that do transform
as GHP scalars take the following form:

boost weight +2:

þρij − �j κi = −ρikρkj − κiτ
′
j − τiκj − �ij − 1

d − 2
ωδij , (NP1)

boost weight +1:

þτi − þ′κi = ρij (−τj + τ ′
j ) − 
i +

1

d − 2
ψi, (NP2)

�[j |ρi|k] = τiρ[jk] + κiρ
′
[jk] − 1

2

ijk − 1

d − 2
ψ[j δk]i , (NP3)

boost weight 0:

þ′ρij − �j τi = −τiτj − κiκ
′
j − ρikρ

′
kj − �ij

− 1

d − 2
(φij + φδij ) +

φkk + 2φ

(d − 1)(d − 2)
δij , (NP4)

with another four equations obtained by taking the prime ′ of these four. This illustrates the
economy of the GHP formalism; not only are the above equations considerably simpler than
the corresponding NP equations of [7], but use of the priming operation enables us to reduce
the number of equations by half. We shall refer to the above equations as ‘NP equations’; for
d = 4, other names in the literature include ‘Ricci equations’, ‘spin coefficient equations’ and
‘field equations’ (see, e.g., [3, 7, 14, 15]).

Appendix A.1 gives these equations in the important special case of an algebraically
special Einstein spacetime for which the symmetry under the priming operation is broken if
one chooses � to be a multiple WAND.

2.9. Bianchi equations for Einstein spacetimes

For an Einstein spacetime,

Rμν = �gμν, (2.40)

so ∇ρRμν = 0 and hence the differential Bianchi identity ∇[τ |Rμν|ρσ ] = 0 implies that

∇[τ |Cμν|ρσ ] = 0. (2.41)

The components of this equation are written out using the higher dimensional NP formalism
in [6]. In the GHP notation, the independent components are equivalent to the following
equations:

boost weight +2:

þ
ijk − 2�[j�k]i = (
2�i[j |δk]l − 2δil�

A
jk − �iljk

)
κl

− 2(
[j |δil + 
iδ[j |l + 
i[j |l + 
[j |il)ρl|k] + 2�i[j τ
′
k], (B1)

9
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boost weight +1:

−þ�ij − �j
i + þ′�ij = −(
 ′
j δik − 
 ′

jik)κk +
(
�ik + 2�A

ik + �δik

)
ρkj

+ (
ijk − 
iδjk)τ
′
k − 2(
(iδj)k + 
(ij)k)τk − �ikρ

′
kj , (B2)

−þ�ijkl + 2�[k
l]ij = −2
 ′
[i|klκ|j ] − 2
 ′

[k|ij κ|l]

+ 4�A
ij ρ[kl] − 2�[k|iρj |l] + 2�[k|jρi|l] + 2�ij [k|mρm|l]

− 2
[i|klτ
′
|j ] − 2
[k|ij τ ′

|l] − 2�i[k|ρ ′
j |l] + 2�j [kρ

′
i|l], (B3)

−�[j |
i|kl] = 2�A
[jk|ρi|l] − 2�i[j ρkl] + �im[jk|ρm|l] − 2�i[j ρ

′
kl], (B4)

boost weight 0:

þ′
ijk − 2�[j |�i|k] = 2(
 ′
[j |δil − 
 ′

[j |il)ρl|k] +
(
2�i[j δk]l − 2δil�

A
jk − �iljk

)
τl

+ 2(
iδ[j |l − 
i[j |l )ρ ′
l|k] + 2�i[j κ

′
k], (B5)

−2�[i�
A
jk] = 2
 ′

[iρjk] + 
 ′
l[ij |ρl|k] − 2
[iρ

′
jk] − 
l[ij |ρ ′

l|k], (B6)

−�[k|�ij |lm] = −
 ′
i[kl|ρj |m] + 
 ′

j [kl|ρi|m] − 2
 ′
[k|ij ρ|lm]

−
i[kl|ρ ′
j |m] + 
j [kl|ρ ′

i|m] − 2
[k|ij ρ ′
|lm]. (B7)

Another five equations are obtained by applying the prime operator to equations (B1)–(B5)
above. The above equations are significantly simpler than those of the NP formalism [6].
Appendix A.2 gives these additional equations for the important special case of an algebraically
special Einstein spacetime (where the symmetry under ′ is typically broken).

It is sometimes useful to consider the following boost weight +1 equation, constructed
from the symmetric part of (B2) and a contraction of (B3):

−�j (
iδjk − 
ijk) + 2þ′�ik = −�ikρ
′ + 2�ijρ

′
[kj ] − 4(
(iδk)s + 
(ik)s)τs

+ �kjρij − �jkρij + �ijρkj − �jiρjk

+ 2�ijρjk − �ikρ + �ijklρjl + �ρik. (B8)

In the case of an algebraically special spacetime, with � a multiple WAND, this equation
is purely algebraic, see [16, 17] for examples of its usefulness.

2.10. Bianchi equations with matter

If matter, other than a cosmological constant, is included, the Bianchi equations also contain
Ricci tensor terms (recall that the notation for these was defined in table 3).

Noting that

Rabcd = Cabcd +
2

d − 2
(ηa[cRd]b − ηb[cRd]a) − 2R

(d − 1)(d − 2)
ηa[cηd]b, (2.42)

the appropriate equations can then be obtained from (B1)–(B7) by making the following
replacements:

�ij → �ij +
ω

d − 2
δij , (2.43)


i → 
i − ψi

d − 2
, (2.44)


ijk → 
ijk +
2

d − 2
ψ[j δk]i , (2.45)

10



Class. Quantum Grav. 27 (2010) 215010 M Durkee et al

�ij → �ij +
φij

d − 2
+

(d − 3)φ − φkk

(d − 1)(d − 2)
δij , (2.46)

�ijkl → �ijkl +
2

d − 2
(δi[kφl]j − δj [kφl]i ) − 2δi[kδl]j

2φ + φmm

(d − 1)(d − 2)
, (2.47)

� → � − 2φ

d − 1
+

φii

(d − 1)(d − 2)
, (2.48)

together with the primed versions of the first three of these equations. Note that before these
replacements are made, we interpret these objects as Riemann, not Weyl, tensor components, so
the various trace identities discussed in table 2 no longer hold. Hence, the above replacements
are valid only when made directly in equations (B1)–(B7), not in contractions of these
equations. When making these replacements, one can exclude any cosmological constant
terms from the Ricci tensor, since these must all cancel out in the Bianchi equations.

The above equations must be supplemented by additional equations that are consequences
of (B1)–(B7) in the Einstein case but are independent equations when matter is present. These
equations are equivalent to the contracted Bianchi identity

∇μRμν = 1
2∇νR. (2.49)

In the null basis, this equation reduces to

þ′ω + �iψi − 1
2þφii = −ρ ′ω + (2τi + τ ′

i )ψi + ρij (φij − φδij ) + κiψ
′
i , (2.50)

þ′ψi + �jφij − �i

(
φ + 1

2φjj

)
+ þψ ′

i = −κ ′
iω − (ρ ′

ij + ρ ′δij )ψj + (τj + τ ′
j )(φji − φδji)

− (ρij + ρδij )ψ
′
j − κiω

′, (2.51)

with a third equation following from (2.50)′.

2.11. Commutators of derivatives

In most respects, the GHP formalism leads to significantly simpler equations than the NP
formalism. One important exception to this statement concerns the commutators of GHP
derivatives, which are more complicated than the commutators of the NP derivative operators
D, � and δi (see [8] for these commutators). The GHP commutators contain some information
that is contained within the NP equations that do not transform as GHP scalars. These
commutators depend on the spin s and boost weight b of the GHP scalar Ti1...is that they act
on. For an arbitrary spacetime they read

[þ,þ′]Ti1...is =
[
(−τj + τ ′

j )�j + b

(
−τj τ

′
j + κjκ

′
j + � − 2φ

d − 1
+

φjj

(d − 1)(d − 2)

)]
Ti1...is

+
s∑

r=1

(
κir κ

′
j − κ ′

ir
κj + τ ′

ir
τj − τir τ

′
j + 2�A

ir j

)
Ti1...j ...is , (C1)

[þ, �i]Tk1...ks
=

[
−(κiþ′ + τ ′

i þ + ρji�j ) + b

(
−τ ′

j ρji + κjρ
′
ji + 
i − 1

d − 2
ψi

)]
Tk1...ks

+
s∑

r=1

[
κkr

ρ ′
li − ρkr iτ

′
l + τ ′

kr
ρli − ρ ′

kr i
κl −
ilkr

− 2

d − 2
ψ[lδkr ]i

]
Tk1...l...ks

, (C2)

11
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[�i , �j ]Tk1...ks
= (

2ρ[ij ]þ′ + 2ρ ′
[ij ]þ + 2bρl[i|ρ ′

l|j ] + 2b�A
ij

)
Tk1...ks

+
s∑

r=1

[
2ρkr [i|ρ ′

l|j ] + 2ρ ′
kr [i|ρl|j ] + �ijkr l

+
2

d − 2
(δ[i|kr

φ|j ]l − δ[i|lφ|j ]kr
) − 2(2φ + φmm)δ[i|kr

δ|j ]l

(d − 1)(d − 2)

]
Tk1...l...ks

. (C3)

The fourth commutator [þ′, �i] can be obtained easily by taking the prime of (C2). Again,
these equations simplify in the case of an algebraically special Einstein spacetime (although
at the cost of breaking the priming symmetry)—see appendix A.3 for more details.

2.12. Further simplification of equations

In spacetimes of algebraic type II, III or N, there is a preferred choice for the vector � (tangent
to the multiple WAND), but not for n. For practical calculations, it is often useful to ask if
we can make a particular choice of n that simplifies the Bianchi and NP equations. Here we
prove the following result.

Lemma 1. Let � be a geodesic multiple WAND in an algebraically special Einstein spacetime,
with the property that det ρ �= 0. Then the second null vector n can be chosen such that
τ = τ ′ = 0.

Note that [18] proved that an algebraically special Einstein spacetime must admit a
geodesic multiple WAND.

This lemma is a useful result for simplifying the GHP equations for some type II
spacetimes. However, note that when the spacetime is type D one cannot in general align this
choice of n with the second multiple WAND.

Proof. Since � is a geodesic multiple WAND we have

�ij = 
ijk = 
i = κi = 0. (2.52)

Now, using (2.23) and (2.24), we see a null rotation about � maps τ and τ ′ to

τ̂ = τ + ρz (2.53a)

and

τ̂ ′ = τ ′ + þz. (2.53b)

When det ρ �= 0, we can set z = −ρ−1τ and hence fix τ̂ = 0.
Applying þ to (2.53a) gives

þτ + (þρ)z + ρþz = 0. (2.54)

Using the NP equations (NP1) and (NP2) to eliminate some of the derivatives, and then
equation (2.53a) this leads to

þz = −τ ′ (2.55)

and therefore by (2.53b) we have τ̂ ′ = 0.
For spacetimes admitting a multiple WAND with det ρ �= 0 one can therefore, without

loss of generality, choose a gauge with

κ = τ = τ ′ = 0 and �ij = 0 = 
ijk. (2.56)

This leads to a considerable simplification of the NP and Bianchi equations. �

12
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3. Maxwell fields

Maxwell form fields appear in various higher dimensional supergravity theories, typically
obtained from low energy limits of string theory. Here we use the GHP formalism to study
the linear Maxwell equations for such fields. One motivation for this, discussed further in
section 3.3, is the connection in 4D between algebraically special spacetimes, and those
admitting an algebraically special Maxwell field.

We shall study Maxwell test fields (i.e. neglecting gravitational backreaction) with (p+1)-
form field strength (i.e. p-form potential) in arbitrary dimension d � 4, with 1 � p � d − 3.
For p = 1, our work has some overlap with that of Ortaggio [19].

3.1. GHP-Maxwell equations in higher dimensions

In arbitrary dimension d � 4, the Maxwell equations for a (p + 1)-form field strength Fν1...νp+1

(i.e. a p-form potential) read

∇μFμν1...νp
= 0 and ∇[ν1Fν2...νp+2] = 0. (3.1)

We can convert these into GHP notation as follows. We define

ϕk1...kp
≡ F0k1...kp

, fk1...kp−1 ≡ F01k1...kp−1 , Fk1...kp+1 ≡ Fk1...kp+1 , ϕ′
k1...kp

≡ F1k1...kp
, (3.2)

so ϕk1...kp
has b = 1, fk1...kp−1 and Fk1...kp+1 have b = 0 and ϕ′

k1...kp
has b = −1. Note that

f ′
k1...kp−1

= −fk1...kp−1 . The Maxwell equations are equivalent to

boost weight +1:

�iϕik1...kp−1 + þfk1...kp−1 = τ ′
i ϕik1...kp−1 − ρfk1...kp−1 + ρ[ij ]Fijk1...kp−1

− κiϕ
′
ik1...kp−1

+ (p − 1)ρ[k1|ifi|k2...kp−1], (3.3)

(p + 1)�[k1ϕk2...kp+1] − þFk1...kp+1 = (p + 1)
(
τ ′

[k1
ϕk2...kp+1] + ρi[k1F|i|k2...kp+1]

+ pρ[k1k2fk3...kp+1] + κ[k1ϕ
′
k2...kp+1]

)
, (3.4)

boost weight 0:

2þ′ϕk1...kp
+ �jFjk1...kp

− p�[k1fk2...kp]

= (pρ ′
[k1|i − pρ ′

i[k1| − ρ ′δ[k1|i )ϕi|k2...kp] + 2τiFik1...kp

− 2pτ[k1fk2...kp] + (pρ[k1|i + pρi[k1| − ρδ[k1|i )ϕ
′
i|k2...kp], (3.5)

�[k1Fk2...kp+2] = (p + 1)
(
ϕ[k1...kp

ρ ′
kp+1kp+2] + ϕ′

[k1...kp
ρkp+1kp+2]

)
, (3.6)

�ifik1...kp−2 = −ρ[ij ]ϕ
′
ijk1...kp−2

+ ρ ′
[ij ]ϕijk1...kp−2 for p > 1, (3.7)

together with the primed equations: (3.3)′, (3.4)′ and (3.5)′.
NB: in the case p = 1, the quantity f has no indices, and equation (3.7) does not appear.

Equation (3.6) vanishes identically when p > d − 4, as is the case in conventional d = 4,
p = 1 electromagnetism.

A natural question that arises is whether, given an arbitrary solution of the Maxwell
equations, one can always find a vector field � that is aligned with it, in the sense that ϕ = 0.
For p = 1, a partial answer to this question, in a slightly different context, was given by
Milson [20]10. His results (propositions 4.4 and 4.5) prove that in even dimension it is always
possible to make such a choice, but suggest that this is probably not the case in odd dimension.

10 Thanks to Marcello Ortaggio for pointing this out.
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3.2. Hodge duality

It is well known that the Maxwell equations are invariant under the Hodge duality. That is, if
a (p + 1)-form F satisfies the Maxwell equations (3.1), then the (d − p − 1)-form �F is also
a solution.

To fix signs, we define the totally antisymmetric symbol ε with ε012...d−1 = +1. This
results in a volume form:

ε = e(0) ∧ e(1) ∧ e(2) ∧ . . . ∧ e(d−1) = −� ∧ n ∧ m(2) ∧ . . . ∧ m(d−1). (3.8)

The Hodge duality maps the basis components of a p-form A to �A where

(�A)b1...bd−p
≡ 1

p!
ε

a1...ap

b1...bd−p
Aa1...ap

. (3.9)

It is useful to define a Euclidean signature, (d − 2)-dimensional Hodge duality operator E� by

(E�T )j1...jd−2−r
≡ 1

r!
εj1...jd−2−r i1...ir Ti1...ir (3.10)

mapping totally antisymmetric GHP scalars with r spatial indices to totally antisymmetric
GHP scalars with d − 2 − r spatial indices.

Consider the action of the Hodge duality on our Maxwell (p + 1)-form F, setting
q = d − 2 − p for convenience, so that

(�F )b1...bq+1 = 1

(p + 1)!
ε

a1...ap+1

b1...bq+1
Fa1...ap+1 . (3.11)

Taking components, this implies that

(�ϕ)k1...kq
≡ (�F )0k1...kq

= (−1)d−p(E�ϕ)k1...kq
, (3.12)

(�f )k1...kq−1 ≡ (�F )01k1...kq−1 = (E�F )k1...kq−1, (3.13)

(�F )k1...kq+1 ≡ (�F )k1...kq+1 = −(E�f )k1...kq+1 , (3.14)

(�ϕ′)k1...kq
≡ (�F )1k1...kq

= (−1)d+1−p(E�ϕ)k1...kq
. (3.15)

Note that applying the Hodge star operation to a primed quantity always introduces an extra
minus sign, so it is useful to define (E�)′ ≡ −(E�) to account for this.

3.3. Algebraically special Maxwell fields

We now introduce the notion of an algebraically special Maxwell field.

Definition 6. A Maxwell (p + 1)-form field F is algebraically special if there exists a choice
of � such that all non-negative boost weight components of F vanish everywhere. A vector
field � with this property is multiply aligned with F.

Note that, by equations (3.12)–(3.14), the property of being algebraically special is
preserved under the Hodge duality, that is,

Lemma 2. A Maxwell (p + 1)-form field F is algebraically special if and only if �F is
algebraically special.

In 4D, the Mariot–Robinson theorem (theorem 7.4 of [15]) states that a null vector field
is multiply aligned with a (non-zero) algebraically special Maxwell field if and only if it is
geodesic and shearfree. Therefore, by the Goldberg–Sachs theorem (theorem 7.3 of [15]), a

14
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vacuum spacetime admits such a Maxwell (test) field if and only if it is algebraically special.
It is natural to ask whether any part of this holds in higher dimensions. The following result
holds.

Lemma 3. Let � be a null vector field in a d-dimensional spacetime, multiply aligned with a
non-zero Maxwell (p + 1)-form field F, with 0 < p < d − 2. Then

(i) � is tangent to a null geodesic congruence;
(ii) ρ(ij) has p eigenvalues whose sum is ρ/2 (hence, the remaining d − 2 − p eigenvalues

must also sum to ρ/2).

Proof.

(i) Choose a null frame in which � is one of the basis vectors. Equations (3.3) and (3.4)
reduce to

κiϕ
′
ik1...kp−2

= 0 = κ[k1ϕ
′
k2...kp]. (3.16)

If κ �= 0, then we can use spins to move to a frame where κi = κδi2 and immediately
show that this implies ϕ′

k1...kp
= 0, and hence the Maxwell field vanishes. Hence, if the

Maxwell field is non-vanishing, κ = 0 and � is geodesic, which completes the proof of
(i).

(ii) Let S denote the symmetric part of ρ. The Maxwell equation (3.5) reduces to

0 = (2pS[k1|i − ρδ[k1|i )ϕ
′
i|k2...kp]. (3.17)

Working in a basis where S is diagonal with eigenvalues si, this implies[
p∑

r=1

skr
− ρ

2

]
ϕ′

k1...kp
= 0, (3.18)

where we drop the summation convention for the remainder of this proof. The Maxwell
field is non-vanishing, so we can shuffle indices to set ϕ′

23...p+1 �= 0, which implies that

p+1∑
i=2

si = ρ

2
, (3.19)

which gives the required result. �

Note that this result is consistent with the Hodge duality. In four dimensions, it reduces to
the statement that a null vector field multiply aligned with a Maxwell field must be geodesic
and shearfree.

In the case p = 1 one can prove a slightly stronger result.

Lemma 4. Let � be a null vector field in a d-dimensional spacetime, multiply aligned with a
Maxwell 2-form field. Then � is geodesic, and the symmetric and anti-symmetric parts of the
optical matrix ρ have the following properties:

(1) ρ(ij) has an eigenvalue ρ/2, with corresponding eigenvector ϕ′
i (the b = −1 part of the

Maxwell field) and
(2) ρ[ij ] = ϕ′

[iωj ] for some ωi .

15
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Note that part of this result was proved in [19].

Proof. The geodesity property was proved in lemma 3. Now the Maxwell equations (3.5)–
(3.7) reduce to

0 = (
ρ(ki) − 1

2ρδki

)
ϕ′

i , (3.20)

0 = ρ[k1k2ϕ
′
k3]. (3.21)

These are equivalent to statements 1 and 2, respectively. �

There is an important difference between d = 4 and d > 4 in the above results. As
mentioned above, for d = 4, � is multiply aligned with a Maxwell (test) field if and only if it is
multiply aligned with the Weyl tensor (in vacuum). The results above demonstrate that this is
not true for d > 4. For example, consider the Schwarzschild solution, for which the multiple
WANDs are geodesic and shearfree, i.e. choosing � to be a multiple WAND, all eigenvalues
of ρ(ij) are equal to ρ/(d − 2). Then for � also to be multiply aligned with an algebraically
special Maxwell (p + 1)-form field we would need, from lemma 3, pρ/(d − 2) = ρ/2 and
hence d = 2(p + 1). Therefore only in an even number d = 2(p + 1) of dimensions is it
possible for a null vector field to be multiply aligned simultaneously with the Weyl tensor and
with a (p + 1)-form Maxwell field in the Schwarzschild spacetime. This shows that, for a
general higher dimensional spacetime, we cannot expect any relation between vectors multiply
aligned with a (p + 1)-form Maxwell field and vectors multiply aligned with the Weyl tensor,
except possibly when d = 2(p + 1).

4. Some applications of the GHP formalism

4.1. Codimension-2 hypersurfaces

The GHP formalism is particularly useful for spacetimes admitting a preferred pair of null
directions. One example, discussed for d = 4 by GHP [1] (see also [3]), is when one is
interested in a codimension-2 spacelike surface S. There is a unique (up to a sign) choice of
null directions that lie orthogonal to S. Choosing � and n to lie in those directions implies that
S is spanned by the spacelike vectors m(i).

Projections onto the surface are given by

hμ
ν =

d−1∑
i=2

m(i)
μm(i)ν, (4.1)

and hμν is the induced metric on S. Note that �i , when acting on boost weight 0 quantities
(which are invariant under the rescaling of � and n), is simply the metric covariant derivative
on S:

�ihjk = δihjk +
l

Mjihlk +
l

Mkihjl = k

Mji +
j

Mki = 0. (4.2)

Consider the commutator (C3) acting on a boost weight zero GHP scalar Vk. This takes
the form

[�i , �j ]Vk =
[

2ρk[i|ρ ′
l|j ] + 2ρ ′

k[i|ρl|j ] + �ijkl

+
2

d − 2
(δ[i|kφ|j ]l − δ[i|lφ|j ]k) − 2δ[i|kδ|j ]l

2φ + φmm

(d − 1)(d − 2)

]
Vl. (4.3)

We have used ρ[ij ] = ρ ′
[ij ] = 0, which follows from Frobenius’ theorem.
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The terms on the RHS give us the induced Riemann tensor on S, in terms of the null
vector fields that define the embedding of the surface, and the curvature of the spacetime in
which it is embedded. To see this, we can compare (4.3) with the (d − 2)-dimensional Ricci
identity:

(∇i∇j − ∇j∇i )Vk = (d−2)RijklVl (4.4)

to obtain
(d−2)Rijkl = 2ρk[i|ρ ′

l|j ] + 2ρ ′
k[i|ρl|j ] + �ijkl

+
2

d − 2
(δ[i|kφ|j ]l − δ[i|lφ|j ]k) − 2δ[i|kδ|j ]l

2φ + φmm

(d − 1)(d − 2)
. (4.5)

This approach to dealing with (d − 2)-dimensional surfaces has an important advantage over
approaches that require a particular choice of basis on the surface in that it is always guaranteed
to be well defined across the whole surface [3]. For example, in even dimensions, if S has
the topology Sd−2 then it is well known that there is no continuous, globally valid choice of
vector basis that can be made. The GHP approach does not require the introduction of such
an explicit basis, and therefore does not suffer from this problem.

4.2. Optics of WANDs in type N spacetimes

The relationship between the property of being algebraically special, and the optics of the
multiple WAND has been investigated in various papers. Here we derive constraints on the
optics of multiple WANDs in type N spacetimes using the GHP formalism. This result has
been previously obtained in [6], but the proof we give here is significantly simpler.

Lemma 5. Let � be a multiple WAND of type N alignment in an Einstein spacetime. Then
the optical matrix ρ takes the form

ρ =
⎛
⎝1

2

(
ρ a

−a ρ

)
0

0 0

⎞
⎠ (4.6)

(in a frame where its symmetric part is diagonalized), for some ρ, a. If ρ = 0, then a = 0 and
the spacetime is Kundt (i.e. ρij = 0).

Proof. By [6], all multiple WANDs in type N spacetimes are geodesic, so � is geodesic
(κi = 0). For type N, by definition, the only non-vanishing Weyl components are �′

ij . The
Bianchi equations imply that

þ�′
ij = −�′

ikρkj , (4.7)

�′
i[j ρkl] = 0, (4.8)

�′
i[k|ρj |l] = �′

j [k|ρi|l]. (4.9)

Let S and A denote the symmetric and antisymmetric parts of ρ, respectively. Tracing (4.8)
on i and k gives

Ω′A + AΩ′ = 0. (4.10)

Similarly, tracing (4.9) on i and k gives

Ω′ρ + ρΩ′ = (tr ρ)Ω′ (4.11)
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and using (4.10) this gives

Ω′S + SΩ′ = (tr S)Ω′. (4.12)

Now we take the antisymmetric part of (4.7) to obtain

0 = −[Ω′, S] − (Ω′A + AΩ′), (4.13)

and after applying (4.10) this tells us that [Ω′, S] = 0, and hence Ω′ and S are simultaneously
diagonalizable, via rotations of the m(i). Work in a basis where Ω′ and S are diagonal. Let N
be the number of eigenvalues of Ω′ that do not vanish everywhere in the spacetime; then we
can shuffle the m(i) so that

Ω′ = diag(ψ(2), . . . , ψ(N+1), 0, . . . , 0) and S = diag(s(2), . . . , s(d−1)), (4.14)

with all the ψ(α) non-zero (where from now on in this section, indices α, β, . . . range over
2, . . . , N + 1 and I, J, . . . range over N + 2, . . . , d − 1). As the spacetime is type N not type
O, we must have N � 1. Putting this into (4.12) gives (with no summation)

ψ(i)s(i) = 1
2ψ(i)(tr S) (4.15)

for all i and hence

s(α) = tr S

2
for α = 2, . . . , N + 1. (4.16)

Also, the αI component of (4.10) implies that AIα = 0 = AαI , so ρ is block diagonal with
blocks of size N and d − 2 − N . Finally, taking the ijkl = IαJβ component of the Bianchi
equation (4.9) gives �′

αβρIJ = 0 and hence ρIJ = 0.
In summary, we have shown so far that (recall tr S = ρ)

ρ =
(

ρ

2 1N + AN 0
0 0

)
, (4.17)

where 1N is the N × N identity matrix, and AN is antisymmetric. Taking the trace tells us
that ρ = Nρ/2 hence either (i) N = 2 or (ii) ρ = 0.

In case (i), we have proved that ρ must take the form (4.6) for some a.
In case (ii), S = 0. The trace of equation (A.2) gives þ(tr S) = −tr(S2) − tr(A2) and

hence we see that tr(A2) = −AijAij = 0, so A = 0 and the spacetime is Kundt. (In fact
S = 0 implies A = 0 for all Einstein spacetimes [7].) �
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Appendix A. Equations for algebraically special Einstein spacetimes

In an algebraically special Einstein spacetime, it has been shown that there always exists a
geodesic multiple WAND [18]. If we choose � to be this multiple WAND, then we have

�ij = 
ijk = 
i = κi = 0. (A.1)

18
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This considerably simplifies many of the GHP equations. However, since we have now
endowed � with a property that is not enjoyed by n, we have broken the symmetry under the
priming operation and therefore must write out all of the equations explicitly.

In a type D Einstein spacetime, we can choose both � and n to be geodesic multiple
WANDs11. In this case, the priming symmetry is not broken and one can eliminate half of the
equations below.

A.1. NP equations

Boost weight +2:

þρij = −ρikρkj , (A.2)

boost weight +1:

þτi = ρij (−τj + τ ′
j ), (A.3)

�[j |ρi|k] = τiρ[jk], (A.4)

boost weight 0:

þ′ρij − �j τi = −τiτj − ρikρ
′
kj − �ij − �

d − 1
δij , (A.5)

þρ ′
ij − �j τ

′
i = −τ ′

i τ
′
j − ρ ′

ikρkj − �ji − �

d − 1
δij , (A.6)

boost weight −1:

þ′τ ′
i − þκ ′

i = ρ ′
ij (−τ ′

j + τj ) − 
 ′
i , (A.7)

�[j |ρ ′
i|k] = τ ′

i ρ
′
[jk] + κ ′

iρ[jk] − 1
2
 ′

ijk, (A.8)

boost weight −2:

þ′ρ ′
ij − �j κ

′
i = −ρ ′

ikρ
′
kj − κ ′

i τj − τ ′
i κ

′
j − �′

ij . (A.9)

A.2. Bianchi equation

Boost weight +1:

þ�ij = −(
�ik + 2�A

ik + �δik

)
ρkj , (A.10)

−þ�ijkl = 4�A
ij ρ[kl] − 2�[k|iρj |l] + 2�[k|jρi|l] + 2�ij [k|mρm|l], (A.11)

0 = 2�A
[jk|ρi|l] − 2�i[j ρkl] + �im[jk|ρm|l], (A.12)

boost weight 0:

−2�[j |�i|k] = (
2�i[j δk]l − 2δil�

A
jk − �iljk

)
τl + 2(
 ′

[j |δil − 
 ′
[j |il)ρl|k], (A.13)

−2�[i�
A
jk] = 2
 ′

[iρjk] + 
 ′
l[ij |ρl|k], (A.14)

11 Assume � and n are both multiple WANDs. In [18] it was shown that there exists a (possibly trivial) null rotation
about n that transforms � into a geodesic multiple WAND �′. Now repeating the argument there exists a null rotation
about �′ that transforms n into a geodesic multiple WAND n′.
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−�[k|�ij |lm] = −
 ′
i[kl|ρj |m] + 
 ′

j [kl|ρi|m] − 2
 ′
[k|ij ρ|lm], (A.15)

−2�[j�k]i + þ
 ′
ijk = (

2�[j |iδk]l + 2δil�
A
jk − �iljk

)
τ ′
l + 2(
 ′

iδ[j |l − 
 ′
i[j |l )ρl|k]; (A.16)

boost weight −1:

−þ′�ji − �j

′
i + þ�′

ij = (
�S

ik − 3�A
ik + �δik

)
ρ ′

kj + (
 ′
ijk − 
 ′

iδjk)τk

− 2(
 ′
(iδj)k + 
 ′

(ij)k)τ
′
k − �′

ikρkj , (A.17)

−þ′�ijkl + 2�[k

′
l]ij = −4�A

ij ρ
′
[kl] − 2�i[k|ρ ′

j |l] + 2�j [k|ρ ′
i|l] + 2�ij [k|mρ ′

m|l]
− 2
 ′

[i|klτ|j ] − 2
 ′
[k|ij τ|l] − 2�′

i[k|ρj |l] + 2�′
j [kρi|l], (A.18)

−�[j |
 ′
i|kl] = −2�A

[jk|ρ
′
i|l] − 2�[j |iρ ′

|kl] + �im[jk|ρ ′
m|l] − 2�′

i[j |ρ|kl], (A.19)

boost weight −2:

þ′
 ′
ijk − 2�[j�

′
k]i = (

2�[j |iδk]l + 2δil�
A
jk − �iljk

)
κ ′

l

−2(
 ′
[j |δil + 
 ′

iδ[j |l + 
 ′
i[j |l + 
 ′

[j |il)ρ
′
l|k] + 2�′

i[j τk]. (A.20)

A.3. Commutators

[þ,þ′]Ti1...is =
[
(−τj + τ ′

j )�j + b

(
−τj τ

′
j + � − 2�

d − 1

)]
Ti1...is

+
s∑

r=1

(
τ ′
ir
τj − τir τ

′
j + 2�A

ir j

)
Ti1...j ...is , (A.21)

[þ, �i]Tk1...ks
= (−(τ ′

i þ + ρji�j ) − bτ ′
j ρji)Tk1...ks

+
s∑

r=1

(−ρkr iτ
′
l + τ ′

kr
ρli)Tk1...l...ks

, (A.22)

[þ′, �i]Tk1...ks
= [−(τiþ′ + ρ ′

ji�j ) − bτjρ
′
ji]Tk1...ks

+
s∑

r=1

[κ ′
kr
ρli − ρ ′

kr i
τl + τkr

ρ ′
li − ρ ′

kr i
κ ′

l − 
 ′
ilkr

]Tk1...l...ks
, (A.23)

[�i , �j ]Tk1...ks
= (

2ρ[ij ]þ′ + 2ρ ′
[ij ]þ + 2bρl[i|ρ ′

l|j ] + 2b�A
ij

)
Tk1...ks

+
s∑

r=1

[
2ρkr [i|ρ ′

l|j ] + 2ρ ′
kr [i|ρl|j ] + �ijkr l +

2�

d − 1
δ[i|kr

δ|j ]l

]
Tk1...l...ks

. (A.24)
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