
Type III and N Einstein spacetimes in higher dimensions: General properties
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The Sachs equations governing the evolution of the optical matrix of geodetic WANDs (Weyl aligned

null directions) are explicitly solved in n dimensions in several cases which are of interest in potential

applications. This is then used to study Einstein spacetimes of type III and N in the higher dimensional

Newman-Penrose formalism, considering both Kundt and expanding (possibly twisting) solutions. In

particular, the general dependence of the metric and of the Weyl tensor on an affine parameter r is

obtained in a closed form. This allows us to characterize the peeling behavior of the Weyl ‘‘physical’’

components for large values of r, and thus to discuss, e.g., how the presence of twist affects polarization

modes, and qualitative differences between four and higher dimensions. Further, the r dependence of

certain nonzero scalar curvature invariants of expanding spacetimes is used to demonstrate that curvature

singularities may generically be present. As an illustration, several explicit type N/III spacetimes that

solve Einstein’s vacuum equations (with a possible cosmological constant) in higher dimensions are

finally presented.
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I. INTRODUCTION

It was recognized long ago that several important fea-
tures of gravitational radiation in general relativity can be
conveniently described in a covariant manner by studying
the asymptotic properties of spacetimes [1–4]. More gen-
erally, the development of asymptotic techniques has
proven fundamental in understanding general properties
of the theory, since the behavior of the gravitational field
near (spacelike or null) infinity encodes essential informa-
tion about physical quantities such as mass, angular mo-
mentum, and flux of radiation (at least in asymptotically
flat spacetimes). From a technical viewpoint, the Newman-
Penrose formalism [3] turns out to be extremely useful in
analyzing the falloff properties of gravitational fields at
infinity. In a nutshell, (after making certain initial technical
assumptions) from the Ricci identities one first extracts the
r dependence of some of the Ricci rotation coefficients
which are needed in the analysis (throughout the paper r
will denote an affine parameter along null geodesics).
Subsequently, specific Bianchi identities are integrated
that determine the behavior of the Riemann (Weyl) tensor,
which geometrically characterizes properties of the gravi-
tational field. From this one demonstrates, e.g., the char-
acteristic peeling-off properties of radiative spacetimes [1–
4]. Then one can further proceed to integrate the remaining
Ricci/Bianchi identities and thus find asymptotic solutions
(possibly with specific extra assumptions, see, e.g., [5], and
[6] for a review and further references).

It was noticed in [1] that four-dimensional algebraically
special spacetimes, while leading to significant mathemati-
cal simplification, still asymptotically retain the essential

features of (outgoing) radiation fields generated by more
realistic sources. In particular, in that case the r depen-
dence of the Weyl tensor can be determined in closed form
(and not only asymptotically). This is also an important
first step towards the exact integration of the full Newman-
Penrose equations, aimed at determining the explicit met-
ric functions. One can indeed get quite far in the case of
algebraically special spacetimes, at least in vacuum [7–13],
and several important exact solutions fall within this large
class (see [6,14] for further references).
In recent years the interest in gravity in higher dimen-

sions has grown considerably, mainly motivated by modern
unified theories, AdS/CFT and recent brane world scenar-
ios. Notions such as the total energy of an isolated system
and energy flux are thus fundamental also in higher dimen-
sional theories [15–17]. The study of radiation in higher
dimensions may ultimately enable one to distinguish dif-
ferent models, since properties of gravitational waves de-
pend on the model under consideration (in particular, on
spacetime dimensions [18]). It is thus now of interest to
explore ideas and techniques similar to those mentioned
above for the study of asymptotic properties of algebrai-
cally special spacetimes with n > 4 dimensions. The nec-
essary formalism has been provided in recent works, where
an n > 4 generalization of the Petrov classification [19]
and of the Newman-Penrose equations [20–22] have been
presented.1 Such a programme was thus started in [24],
where we studied vacuum spacetimes admitting a non-
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1Very recently, an extension of the Geroch-Held-Penrose
(GHP) formalism to higher dimensions has also been developed
[23]. Although we will not need the GHP formalism here, the
results of [23] are useful also in the NP context, since some
redundancy of the original Bianchi equations of [20] has been
removed. Beware of the fact that some normalizations used in
[23] slightly differ from those of the present paper.
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degenerate (as defined in Sec. II) geodetic multiple WAND
(Weyl aligned null direction), and satisfying a further
condition necessary for asymptotic flatness. Thanks to
the results of [20], the assumed nondegeneracy implies
that the only possible algebraic type of that family is II
(or D), but not III and N. We observed that such spacetimes
do not peel-off and do not contain gravitational radiation,
as opposed to the case of four dimensions [1].

The analysis of [24] can now be extended in various
directions by modifying some of the assumptions made
there. It is the purpose of the present paper to focus on
empty spacetimes of type III and N, with a possible cos-
mological constant. For these, the (unique) multiple
WAND is necessarily geodetic and degenerate [20]. We
can already remark at this point that this implies that such
spacetimes cannot be asymptotically flat (even in a
‘‘weak’’, local sense, in contrast to the n ¼ 4 case).2 Our
analysis can be however still of interest for spacetimes
with, e.g., Kaluza-Klein asymptotics. It is also worth ob-
serving that, as opposed to [24], we will not need here any
extra assumptions on the asymptotics of the Weyl tensor—
its full r dependence will be fixed by the Bianchi
identities.3

The paper is organized as follows. In Sec. II the Sachs
equations for a congruence of geodetic WANDs ‘ are
studied for spacetimes that satisfy the (rather weak) con-
dition R00 � Rab‘

a‘b ¼ 0, and an explicit solution is
given when the principal directions of shear and twist are
aligned. This includes several cases of interest and, in
particular, Einstein spacetimes of type N and III, which
are then studied in the rest of the paper. Namely, in Secs. III
and IV we determine the r dependence of the Weyl tensor
components of such spacetimes in a parallelly transported
frame. We can thus discuss, e.g., their peeling behavior
near infinity, curvature invariants and possible singular-
ities, frame freedom and rotation of frames induced by
the presence of twist. Differences with respect to the
four-dimensional case are also pointed out. In the final
appendix we construct several examples of Einstein space-
times of type N and III. These are explicitly given in five
dimensions, but they can also be easily extended to higher
dimensions if desired.

Notation: Following [19–22], we use a frame consisting
of two null vectors mð0Þ ¼ ‘ (aligned with the multiple

WAND) and mð1Þ ¼ n, and n� 2 orthonormal spacelike

vectors mðiÞ, where i; j; . . . ¼ 2; . . . ; n� 1. In terms of

these, the metric reads

gab ¼ 2lðanbÞ þ �ijm
ðiÞ
a mðjÞ

b ; (1)

where, hereafter, a, b ¼ 0; 1; . . . ; n� 1.

Derivatives along the frame vectors ‘, n and mðiÞ are
denoted byD,� and �i, respectively. We choose the frame
such that it is parallelly transported along ‘. The optical
matrix L of ‘ has matrix elements

Lij ¼ ‘a;bm
a
ðiÞm

b
ðjÞ; (2)

with (anti-)symmetric parts

Sij ¼ LðijÞ; Aij ¼ L½ij�: (3)

The optical scalars expansion, �, shear, �, and twist, !,
are defined by � ¼ Lii=ðn� 2Þ, �2 ¼ ðSij � ��ijÞðSij �
��ijÞ, and !2 ¼ AijAij. Other Ricci rotation coefficients

used in this paper are defined by (see [20,22] for the full set
of coefficients)

L1i ¼ ‘a;bn
amb

ðiÞ; Li1 ¼ ‘a;bm
a
ðiÞn

b;

L11 ¼ ‘a;bn
anb; M

i

jk ¼ �M
j

ik ¼ mðiÞa;bma
ðjÞm

b
ðkÞ:

(4)

The Weyl tensor of spacetimes of type III and N has only
negative boost-weight frame components, for which we
use the compact symbols

�i ¼ C101i; �ijk ¼ 1
2C1kij; �ij ¼ 1

2C1i1j: (5)

From the symmetries and the tracelessness of the Weyl
tensor one has the identities [20]

�i ¼ 2�ijj; �fijkg ¼ 0; �ijk ¼ ��jik;

�ij ¼ �ji; �ii ¼ 0;
(6)

where �fijkg � �ijk þ�kij þ�jki, which will be em-

ployed throughout the paper. A subscript or superscript 0
will denote quantities which are independent of r (e.g., s0ð2Þ,
a0, �

0
ijk, etc.).

II. GEODETIC WAND: SOLVING THE SACHS
EQUATIONS

We are interested in studying asymptotic properties of
spacetimes along the congruence generated by a geodetic
multiple WAND ‘. As a first step, it is thus natural to fix the
r dependence of the matrix Lij, which determines the

optical properties of ‘. This can be done by integrating
the Sachs equations (a subset of the Ricci identities), which
for a geodetic, affinely parametrized WAND (not neces-
sarily multiple) read [22]

DLij ¼ �LikLkj; (7)

where we assumed that the Ricci tensor satisfies R00 ¼ 0
(which obviously holds for Einstein spaces, defined by
Rab ¼ gabR=n). When Lij ¼ 0 we have a trivial solution

of (7) corresponding to Kundt spacetimes. In the rest of this
section we will study only the nontrivial case Lij � 0.

2cf. footnote 1 of [24].
3The extra assumption needed in [24] concerned the asymp-

totic behavior of the Weyl components Cijkl (in the notation of
[19], see also the following), which vanish identically in the case
of type III/N spacetimes.
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When ‘ is nondegenerate, i.e., L is invertible, such a
matrix differential equation can be easily solved in terms of
L�1 [24], and by taking the inverse matrix one then finds L.
When the number of dimensions is kept arbitrary, this is
done more conveniently by expanding L in a power series
in 1=r. This was indeed the starting point in the analysis of
[24]. By contrast, here we will not assume L to be inver-
tible, but we will solve (7) in a closed form under some
other assumptions. These will be such to include the form
of L compatible, in particular, with type III/N spacetimes
[20]. However, in this section we will be general enough so
that the presented results will apply in a wider context.

A. Explicit solution when the principal directions of
shear and twist are aligned

If one forgets for a moment about the request that the
frame be parallelly propagated, one can always choose the
basis vectors mðiÞ such that the symmetric or the antisym-

metric parts of the matrix L take their canonical form (that
is, Sij is diagonal, or Aij is block-diagonal with two-

dimensional antisymmetric blocks). It is natural to refer
to such preferred basis vectors mðiÞ as the principal shear
directions and principal twist directions, respectively,
(there may be some degeneracy, in general, i.e., there
need not be a unique basis of principal directions). Here
we consider the special case when there exists a basis of
vectors that are principal directions of shear and twist
simultaneously, which is relevant to important applications
(and includes, in particular, the case when L is a normal
matrix, i.e., ½S; A� ¼ 0). This means that L admits a ca-
nonical form given by a direct sum of two-blocks of the
form

L ¼ sð2Þ A23

�A23 sð3Þ

� �
; (8)

where, for definiteness, the frame indices refer to the first
block (next blocks will be characterized by pairs of indices
(4, 5), (6, 7), . . .). If the spacetime dimension n is odd, there
will be also an extra one-dimensional block.

1. The canonical frame can be parallelly transported

We want to solve Eqs. (7), which hold when the basis
vectorsmðiÞ are parallelly transported along ‘. Since we are
now assuming that the mðiÞ coincide with the common

principal shear and twist directions, for consistency it is
necessary to prove that such vectors can indeed be paral-
lelly transported.

Let us thus take such a canonical frame at a special value
of r, say r ¼ 0. Then we have, by construction, that Ljr¼0

is block-diagonal, with blocks of the form

L jr¼0 ¼
s0ð2Þ A0

23

�A0
23 s0ð3Þ

 !
: (9)

One can now define a frame in a neighborhood of r ¼ 0 by
parallel transporting the frame defined at r ¼ 0. By Taylor-
expanding L ¼ Ljr¼0 þ rðDLÞjr¼0 þ 1

2 r
2ðD2LÞjr¼0 þ

. . . , the evolution of L (assumed to be analytic) will be
determined by (7) and its r derivatives

DmL ¼ ð�1Þmm!Lmþ1; (10)

evaluated at r ¼ 0. Since Lmjr¼0 has clearly the same
block-diagonal structure (for any m), it follows that
ðDmLÞjr¼0 has the same block form as well. Con-
sequently L has such a block-diagonal form for any r,
with blocks given by (8), that is what we wanted to prove.

2. Explicit r dependence

Since now each two-dimensional block obeys a de-
coupled equation, we have effectively reduced Eq. (7) to
the standard Sachs equations of n ¼ 4 gravity. For the first
block, we thus have the general solution [1,3,25]

sðpÞ ¼
s0ðpÞ þ r½s0ð2Þs0ð3Þ þ ðA0

23Þ2�
1þ rðs0ð2Þ þ s0ð3ÞÞ þ r2½s0ð2Þs0ð3Þ þ ðA0

23Þ2�
;

ðp ¼ 2; 3Þ; (11)

A23 ¼ A0
23

1þ rðs0ð2Þ þ s0ð3ÞÞ þ r2½s0ð2Þs0ð3Þ þ ðA0
23Þ2�

; (12)

and similarly for the next blocks. In odd dimensions, the
last block will be one-dimensional and given by sðn�1Þ ¼
s0ðn�1Þ=ð1þ rs0ðn�1ÞÞ.
The optical scalars are

� ¼ 1

n� 2

Xn�1

i¼2

sðiÞ; �2 ¼ Xn�1

i¼2

ðsðiÞ � �Þ2;

!2 ¼ 2ðA2
23 þ A2

45 þ . . .Þ:
(13)

More special subcases are discussed below.

3. Nontwisting case

The case ! ¼ 0 is of course included in the above
‘‘aligned’’ case since Aij ¼ 0. Then, Lij ¼ Sij is diagonal

with eigenvalues (using (11) with A0
ij ¼ 0)

sðiÞ ¼
s0ðiÞ

1þ rs0ðiÞ
; (14)

as obtained in [26].
Note that in this case ‘ must be expanding (� � 0) [22]

or one is simply left with the Kundt class (see, e.g., [27–29]
and references therein).
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4. Nonshearing case

When � ¼ 0 one has Sij ¼ ��ij, which is clearly

aligned with any Aij. Then sðiÞ ¼ � for any i ¼ 2; . . . ;

n� 2, so that by (11) all nonzero Aij take the same value

(up to a sign). All the information about Lij is thus con-

tained in the two optical scalars

� ¼ �0 þ rð�20 þ 1
n�2!

2
0Þ

1þ 2r�0 þ r2ð�20 þ 1
n�2!

2
0Þ
;

! ¼ !0

1þ 2r�0 þ r2ð�20 þ 1
n�2!

2
0Þ
:

(15)

This special case was already discussed in [22].
Similarly as in the nontwisting case, we necessarily have
here � � 0 [22] (one can also easily see that detL � 0 and
‘ is thus nondegenerate), unless we consider Kundt space-
times. If one has, in addition, also ! ¼ 0, one is led to the
class of Robinson-Trautman spacetimes [30]. In fact, the
case ! � 0 is possible only if n is even [22], so that in odd
dimensions nonshearing spacetimes thus reduce to either
the Kundt or the Robinson-Trautman class.

B. Case of a matrix L satisfying the
‘‘optical constraint’’

A special case of a matrix L admitting aligned principal
shear and twist directions arises when L satisfies the so
called ‘‘optical constraint’’ [31], i.e. (dropping the matrix
indices)

½S; A� ¼ 0; A2 ¼ S2 �F S; (16)

where F can be fixed by taking the trace (note, in particu-
lar, that L is thus a normal matrix). Considering matrices L
satisfying this special property is motivated by the fact that
this includes several important classes of vacuum solu-
tions, namely, spacetimes of type III and N [20], Kerr-
Schild metrics [31] and general asymptotically flat space-
times with a multiple WAND [24]. In particular, in four
dimensions the optical constraint is equivalent to the shear-
free property (except when A ¼ 0 and, simultaneously,
rankðSÞ ¼ 1).

One can easily see that under the above assumptions the
matrix Lij takes the block-diagonal form (cf. also [31])

Lij ¼

Lð1Þ
. .
.

LðpÞ
~L

0
BBBB@

1
CCCCA: (17)

The first p blocks are 2� 2 and the last block ~L is a ðn�
2� 2pÞ � ðn� 2� 2pÞ-dimensional diagonal matrix.
They are given by (after appropriately rescaling r, see
[31] for details)

Lð�Þ ¼
sð2�Þ A2�;2�þ1

�A2�;2�þ1 sð2�Þ

 !
ð�¼ 1; . . . ; pÞ;

sð2�Þ ¼ r

r2 þ ða0ð2�ÞÞ2
; A2�;2�þ1 ¼

a0ð2�Þ
r2 þ ða0ð2�ÞÞ2

; (18)

~L ¼ 1

r
diagð1; . . . ; 1|fflfflffl{zfflfflffl}

ðm�2pÞ

; 0; . . . ; 0|fflfflffl{zfflfflffl}
ðn�2�mÞ

Þ; (19)

with 0 � 2p � m � n� 2. The integer m denotes the
rank of Lij, so that Lij is nondegenerate when m ¼ n� 2.

For certain purposes it turns out to be very convenient to
define the complex combination

�ð�Þ � sð2�Þ þ iA2�;2�þ1 ¼ 1

r� ia0ð2�Þ
: (20)

This satisfies the compact Sachs equation

D�ð�Þ ¼ ��2
ð�Þ; (21)

which generalizes the standard Sachs equation of the four-
dimensional theory [1,3,14,25] (except that our �ð�Þ differs
by a sign from the standard NP symbol).
In the rest of the paper we will study spacetimes for

which there is at most one nonzero block (for � ¼ 1, say).
In such a situation we can drop block-indices and introduce
the more compact notation s � sð2Þ ¼ L22 ¼ L33, A �
A23 ¼ L23 ¼ �L32, � � �ð1Þ ¼ sþ iA. If s ¼ 0 then

also A ¼ 0 [22], i.e., one has the trivial solution L ¼ 0
corresponding to Kundt spacetimes. On the other hand, for
nonzero expansion s � 0 one finds

� � sþ iA ¼ 1

r� ia0
; (22)

which determines the expansion scalar � ¼ 2s=ðn� 2Þ
and the twist ! ¼ ffiffiffi

2
p

A of ‘.
Let us emphasize that all the above results hold for a

geodetic WAND, not necessarily a multiple one, under the
only assumption R00 ¼ 0 on the energy-momentum con-
tent of the spacetime. In the following we will however
consider more special situations and, in particular, restrict
to geodetic multiple WANDs of Einstein spacetimes.

III. TYPE N SPACETIMES

In the previous section we have determined the r depen-
dence of the optical matrix Lij for a wide class of space-

times. This matrix plays a special role since it enters the
Bianchi identities that need to be integrated in order to find
the r dependence of theWeyl tensor. The full set of Bianchi
identities has been presented in [20] (cf. also [23]). In the
following we will use those containing D derivatives, i.e.,
derivatives in the direction of the geodetic multiple WAND
‘. We start our analysis by considering type N Einstein
spacetimes. The case of type III spacetimes is similar but
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technically more involved, and will be dealt with in the
next section.

According to [20], one has to consider the two possible
cases Lij ¼ 0 and Lij � 0 (the results of [20], relying on

the Bianchi identities, were obtained in the case� ¼ 0, but
hold also for Einstein spacetimes since, for these,
Rabcd;e ¼ Cabcd;e—the same applies in the next section in

the type III case).

A. Kundt spacetimes

The condition Lij ¼ 0 defines Kundt spacetimes (i.e., ‘

is nonexpanding, shearfree, and twistfree). In this case the
Bianchi eq. (23) of [20] (derived from (B.4, [20]) reduces
to

D�ij ¼ 0; (23)

so that

�ij ¼ �0
ij; (24)

does not depend on r. The amplitude of the gravitational
field is unchanged as one moves along light rays (the
multiple WAND), which is a ‘‘plane wave-’’like behavior.
By performing a space rotation, one can thus always align
one’s frame to the ‘‘polarization axes,’’ i.e., to the eigen-
directions of �0

ij.

We note in addition that Einstein spacetimes of type N
belonging to the Kundt class are vanishing scalar invariant
[VSI] (if � ¼ 0) or constant scalar invariant [CSI] (if � �
0) spacetimes (i.e., spacetimes for which all scalar invari-
ants constructed from the Riemann tensor and its covariant
derivatives are either vanishing or constant) [21,32]4 and
no physically useful information can thus be extracted
from their invariants. Finally, it may be also worth recalling
the result of [31] that, in vacuum (with � ¼ 0), Kundt
solutions of type N coincide with nonexpanding Kerr-
Schild spacetimes.

B. Expanding spacetimes

When Lij does not vanish identically the results of [20]

implies that L is normal and, in particular, of the special

form obeying the ‘‘optical constraint’’ discussed in
Sec. II B. In an adapted frame (which we take to be
parallelly transported, cf. Sec. II A 1) it has the only non-
zero components s � sð2Þ ¼ sð3Þ ¼ ðn� 2Þ�=2, and

A23 ¼ �A32 ¼ A, as given in (22).
Further, it follows from [20] that in such a frame�ij has

the only nonzero components5

�33 ¼ ��22; �23 ¼ �32: (25)

Bianchi equation (23) in [20] can thus be compactly
written as

Dð�22 þ i�23Þ ¼ ��ð�22 þ i�23Þ; (26)

with the simple solution

�22 þ i�23 ¼ ð�0
22 þ i�0

23Þ�: (27)

Under a rotation in the mð2Þ-mð3Þ plane such that the

frame is still parallelly transported along ‘ we have�22 þ
i�23 ! ei�0ð�22 þ i�23Þ, hence the�23 (or�22) compo-
nent can be set to zero if and only if a0 ¼ 0, i.e. if the twist
vanishes. In that case one has simply �22 ¼ �0

22=r (or

�23 ¼ �0
23=r) and such frame is thus aligned with the

eigenframe of �ij (cf. also [26]) or rotated by 45�. In the

twisting case this is not possible and the eigendirections of
�ij will spin with respect to the parallelly propagated

frame, i.e., the effect of twist is to ‘‘mix’’ the two polar-
izations as one proceeds along the rays of the gravitational
field (indeed, in four dimensions �22 and �23 correspond
to the real and imaginary part of �4, respectively, i.e. the
well-known ‘‘þ’’ and ‘‘�’’ polarization modes).
Equation (27) can be employed, for instance, to charac-

terize the asymptotic behavior of the Weyl tensor (whose
leading term clearly behaves as 1=r, as in four dimen-
sions). In addition, knowing the r dependence of the
Weyl tensor can also be useful for studying possible space-
time singularities. Namely, one can analyze the simplest
nontrivial curvature invariant admitted by type N space-
times in four [34] and higher [21] dimensions, i.e.,

IN � Ca1b1a2b2;c1c2Ca1d1a2d2;c1c2C
e1d1e2d2;f1f2Ce1b1e2b2;f1f2 :

(28)

It can be shown6 that for type N Einstein spacetimes IN is
proportional (via a numerical constant) to

IN / ½ð�22Þ2 þ ð�23Þ2�2ðs2 þ A2Þ4

¼ ½ð�0
22Þ2 þ ð�0

23Þ2�2
ðr2 þ a20Þ6

: (29)

4The ‘‘VSI part’’ of this statement has been proven in [21] in
the case � ¼ 0. When � � 0 (i.e., for the ‘‘CSI part’’) the proof
goes essentially unchanged, since the Bianchi identities and most
of the Ricci identities which one needs are unaffected by the
cosmological term. Even though for � � 0 Nij is not a balanced
scalar, Lemma 4 in [21] still holds and the Weyl (but not the
Riemann) tensor and its derivatives are also balanced and thus all
its invariants of all orders as well as mixed invariants with the
Ricci tensor vanish. The only difference from the vacuum case is
that one can now construct nonzero constant invariants using
contractions of the Ricci tensor Rab ¼ gabR=n (see also a re-
mark at the end of Sec. 1 of [33] in the four-dimensional case). A
similar comment will apply also later in the case of type III
Einstein spacetimes of the Kundt class and will not be repeated
there.

5We observe that in the canonical form given in [20] one has
�23 ¼ 0. However, the frame used in that paper was not, in
general, parallelly transported. We will comment more on this
point shortly.

6This was done in [21] for vacuum spacetimes with� ¼ 0, but
it can be easily extended to the case � � 0.

TYPE III AND N EINSTEIN SPACETIMES IN HIGHER . . . PHYSICAL REVIEW D 82, 064043 (2010)

064043-5



If a0 (which generically is a function of coordinates other
than r) vanishes at some spacetime points, then there will
be a curvature singularity at r ¼ 0 ¼ a0. In particular, this
always occurs in the nontwisting case [26]. Further (‘‘r
independent’’) singularities may arise from a possible sin-
gular behavior of the function ð�0

22Þ2 þ ð�0
23Þ2 (see

Appendix A 1 for specific examples). Note also that IN !
0 for r ! 1, i.e., far away along the multiple WAND.

IV. TYPE III SPACETIMES

Similarly as for type N, also in type III vacuum
spacetimes the matrix Lij has, in an adapted parallelly

propagated frame, the only nonzero components s �
sð2Þ ¼ sð3Þ ¼ ðn� 2Þ�=2 and A23 ¼ �A32 ¼ A [20],7

given in (22) (the fact that an adapted frame can be taken
to be parallelly transported follows from Sec. II A 1, as in
the type N case).

In order to fully determine the r dependence of the Weyl
tensor we shall integrate the Bianchi equations (B.1), (B.4),
(B.6) and (B.9) of [20], which contain D derivatives of
negative boost-weight Weyl components. These equations
(given later in an appropriate context) contain, in addition

to Lij, also the Ricci rotation coefficients L1i, Li1 andM
i

jk,

and the derivative operator �i. We thus first need to fix the r
dependence of these quantities. Together with L11 these
will also determine the behavior of the metric coefficients.

A. Ricci identities

The assumption that ‘ is the multiple WAND of type III
spacetimes and that the frame is parallelly transported
greatly simplifies the general form of the Ricci identities
given in [22]. Recalling that the r dependence of L is given
in (22), we can use the results given in Appendix D of
[31].8 It will also be convenient to divide the space indices
i, j, k into two groups, corresponding to the nonvanishing
and vanishing block of Lij, respectively, i.e.,

p; q; o ¼ 2; 3; v; w; z ¼ 4; 5; . . . ; n� 1: (30)

The relevant coefficients thus read

L12 þ iL13 ¼ ðl12 þ il13Þ�; L1w ¼ l1w; (31)

L21 þ iL31 ¼ ðl21 þ il31Þ ��; Lw1 ¼ lw1; (32)

M
i

j2 þ iM
i

j3 ¼ ðmi j2 þ im
i

j3Þ�; M
i

jw ¼ m
i

jw; (33)

L11 ¼ Re½ðl12 þ il13Þðl21 � il31Þ��
þ
�

R

nðn� 1Þ � l1wlw1

�
rþ l11; (34)

where, hereafter, for brevity lowercase symbols l1i, li1,m
i

jk

and l11 denote quantities independent of r. Because of the

index symmetries of M
i

jk [20], we require m
i

jk þm
j

ik ¼ 0

for any i, j, k ¼ 2; . . . ; n� 1.

B. Commutators and r dependence of the metric

In order to determine the radial dependence of the
derivative operators �i and � let us take the affine parame-
ter r as one of the coordinates and xA any set of (n� 1)
scalar functions (which need not be further specified for
our purposes) such that ðr; xAÞ is a well-behaved coordinate
system. Then the directional derivatives (when acting on
scalars) take the form

D ¼ @r; � ¼ U@r þ XA@A; �i ¼ !i@r þ �A
i @A;

(35)

where @A � @=@xA.
The r dependence of these can be determined using the

following commutators [21]

�D�D� ¼ L11Dþ Li1�i; (36)

�iD�D�i ¼ L1iDþ Lji�j: (37)

Applying (37) on r we get D!i ¼ �L1i � Lji!j,

which, using (22) and (31), leads to

!2 þ i!3 ¼ ð!0
2 þ i!0

3Þ�� ðl12 þ il13Þr�;
!w ¼ �l1wrþ!0

w: (38)

Similarly, acting with (37) on xA gives D�A
i ¼ �Lji�

A
j ,

so that

�A
2 þ i�A

3 ¼ ð�A0
2 þ i�A0

3 Þ�; �A
w ¼ �A0

w : (39)

Applying (36) on xA leads to DXA ¼ �Li1�
A
i , from

which [using (39)]

XA ¼ Re½ðl21 � il31Þð�A0
2 þ i�A0

3 Þ�� � lw1�
A0
w rþ XA0:

(40)

Applying (36) on r gives DU ¼ �L11 � Li1!i. Using
also (32), (34), and (38) we obtain

7More precisely, this has been proven in full generality for all
n > 4 nontwisting solutions of type III and for all n ¼ 5 solu-
tions of type III (in Appendix C of [20]). For twisting type III
solutions with n > 5 it was assumed that a ‘‘generality’’ condi-
tion on the components �ijk holds and that �i � 0 (Sec. 4 of
[20]). We do not consider possible ‘‘exceptional’’ cases in this
paper. (Note also that the possibility rankðSÞ ¼ 1 was not dis-
cussed explicitly in Sec. 4 of [20]. However, it can be shown
from Eqs. (69), (71), (74)–(77), and (80) therein that such case
indeed cannot occur.)

8Up to a small difference: Appendix D of [31] studied Ricci-
flat spacetimes of type II (or more special), while in this section
we consider Einstein spacetimes of type III.
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U ¼ Re½½!0
2 þ i!0

3 � rðl12 � il13Þ�ðl21 � il31Þ��

�
�

R

2nðn� 1Þ � l1wlw1

�
r2 � ðl11 þ lw1!

0
wÞrþU0:

(41)

Note that the above expressions for the Ricci coefficients
and the derivative operators have been derived under the
assumption � � 0 (i.e., Lij � 0). When this does not hold,

there is no need to distinguish between two types of indices
as in (30) and the corresponding expressions can be ob-
tained from the above results simply by dropping all quan-
tities containing indices 2 or 3.

Let us observe at this point that, since in the above
coordinates

‘a ¼ �a
r ; na ¼ U�a

r þ XA�a
A;

ma
ðiÞ ¼ !i�

a
r þ �A

i �
a
A;

(42)

the r dependence of all components of the frame vectors is
now known. This automatically also fixes the radial depen-
dence of the metric (1). For the contravariant components
we explicitly have

grr ¼ 2Uþ!i!i; grA ¼ XA þ!i�
A
i ;

gAB ¼ �A
i �

B
i ;

(43)

together with (41), (38), (40), and (39). The covariant
components can be found by imposing the orthonormality
relations among the frame vectors, which gives

grr ¼ 0; XAgrA ¼ 1; �A
i grA ¼ 0;

2Uþ XAXBgAB ¼ 0; !i þ XA�B
i gAB ¼ 0;

�A
i �

B
j gAB ¼ 0:

(44)

The explicit form of the covariant coefficients can be
worked out more conveniently after further information
about the line-element is specified and, possibly, other
adapted coordinates are defined, and we will not discuss
this any further here (see, e.g., [26] for the nontwisting
case).

We now proceed with determining the r dependence of
the Weyl tensor. As in the type N case, let us discuss the
two possible cases Lij ¼ 0 and Lij � 0 separately.

C. Kundt spacetimes

When Lij ¼ 0 the Bianchi equations (B.6) [or, equiva-

lently, (B.9)] and (B.4) of [20] take the form

D�ijk ¼ 0; (45)

2D�ij ¼ �j�i þ�iðL1j � Lj1Þ þ 2�jkiLk1 þ�kM
k

ij:

(46)

Direct integration of the first of these gives

�ijk ¼ �0
ijk; �i ¼ �0

i ¼ 2�0
ijj: (47)

We now discuss Eq. (46). Since � ¼ 0 for Kundt space-
times there is no need to introduce two types of indices and
for the Ricci coefficients we have simply

L1i ¼ l1i; Li1 ¼ li1; M
i

jk ¼ m
i

jk; (48)

while the derivative operator �i reads

�i ¼ ð�l1irþ!0
i Þ@r þ �A0

i @A: (49)

Using (47)–(49) the integration of (46) gives

�ij ¼ 1

2
½�A0

j �0
i;A þ�0

i ðl1j � lj1Þ þ 2�0
jkilk1 þ�0

km
k

ij�r
þ�0

ij: (50)

Furthermore, since �ii ¼ 0 ¼ �½ij� the integration con-

stants appearing above must satisfy

�0
ii ¼ 0; �A0

i �0
i;Aþ�0

i ðl1i � 2li1 þm
i

jjÞ ¼ 0; (51)

�0
½ij� ¼ 0;

�A0
½j �

0
i�;A þ�0

½iðlj1jj� � lj�1Þþ�0
jiklk1 þ�0

km
k

½ij� ¼ 0: (52)

The above Eqs. (47) and (50) thus fully describe the r
dependence of the Weyl tensor for type III Einstein space-
times of the Kundt class, in agreement with [26] (where an
adapted frame such that l1i � li1 ¼ 0 was used). Note that,
in contrast to the type N case, now Weyl components of
boost weight �2 do in general depend on r. This is the
typical peeling-off of Kundt spacetimes (here restricted to
type III) and is well known also in four dimensions [1]. As
discussed for the type N, also Einstein metrics of type III
that belong to the Kundt family fall in the VSI or CSI class
[21,32].

D. Expanding spacetimes

Bianchi equations (B.1), (B.9), (B.6), and (B.4) of [20]
read

D�i ¼ �2�kLki; (53)

D�jki ¼ �iAjk þ�kliLlj ��jliLlk; (54)

2D�ijk ¼ ��iLjk þ�jLik � 2�ijlLlk; (55)

2D�ij ¼ �2�ikLkj þ �j�i þ�iðL1j � Lj1Þ
þ 2�jkiLk1 þ�kM

k

ij: (56)

We now study the above differential equations for vari-
ous index combinations (recall (30)).

TYPE III AND N EINSTEIN SPACETIMES IN HIGHER . . . PHYSICAL REVIEW D 82, 064043 (2010)

064043-7



1. Components of boost weight �1

In terms of the two index sets (30), Eq. (53) can be
conveniently rewritten as Dð�2 þ i�3Þ ¼ �2�ð�2 þ
i�3Þ and D�w ¼ 0, so that

�2 þ i�3 ¼ ð�0
2 þ i�0

3Þ�2; �w ¼ �0
w: (57)

Let us consider (54) and (55) for the components �wvp.

These reduce, respectively, to D�wvp ¼ 0 and Dð�wv2 þ
i�wv3Þ ¼ ��ð�wv2 þ i�wv3Þ, whose only common solu-
tion is clearly (since � � 0 here)

�wvp ¼ 0: (58)

Before integrating the remaining Bianchi equations con-
taining the operator D, we take advantage of the fact that
for type III spacetimes some other Bianchi identities be-
come purely algebraic. These are Eqs. (B.7), (B.11), and
(B.16) of [20], where a detailed analysis can be found. In
particular, from (B.7) and (B.16) one can derive Eq. ((58),
[20]), which reads

�ðn� 2Þ�ijk þ 4S½ijs�skjj� � 2Ssk�ijs þ 2S½ijk�jj� ¼ 0:

(59)

Since � � 0, using this with fi; j; kg ¼ fv;w; zg, f2; 3; wg,
fp;w; vg, fw;p; qg we get, respectively, (recall also
�fijkg ¼ 0)

�vwz ¼ 0; �23w ¼ �w32 ��w23 ¼ 0;

�pwv ¼ 0; �w ¼ 0:
(60)

In addition, from �i ¼ 2�ijj the last two equations give

�233 ¼ 1
2�2; �322 ¼ 1

2�3; �w33 ¼ ��w22:

(61)

Since the r dependence of �23p is thus now determined

by�p, the only remaining equation to be solved is Eq. (55)

for �w22 ( ¼ ��w33) and �w23. This can be written as

Dð�w22 þ i�w23Þ ¼ �ð�w22 þ i�w23Þ�; (62)

with solution

�w22 þ i�w23 ¼ ð�0
w22 þ i�0

w23Þ�: (63)

This fixes the r dependence of all boost weight�1Weyl
components for type III Einstein spacetimes. One can
check that all boost weight þ1 and 0 Bianchi equations
given in [23] (thus, in particular, Eqs. (53)–(55) and the
above mentioned algebraic equations) are now satisfied.

2. Constraints on the Ricci rotation coefficients

Before we proceed with fixing the r dependence of the
boost weight �2 Weyl components, it turns out that suit-
able Ricci identities will lead to considerable simplifica-
tions useful in the following calculations. Let us consider
Ricci equation (11k, [22]), which for a geodetic null con-
gruence ‘ in type III Einstein spacetimes reduces to

�½jjLijk� ¼ L1½jjLijk� þ Li1L½jk� þ LilM
l

½jk� þ Ll½jjM
l

ijk�:
(64)

Considering the various equations obtained for i, j ¼ p,
q and k ¼ w and using (22), (31)–(33), (35), (38), and (39),
one finds

m
w

22 ¼ m
w

33 ¼ !0
w; m

w

23 ¼ �m
w

32 ¼ �l1wa0 � �A0
w a0;A:

(65)

Next, for i, j, k ¼ o, p, q one gets

ið�A0
2 þ i�A0

3 Þa0;A ¼ �ð!0
2 þ i!0

3Þ þ ia0½�ðl12 þ il13Þ
þ 2ðl21 þ il31Þ�; (66)

and for i ¼ w, j ¼ q and k ¼ z

m
2

wz ¼ 0 ¼ m
3

wz: (67)

Finally, for i ¼ w, j ¼ 2 and k ¼ 3 we find m
w

23 ¼ lw1a0
so that, by (65),

m
w

23 ¼ �m
w

32 ¼ lw1a0; �A0
w a0;A ¼ �a0ðlw1 þ l1wÞ:

(68)

Other index combinations do not contain any further
information. We also note that all the remaining Ricci
identities [22] contain also Ricci rotation coefficients that
do not appear explicitly in the Weyl tensor components and
thus we do not consider those here.

3. Components of boost weight �2

As the last step, the r dependence of boost weight �2
components of the Weyl tensor can now be determined
from Eq. (56). Using the above results for�i and�ijk, it is

convenient to study various cases with different values of
the indices.
For i, j ¼ w, z, recalling (33) and (67), Eq. (56) be-

comes simply

D�wz ¼ 0; (69)

so that

�wz ¼ �0
wz; �0

½wz� ¼ 0; (70)

where the latter condition follows from �wz ¼ �zw.
Next, for i ¼ w and j ¼ 2, 3 Eq. (56) can be written as

2Dð�w2 þ i�w3Þ ¼ �2ð�w2 þ i�w3Þ�
þ�2ðM

2

w2 þ iM
2

w3Þ
þ�3ðM

3

w2 þ iM
3

w3Þ: (71)

Using (57), (33), (65), and (68), this leads to
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�w2 þ i�w3 ¼ �ð�0
w2 þ i�0

w3Þ þ P 0
w�

2;

P 0
w ¼ 1

2ð!0
w þ ia0lw1Þð�0

2 þ i�0
3Þ;

(72)

with �0
½w2� þ i�0

½w3� ¼ 0.

We also observe that for i ¼ w, j ¼ 2, 3 the antisym-
metric part of (56) gives (since �½ij� ¼ 0)

�wð�2 þ i�3Þ ¼ ��2½ðl1w � lw1 þ im
2

3wÞð�0
2 þ i�0

3Þ þ 2ð�0
w2 þ i�0

w3Þ þ 2ð�0
w22 þ i�0

w23Þðl21 � il31Þ�
� 2�3ð!0

w þ ia0lw1Þð�0
2 þ i�0

3Þ; (73)

from which (with (35), (38), (39), and (68))

� �A0
w ð�0

2 þ i�0
3Þ;A ¼ ð�0

2 þ i�0
3Þð3l1w � lw1 þ im

2

3wÞ þ 2ðl21 � il31Þð�0
w22 þ i�0

w23Þ þ 2ð�0
w2 þ i�0

w3Þ: (74)

Finally, we have to consider (56) in the case i, j ¼ 2, 3. The corresponding equations can be compactly rearranged as

2Dð�22 þ�33Þ � ð�2 � i�3Þð�2 þ i�3Þ ¼ ð�2 þ i�3Þ½ðL12 � iL13Þ � 2ðL21 � iL31Þ þ ðM2 33 þ iM
2

32Þ�
� 2 ��ð�22 þ�33Þ; (75)

2Dð�22 ��33 þ 2i�23Þ � ð�2 þ i�3Þð�2 þ i�3Þ ¼ ð�2 þ i�3Þ½ðL12 þ iL13Þ þ ð�M
2

33 þ iM
2

32Þ�
� 4Lw1ð�w22 þ i�w23Þ � 2�ð�22 ��33 þ 2i�23Þ: (76)

Using (35), (38), (39), and (57) we find the needed transverse derivatives, i.e.,

ð�2 þ i�3Þð�2 þ i�3Þ ¼ 2�4ð�0
2 þ i�0

3Þ½ið�A0
2 þ i�A0

3 Þa0;A � ð!0
2 þ i!0

3Þ þ rðl12 þ il13Þ�
þ �3ð�A0

2 þ i�A0
3 Þð�0

2 þ i�0
3Þ;A; (77)

ð�2 � i�3Þð�2 þ i�3Þ ¼ 2�3 ��ð�0
2 þ i�0

3Þ½ið�A0
2 � i�A0

3 Þa0;A � ð!0
2 � i!0

3Þ þ rðl12 � il13Þ�
þ �2 ��ð�A0

2 � i�A0
3 Þð�0

2 þ i�0
3Þ;A: (78)

After substituting (77) into (76), by direct integration we find

�22 ��33 þ 2i�23 ¼ �3A0 þ �2B0 þ �C0 þ �rD0; (79)

where (using also (66))

A0 ¼ ð�0
2 þ i�0

3Þ½ð!0
2 þ i!0

3Þ � ia0ðl21 þ il31Þ�;
B0 ¼ �1

2½ð�0
2 þ i�0

3Þ½3ðl12 þ il13Þ þ iðm2 32 þ im
2

33Þ� þ ð�A0
2 þ i�A0

3 Þð�0
2 þ i�0

3Þ;A�;
C0 ¼ �0

22 ��0
33 þ 2i�0

23;

D0 ¼ �2lw1ð�0
w22 þ i�0

w23Þ:

(80)

Note that here C0 is the only new integration ‘‘constant’’.
Similarly, by substituting (78) into (75), one has

�22 þ�33 ¼ � ��F 0 þ ��G0; (81)

where

F 0 ¼ �1
2½ð�0

2 þ i�0
3Þ½3ðl12 � il13Þ þ ðm2 33 þ im

2

32Þ
� 2ðl21 � il31Þ� þ ð�A0

2 � i�A0
3 Þð�0

2 þ i�0
3Þ;A�;

G0 ¼ �0
22 þ�0

33; (82)

and G0 is the new integration constant.

However, since �ii ¼ 0, we have �22 þ�33 ¼
��ww ¼ ��0

ww. This must now be compatible with
(81), from which we get

�0
ww ¼ 0; �0

22 þ�0
33 ¼ 0; F 0 ¼ 0; (83)

so that

�22 þ�33 ¼ 0 ¼ �ww: (84)

TYPE III AND N EINSTEIN SPACETIMES IN HIGHER . . . PHYSICAL REVIEW D 82, 064043 (2010)

064043-9



4. Summary and discussion

The above results can now be conveniently summarized
as follows. First, a number of Weyl components vanish
identically, namely

�w ¼ 0; �ijw ¼ 0; �wz2 ¼ 0 ¼ �wz3; (85)

�22 þ�33 ¼ 0: (86)

The r dependence of the nonzero components is given
by

�2 þ i�3 ¼ 2ð�233 þ i�322Þ ¼ �2ð�0
2 þ i�0

3Þ; (87)

�w22 þ i�w23 ¼��w33þ i�w32 ¼ �ð�0
w22 þ i�0

w23Þ;
(88)

�wz ¼ �0
wz ð�0

½wz� ¼ 0 ¼ �0
wwÞ; (89)

�w2 þ i�w3 ¼ �ð�0
w2 þ i�0

w3Þ þ �2P 0
w;

ð�0
½w2� ¼ 0 ¼ �0

½w3�Þ; (90)

2ð�22 þ i�23Þ ¼ �3A0 þ �2B0 þ �C0 þ �rD0; (91)

where the various integration ‘‘constants’’ satisfy (72),
(80), and (83) with (82), along with the constraints (66),
(68), and (74).

As r ! 1, one can observe a different falloff behavior
for different components and therefore a peeling-like be-
havior. There exist components of boost weight �1 both
with 1=r2 (Eq. (87)) and 1=r (Eq. (88)) leading terms. The
slower falloff described by the latter equation can be
qualitatively understood as due to the fact that there is no
expansion along the ‘‘w directions’’. As for boost weight
�2, in general there are components that are asymptoti-
cally constant in r [Eqs. (89) and (91)] and components
that fall off as 1=r [Eq. (90)]. Again, the asymptotically
‘‘constant’’ terms are due to the nonexpanding extra
dimensions.

There are several special subcases that may be worth
mentioning. First, for the special subtype IIIðaÞ, which is
invariantly defined by the condition �i ¼ 0 [19], one
obtains the simplifying conditions P 0

w ¼ A0 ¼ B0 ¼ 0
and, by (74),�0

w2 þ i�0
w3 ¼ �ðl21 � il31Þð�0

w22 þ i�0
w23Þ

(further simplification can be achieved by using a residual
frame freedom, see below). Next, also in the nontwisting
case (� ¼ 1=r) the above expressions (87)–(91) become
much simpler and were given already in [26] [in particular,
thanks to (66) one getsA0 ¼ 0, so that the �3 term of (91)
disappears]. Finally, one can compare the above results
with the well-known asymptotic behavior in four dimen-

sions (cf., e.g., [6,12,13]). In that case, in our notation,
indices v, w, z do not exist (since i, j, k ¼ 2, 3 only) and
Eqs. (87) and (91) encode all the information, correspond-
ing, respectively, to the complex Newman-Penrose scalars

�ðNPÞ
3 � 1=r2 and �ðNPÞ

4 � 1=r (note that D0 ¼ 0 in four

dimensions). There are no nonexpanding extra dimensions
and thus no terms with a slower falloff.
In the general case, for certain applications the asymp-

totic behavior of the Weyl components (87)–(91) can
in fact be visualized more clearly by taking a series

expansion. Using � ¼ P1
m¼1ðia0Þm�1r�m, �2 ¼P1

m¼1 mðia0Þm�1r�ðmþ1Þ and �3 ¼ 1
2

P1
m¼1 mðmþ 1Þ�

ðia0Þm�1r�ðmþ2Þ, up to the leading and subleading terms
one finds

�2 þ i�3 ¼
�
�0

2

r2
� 2a0�

0
3

r3

�
þ i

�
�0

3

r2
þ 2a0�

0
2

r3

�
þOðr�4Þ; (92)

�w22 þ i�w23 ¼
�
�0

w22

r
� a0�

0
w23

r2

�
þ i

�
�0

w23

r
þ a0�

0
w22

r2

�
þOðr�3Þ; (93)

�w2 þ i�w3 ¼
�
�0

w2

r
þ!0

w�
0
2 �a0ð2�0

w3 þ lw1�
0
3Þ

2r2

�

þ i

�
�0

w3

r
þ!0

w�
0
3 þa0ð2�0

w2 þ lw1�
0
2Þ

2r2

�
þOðr�3Þ; (94)

�22 þ i�23 ¼
�
�lw1�

0
w22 þ

�0
22 þ a0lw1�

0
w23

r

�

þ i

�
�lw1�

0
w23 þ

�0
23 � a0lw1�

0
w22

r

�
þOðr�2Þ; (95)

while still �wz ¼ �0
wz. This clearly demonstrates, in par-

ticular, how the presence of twist mixes up various polar-
ization modes. Simpler expressions can be obtained by
performing specific frame transformations, as briefly dis-
cussed below.
Similarly as for the type N, the r dependence of theWeyl

tensor can also be used to discuss the possible presence of
curvature singularities. The simplest nontrivial curvature
invariant for expanding type III Einstein spacetimes is
[21,35]

IIII ¼ Ca1b1a2b2;e1Ca1c1a2c2;e1C
d1c1d2c2;e2Cd1b1d2b2;e2 : (96)

It can be shown that [21]
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IIII / ðs2 þ A2Þ2½9ð�i�iÞ2 þ 27ð�i�iÞð�w22�w22 þ�w23�w23Þ þ 28ð�w22�w22 þ�w23�w23Þ2�

¼
�
9
½ð�0

2Þ2 þ ð�0
3Þ2�2

ðr2 þ a20Þ2
þ 27

½ð�0
2Þ2 þ ð�0

3Þ2�ð�0
w22�

0
w22 þ�0

w23�
0
w23Þ

r2 þ a20
þ 28ð�0

w22�
0
w22 þ�0

w23�
0
w23Þ2

�
1

ðr2 þ a20Þ4
:

(97)

As in the type N case, there may be curvature singularities
localized at points where r2 þ a20 ¼ 0, which may or may
not exist, in general (but they always do in the nontwisting
case [26]). Additional singularities may also arise from a
possible singular behavior of �0

2, �
0
3, �

0
w22 and �0

w23 (see
Appendix A 2 for specific examples).

5. Frame freedom

The results above have been obtained using a generic
parallelly transported frame and therefore hold in any such
frame. For certain purposes it may be desirable to simplify
some expressions by using the freedom to perform null
rotations

‘ ! ‘; n ! nþ zim
ðiÞ � 1

2zkzk‘;

mi ! mðiÞ � zi‘;
(98)

where Dzi ¼ 0 in order for the new frame to be still
parallelly transported.

For instance, once can set to zero the Ricci rotation
coefficients L12 þ iL13 or L21 þ iL31 (by taking z2 þ
iz3 ¼ �ðl12 þ il13Þ or z2 þ iz3 ¼ �ðl21 þ il31Þ, respec-
tively), or one may want to set to zero certain Weyl
components of boost weight �2 [for type III spacetimes
components of boost weight �1 are invariant under (98)].
Namely, one can transform away the term B0 in (91) by
taking 2ðz2 þ iz3Þð�0

2 þ i�0
3Þ ¼ B0 (note that if �0

2 þ
i�0

3 ¼ 0 then B0 is automatically zero and there is no

need to perform any null rotations). Alternatively, if
�0

w22 þ i�0
w23 � 0 one can set �0

w2 þ i�0
w3 in (90) to

zero by taking ðz2 � iz3Þð�0
w22 þ i�0

w23Þ ¼ �0
w2 þ i�0

w3.

Additionally, there are null rotations in the w directions. If
�0

w22 þ i�0
w23 � 0 one can take 4zwð�0

w22 þ i�0
w23Þ ¼

�C0 so as to have, in the new frame, C0 ¼ 0 in (91)
[note that this is not possible in four dimensions since
�0

w22 þ i�0
w23 ¼ 0 in that case]. Or one can set P 0

w ¼ 0 in
(90) by taking zwð�0

2 þ i�0
3Þ ¼ 2P 0

w (if �0
2 þ i�0

3 ¼ 0
then P 0

w ¼ 0 already in the original frame).
Furthermore, spatial rotations can also be used to sim-

plify the form of certain Weyl components. For example, a
spatial rotation in the mð2Þ-mð3Þ plane adds an arbitrary (r
independent) phase to all the above nonzero components
(except for�wz, which is unchanged) and can thus be used
to set to zero the imaginary part of the corresponding
integration constants (in particular, in the nontwisting
case � is real and one can thus align one’s frame to the
‘‘polarization’’ of such components). Next, one can use
rotations in the planes defined by the ‘‘nonexpanding’’

directions mðwÞ to, e.g., align the frame to the direction

defined by �w22 or �w23, etc., or to diagonalize �wz. The
most convenient way how to use the frame freedom may
depend on the specific spacetime under consideration and
its possible symmetries.

V. CONCLUDING REMARKS

After presenting some general results about the Sachs
equations (Sec. II), we studied specific features of Einstein
spacetimes of type N and III in arbitrary higher dimen-
sions. This is a natural extension of previous studies such
as [20,26] and partly complements, in different respects,
other works either by the present authors or by others, e.g.,
[24,29]. In particular, by explicitly determining the r de-
pendence of the Weyl tensor we were able to discuss
several physical properties of the general families of solu-
tions of type N/III, either with or without expansion, and to
compare these with their well-known four-dimensional
counterparts. The results of this paper also represent a first
step towards the exact integration of the full Newman-
Penrose or GHP equations for such spacetimes, which
will be studied elsewhere. In the following appendix the
discussed results are illustrated by presenting some explicit
solutions that, to our knowledge, have not been given
before.
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APPENDIX A: SOME EXPLICIT EXPANDING
SPACETIMES

In the main text we have studied properties of general
Einstein spacetimes of type N and III in higher dimensions,
for an arbitrary value of the cosmological constant. While
Kundt solutions are similar to their four-dimensional coun-
terparts and several explicit examples are already known
[27–29,31,32,36], not many type N/III spacetimes with
Lij � 0 have been found. To our knowledge, in fact, the

only such examples have been obtained (for � ¼ 0)9 as a

9An Einstein space which is the direct product of non-Ricci-
flat Einstein spaces also contains Weyl components of boost
weight 0 [37] and thus cannot be of type N/III.
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direct product of a four-dimensional type N/III Ricci-flat
spacetime with an Euclidean Ricci-flat space (see, e.g.,
[26]). The lack of less trivial examples is partly due to
the fact that, contrary to the four-dimensional case, they are
necessarily shearing [20] and therefore they do not show
up, e.g., in the Robinson-Trautman family [30].

In this Appendix we present a few examples of such
solutions (both nontwisting and twisting) which are not
direct products. They are in fact warped products and solve
the vacuum Einstein equations Rab ¼ 2�gab=ðn� 2Þ with
a possible cosmological constant (which can take an arbi-
trary value, at least in the nontwisting examples). As a
reader familiar with four-dimensional exact solutions may
easily note, these spacetimes have been constructed by
appropriate ‘‘warping’’ of four-dimensional type N/III so-
lutions (see, e.g., Secs. 13.3.3, 28.1, 28.4, 29.1–29.4 of [14]
and Sec. 19.2 of [38]; some of the original papers are also
quoted below in the appropriate context).

In fact, all the considered metrics can be written in the
form (cf. [39])

ds2 ¼ 1

fðzÞdz
2 þ fðzÞd�2; (A1)

where

fðzÞ ¼ ��z2 þ 2dzþ b; � ¼ 2�

ðn� 1Þðn� 2Þ ;
(A2)

b and d are constant parameters,10 and d�2 is a Lorentzian
Einstein spacetime of dimension n� 1 with Ricci scalar

R� ¼ ðn� 1Þðn� 2Þð�bþ d2Þ: (A3)

This metric will be specified in the following and will
characterize the properties of the full spacetime ds2. We
observe that the latter is a direct product only in the special
case of a constant fðzÞ, i.e. � ¼ 0 ¼ d (with b > 0). In
order to have a Lorentzian signature for ds2, we require
fðzÞ> 0, which may restrict possible parameter values and
(possibly) the range of z. Namely, since fðzÞ has real roots
if and only if R� � 0, when R� � 0 we require � < 0
(R� ¼ 0 admits also � ¼ 0, but this case simply corre-
sponds to a direct product), while for R� > 0 any sign of �
(including � ¼ 0) is admitted, at least for suitable values of
z.

1. Einstein spacetimes of type N

a. Nontwisting case

Using the above general ansatz (A1), one can obtain
five-dimensional type N Einstein spacetimes with an arbi-
trary value of the cosmological constant � by taking d�2 to

be the general four-dimensional expanding and nontwist-
ing type N Einstein metric with a possibly nonzero (four-
dimensional) Ricci scalar R� ¼ 12ð�bþ d2Þ. This was
given in [40] (see also [38] and references therein, in
particular, for a transformation to the standard Robinson-
Trautman coordinates) and reads

d�2 ¼ �2c dudrþ 2r2ðdx2 þ dy2Þ
� 2rð2rf1 þ 	xÞdudx� 2rð2rf2 þ 	yÞdudy
þ 2ðcBþ AÞdu2; (A4)

with

A ¼ 1
4	

2ðx2 þ y2Þ þ 	ðf1xþ f2yÞrþ ðf21 þ f22Þr2; (A5)

B ¼ �1
2	� r@xf1 þ 1

24R�r
2

�
1þ 1

2	ðx2 þ y2Þ
�
; (A6)

c ¼ 1þ 1
2	ðx2 þ y2Þ; (A7)

where 	 ¼ 	1 or 0 and the functions f1 ¼ f1ðx; yÞ and
f2 ¼ f2ðx; yÞ are subject to

@xf1 ¼ @yf2; @yf1 ¼ �@xf2: (A8)

In the case �bþ d2 ¼ 0 the metric d�2 is Ricci-flat and
the spacetime ds2 can be lifted to any higher dimensions by
simply replacing d�2 ! d�2 þP

�ðd~z�Þ2. One can obtain
a higher dimensional solution also in the case �bþ d2 �
0, however in a bit more complicated way (a simple direct
product will not work as it will introduceWeyl components
of boost weight zero, cf. footnote 9). For simplicity, in the
following analysis we will restrict to the n ¼ 5 case.
The geodetic multiple WAND is given by

‘ ¼ @r; (A9)

with r being an affine parameter along the corresponding
null geodesics. We can then choose a parallelly transported
frame in the form

n¼� 1

c fðzÞ@u�
��

�bþd2

fðzÞ ��

2

�
r2�	=2þ r@xf1

c fðzÞ
�
@r

� 1

c fðzÞ
�
f1þ	x

2r

�
@x� 1

c fðzÞ
�
f2þ	y

2r

�
@y

�ð�z�dÞr@z; (A10)

mð2Þ ¼ 1

r

1ffiffiffiffiffiffiffiffiffiffiffi
2fðzÞp @x; mð3Þ ¼ 1

r

1ffiffiffiffiffiffiffiffiffiffiffi
2fðzÞp @y;

mð4Þ ¼ �z� dffiffiffiffiffiffiffiffiffi
fðzÞp r@r þ

ffiffiffiffiffiffiffiffiffi
fðzÞ

q
@z:

(A11)

Then the only nonvanishing Ricci rotation coefficients
relevant to the discussion in the main text are (note that
L11 � 0 but we do not need it here)

10In fact, � is the only physically meaningful free parameter
contained in fðzÞ (as one can always redefine z ! �zþ 
) but
for convenience we will generally keep also b and d unspecified.
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L22 ¼ L33 ¼ 1

r
; L21 þ iL31 ¼ �	ðxþ iyÞ

r
ffiffiffiffiffiffiffiffiffiffiffi
2fðzÞp

c
;

L14 ¼ �L41 ¼ ��z� dffiffiffiffiffiffiffiffiffi
fðzÞp :

(A12)

The nonvanishing independent components of the Weyl
tensor are (after using (A8))

�22 þ i�23 ¼ �ð@3y þ i@3xÞf2
4fðzÞ2c

1

r
: (A13)

The curvature invariant IN given in (28) is therefore
proportional to

IN / ½ð@3xf2Þ2 þ ð@3yf2Þ2�2
c 4fðzÞ8r12 : (A14)

Similarly as in the four-dimensional case [34], in five
dimensions IN diverges whenever any of the following
conditions hold: i) r ¼ 0; ii) c ¼ 0 (i.e., for 	 ¼ �1 and
x2 þ y2 ¼ 2); iii) the quantity ð@3xf2Þ2 þ ð@3yf2Þ2 diverges.
In five dimensions an additional curvature singularity is
also located at the roots of fðzÞ ¼ 0, which are present iff
R� � 0.

b. Twisting case

Here we present a five-dimensional twisting Einstein
spacetime of type N with a negative cosmological constant
�. This is constructed by taking d�2 in (A1) to be the four-
dimensional type N twisting solution of Leroy [41] (but in
different coordinates, cf. also [14,42,43]) with a negative
Ricci scalar R� ¼ 12ð�bþ d2Þ � �4s2, i.e.,

d�2 ¼ 1

s2y2

�
3

2
ðr2 þ 1Þðdx2 þ dy2Þ

þ 1

3
ðdxþ y3duÞ½6ydrþ y3ð1� r2Þdu

þ ð13� r2Þdxþ 12rdy�
�
: (A15)

The coordinate r is an affine parameter along the geo-
detic multiple WAND ‘ ¼ @r. We choose a parallelly
propagated frame

n ¼ �w1ð3r2 � 1Þ
4ry3

@u þ w2@r � w1

r
@x þ w1@y

� ð�z� dÞr@z; (A16)

m ð2Þ ¼ s
ffiffiffiffiffiffiffiffi
2=3

p
y2ðr2 þ 1Þ

1ffiffiffiffiffiffiffiffiffi
fðzÞp ðr@u þ 4y2r@r � y3r@x � y3@yÞ;

(A17)

m ð3Þ ¼ s
ffiffiffiffiffiffiffiffi
2=3

p
y2ðr2 þ 1Þ

1ffiffiffiffiffiffiffiffiffi
fðzÞp ð@u þ 4y2@r � y3@x þ y3r@yÞ;

(A18)

m ð4Þ ¼ �z� dffiffiffiffiffiffiffiffiffi
fðzÞp r@r þ

ffiffiffiffiffiffiffiffiffi
fðzÞ

q
@z; (A19)

where

w1 ¼ � 4s2ry

3fðzÞðr2 þ 1Þ ;

w2 ¼ �r2

2
þ s2ð2r4 þ 9r2 � 25Þ

6fðzÞðr2 þ 1Þ :

(A20)

The nonvanishing components of the optical matrix are

L22 þ iL23 ¼ L33 � iL32 ¼ 1

r� i
: (A21)

The remaining relevant nonzero Ricci rotation coefficients
are

L21 � iL31 ¼ 2iðM2 32 þ iM
2

33Þ ¼ 2is

r� i

ffiffiffiffiffiffiffiffiffiffiffi
2

3fðzÞ

s
;

L14 ¼ �L41 ¼ ��z� dffiffiffiffiffiffiffiffiffi
fðzÞp ; (A22)

M
2

42 þ iM
2

43 ¼ �iðM3 42 þ iM
3

43Þ ¼ �i

r� i

�z� dffiffiffiffiffiffiffiffiffi
fðzÞp :

(A23)

The Weyl tensor components are

�22 þ i�23 ¼ 7is4

9ðr� iÞfðzÞ2 ; (A24)

in agreement with the general result (27). Hence, for the
curvature invariant IN (28) we have

IN / s16

ðr2 þ 1Þ6fðzÞ8 : (A25)

Because of above mentioned relation R� ¼ �4s2 < 0, the
warp function fðzÞ has no real roots and therefore in this
case IN is everywhere regular. In addition, the components
of the Weyl tensor in the above frame (parallelly propa-
gated along ‘) are also regular. See [42] for a discussion of
the regularity of the four-dimensional Leroy metric (A15).
To conclude, we note that Leroy’s solution was redis-

covered in [43] as a special case of a more general class of
four-dimensional twisting Einstein spacetimes of type N
(determined up to solving a system of two third-order
ODEs). Similarly as above, these metrics can be used to
construct other type N solutions in five dimensions (in
particular, also Ricci-flat ones if one starts from a four-
dimensional geometry with a positive Ricci scalar).
Finally, let us also observe that further five (or higher)-
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dimensional type N solutions with a negative cosmological
constant can easily be constructed by taking d�2 to be the
well-known four-dimensional type N Hauser solution [44]
(cf. also [14]).

2. Einstein spacetimes of type III

a. Nontwisting case

An explicit solution in n ¼ 5 dimensions is given by
(A1) with

d�2 ¼ r2

x3
ðdx2 þ dy2Þ þ 2dudr

þ
�
3

2
xþ ð�bþ d2Þr2

�
du2; (A26)

which is a four-dimensional Robinson-Trautman space-
time of type III [14]. The cosmological constant � can
take an arbitrary value. Similarly as in A 1 a, when �bþ
d2 ¼ 0 the above spacetime can be lifted to any higher
dimensions by simply replacing d�2 ! d�2 þP

�ðd~z�Þ2,
but again in the following wewill restrict to the n ¼ 5 case.

A geodetic multiple WAND is given by

‘ ¼ @r; (A27)

while a suitable parallelly transported frame consists of

n ¼ 1

fðzÞ@u �
��

�bþ d2

fðzÞ � �

2

�
r2 þ 33x

32fðzÞ
�
@r

� 3x2

4fðzÞr @x � ð�z� dÞr@z;

mð2Þ ¼
ffiffiffi
x

pffiffiffiffiffiffiffiffiffi
fðzÞp �

3

4
@r þ x

r
@x

�
;

mð3Þ ¼ x3=2ffiffiffiffiffiffiffiffiffi
fðzÞp 1

r
@y;

mð4Þ ¼ �z� dffiffiffiffiffiffiffiffiffi
fðzÞp r@r þ

ffiffiffiffiffiffiffiffiffi
fðzÞ

q
@z:

(A28)

The only nonzero components of the optical matrix Lij

are given by

L22 ¼ L33 ¼ 1

r
: (A29)

The remaining nonzero Ricci rotation coefficients rele-
vant to the discussion in the main text are

L12 ¼ L21 ¼ M
2

33 ¼ � 3
ffiffiffi
x

p

4
ffiffiffiffiffiffiffiffiffi
fðzÞp 1

r
;

L14 ¼ �L41 ¼ ��z� dffiffiffiffiffiffiffiffiffi
fðzÞp :

(A30)

For the nonzero Weyl tensor components one finds

�2 ¼ 2�233 ¼ 3x3=2

4f3=2ðzÞ
1

r2
; �24 ¼ 3x3=2ð�z� dÞ

8f2ðzÞ
1

r
;

(A31)

which are special cases of the general expressions (87) and
(90).
For the curvature invariant (96) we now have

IIII / x6

f6ðzÞr12 : (A32)

There are thus obvious curvature singularities at r ¼ 0 and
x ! 1 and, in the case �bþ d2 � 0, additional curvature
singularities are present at the roots of fðzÞ.
Other four-dimensional Robinson-Trautman spacetimes

of type III [14] can be also used instead of (A26) to obtain
different five-dimensional solutions.

b. Twisting case

A five-dimensional solution with a negative cosmologi-
cal constant is given by

fðzÞ ¼ ��z2; ð� < 0Þ; (A33)

and by taking d�2 to be the four-dimensional Ricci-flat
type III metric [14]

d�2 ¼
�
�

x3
þ 6y2xw2

�
dx2 þ �

x3
dy2

þ 2ð ffiffiffiffiffiffi
13

p þ 1Þyx2w2dxdy

� xwduð6ydxþ ð ffiffiffiffiffiffi
13

p þ 1ÞxdyÞ
� 4ywdrdxþ 2dudrþ 3

2
xdu2; (A34)

where the functions w ¼ wðxÞ and � ¼ �ðr; xÞ are defined
as

w ¼ axð
ffiffiffiffi
13

p �5Þ=2; � ¼ r2 þ x6w2: (A35)

The constant parameter a gives rise to nonzero twist, and
for a ¼ 0 (i.e., w ¼ 0 and � ¼ r2) the solution corre-
sponding to (A34) reduces to the previous (A26) [in the
case b ¼ 0 ¼ d].
As above, the coordinate r is an affine parameter along

the geodetic multiple WAND

‘ ¼ @r: (A36)

A parallelly transported frame is now given by

ORTAGGIO, PRAVDA, AND PRAVDOVÁ PHYSICAL REVIEW D 82, 064043 (2010)

064043-14



n ¼ 1

fðzÞ
�
1� 3ryx2w

2�

�
@u

�
�
��

2
r2 þ 33x

32fðzÞ þ
3ð1þ ffiffiffiffiffiffi

13
p Þx7w2

8�fðzÞ
�
@r

� 3rx2

4fðzÞ� @x � 3x5w

4fðzÞ� @y � �zr@z;

mð2Þ ¼
ffiffiffi
x

pffiffiffiffiffiffiffiffiffi
fðzÞp

�

�
2ryxw@u þ

�
3

4
�þ 1

2
ð1þ ffiffiffiffiffiffi

13
p Þx6w2

�
@r

þ xr@x þ x4w@y

�
;

mð3Þ ¼ x3=2ffiffiffiffiffiffiffiffiffi
fðzÞp

�

�
x2w

�
�2yxw@u þ 1

2
ð1þ ffiffiffiffiffiffi

13
p Þr@r � x@x

�

þ r@y

�
;

mð4Þ ¼ �zffiffiffiffiffiffiffiffiffi
fðzÞp r@r þ

ffiffiffiffiffiffiffiffiffi
fðzÞ

q
@z: (A37)

The only nonzero components of the optical matrix Lij

are given by

L22 þ iL23 ¼ L33 � iL32 ¼ 1

rþ ix3w
: (A38)

Other relevant nonzero Ricci rotation coefficients are

L12 þ iL13 ¼ L21 � iL31 ¼ �iðM2 32 þ iM
2

33Þ

¼ � 3
ffiffiffi
x

p

4
ffiffiffiffiffiffiffiffiffi
fðzÞp 1

rþ ix3w
;

L14 ¼ �L41 ¼ � �zffiffiffiffiffiffiffiffiffi
fðzÞp ;

M
2

42 þ iM
2

43 ¼ �iðM3 42 þ iM
3

43Þ ¼ �zx3wffiffiffiffiffiffiffiffiffi
fðzÞp i

rþ ix3w
:

(A39)

The nonzero Weyl tensor components are given by

�2 þ i�3 ¼ 2ð�233 þ i�322Þ ¼ 3x3=2

4f3=2ðzÞ
1

ðrþ ix3wÞ2 ;
(A40)

�22 þ i�23 ¼ 3ð1þ ffiffiffiffiffiffi
13

p Þx5w
16f2ðzÞ

i

ðrþ ix3wÞ3 ;

�24 þ i�34 ¼ 3x3=2�z

8f2ðzÞ
r

ðrþ ix3wÞ2 :
(A41)

These can be compared with the general expressions (87),
(81), and (90).
For the curvature invariant (96), we thus have

IIII / x6

�6z12ðr2 þ x6w2Þ6 : (A42)

Curvature singularities are thus located at r ¼ 0 for x ! 0
(more in general, the regularity at r ¼ 0 ¼ x depends on
how this location is approached) and at z ¼ 0 (while for
x ! 1 we have IIII ! 0, as long as a � 0).
Note that the above five-dimensional spacetime can be

lifted to any higher dimensions by replacing d�2 ! d�2 þP
�ðd~z�Þ2.
It is finally worth observing that a four-dimensional

twisting spacetime of type III with a negative cosmological
constant was given in [42] (see also [14]), while several
Ricci-flat solutions are known, see [14] and references
therein. These can all be used instead of (A34) to obtain
other five-dimensional solutions.
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