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Abstract

General properties of Kerr—Schild spacetimes with an (A)dS background in
arbitrary dimension n > 3 are studied. It is shown that the geodetic Kerr—
Schild vector k is a multiple WAND of the spacetime. Einstein Kerr—Schild
spacetimes with non-expanding k are shown to be of Weyl type N, while the
expanding spacetimes are of type Il or D. It is shown that this class of spacetimes
obeys the optical constraint. This allows us to solve Sachs equation, determine
r-dependence of boost weight zero components of the Weyl tensor and discuss
curvature singularities.

PACS numbers: 04.50.—h, 04.20.Jb, 04.20.Cv

1. Introduction

Kerr—Schild (KS) class of spacetimes [1], i.e. metrics of the form

8ab = Nab — 2Hkaky, (1)
with H being a scalar function and k being a null vector with respect to the background flat
metric 1, and full metric g, play an important role in the study of exact solutions of the
vacuum Einstein equations in four and higher dimensions. The exceptional advantage of this
ansatz is that it makes analytic calculations tractable and allows analysis of such spacetimes
in full generality while at the same time it contains exact solutions of high interest, such as
Kerr black holes and higher dimensional Myers—Perry black holes [2] and type N pp-waves
[3, 4]. General properties of such metrics in an arbitrary dimension were studied in [4].

Rotating black holes with de Sitter and anti-de Sitter backgrounds discovered in four, five
and higher dimensions in [5, 6] and [7], respectively, can be cast to the generalized Kerr—Schild
(GKS) form®

8ab = 8ab — 2Hkakba (2)

3 Seee.g. [7, 8] for discussion of this class of metrics in higher dimensions.
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with k again being null vector with respect to background de Sitter or anti-de Sitter metric g,
and full metric ggp.

In this paper we analyze properties of metrics (2) in dimension n > 3 and generalize the
main results of [4] from the Ricci flat case to the case of Einstein spacetimes. Hereafter we
thus assume that g,, = 21,y is the n-dimensional (A)dS metric with cosmological constant
A, with Minkowski metric 7,5 being in the canonical form —dz? + x>+ +dx, 2

In section 2 it is shown that under quite general conditions, including the case of Einstein
spacetimes, Einstein equations imply that the KS vector field k is geodetic. In section 3
curvature tensors and Einstein equations for metric (2) are studied in the case of geodetic k.
It is also shown that k is necessarily a multiple WAND.

In the rest of the paper we focus on Einstein GKS spacetimes. In section 4 we point out
that Brinkmann warp product preserves GKS form. In section 5 it is shown that for the non-
expanding k Einstein GKS spacetimes belong to type N Kundt class and explicit examples of
such metrics are obtained using the Brinkmann warp product. In section 6 we study the case
with expanding k. It is shown that these spacetimes obey the ‘optical constraint’ [4]. This
allows us to determine r-dependence* of the optical matrix and boost weight zero components
of the curvature tensors and analyze curvature singularities.

In section 7 we briefly discuss the main results. Appendix A contains frame components
of Riemann and Weyl tensors in the case of geodetic KS vector k. In appendix B we compare
the r-dependence of the optical matrix in a parallelly propagated frame for general Einstein
GKS metric and for the five-dimensional (A)dS—Kerr black hole.

1.1. Preliminaries

Throughout the paper we use standard notation of higher dimensional NP formalism [9, 10]
(see also [11]). For completeness, let us briefly summarize the notation and list several useful
relations.

We will work in a real frame n = m©@, £ = m®, m® consisting of two null vectors £,
n and n — 2 orthonormal spacelike vectors m(®) obeying

4y =nng = °m = n*ml =0, en, =1, mDim) =5, 3)
with indices 7, j,... going from2ton — l and @, b, ... from O to n — 1. Then the full metric
takes the form

8ab = 2n(a€b) + Sijmg)méj). (@)

Throughout the paper we conveniently identify the KS vector k with the null frame
vector £.

i
Ricci rotation coefficients L, Ny and My are defined as the frame components of
covariant derivatives

Y (d) d) j i d
ff)m,(] , Nap = chm‘(f)mz , mfl’;)b = Mcdm((f)mz ), (5)

Ea;b = Lcdm
In the case of geodetic and affinely parametrized vector £ the following definitions [9, 10] are
useful:
Sij = Laj) = 0ij + 04, Aij = Lyj),
95;51‘1‘, o’ = 0jj0i;, o = AjjAjj,
n—2
where Sy, 0;; and Aj; are the expansion, shear and twist matrices, respectively, and 6, o and @
are the corresponding scalars.

(6)

4 With r being the affine parameter along KS congruence k.
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Directional derivatives along the frame vectors are denoted as
D= ¢V,, A =nV,, 8 =m{yVa. (7

Finally, the conformal factor €2 in the background de Sitter and anti-de Sitter metric g, = Q214p
is
G = —1)

Q=Qt=A -~ 8
12 2At2 ®

Q2527:£:_(rz—2)(r1—1)

.X]2 ZAX12
respectively, while Minkowski limit A = O can be obtained by setting &2 = 1. Note also that
2 satisfies

) €))

Qa 32,9 192485 4 2

= , — = A. 10
Q 2 @ 42 8 T hu-n-1n (10)

When k is geodetic and affinely parametrized, the following identities are also useful:
k., = Ly, ka:pk®? = Li;Lij, kapk"® = Li;Lj;. (11)

2. General KS vector field

The main point of this section is to show that if the energy—momentum tensor obeys
T,»k%k® = 0 then Einstein equations imply that the KS vector field is geodetic. This fact
is then used in the following sections.

Inverse metric to (2) has the form

g =g + 2HK K, (12)
where g% = Q1. Christoffel symbols read

a a a as 1 Qxﬁ' a 1 st a 1 Qs-" as -
Dfe = = (MK ky).c = (HKke) o+ 8 (Hkoke) s + 58] + 52080 = 2288 (13)
When studying constraints following from the Einstein equations, it is natural to start with the
highest boost weight component of the Ricci tensor Ryy = R,,k*k? — since k is present in
I"}., many terms in this contraction vanish. Though such calculation is still quite involved it

leads to a remarkably simple result

1 Qo 3.2,
Roo = 2Hke.ak®kC k" — —(n —2) | == — 222222 ) kok? 14
00 . " > (n—2) ( R TR ) (14)
for general form of Q2. Therefore, for (A)dS background from (10)
Roo = 2Hke ok k¢ k" (15)

From the Einstein equations it now follows.

Proposition 1. The null vector k in the generalized Kerr—Schild metric (2) is geodetic if and
only if the component of the energy—momentum tensor Toy = T,,k*k? vanishes.

Proposition 1 implies that vector k is geodetic for Einstein GKS spacetimes. In fact
geodeticity of k also holds for spacetimes with aligned matter fields such as aligned Maxwell
field (F,pk® o kp) or aligned pure radiation (7, o k,k;). Thus, starting from section 3 we
consider k being geodetic and affinely parametrized. This leads to a considerable simplification
of the necessary calculations.
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2.1. KS congruence in the background spacetime

Here we point out that geodeticity and optical properties of the KS congruence in the
background (A)dS spacetime and in the full GKS spacetime coincide.

Note that Christoffel symbols and curvature tensor components of the background (A)dS
spacetime can be obtained from the corresponding quantities in the full GKS spacetime by
simply setting H to zero. Using (13) it is straightforward to see that

kapk” = ko pk” = k;,k",
a a Q’b a a (16)
KEKY = K KD+ =Kk = kK
where k-, denotes a covariant derivative with respect to the background (A)dS metric gqp-
Thus, k is geodetic in the full GKS metric iff it is geodetic in the (A)dS background g,;.

Following [4] we can introduce a null frame in the background g, by replacing n by 7

and keeping remaining frame vectors unchanged

fiqg = ng + Hkg, 17)
which guarantees
Bup = 2kiaipy + 8;;mPm) (18)

and allows us to compare the optical matrices L; and L;; in the full spacetime and in the
background, respectively. Note that for k geodetic, L; does not depend on our particular
choice (17) since in such case L;; is invariant under null rotations with k fixed [10].

Using (13) it follows

L= ka;bm(i)“m(j)b = ka;*bm([)am(j)b = Zi.,‘ (19)

and therefore the optical matrices of the congruence k in the full GKS spacetime and in the
(A)dS background are equal.

3. Curvature tensors for the geodetic KS vector field

As discussed in section 2, for Einstein GKS spacetimes the KS vector k is always geodetic and
therefore from now on we assume geodeticity of k. Then we arrive at convenient expressions
used in the following calculations:

1Q,

19, 19,

e kb = —DHA %k, + = —Sk% + = —2kPs% — 7k, 20

be Thket gkt gk —3q8 (20)
1QC 1Qb IQa -

% k, = DHkpke + = —<kp + ———k, — = —2k%Gpe. 21

e 7‘lb,+2Q b+ZQ 7o K8 (21)

3.1. Ricci tensor

Ricci tensor of the GKS metric can be expressed as
cd s s 2A 5
Rab = (Hkakb);cdg - (Hk ku):bs - (Hk kb);as + mgab
—2H(D*H + LjiDH + 2Hw?)kaky, (22)

which for A = 0 reduces to the result of [4]. From (22) it follows that k is an eigenvector of
the Ricci tensor

2A
Rupk? = — [DZH +(n —2)0DH +2Hw* — 2} k, (23)

n—
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and thus boost weight 1 frame components R, of the Ricci tensor vanish along with Ry. The
non-vanishing frame components of the Ricci tensor read

) , 2A
Roi = ~D*H — (n — 2)6DH — 2Hw’ + ———. 24)

2A
R,‘j = 2HLiijk -2 (DH + (I’l — 2)97‘[) S,'j + —28ij, (25)
n—

Rli = —(S,' (DH) + 2L[,’1]DH + 2L,/81H — S]](SIH

J i
+ ZH(SJA” + A,‘ijk — Ajijk — LliSjj +3LijL[1j] +le‘L(]j)), (26)

4HA

n—

Riy = 8 (8H) + (Ni — 2HS;)DH + (ALy; — 2Liy + M ;j)8:H — S AH +

+ 2H(28[L[1,’] +4L1,‘L[1,'] + L,’]L,’] — L11S,',' + 2L[1i]1‘l4jj — 2A,‘jN,‘j — 2Hw2) (27)

3.2. Algebraic type of the Weyl tensor

Components of the Weyl and Riemann tensor for the GKS metric with geodetic k are given in
appendix A. In the previous section we have seen that positive boost weight frame components
of the Ricci tensor identically vanish. It turns out that this is true for the Weyl tensor as well,
ie.

Coioj =0, Cor0i =0, Coijk =0, (28)

and therefore

Proposition 2. Generalized Kerr—Schild spacetime (2) with a geodetic Kerr—Schild vector k
is algebraically special with k being the multiple WAND.

KS spacetimes (2) with a geodetic Kerr—Schild vector k are therefore of Weyl type II or
more special. Also using a result from [12] that spacetimes (not necessarily of the Kerr—Schild
class) which are either static or stationary with non-vanishing ‘expansion’ and ‘reflection
symmetry’ are compatible only with Weyl types G, I;, D or O we immediately arrive at the
following.

Corollary 3.  Static generalized Kerr—Schild spacetimes (2) with a geodetic Kerr—Schild
vector k are of type D or conformally flat.

Similar statement also holds for the stationary case. Note that the above proposition is
not restricted to Einstein spaces—the only assumption we need is that k is geodetic, which is
by proposition 1 equivalent to Tog = T,,k?k” = 0.

Note also that these results immediately imply that Kerr—de Sitter metrics in arbitrary
dimension [7] are of type D, as shown previously in [13] by explicit calculation of the Weyl
tensor.



Class. Quantum Grav. 28 (2011) 125011 T Malek and V Pravda

3.3. Vacuum Einstein equations

Since all previous results were derived without imposing Einstein field equations we now
proceed with studying their implications for GKS spacetimes. From now on, we thus
consider only Einstein spacetimes. Let us recall that in this case k is necessarily geodetic by
proposition 1. Vacuum FEinstein field equations (with cosmological constant) read

2
R, = _Agub~ (29)
n—2

Note that the terms containing cosmological constant A in the boost weight zero Ricci
components Ry (24) and R;; (25) cancel with the corresponding terms on the right-hand
side of the Einstein equations (29). The frame components of Einstein vacuum equations thus
read

D*H + (n — 2)6DH + 2Ha* = 0, (30)
QHLyLji —2(DH+ (n —2)0H) S;; =0, (31)
Ry =0, Ri1 =0, (32)

where Rj; and R;; are given by (26) and (27), respectively.
Following [4], we rewrite trace of (31) as

(n —2)0(DlogH) = L;;L;j — (n — 2)*6*
=o+w’ — (n—2)(n—3)0° (33)

Since H appears in (33) only for 6 # 0 it is natural to study non-expanding KS solutions
(6 = 0) and expanding KS solutions (8 # 0) separately. This will be done in sections 5 and 6.

4. Brinkmann warp product preserves GKS form

In this section we point out that Brinkmann warp product (see [14, 15]) preserves GKS form.
This warp product is thus a convenient method for constructing n-dimensional Einstein GKS
spacetimes from known (n — 1)-dimensional GKS Ricci-flat or Einstein metrics. This applies,
e.g., to black strings constructed from Myers—Perry black holes with cosmological constant or
to Einstein Kundt metrics constructed from Ricci-flat/Einstein Kundt metrics (see section 5).

It follows from [14] that starting with (n — 1)-dimensional seed Einstein metric d3?2, one
can generate n-dimensional Einstein metric ds?:

ds? = % dz> + f(z)d 32, (34)

with
f@)=—2z>+2dz+Db A= 2A (35)
7) = —AZ z+0b, - Dn-2
and with b and d being constant parameters. A necessary and sufficient condition for ds?
being Einstein spacetime is that

R=(n—1n—2)(b+d*, (36)
where R is the Ricci scalar of the (n — 1)-dimensional Einstein seed metric d52. Note that for
R # 0 only following combinations of signs of R and R are allowed: (—,—), (0,—), (+,—),
(+,+) and that only the case (—,—) is free from singularities at f(z) = 0 (see [15]).

It was also shown in [15] that Weyl type of ds? is the same or more special than the type
of d52. In particular, if the seed metric d5? is of type N then ds? is of the type N as well.

6
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Furthermore, if the seed metric d3? is of the GKS form (2), then ds? given by
1
7 dz? + f8ap dx® dx? — 2 f Hkakp dx® dx” (37)

is also of the GKS form since the new warped background metric f~!dz? + fgu, dx® dx? is
necessarily Einstein and conformally flat and therefore (A) dS or Minkowski.
For setting the warped background metric to the canonical form, one may use following

coordinate transformations:
= (d*+ab)z

d
AdS,_; = AdS,, : 2 =5+7, 1= —%+—, (38)
AX A
_ Vd2+ i d
dS,_; = AdS, : =7 -7, 1=+, (39)
—AZ A
~ d?+ bz d
ds,_; = dS, : 2 =7 -7, =4 40
1= z z ¥ . (40)
M, 1 = AdS, : _1.d 1)
n—1 n - = )LZ )\‘

By an appropriate coordinate transformation one can set the warped metric (34) in a form
conformal to a direct product [15]. Such form depends on the combination of signs of R and R
and all such combinations are given in [15]. Here we list only cases relevant in this paper—i.e.
cases with R # 0

A>0: ds? = cosh2(v/ax)(dx> +d5?) (R > 0), 42)
A<0: ds? = cos 2 (v —ax)(dx* +d5?) (R < 0), (43)
ds? = (=)' dx? +d5?) (R =0), (44)
ds* = sinh 2 (v/—ax)(dx* + d5?) (R > 0). (45)

Note that R and A are related by |R| = (n — 1)(n — 2)|A|.

5. Non-expanding GKS Einstein spacetimes

Let us first consider Einstein GKS spacetimes with a non-expanding (¢ = 0) null KS
congruence k. From equation (33) it follows that the congruence is also shear-free and
twist-free 0 = w = 0. Thus, in this case the optical matrix vanishes

Li; =0, (46)
and Einstein equations (30) reduce to

D*H =0, 47)

8;(DH) — 2L;;1DH =0, (48)

8 (8iH) + NaDH + (4Ly; — 2Ly + M ;)8 H
AHA

+2H(25,'L[1,'] +4L1,'L[1i] + LilLil + 2L[1,’]]llljj) + —1 =
n—

0. (49)
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From (46)—(48) it follows that all boost weight 0 and —1 Weyl components, as given in
appendix A, vanish.

Proposition 4.  Einstein generalized Kerr—Schild spacetimes (2) with non-expanding KS
congruence k are of type N with k being the multiple WAND. Twist and shear of the KS
congruence k necessarily vanish and these solutions thus belong to the class of Einstein type
N Kundt spacetimes.

Note that the above statement is also valid if we admit an additional aligned null radiation
term in the Ricci tensor, i.e. R, = ’% 8ap + ©k,ky. The aligned null radiation term appears
only on the right-hand side of the Einstein field equation (49) and therefore it does not affect
the derivation of proposition 4.

Kundt metrics defined as spacetimes admitting a null geodesic congruence with vanishing
optical matrix L; can be in n dimensions expressed as [3]

ds? = 2du[dv + H (u, v, x*) du + Wi (u, v, x*) dx'] + g;; (u, x*) dx’ d/ (50)

where i, j = 2...n — 1. In general Kundt spacetimes do not admit GKS form. This directly
follows from the fact that there exist, e.g., type III Einstein Kundt spacetimes which, by
proposition 4 are incompatible with GKS form. It can be however shown [4] that all type N
Ricci-flat Kundt metrics [3]:

ds? = 2duldv + H (u, v, x*) du + Wi (u, v, x*) dx'] + 8;; dx’ dx/, (51)

where functions W; and H are given in [3] admit KS form. Since there exist a H O, u, x*)
for which metric (51) is flat, all metrics (51) can be written in Kerr—Schild form ds? =
dsl%at + (HO - Hf(i)at) du’ .

Let us now show, using results of [16, 17] (see also [18]), that all four-dimensional type
N Einstein Kundt spacetimes admit GKS form. This class of metrics can be expressed as [16]

2 2 2
u 1
ds? = —2% dudv + <2k%v2 — (sz) v — %H) du® + ﬁ(d)c2 +dy?), (52)
where
A A 1
P=1+ E(x2 +y%), k= goe(u)2 + E(ﬂ(u)z +yW)?),

i (53)
Q= (1 -G+ yz)) oru) + BG)x +y )y,
with A being the four-dimensional cosmological constant and H = H (x, y, u).
These spacetimes are Einstein if
P*(H.x+H,,)+2AH =0. (54)
The general solution of (54) is [17]

A
H=2f,— —&fi+yf), (55)
3P
where functions fi = fi(u,x,y) and fo, = fo(u,x,y) are subject to fi, = foy,
fi,y = — f2.x. It can be shown that metrics (52) are conformally flat for
1 A,
H(x,y,u):F A 1—E(x +y9)|+Bx+Cy), (56)

where A(u), B(u) and C(u) are arbitrary functions. Thus, all metrics (52) differ from the
conformally flat case only by a factor of du and are therefore GKS.

8
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5.1. Examples of higher dimensional GKS Einstein Kundt spacetimes

In this section we will use Brinkmann warp product discussed in section 4 to construct
examples of higher dimensional Einstein Kundt spacetimes belonging to the GKS class.

Let us first use (44) to construct (n + 1)-dimensional type N generalized Kerr—Schild
Einstein spacetimes from n-dimensional vacuum type N Kundt metrics (51)

ds? = = (2duldv + H (u, v, x*) du + W; (u, v, x*) dx'] + 8;; dx’ dx’ + dz?), (57)
—AZ
where i, j = 2...n — 1. By performing transformation v = —A9z”> we can set the above
metric to the canonical Kundt form (50)
~ - ~ 1 .
ds’ = 2du[dT)+Hdu+W,~dx’]+?8;j dx’ dx/, (58)
—AZ

wherei?,j=2...n:
1

H= Y H(u, v, x*), (59)
i 1 . .
W; = ——W;(u, v, x"*), i=1...n=-2 (60)
—Az2
- 20
Wo-1 = —, (61)
Z
dx@™=D = gz, (62)

Vacuum type N Kundt spacetimes are VSI (all curvature invariants, including differential
invariants constructed from arbitrary covariant derivatives of Riemann tensor vanish [19]). In
the case with non-vanishing cosmological constant A, curvature invariants either vanish or
are constants depending on A. All non-expanding Einstein Kerr—Schild spacetimes are thus
CSI (metrics with constant scalar invariants) [20]. In fact metrics (57) and (58) were already
discussed in [20, 21] in the context of CSI spacetimes and supergravity.

So far we used only Ricci-flat type N seed metrics. One can however also warp Einstein
seed metrics (52) (note that warping Einstein metrics (58) does not lead to new results). In
principle one can use several possible combinations of signs of Ricci scalars of the seed metric
and full metric (see (42)—(45)) to construct a five-dimensional Einstein solutions from (52).
Note however that only case (43) with both Ricci scalars being negative is free from curvature
or parallelly propagated singularities at f(z) = 0 [15]. Therefore, here we limit ourselves
to the seed metrics (52) with A < 0 and warp product (43) which leads to five-dimensional
metrics:

1 2 2 2
ds? = —(—2% dudv + <2k%v2 - (QPZ)*”U - %H) du?

cosz( ——é\z)
1 2 2 2
+—5(dx"+dy") +dz ) (63)

The four-dimensional seed metrics—type N Kundt spacetimes with A < 0 can be split to three
geometrically distinct subclasses (see [18]). Depending on whether k is positive, negative
or vanishing, we will denote these metrics as KN(A~, k%), KN(A—, k~) and KN(A~, k%)
(generalized Siklos waves), respectively.
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KN(A ™, k*) spacetimes with the canonical choice & = 0, 8 = +/2, y = 0 are represented
by metric (52) where the functions Q and k are given by

0 = V2x, k=1. (64)

One may put the background AdS metric to the canonical form by performing the coordinate
transformation

. a’>(2— P)
a ’ T 2xv
_ a*p
2xv (65)
2a/T?* — X2 — 72 a (1+2uv)
x ==+ , Y= ———
X+T 2v
2a7Z ay
y = -, Z = —,
X+T 2xv

- /_3
where a = 5

Case KN([\_, k™) is represented by canonical choice « = 1, 8 = 0, y = 0 leading to

_ A, A
0=1 12(x +y°), k—6. (66)

In this case the background AdS metric can be cast to the canonical form by using the
coordinate transformation:

a’ —uv
u=2EVX2+Y2+22-T), T=+2 S
v
2 2 2P
v=+ 4 : x = Y2
V2VXE+ Y2+ 22 2Qv
(67)
2a7 Y \/iax
X = . = s
X+V/X2+Y2+ 22 20v
2aY V2ay
y= . Z = 5
X+VX2+Y2+ 22 2Qv
where a = —%.
In the last case with seed metrics KN(A~, k") the canonical choice is ¢ = 1,

B=,—31Acosfandy = /—1Asin6.

It is worthy to note that in a special case when 6 is independent of u (Siklos waves)
one can obtain the same five-dimensional metric by either warping an appropriate Einstein
four-dimensional seed metric (52) using (43) or by warping Ricci-flat pp-waves using (44).
This is related to the fact that Siklos waves can be cast to a form conformal to pp-waves (see

e.g. [18] for details).

6. Expanding Einstein spacetimes

6.1. Optical constraint

As in [4], for 6 # 0 one can express D log H from equation (33)
Lix Ly
DlogH=———(n—2)0, 68
ogH = g0 = (1 =2) (68)

10
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which after substituting back to (31) leads to the ‘optical constraint’ [4]

Ly Lik
LiLjy = ———5;;. 69
kL jk (I’l — 2) 0 j ( )
It follows that L;; is also a normal matrix and thus it can be put into a block-diagonal form
by appropriate spins. Furthermore, such canonical frame is compatible with parallel transport
along k [22]. Consequently, dependence of the optical matrix on the affine parameter r along
k can be determined from Sachs equation [4, 22]. This leads to

Lij= , (70)

™

with Ly, ..., L) being 2 x 2 blocks of the form

A
Ly = ( AS(ZM) 2”'2’”') (w=1,....p),
—A2u 2u+1 S2u)
0 (1)
Sau = . Aopopst = _ew
27 s 2
r2+ (afy,) r2+ (agy)
and £ being (n —2 — 2p) x (n — 2 — 2p)-dimensional diagonal matrix
|
L = —diag(1,...,1,0,...,0) (72)
r — e e e’
(m—2p) (n—2—m)
with 0 < 2p < m < n — 2 and m denoting the rank of L.
As in [4] trace of L; is
& r m—2p
(n=20=2) —————+ (73)
o 2+ (ay) "
and
1
L,'kL,'k = (Vl - 2)9— (74)
r
Using the above results we can determine the r-dependence of H by integrating (68)
Ho 1
H = ym—2p—1 (75)

which is identical to the case with vanishing A discussed in detail in [4].

6.2. Algebraic type

Let us show that Weyl types III and N are not compatible with expanding Einstein KS
spacetimes.

11
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For types III and N, boost weight zero Weyl components vanish. In particular vanishing
of Co;1; as given in appendix A implies

LijDH = 2HA;;Ly;. (76)
Multiplying the above equation with Lj;, using the optical constraint and taking the trace gives
6DH = 0. )]

Now we can repeat the argument given in appendix B of [4] that case DH = 0 implies
Ajj = 0 and §;; = diag(s,0,...,0). This form of the optical matrix is not compatible
with the canonical form of L;; for Einstein spacetimes of types III and N determined in [9]
using Bianchi identities in the vacuum case. Since cosmological constant does not enter
Bianchi identities, same results follow also for Einstein spacetimes. Note that although in
the corresponding proof in [9] additional assumptions were made in type III case, these
assumptions were not used in the non-twisting case needed here. We can thus conclude that
expanding Einstein GKS solutions with DH = 0 do not exist. Then from (77)

Proposition 5. Einstein generalized Kerr—Schild spacetimes (2) with expanding KS
congruence k are of Weyl types II or D or conformally flat.

6.3. r-dependence of boost weight zero components

For expressing r-dependence of boost weight zero components of the Weyl tensor we adopt
more compact notation [11, 12],

®;; = Coirj, ® = Coo1, CD,SJ' = _%Cikjkv (Dg‘ = %Cou,j- (78)

Substituting r-dependence of L;; (70)—(72) to the expressions for the corresponding Weyl
tensor components given in appendix A we immediately obtain r-dependence of ®;;

2
Doy on = Popsizprt = —DHsou) — 2HAS, 5441

Do 2psl = CDQM,QMH = —D(HA2, 2u+1), (79)
DBop = —1 84, ® = D*NH.
Hence, ®;; reproduces the block diagonal structure of matrix L;. Similarly one can determine
r-dependence of the remaining non-vanishing boost weight zero components:
Copop+i2p2ul = 2H (3A§,4,2,L+1 - S(zzu)) )
Cop ot 20,2041 = 2C00 20 2041,2041 = —2C2 2041 2u4+1,20 = dH A2 2041 A20 2041, 80)
Cop2v,20,20 = Copovat 20,2041 = —2HS2,052v)s
Cai) = —2Hsar ™,
where ( # v.

6.4. Singularities

Let us briefly discuss curvature singularities of Einstein expanding GKS metrics. Since these
spacetimes are by proposition 5 of types Il or D (omitting the trivial conformally flat case),
the Kretschmann scalar is determined by boost weight zero Weyl components

Rapea R“** = 4 (Ro101)* — 4Ro1ij Rovij + 8Roi1j Rojii + Riju Riju (81)

8n 2

=497 + 895 P — 24PA DA + C; i1y Ciitg + —— A
ij Yij ij Tij jkl“ijkl (n—l)(n—2)2

(82)

12
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The only additional term with respect to the vacuum case is the last constant term proportional
to A2, which clearly cannot influence singularities of the expression. Therefore, using results
of [4], in the ‘generic’ case (2p # m, 2p # m — 1) curvature singularities are located at r = 0.
Note that this case also includes all expanding, non-twisting Einstein GKS solutions, such as
higher dimensional (A)dS—Schwarzschild-Tangherlini black holes.

In the special cases 2p = m and 2p = m — 1, presence of curvature singularity depends
on the behavior of functions a?z ) which depend on other coordinates than r. If a?z ) admit
real roots at x = Xxo, then a curvature singularity is located at r = 0, x = xo. This
case corresponds, e.g., to the ring-shaped singularity of the Kerr—de Sitter spacetime (see
appendix B for details).

7. Summary and discussion

Although corresponding calculations for Einstein GKS spacetimes are considerably more
involved, most of the results originally obtained in the vacuum case in [4] hold for the non-
vanishing cosmological constant as well.

In particular the KS vector k is geodetic iff Tog = T,,k“k” component of the stress—energy
tensor vanishes. Since this holds for Einstein spacetimes, we have further assumed k being
geodetic. It then can be shown that GKS spacetimes are algebraically special with k being the
multiple WAND.

GKS metrics naturally split into two subclasses with expansion 6 either vanishing or
non-vanishing.

In the Ricci-flat case it has been shown that non-expanding KS spacetimes are equivalent
to the Kundt type N solutions. It is not clear at present whether such equivalence holds for
Einstein GKS Kundt type N as well. Here we have just shown that such equivalence holds
in four dimensions and that in higher dimensions non-expanding Einstein GKS spacetimes
belong to Einstein Kundt type N. We also constructed several explicit examples of Einstein
GKS Kundt spacetimes using the Brinkmann warp product.

It has been also shown that for expanding Einstein GKS spacetimes optical matrix L;
obeys the optical constraint. In combination with k being a WAND, it allows us to solve Sachs
equation (see [22] for related discussion in more general context), determine the r-dependence
of the optical matrix (see appendix B for comparison of the general GKS case with the
five-dimensional (A)dS—Kerr black hole), KS function H, boost weight zero components of
the Weyl tensor and Kretschmann scalar. It has been also observed that in the non-twisting
case a curvature singularity is always located at r = O (this for example applies to higher
dimensional (A)dS—Schwarzschild-Tangherlini black holes), while in some twisting cases
further information is needed (note that, e.g., five-dimensional Kerr—de Sitter black hole with
two non-zero spins is regular at r = 0, while it is singular when one spin vanishes, see
appendix B for details).

In future works it would be of interest to study whether some of the above results hold in
a more general context, such as for Kerr—Schild spacetimes in Einstein—-Gauss—Bonnet gravity
[23], for extended Kerr—Schild ansatz [24] (see also [25]) or for the multi-Kerr—Schild form
[26] and analyze what precisely are the conditions for these classes of spacetimes to admit
some sort of hidden symmetries [27].

It would be also useful to employ the results of this paper for finding new expanding
Einstein GKS solutions or studying possible uniqueness of higher dimensional (A)dS—Kerr
black holes and related black strings/branes within this class of spacetimes.
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Appendix A. Riemann and Weyl components

Riemann tensor frame components sorted by boost weight for geodetic and affinely
parametrized KS vector k read

Roioj =0, Roi0i =0, Roijx =0, (A.1)
R =D’H 24 Ro1i; = —2A;;DH + 4HSy; A; (A.2)
0101 = (}’l — 2)(7l — 1) s 0lij — ij k[jLilks .
R =—L;;DH+2HA;xL;; + 24 1) (A.3)
0ilj — ij ik kj (n—2)(n—1) ijs .
Riiti =4H(A;i A + Aipi A i + Sipi Sie) + 24 (7 Si1bir) (A.4)
ijkl — ij Akl Ii A jlk 1[iVjlk (I’l —2)(11 — ]) ik9jl ilOjk)s .
ROlli = —(S,' (DH) + 2L[i1]DH + L],(SIH + ZH(LI/ le' — leSij), (AS)

! !
Rujji = 2Lyji8pgH + 2A w8 H + 4H (8 Sji + M jigSit — Migj Sy + Lui Aji + Lk A jyi),
(A.6)
k
R],'lj = 5[(5jH) + M([j)ékH +4L1(,'5j)H — ZL([HS])H + N([j)DH — S,'jAH
k
+ 2H(8([L1|j) — AS,'j — 2L1(,'Lj)1 + 2L1iL1j — Lk(iNklj) + L]kM(ij)
k k
—2HLyiAjk — 2HAAji — Ly M jy1 — L(i|ij)l)- (A7)
Weyl frame components for GKS Einstein spaces (29) are
Coioj =0, Coioi =0, Coijx =0, (A.8)
C =R + 24 Co1ij = R (A9)
0101 =— £A0101 (n — 2)(n — 1) P 0lij — 1£7Olij» .
C =R 24 1) (A.10)
0ilj — BOilj (n_2)(n_1) > ’
Ciju = R 2A (8ix8j1 — 818 jx) (A.11)
ijkl — RNijki (l’l — 2)(n — 1) ik9jl il9jk) » .
Coni = Ro1i, Cuijx = Ruiji, Ciitj = Ry (A.12)
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Appendix B. Five-dimensional Kerr-(A)dS metric

Higher dimensional Kerr—(A) dS metric in the GKS form (2) is given in [7]. In five dimensions
the background metric, KS vector k and function H are

(1 —Aar®)A 2 r2p?

2
ar? + P ae?
A

5 ,
T T U+ T AR+ a2+ bY)
(r* +a?)sin? 0 0+ (r* +b?) cos* 8 av.
1 +1a? 1+ b2 (B.1)
A r2p? asin’ 6 bcos? 6 '
k= dr + r— — dy,
(14 xa?)(1 + Ab?) A= +a®)(F? +b?) 1+ Aa? 1+ Ab2
M
M=
where
0> =r?+12, A=1+n72 v =+a?cos? 6 +b2sin2 0 (B.2)

and X is defined as in (35).

In agreement with propositions 1 and 2, the KS vector k is a geodetic multiple WAND. In
fact k is also affinely parametrized. Let us complete a null frame by choosing the following
null vector n and spacelike vectors m®:

1 9 .\ B] a b 3
1—Aar29t dr r2+a2de r2+b20y
(1 (1+1a®>)(A + 1651 — Ar?) M)k+ (1+21a®>)(1+A1b%) d
n = —_ J—

2 A 02 A ot’
m®=ﬁ§i,
p 00
@ _ P sin@ cosO [ (B> — a®)(1 — Ar?) 3 a(l+xra®) 9 b(1 + Ab?) 0
m = F— —_ —,
VAv 0?2 or  (r2+a?)sin?09¢  (r2+b2%)cos?0 oy

@ abr [1 =229 1+xa® 3 1+1b% 9
mY = — , (B.3)

72 ar " a(?+ad) dg | b2+ bY) oy
such that the optical matrix L;; takes the block-diagonal form (70). We then find a parallelly
propagated frame by transforming frame (B.3) and requiring that the block-diagonal structure
of L; remains unchanged. This can be achieved by performing a rotation in m®, m® plane
followed by a null rotation with fixed k:

v

1
A =n+z2m? + Y + 5 (z% + zﬁ) k,

v r
m? = —m?® — —m® — 5k,
p (B.4)
r v
m® = Lm® Lo,
) o
m® =m® — 3k,
with
A(@? — bH)rsinb cos O Aabr
== . , 4= — . (B.5)

The optical matrix L;; of five-dimensional Kerr—(A)dS metric is of rank m = 3 and it
contains one 2 x 2 block (p = 1). One may compare this particular L;; with the corresponding
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Table B1. Comparison of the optical matrices of five-dimensional Kerr—(Anti-)de Sitter and
corresponding generalized Kerr—Schild spacetime.

5D Kerr—de Sitter GKS(n=5m=3,p=1)
r vV
7 2 0 s Az O
L= —7112 pLZ 0 L = —Azy3 S2) 0
0o o 1 0 o !
-
_ 1 _ 1
H - Mr2+u2 H - HO r2+(a?2))2
Ayr = =2 Ayr = a)
2,3 = 22 23 = r2+(a?2))2

optical matrix (70) of general GKS spacetime (withn =5, m = 3, p = 1), see table B1. The
two presented quantities are in agreement and obviously

aky = v, Ho = —M. (B.6)

Let us briefly discuss the presence of curvature singularities using the results of
section 6.4. If a # 0, b # 0 then 2p = m — 1 and since a?z) does not admit roots,
there are no curvature singularities in this case. If we set one of the spins to 0, e.g., b = 0,
then a?z) has one real root at & = 7 corresponding to a ring shaped singularity known from
the four-dimensional Kerr solution.

Putting a = b = 0 (non-twisting case corresponding to the (A)dS—Schwarzschild—
Tangherlini limit) implies p = 0. Since neither 2p = m — 1 nor 2p = m a curvature
singularity is located at r = 0.
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