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Abstract
We study a class of higher dimensional warped Einstein spacetimes with
one extra dimension. These were originally identified by Brinkmann as
those Einstein spacetimes that can be mapped conformally on other Einstein
spacetimes, and have subsequently appeared in various contexts to describe,
e.g., different braneworld models or warped black strings. After clarifying
the relation between the general Brinkmann metric and other more specific
coordinate systems, we analyze the algebraic type of the Weyl tensor of the
solutions. In particular, we describe the relation between Weyl aligned null
directions of the lower dimensional Einstein slices and of the full spacetime,
which in some cases can be algebraically more special. Possible spacetime
singularities introduced by the warp factor are determined via a study of scalar
curvature invariants and Weyl components measured by geodetic observers.
Finally, we illustrate how Brinkmann’s metric can be employed to generate
new solutions by presenting the metric of spinning and accelerating black
strings in five-dimensional anti-de Sitter space.

PACS numbers: 04.50.−h, 04.20.−q

1. Introduction

In recent years, there has been a growing interest in gravity in n > 4 dimensions, mainly
motivated by modern unified theories (such as string theory), AdS/CFT and recent braneworld
scenarios. In particular, in the context of the study and classification of exact solutions, an
n > 4 generalization of the Petrov classification [1], of the Newman–Penrose (NP) equations
[2–4] and of the Geroch–Held–Penrose (GHP) formalism [5] has been presented and recently
employed in several studies. Many of these have focused on the properties of Einstein
spacetimes (defined by Rab = Rgab/n), as a natural first step toward the understanding of
higher dimensional gravity. Einstein spacetimes indeed describe systems in which there is no
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matter and only gravity is at play, at the same time allowing for a cosmological constant. They
include, e.g., a number of black hole, black string and black ring solutions (see, e.g., [6] for
a review and references), and they are thus an interesting arena for testing and applying the
general methods mentioned above.

In this context, it is the purpose of this paper to analyze algebraic and optical properties
as well as singularities of a special class of higher dimensional Einstein spacetimes, namely
those that can be mapped conformally (and ‘properly’) on other Einstein spaces. These were
fully classified by Brinkmann already in the 1920s [7], and their line element takes a specific
warped form with a single ‘extra dimension’. However, a discussion in terms of their possible
Weyl type and of the recently developed NP (or GHP) formalism has not been performed yet
(but see [8] for a discussion of other properties of warped spacetimes). From our perspective,
the interest in such a study is twofold. On the one hand, we shall clarify several features of
such a class of spacetimes, and relate these to certain previously known solutions (mentioned
later in the appropriate context). On the other hand, from a more pragmatical viewpoint, we
shall illustrate how the Brinkmann line element can be used to generate Einstein spacetimes
with given algebraic properties and optics. It is well known how difficult it may be, in
general, to find exact solutions to the Einstein equations. This simple method can thus prove
useful, e.g., in constructing explicit examples (or ‘counterexamples’) to test or falsify certain
properties of higher dimensional gravity that one might conjecture to hold on the basis of
known results in four dimensions. For example, the Brinkmann ansatz has been already
applied in the context of (the geodetic part of) the Goldberg–Sachs theorem [8] (cf also [9]),
and to generate specific examples of Robinson–Trautman [9] and type III/N [11] Einstein
spacetimes (see, respectively, [10] and [2] for general properties of such families of solutions
in higher dimensions). It will thus be useful to understand in more generality what kind of
spacetimes one may generate with that method.

Furthermore, we observe that the Brinkmann line element is essentially a slicing of an
Einstein spacetime by hypersurfaces which are, in turn, also Einstein. For this reason, it is
of interest in braneworld scenarios, where it provides a consistent embedding of (n − 1)-
dimensional Einstein gravity in n-dimensional Einstein gravity (with various possible values
for the bulk and lower dimensional cosmological constants, see subsection 2.2 below). For
example, the well-known warped metric for the ground state of the Randall–Sundrum (RS)
models [12, 13] is in fact a special instance of Brinkmann’s spacetimes. More general
Brinkmann metrics have been considered in the context of other braneworld Kaluza–Klein
(KK) reductions, see, e.g., [14–16] and references therein, where various supergravity
extensions (relying on the same metric ansatz) have also been studied. Although we will
not be directly concerned with these models here, the results of this work can thus be of
interest also in a wider context. The paper is organized as follows.

In section 2, we present the Brinkmann metric and determine the allowed combinations
of signs of the cosmological constants of the (n − 1)-dimensional line element ds̃2 and of
the n-dimensional warped line element ds2. We also determine coordinate transformations
to various metric forms (suitable in different specific contexts) that are equivalent to the
Brinkmann metric for appropriate choices of parameters.

In section 3, the connection between the Weyl types of the metric ds̃2 and ds2 is studied.
It is shown that ds2 inherits Weyl aligned null directions (WANDs) from ds̃2 with the same
multiplicity. In particular cases, ds2 can however also possess additional WANDs unrelated
to those (if any) of ds̃2. Consequently, ds2 is in general of the same Weyl type of ds̃2, but in
particular cases it can be more special.

Using scalar curvature invariants and components of the Weyl tensor in a parallelly
propagated (p.p.) frame, in sections 4 and 5 we study curvature singularities arising in the full

2



Class. Quantum Grav. 28 (2011) 105006 M Ortaggio et al

spacetime ds2 due to the warp factor. Such singularities appear in all cases except when both
the cosmological constant of ds̃2 and that of ds2 are negative, and in the trivial case of a direct
product spacetime.

In section 6, we discuss two explicit five-dimensional examples of warped metrics without
naked singularities—an anti-de Sitter (AdS) black string sliced by an AdS spinning black hole
and an accelerated AdS black string generated from the four-dimensional AdS C metric—and
indicate how to easily generate more general solutions.

After brief concluding remarks in section 7, we give some necessary technical details
about the general warped metric (such as the Christoffel symbols and the components of the
Weyl tensor in a parallelly propagated frame, etc) in appendices A and B.

Notation. Following [1–5], we use a frame consisting of two null vectors m(0) = � and
m(1) = n, and n − 2 orthonormal spacelike vectors m(i), where i, j, . . . = 2, . . . , n − 1. In
terms of these, the metric reads

gab = 2l(anb) + δijm(i)am(j)b, (1)

where, hereafter, a, b = 0, 1, . . . , n − 1.
In the following, one of the m(i) will be naturally singled out because of the metric ansatz.

We shall denote this by m(Z) and the remaining spacelike vectors of the basis by m(I ), with
I = 2, . . . , n − 2.

The optical matrix L of � is defined by its matrix elements

Lij = �a;bma
(i)m

b
(j), (2)

with (anti-)symmetric parts

Sij = L(ij), Aij = L[ij ]. (3)

The optical scalar expansion, θ , shear, σ , and twist, ω, are defined by θ = Lii/(n − 2),
σ 2 = (Sij − θδij )(Sij − θδij ), and ω2 = AijAij , respectively.

For spacetimes of Weyl type III and N, we introduce the compact symbols

�i = C101i , �ijk = 1
2C1kij , �ij = 1

2C1i1j , (4)

which obey the following constraints [2]:

�i = 2�ijj , �ijk + �kij + �jki = 0, �ijk = −�jik, �ij = �ji, �ii = 0.

(5)

2. General metric form

2.1. Brinkmann coordinates

We study n-dimensional warp product metrics of the form

ds2 = 1

f (z)
dz2 + f (z) ds̃2, (6)

where ds̃2 is an (n − 1)-dimensional metric. Assuming that ds2 is an Einstein spacetime
(i.e. Rab = Rgab/n and the Ricci scalar R is related to the cosmological constant by
(n − 2)R = 2n�), it follows that (see appendix A)

f (z) = −λz2 + 2dz + b, λ = 2�

(n − 1)(n − 2)
, (7)

3



Class. Quantum Grav. 28 (2011) 105006 M Ortaggio et al

with b and d being constant parameters. Then ds̃2 turns out to be also Einstein, with the Ricci
scalar (hereafter tildes will denote quantities referring to the geometry of ds̃2)1

R̃ = (n − 1)(n − 2)(λb + d2). (8)

In his early work [7], Brinkmann showed that an Einstein spacetime can be mapped
conformally on another Einstein spacetime by a proper map2 if and only if its line element
can be written in the form (6) with (7) (cf, e.g., also [19]). This invariantly characterizes
the class of considered metrics, which have also appeared in other contexts to describe, e.g.,
different braneworld models or warped black strings. For example, one of the Einstein metrics
conformal to ds2 is given by dŝ2 = z−2 ds2 [7]. Of course, it must be possible to put also
dŝ2 in the form (6), as one can indeed do by defining a new coordinate ẑ = 1/z and taking
f̂ (ẑ) = bẑ2 + 2dẑ − λ. Since R = n(n − 1)λ, one immediately obtains R̂ = −n(n − 1)b. See
[7, 19] for further details.

The approach of this paper is to consider the line element (6) as a useful ansatz to generate
an n-dimensional Einstein spacetime ds2 from a known (n − 1)-dimensional one, i.e. ds̃2. We
will refer to ds̃2 as the ‘seed’ metric, or as a ‘section’ or ‘slice’ of ds2. The metric ds2 is clearly
warped, with a warp factor f (z) depending only on the single extra dimension z. One obtains
in particular a direct product space in the special case of a constant f (z), i.e. λ = 0 = d (with
b > 0). Although Brinkmann’s work [7] is essentially signature independent, here we are
interested in studying (Einstein) spacetimes, i.e. we shall assume a Lorentzian signature for
ds2. Moreover, we will restrict to the case in which z is a space coordinate in the ansatz (6),
so that ds̃2 must be an Einstein spacetime3. We thus require f (z) > 0, which may restrict
possible parameter values and (possibly) the range of z. Namely, since f (z) has real roots if
and only if R̃ � 0, when R̃ � 0, we require λ < 0 (R̃ = 0 admits also λ = 0, but this case
simply corresponds to a direct product), while for R̃ > 0, any sign of λ (including λ = 0) is
admitted, at least for suitable values of z.

We finally observe that (6) is form-invariant under a redefinition z = αz′ + β, under
which λ′ = λ, d ′ = α−1(d − λβ), b′ = α−2[b + β(−λβ + 2d)], and ds̃ ′2 = α2 ds̃2 (so that
R̃′ = α−2R̃). This freedom will be useful later on.

2.2. Alternative forms of the metric

The coordinate system employed so far has the advantage that allows for a unified treatment
of all metrics of the form (6), regardless of the specific value of the parameters λ, d and b
entering f (z). However, for certain applications other modified coordinates may sometimes
be more convenient.

1 From the braneworld KK reduction viewpoint, R̃ corresponds to the cosmological constant in the lower dimensional
spacetime.
2 A conformal map ĝab = �2gab is called proper if gab�,a�,b �= 0 [7]. Improper conformal maps are possible only
between Ricci-flat spacetimes, which in fact must be pp-waves (with a Ricci-flat ‘transverse’ space) [7]. Since these
have been already thoroughly investigated (see, e.g., [3, 17, 18]), we will restrict to proper maps in this paper.
3 One can equally consider (6) in the case of a timelike z. These metrics are simply obtained from (6) by Wick
rotating z = it along with d = id ′ and b = −b′, so that ds2 = −f −1(t)dt2 + f (t)ds̃2, where f (t) = λt2 − 2d ′t − b′,
and ds̃2 must be an Euclidean Einstein space with the Ricci scalar R̃ = −(n − 1)(n − 2)(λb′ + d ′2). Such solutions
are of course time dependent. Some of their properties will straightforwardly follow from the results of this paper.
On the other hand, one cannot in general extend statements about WANDs and the Weyl type, since real WANDs may
become complex after a Wick rotation. In a wider context, however, several results about general warped spacetimes
with a one-dimensional Lorentzian factor (which include, in particular, all static spacetimes) are known. For example,
their Weyl type can be only G, Ii , D or O [8], for all of which we know explicit vacuum examples: static KK bubble
(of type G [20]), static black ring (of type Ii [21]) and Schwarzschild black hole (of type D [1, 2, 8]). We will thus
not be concerned with such a discussion here.
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Table 1. Allowed choices of signs of the Ricci scalars R (or λ) and R̃ for metric (6) are denoted
by the symbol

√
(and forbidden ones by ×). The corresponding line elements in the alternative

coordinates of sections 2.2.1 and 2.2.2 are also indicated (in square brackets).

R

R̃
− 0 +

− √
[(14), (20)] × ×

0
√

[(15), (21)]
√

[(12), (18)] ×
+

√
[(16), (22)]

√
[(13), (19)]

√
[(11), (17)]

Before illustrating those, let us first reduce the number of parameters of (6). Indeed, by
an appropriate redefinition of z (and, possibly, a rescaling of ds̃2), one can always rewrite the
line element (6) in the following ‘normalized’ forms:

ds2 = 1

−λz2 + ε
dz2 + (−λz2 + ε) ds̃2 (ε = ±1, 0), with R̃ = (n − 1)(n − 2)λε, (9)

where, in order to have a correct signature, the values ε = −1, 0 require λ < 0. In the case
λ = 0, the additional metric is possible

ds2 = 1

2z
dz2 + 2z ds̃2 (λ = 0), with R̃ = (n − 1)(n − 2). (10)

We have thus six different, inequivalent metrics corresponding to different choices of the
parameters in the original ansatz (6), and fully characterized by the signs of the Ricci scalars
R (or λ) and R̃ of the full spacetime ds2 and of its Einstein section ds̃2, respectively. These
can be thus schematically summarized as (+, +), (−, +), (−, 0), (−,−), (0, 0) (all contained
in (9)), and (0, +) (given by (10)), see table 1. In particular, note that a negative cosmological
constant allows for Einstein sections with any sign of R̃. As we shall discuss in sections 4 and
5, the above warping in general produces spacetime singularities, except in the cases (−,−)

and (0, 0).

2.2.1. ‘Braneworld Kaluza–Klein reduction’ coordinates. The first natural choice is to
replace z by a new coordinate y such that the metric component along the extra dimension is
a constant (normalized to 1), i.e. dz2/f (z) = dy2. This leads to

λ > 0 : ds2 = dy2 + cos2(
√

λy) ds̃2 (R̃ > 0), (11)

λ = 0 : ds2 = dy2 + ds̃2 (R̃ = 0), (12)

ds2 = dy2 + y2ds̃2 (R̃ > 0), (13)

λ < 0 : ds2 = dy2 + cosh2(
√−λy) ds̃2 (R̃ < 0), (14)

ds2 = dy2 + e2
√−λy ds̃2 (R̃ = 0), (15)

ds2 = dy2 + sinh2(
√−λy) ds̃2 (R̃ > 0). (16)

We have indicated the sign of R̃ above. Its modulus is given by |R̃| = (n−1)(n−2)|λ|, except
for metric (13), which has R̃ = (n − 1)(n − 2). As remarked in [16], this (as well as the next)
coordinate system hides the fact that the lower dimensional cosmological constant (or R̃)
is in fact an adjustable parameter. To see this, one can use the coordinate transformation
given in [16], or simply retain the original metric (6) (see the comment concluding
subsection 2.1).

5
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It is worth observing that the above metrics have already separately been considered in
the literature from different viewpoints. For example, see [22] for an application of the AdS
metrics (14)–(16) in the AdS/CFT correspondence. The line element (14) appeared also in
[16] in the context of the KK reduction of gauged supergravities in n dimensions to gauged
supergravities in n − 1 dimensions. Similarly, metrics (11) and (16) were used for embedding
certain gauged dS supergravities into gauged dS and AdS supergravities, respectively [16].
Note also that the line element (15) with a flat ds̃2 is the well-known metric of the RS models
[12, 13] (except that (15) does not contain any brane at y = 0) and, with a generic Ricci-flat
ds̃2, has been considered, e.g., in [14–16]. Metric (13) was employed, for instance, in [23] (in
five dimensions). Specific metrics of the form (11)–(16) appeared in [20] to describe various
black strings. Very recently, metrics (11)–(15) were also discussed in [24].

2.2.2. ‘Conformal to a direct product’ coordinates. Another natural coordinate system
can be constructed such that ds2 becomes manifestly conformal to a direct product, i.e.
dz2/f 2(z) = dx2. One thus finds the possible metrics (presented in the same order as the ones
above)

λ > 0 : ds2 = cosh−2(
√

λx)( dx2 + ds̃2) (R̃ > 0), (17)

λ = 0 : ds2 = dx2 + ds̃2 (R̃ = 0), (18)

ds2 = 2 e2x(dx2 + ds̃2) (R̃ > 0), (19)

λ < 0 : ds2 = cos−2(
√−λx)( dx2 + ds̃2) (R̃ < 0), (20)

ds2 = (−λx2)−1(dx2 + ds̃2) (R̃ = 0), (21)

ds2 = sinh−2(
√−λx)(dx2 + ds̃2) (R̃ > 0). (22)

Obviously (12) trivially coincides with (18), and with (9) with λ = 0, ε = +1, but we have
repeated them for completeness.

Some of the above metrics have been used to construct various (non-uniform) AdS black
strings in five dimensions. Namely, with (21), in [25] an AdS black string was studied giving
rise to a Schwarzschild black hole on a brane in the RS scenarios. Similarly, AdS black
strings foliated by Schwarzschild–(A)dS black holes, relying on (20) and (22), appeared in
[26]. All such solutions straightforwardly extend to any higher dimensions [20] (but most of
them contain naked singularities, cf sections 4 and 5 and the given references). Obviously, in
the case λ = 0 = R̃, equation (18) includes the metric form of the uniform (direct product)
Schwarzschild and Kerr black strings in any dimensions.

3. Weyl type

We now give the Weyl components for the spacetime (6) and study its possible algebraic type.

3.1. Weyl frame components

Using coordinates xa = (xμ, z) (with Greek indices ranging from 0 to n−2), for the coordinate
components of the Weyl tensor, it is straightforward to show that [7] (see also appendix A)

Cμνρσ = f C̃μνρσ , Czμνρ = 0 = Czμzν. (23)

First, it is obvious that ds2 is conformally flat (and thus of constant curvature since
Einstein) iff ds̃2 is such [7]. It thus follows that in four dimensions, metric (6) describes only

6
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spaces of constant curvature, since a three-dimensional Einstein space ds̃2 is necessarily of
constant curvature. However, this is not the case for n > 4. Let us now assume that we are
given a null frame in the spacetime ds̃2, consisting of the vectors �̃, ñ and m̃(I ) (from now
on I, J = 2, . . . , n − 2). We can straightforwardly lift this to a null frame of ds2 by simply
taking

� = �̃μ∂μ, n = f −1ñμ∂μ, m(I ) = f −1/2m̃
μ

(I)∂μ, m(Z) =
√

f ∂z, (24)

so that only m(Z) will have a nonzero z component.
Then it is easy to see that the only nonzero independent Weyl frame components, ordered

by boost weight (b.w.), are given by

C0I0J = C̃0I0J , C0IJK = f −1/2C̃0IJK,

C01IJ = f −1C̃01IJ , CIJKL = f −1C̃IJKL, (25)

C1IJK = f −3/2C̃1IJK, C1I1J = f −2C̃1I1J ,

where (from now on) the components of the [un]tilded Weyl tensor are evaluated in the
[un]tilded frame.

3.2. A WAND of the seed metric lifts to a WAND of the full space (with the same multiplicity)

From (25) it immediately follows that if �̃ is a WAND of C̃μνρσ , then � (as defined in (24)) is
automatically a WAND of Cabcd, with the same multiplicity of �̃. Therefore, in particular, the
Weyl type of the geometry ds2 is at least as special as the Weyl type of the geometry ds̃2. Let
us now discuss various possibilities separately.

If ds̃2 is of type N, then obviously (from (25)) ds2 is also of type N, and � (as in (24)) is
the only WAND. If ds̃2 is of type III, then ds2 is also of type III: if it were of type N, then it
would admit two distinct WANDs � and �′ of multiplicity, respectively, 3 and 4, which is not
possible (it would imply that the Weyl tensor vanishes). By a similar argument, if ds̃2 is of
type II, then ds2 is also of type II, since type III[N] will lead to having two distinct WANDs
of multiplicity 2 and 3 [4], which again is forbidden given that Cabcd �= 0. Thus, if the Weyl
tensor of ds̃2 is of type II or more special, then ds2 is of the same principal Weyl type. Note
in addition that if ds̃2 is of (secondary) type D (i.e. it possesses at least two distinct double
WANDs), then ds2 is also of type D, since both WANDs can be lifted.

This argument, however, does not work when ds̃2 is of type I or G, i.e. ds2 can be more
special in those cases. We now work out under what conditions there may exist WANDs of
ds2 that are inherently ‘higher dimensional’, i.e. not obtainable by simply lifting a WAND of
ds̃2, and we single out cases in which ds2 may be more special than ds̃2.

3.3. A WAND of the full space need not correspond to a WAND of the seed metric

Let us first study under what conditions a new single (i.e. not multiple) WAND arises in ds2.
We thus assume that we have a null vector � in ds2, with �z �= 0. By the Bel–Debever criteria
[27, 28], this is a WAND if and only if the timelike vector t̃ = �μ∂μ in ds̃2 satisfies

C̃μνρσ t̃ ν t̃ σ = 0. (26)

This constraints the possible geometries ds̃2 but, per se, does not lead to any general
conclusions about existence and multiplicity of WANDs of ds̃2. It is, in particular, compatible
with its Weyl type being G or I.4 When (26) is satisfied, the vector �′ = �μ∂μ − �z∂z (which is

4 In the next paragraph, we will give an explicit example of a type G spacetime satisfying the stronger condition
(27), and a fortiori also (26).

7
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Table 2. Possible relation between the Weyl type of the seed spacetime ds̃2 and the full spacetime
ds2.

Given type Possible type Given type Possible type
of ds̃2 of ds2 of ds2 of ds̃2

G G, Ii , Dabd G G
I I, Ii I I
Ii Ii , Dabd Ii G, I, Ii
II II II II
D D D G, Ii , D
III III III III
N N N N
O O O O

clearly null thanks to gμz = 0) is also a WAND, so that the Weyl type is Ii (or more special,
if there is a multiple WAND shared by ds2 and ds̃2, as discussed in section 3.2), even if the
seed metric ds̃2 was of type G. Conversely, given any ds̃2 admitting a timelike vector t̃ that
satisfies (26), one can always construct two WANDs �μ∂μ ± �z∂z of ds2 (where �z �= 0 is fixed
by requiring �μ∂μ ± �z∂z to be null).

If instead � is a double WAND in ds2 (with �z �= 0), the Bel–Debever criteria [28] give
the equivalent condition on the timelike vector t̃ = �μ∂μ in ds̃2:

C̃μνρσ t̃σ = 0. (27)

This implies, in particular, that ds̃2 can only be of the types G, Ii or D (or O, in which case,
however, ds2 is also of type O) [28].5 Moreover, �′ = �μ∂μ − �z∂z is also a double WAND,
so that the Weyl type of ds2 is necessarily D (in fact, Dabd , since equation (27) can be lifted
to a timelike vector of the full space; this is nontrivial only for n � 6 [28]). We can thus also
conclude that when ds2 is of type D, ds̃2 can be (only) of the types G or Ii (or D, of course).
In order to see an explicit example, let us take ds̃2 to be the static vacuum KK bubble (i.e.
the direct product of a timelike direction t with the Euclidean Schwarzschild metric). This is
a type G spacetime [20]. However, it is obvious that in the full spacetime (6), the two null
directions �± = ∂t ± f ∂z define two distinct double WANDs (Ctabc = 0 = Czabc implies
Cabcd�

d
± = 0, then use [28]) and the Weyl tensor Cabcd is thus of type D (Dabd ).

Finally, if � is a triple (or quadruple) WAND in ds2 (with �z �= 0), one can use an argument
like in the previous paragraph to arrive at �′ being another triple (or quadruple) WAND, which
implies the vanishing of the Weyl tensor. Non-trivial cases thus require �z = 0, so that ds2

is of type III/N if and only if ds̃2 is such (the ‘if’ implication was discussed in section 3.2).
To summarize, if the Weyl tensor of ds̃2 is of type G or I, the Weyl tensor of ds2 may be more
special (in special cases). See table 2 for details and for a summary of the whole discussion.

4. Scalar invariants and curvature singularities

4.1. ‘Generic’ case

From (23) one also readily obtains for the simplest Weyl scalar

CabcdC
abcd = f −2C̃μνρσ C̃μνρσ . (28)

5 More precisely, the only possible type D is Dabd [28].

8
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This invariant is typically nonzero for, e.g., black hole spacetimes, where it can be used
to localize a curvature singularity. It is evident that such kind of singularity, when present in
the seed metric, will also affect the full geometry. In addition, the latter will be singular also
at zeros of f (z), which are always present except in the cases R̃ < 0 (for which, necessarily,
R < 0) and R̃ = 0 = R (i.e. f,z = 0). These additional singularities (already previously
discussed in some special cases [14, 15, 22, 25, 26]) will typically extend through and beyond
the (possible) event horizon, since they do not depend on the coordinates of ds̃2.

However, there exist spacetimes for which all invariants of zero order in the Weyl (and
Riemann) tensor, such as (28), vanish identically (VSI0 spacetimes [3]) or are constant (CSI0

spacetimes [29]), and therefore cannot be used to localize curvature singularities. In particular,
all Einstein spacetimes of type III and N fall in this class6. In the case of expanding type III
and N spacetime, one can nevertheless construct certain nonzero invariants from the covariant
derivatives of the Weyl tensor, as we now discuss.

4.2. Type N and III spacetimes with nonzero expansion

Nonzero scalar invariants for expanding spacetimes of type N/III were constructed in four
dimensions in [32, 33] and extended to any higher dimensions in [3] (see also [11]). The
derivation of the latter result greatly benefits from the fact that in type N/III Einstein spacetimes,
the (unique) multiple WAND � is geodetic [2]. This enables one to make computations in a
frame parallelly transported along � and leads to considerable simplifications.

For expanding type N Einstein spacetimes, one of the simplest nonzero curvature invariant
is

IN ≡ Ca1b1a2b2;c1c2Ca1d1a2d2;c1c2C
e1d1e2d2;f1f2Ce1b1e2b2;f1f2 . (29)

Using a parallelly propagated frame7, this invariant was shown [3] to be proportional (via a
numerical constant) to

IN ∝ [(�22)
2 + (�23)

2]2(s2 + A2)4. (30)

For the class of spacetimes (6) considered in this paper, from table 2 and equation (B4),
it follows that ds2 is of type N with an expanding multiple WAND � if and only if ds̃2 is such,
and � is simply the lifted counterpart of �̃. Therefore, also ds̃2 will admit a nonzero invariant
ĨN defined as in (29) (similar comments will hold in the case of type III below and will not be
repeated there). One can thus substitute the Weyl components and the optical scalars given in
appendix B to obtain

IN = 1

f 8
ĨN . (31)

6 This can be easily seen as follows. For vacuum (� = 0) type III/N spacetimes, one cannot construct non-
vanishing invariants by contractions since all Weyl components have negative boost weight (whereas an invariant
must necessarily be of boost weight zero) and such spacetimes are therefore VSI0. Similarly, for Einstein spacetimes
of type III/N, the Weyl tensor has only negative boost weight components, while the Ricci tensor has only zero boost
weight components, so that non-vanishing invariant contractions (which can thus contain only Ricci components)
are clearly constant. It is also worth emphasizing that while in vacuum all type III (or more special) spacetimes are
VSI0 and vice versa [3], an analogous converse implication does not hold for CSI0 Einstein spacetimes. Namely,
although all type III (or more special) Einstein spacetimes are CSI0 (as explained above), there exist CSI0 Einstein
spacetimes that are not of such Weyl types (for example, already in four dimensions, the Nariai space [30, 31], which is
of type D).
7 For type N expanding Einstein spaces, the rank of the optical matrix Lij as well as the rank of the matrix of Weyl
tensor components �ij is 2 [2, 5], and in a suitable frame the only non-vanishing components of Lij are L22 = L33 = s

and L23 = −L32 = A (related to (B4) by θ = 2s/(n− 2) and ω = √
2A). Note, however, that the canonical form [2]

of the type N Weyl tensor with the only non-vanishing component being �22 = −�33 is not in general compatible
with parallel transport, and thus in a parallelly transported frame one also needs to take into account the component
�23 [11].

9
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This invariant was computed for certain explicit type N solutions in [11].
Similarly, for expanding Einstein spacetimes of type III, the curvature invariant IIII,

IIII ≡ Ca1b1a2b2;e1Ca1c1a2c2;e1C
d1c1d2c2;e2Cd1b1d2b2;e2 , (32)

can be expressed [3] (using the notation of [11]) as8

IIII ∝ (s2 + A2)2[9(�i�i)
2 + 27(�i�i)(�w22�w22 + �w23�w23)

+ 28(�w22�w22 + �w23�w23)
2]. (33)

Using again results from appendix B, we obtain

IIII = 1

f 6
ĨI I I . (34)

See again [11] for explicit examples.
As discussed in relation to invariant (28), we therefore conclude that also in the case of

type N/III spacetimes with nonzero expansion, points where f (z) = 0 correspond to some
curvature invariants becoming infinite9. In contrast, for type III/N Einstein spacetimes of the
Kundt class (and thus with vanishing expansion), all scalar invariants constructed from the
Riemann tensor and its covariant derivatives are either zero or constant [3, 29] (see also some
comments in [11]) and thus one cannot use them to discuss possible singularities. Nevertheless,
for the class of warped spaces (6), one can still detect the presence of singularities by studying
the frame components of the Weyl tensor as measured by a freely falling observer, which is
the subject of the following section.

5. Freely falling observers and p.p. singularities

In this section, we introduce a class of geodetic observers and study the Weyl components
measured in their frames in order to discuss spacetime singularities.

5.1. A class of freely falling observers

Let us assume that we are given a geodetic observer in the spacetime ds̃2 (with coordinates
xμ). This can be characterized by a unit timelike geodetic vector field t̃, accompanied by
n − 2 orthonormal spacelike vectors m̃(A) (with A,B, . . . = 1, . . . n − 2). The freely falling
observer transports parallelly the frame vectors along the integral curves of t̃, using an affine
parameter, so that

t̃μ||ν t̃ ν = 0, m̃(A)μ||ν t̃ ν = 0, (35)

where a lower double bar denotes a covariant derivative in the (n − 1)-dimensional geometry
of ds̃2.

8 This result was obtained using a split of Lij into a non-vanishing 2-block and a remaining vanishing block, which
is compatible with parallel transport of the frame (as can be easily seen from [11]). Moreover, an assumption on
the Weyl tensor was made (see [3] and footnote 7 of [11] for details), implying that in the generic case the rank
of the optical matrix Lij is 2. In [2] this was proven in full generality in five dimensions and in the non-twisting
case in arbitrary dimension, as well as in a ‘generic’ twisting higher dimensional case. It is thus at present unclear
whether rank(Lij ) = 2 holds in all special cases (but surely it does for a very large class of solutions [2]). Possible
‘exceptional’ cases with rank(Lij ) > 2 are not discussed in this section. Note, however, that the results of the next
section on p.p. singularities apply to all cases.
9 It is worth observing that diverging higher order invariants do not necessarily imply the presence of a ‘physical’
singularity [34, 35]. The results of the next section however demonstrate that, at least for the spacetimes studied in
this paper, points where higher order invariants become infinite are really singular (but not necessarily the other way
around).

10
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One can now define an observer in the full space ds2 with coordinates xa = (xμ, z)

by simply ‘extending’ the above observer to the unit timelike n-dimensional vector field
t = f −1/2 t̃μ∂μ. For the remaining frame vectors, one can then let m(A) = f −1/2m̃

μ

(A)∂μ and
m(Z) = √

f ∂z. However, with the results of appendix A it is easy to see that such t is not
geodetic, except when f,z = 0.10 We thus define a new n-dimensional frame {T ,Z,mA} by
performing a Lorentz boost in the plane of t and m(Z), i.e.

T = (cosh γ )
t̂√
f

+ (sinh γ )
√

f ∂z, Z = (sinh γ )
t̂√
f

+ (cosh γ )
√

f ∂z, (36)

where t̂ = t̃μ∂μ denotes the n-dimensional lift of the (n − 1)-dimensional vector t̃.
We now want to choose the function γ such that T is geodetic. One easily finds the

condition 2(t̃μγ,μ) cosh γ +f,z cosh γ + 2γ,zf sinh γ = 0. By taking as one of the coordinates
an affine parameter τ along t̃, i.e.

t̃ = ∂τ , (37)

the above condition on γ simply reads

2γ,τ cosh γ + f,z cosh γ + 2γ,zf sinh γ = 0. (38)

A particularly simple solution to this equation is given, for example, by γ = γ (z), which

requires cosh γ = f −1/2γ0 (and therefore sinh γ = ±
√

(γ 2
0 − f )/f ), where γ0 is a constant

(which, at least in the spacetime region of interest, must obey γ0 �
√

f ).
It follows immediately that when (38) is satisfied not only is T geodetic but the full frame

{T ,Z,m(A)} is in fact parallelly transported along T , so that we have constructed a freely
falling observer in ds2.

5.2. Frame components of the Weyl tensor and singularities

Recalling (23) we can now relate the frame components of the Weyl tensor Cabcd measured
by such an observer to those of the Weyl tensor C̃μνρσ measured by the (n − 1)-dimensional
observer {t̃, m̃(A)}. One readily finds

CT AT B = f −1 cosh2 γ C̃tAtB, CT AZB = f −1 sinh γ cosh γ C̃tAtB,

CZAZB = f −1 sinh2 γ C̃tAtB, CT ABC = f −1 cosh γ C̃tABC,

CZABC = f −1 sinh γ C̃tABC, CABCD = f −1C̃ABCD.

(39)

(In the above equations, lower indices T and t denote contraction with, respectively, T and t̃.)
While in each Weyl component there appears an explicit z dependence through the factor f −1,
we observe that, due to (38), also the hyperbolic functions necessarily depend on z (except in
the case f,z = 0, corresponding to a direct product spacetime). In particular, for the special
solution mentioned above,

cosh γ = f −1/2γ0, (40)

each k-power of a hyperbolic function will introduce an extra f −k/2 factor in the corresponding
Weyl component. Therefore, all the frame components of the Weyl tensor become singular at
zeros of f (z).

We have thus demonstrated that for any geodetic observer t̃ in the seed geometry ds̃2,
there exists (at least) one geodetic observer T in the full geometry ds2 for which the Weyl

10 More generally, a generic vector field v = va∂a with vz = 0 cannot be geodetic unless it is null, in which case it
simply corresponds to null geodesics of the slice ds̃2 (this was noted in [14, 25] for special metrics belonging to the
family (6)).
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components, as measured in a parallelly transported frame, blow up at points where f (z) = 0.
This is true independently of possible singularities of the spacetime ds̃2, and therefore even if
ds̃2 is assumed to be everywhere regular (unless it is conformally flat). However, we have to
show that T really encounters some points with f (z) = 0. This can be seen as follows. We

can define an affine parameter z̃ along the vector field T = f −1γ0∂τ ±
√

γ 2
0 − f ∂z by taking

dz̃ = ±(
γ 2

0 − f
)−1/2

dz,

so that T = f −1γ0∂τ +∂z̃. The affine parameter z̃ is thus monotonically increasing (decreasing)
along the coordinate z. The explicit form of z̃(z) depends on the sign of λ. Nevertheless, in
all cases one can see that a zero of f (z) (if present) will be reached at a finite value of the
affine parameter z̃.11 In other words, we have shown that the spacetime ds2 possesses a p.p.
curvature singularity [36] at points where f (z) = 0. Not surprisingly, these are the same
points where the scalar invariants discussed in the previous sections diverge. However, p.p.
curvature singularities will generically be present also in spacetimes where invariants do not
diverge (either because they are identically zero or constant, such as in Kundt solutions of type
N and III, or because, although not constant, they still remain finite along certain geodesics, cf
[14, 25]). Recall, however, that such singularities do not occur in the (−,−) (i.e. when R < 0
and R̃ < 0) and in the (0, 0) cases, for which f (z) never vanishes.

6. A few examples

In the previous sections, we have already mentioned certain explicit spacetimes that have been
constructed using ansatz (6) considered in this paper. In particular, various static black string
solutions have been studied [20, 25, 26]. By the results of section 3, these are all of type D
(this follows also from the more general results of [8], see also [20]).

It is now straightforward to extend all such strings to the spinning case by simply taking a
spinning black hole as a seed metric. As we do not want to have naked singularities in the full
spacetime, we restrict to the case of an AdS string sliced by an AdS black hole. For example,
we can take ds̃2 to be the four-dimensional Kerr–AdS solution [37], so that we obtain the
five-dimensional rotating black string (cf metric (20))

ds2 =
[

dx2 − �r

�2ρ2
(dt − a sin2 θ dφ)2 +

�θ sin2 θ

�2ρ2
(a dt − (r2 + a2) dφ)2

+ ρ2

(
dr2

�r

+
dθ2

�θ

) ]
cos−2(

√−λx), (41)

where λ < 0,
√−λx ∈ (−π/2, π/2), and

ρ2 = r2 + a2 cos2 θ, � = 1 + λa2,

�r = (r2 + a2)(1 − λr2) − 2mr, �θ = 1 + λa2 cos2 θ.
(42)

The most important features of the above spacetime are inherited from the four-dimensional
seed, e.g., the horizon and ergosurface structure, after taking into account the warped extra
dimension. Additionally,

√−λx → ±π/2 can be interpreted as the (bulk) AdS timelike

11 The only exception to this may possibly occur in the case when T reaches (at a special value of τ ) a singularity
inherited from the seed metric ds̃2 before reaching f (z) = 0. However, this will generically not be the case. See,
e.g., [14, 25] for explicit examples.
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infinity12. This metric can be of course extended to any higher dimensions by using the higher
dimensional rotating AdS black holes of [40, 41] as seed spacetimes. All such solutions are
of type D (cf table 2).

Further, using the four-dimensional AdS C metric [42] as a seed, one obtains a five-
dimensional accelerating black string, i.e.

ds2 = cos−2(
√−λx)

[
dx2 +

1

A2(w + y)2

(
−F(y) dt2 +

dy2

F(y)
+

dw2

G(w)
+ G(w) dφ2

)]
,

(43)

where

F(y) = − λ

A2
− 1 + y2 − 2mAy3, G(w) = 1 − w2 − 2mAw3. (44)

Most of the properties of this solution (e.g., according to the value of the acceleration parameter,
its maximal analytical extension can represent one or two accelerating black strings) follow
from the results known in four dimensions, see, e.g., [43] and references therein. Again, this
is a type D solution. At present no exact solution analog to the C metric in more than four
dimensions is known; therefore, accelerating strings can be constructed only for n = 5, with
this method.

One can also combine the above solutions and use the spinning AdS C metric [42] (see
also [44] and references therein) to construct black strings (of type D) in five dimensions that
are both accelerating and rotating. The method is now obvious and we shall not write down
the resulting metric explicitly.

7. Concluding remarks

We have analyzed various specific properties of a class of higher dimensional Einstein
spacetimes, which are naturally singled out in the theory of conformal Einstein spaces [7].
Several instances of such metrics had appeared previously in the literature in different contexts.
We have however related various such coordinate representations (using the unified coordinates
of Brinkmann) in a systematic way and we have analyzed geometric properties (Weyl type,
curvature invariants, singularities) that characterize these spacetimes and which are important
from the viewpoint of the recently developed NP formalism. It is also worth emphasizing
that while in most cases naked singularities appear due to the warped product, interestingly
this is not so when the cosmological constants of both metrics ds̃2 and ds2 are negative. We
have also emphasized how Brinkmann’s metric can be used as a useful ansatz to generate
new solutions of possible interest. In particular, some explicit examples representing certain
black strings have also been provided. We observe that the same warped metrics have already
been considered in theories different from pure Einstein gravity, e.g., in the braneworld KK
reductions studied in [14–16]. There would not be any obstacles in straightforwardly extending
most of our analysis to such theories. On the other hand, it would be interesting to see how
the results of this paper could be generalized to more general warped spacetimes, which is left
for possible future work.

12 By this we simply mean that the spacetime ds2 admits a conformal boundary at � = 0, with � = cos(
√−λx),

whose normal N a = �,a is a spacelike vector in the conformal geometry dŝ2 = �2ds2. In particular, we do not
claim that these warped spacetimes are asymptotically AdS, and in fact they are not, in general (according to the
definitions of , e.g., [38, 39]).
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Appendix A. Christoffel symbols, Riemann and Ricci tensors

For completeness let us present here the Christoffel symbols, the Riemann and Ricci tensors
for metric (6), which are used in the paper. Most of these relations can also be found in
[7, 19].

First, from (6) we obviously have

gμν = f (z)g̃μν, gzz = 1

f (z)
. (A1)

The Christoffel symbols read

�z
μν = −ff,z

2
g̃μν, �z

zμ = 0, �z
zz = −f,z

2f
, (A2)

�μ
νρ = �̃μ

νρ, �μ
νz = f,z

2f
δμ
ν , �μ

zz = 0. (A3)

For the Riemann tensor, one finds

Rz
μzν = −ff,zz

2
g̃μν, Rz

μνρ = 0, (A4)

Rμ
νρσ = R̃μ

νρσ +
(f,z)

2

4

(
δμ
σ g̃νρ − δμ

ρ g̃νσ

)
, (A5)

so that the Ricci tensor is

Rμν = Rd
μdν = R̃μν −

[
ff,zz

2
+

n − 2

4
(f,z)

2

]
g̃μν, (A6)

Rzz = − (n − 1)f,zz

2f
, Rμz = 0. (A7)

It is then easy to see that

R = R̃

f
− (n − 1)

[
f,zz +

(n − 2)

4f
(f,z)

2

]
. (A8)

Let us now assume that the spacetime ds2 is Einstein, as in the main text. The Einstein
equations then give

Rμν = (n − 1)λgμν = R

n
gμν, Rzz = R

n
gzz, Rμz = 0, (A9)

where λ is a constant. From these, one finds

R = n(n − 1)λ, (A10)

f,zz = −2λ = const ⇒ f = −λz2 + 2dz + b, (A11)

R̃μν = R̃

n − 1
g̃μν, R̃ = (n − 1)(n − 2)(λb + d2), (A12)

i.e. the seed metric is automatically also Einstein. Using the above equations, from the
definition of the Weyl tensor one can also obtain result (23) for the Weyl tensor of Einstein
spaces.
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Appendix B. Optical matrix and Weyl tensor components in a frame parallelly
propagated along a geodesic �

In this appendix, we define a family of null frames that are parallelly transported along a
geodetic vector field � and evaluate the corresponding Weyl tensor components.

In section 3, we employed a null frame obtained by simply lifting a null frame of ds̃2.
In particular, when �̃ is geodetic and affinely parametrized, � (as defined in (24)) inherits the
same property [8] (� considered in [8] corresponds to f −1 times the � of the present paper,
but this does not affect the previous statement) and we can take as one of our coordinates an
affine parameter r, so that � = ∂r . In such a case, one can define a frame which is parallelly
propagated along �, which may be useful for various purposes (in particular, to express the
Weyl tensor components and describe their possible peeling-off properties, cf [11]). However,
if one naturally starts from a frame {�̃, ñ, m̃(J )} in d̃s2 that is parallelly propagated along �̃,
the frame vectors n and m(Z) defined in (24) will not be parallelly transported along � (except
when f,z = 0). A parallelly transported frame can however be obtained by performing the
following null rotation of (24):

� → �, n → n + ζm(Z) − 1
2ζ 2�, m(I ) → m(I ), m(Z) → m(Z) − ζ�, (B1)

with ζ = 1
2f −1/2f,zr (up to an arbitrary additive term independent of r).

The new, parallelly transported frame thus reads13

� = ∂r , n = 1

f
ñμ∂μ +

rf,z

2
∂z − r2(f,z)

2

8f
∂r,

m(I ) = 1

f 1/2
m̃

μ

(I)∂μ, m(Z) =
√

f ∂z − rf,z

2f 1/2
∂r .

(B2)

Now we can compute the optical matrix and the Weyl frame components in this frame and
compare them with those of the seed geometry ds̃2. For the optical matrix and the optical
scalars, we obtain14

LJK = L̃JK, LJZ = 0 = LZJ , LZZ = 0, (B3)

σ 2 = σ̃ 2 +
n − 3

n − 2
θ̃2, θ = n − 3

n − 2
θ̃ , ω2 = ω̃2 (B4)

(cf an equivalent result in equation (18) of [8]). While expansion and twist are essentially the
same in the seed and in the full geometry, the presence of expansion in the seed geometry
gives rise to shear in the full geometry, even if �̃ is shearfree.

The Weyl components in frame (B2) have the form

boost weight +2:

C0J0K = C̃0J0K, C0Z0Z = 0, C0Z0J = 0. (B5)

boost weight +1:

C010J = 1√
f

C̃010J , C010Z = 0, C0JKL = 1√
f

C̃0JKL,

C0ZJK = 0 = C0ZJZ, C0JZK = − f,zr

2
√

f
C̃0J0K. (B6)

13 To verify this one needs the relations g̃rr = 0 , �̃
μ
rr = 0, �z

rr = 0 , g̃μr m̃
μ

(J ) = 0, g̃μrm
μ

(Z) = 0, ñr = 1,

which follow from the orthonormality conditions on the parallelly transported frame {�̃, ñ, m̃(J )} and the results of
appendix A rewritten in the coordinates of this section.
14 Note that, since � is geodetic, the optical matrix Lij (B3) and the optical scalars (B4) are invariant under null
rotations [4]. One can thus compute these in frame (24) and the result holds unchanged also in frame (B2).
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boost weight 0:

C01JK = 1

f
C̃01JK, CIJKL = 1

f
C̃IJKL, C0101 = 1

f
C̃0101,

C0J1K = 1

f
C̃0J1K + NC̃0J0K, C01JZ = f,zr

2f
C̃010J ,

C0J1Z = f,zr

2f
C̃010J , C0Z1J = 0 = C0Z1Z,

CZJKL = −f,zr

2f
C̃0JKL, CZJZK = −2NC̃0J0K. (B7)

boost weight −1:

C1JKL = 1

f 3/2
C̃1JKL +

1

f 1/2
C̃0JKLN, C1ZJK = f,zr

2f 3/2
C̃01JK,

C1JZK = − f,zr

2f 3/2
C̃0K1J − N

f,zr

2
√

f
C̃0J0K, C1ZJZ = (f,zr)

2

4f 3/2
C̃010J ,

C101J = 1

f 3/2
C̃101J − 1

f 1/2
C̃010J N, C101Z = − f,zr

2f 3/2
C̃0101. (B8)

boost weight −2:

C1J1K = 1

f 2
C̃1J1K +

N

f
(C̃0J1K + C̃0K1J ) + C̃0J0K(N)2,

C1Z1J = −f,zr

2f 2
C̃101J +

f,zr

2f
NC̃010J , C1Z1Z = (f,zr)

2

4f 2
C̃0101, (B9)

where N = − (f,zr)
2

8f
.

By knowing the r dependence of the Weyl tensor of a seed spacetime, the above results
enable one to characterize the behavior of the Weyl tensor of the full space ds2. This can be
used, for example, for discussing peeling properties as one moves along the null direction �
(see [11] for an explicit analysis in the case of type N/III spacetimes).
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[14] Lü H and Pope C N 2001 Branes on the brane Nucl. Phys. B 598 492–508
[15] Cvetic M, Lu H and Pope C N 2001 Brane-world Kaluza–Klein reductions and branes on the brane J. Math.

Phys. 42 3048–70
[16] Park I Y, Pope C N and Sadrzadeh A 2002 AdS and dS braneworld Kaluza–Klein reduction Class. Quantum

Grav. 19 6237–58
[17] Coley A, Milson R, Pelavas N, Pravda V, Pravdová A and Zalaletdinov R 2003 Generalizations of pp-wave
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[21] Pravda V and Pravdová A 2005 WANDs of the black ring Gen. Rel. Grav. 37 1277–87
[22] Emparan R, Johnson C V and Myers R C 1999 Surface terms as counterterms in the AdS-CFT correspondence

Phys. Rev. D 60 104001
[23] Mashhoon B, Liu H and Wesson P 1994 Particle masses and the cosmological constant in Kaluza–Klein theory

Phys. Lett. B 331 305–12
[24] Yang H-X and Zhao L 2010 Warped embeddings between Einstein manifolds Mod. Phys. Lett. A 25 1521–30
[25] Chamblin A, Hawking S W and Reall H S 2000 Brane-world black holes Phys. Rev. D 61 065007
[26] Hirayama T and Kang G 2001 Stable black strings in anti-de Sitter space Phys. Rev. D 64 064010
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