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We study exact vacuum solutions to quadratic gravity (QG) of the Weyl types N and III. We show that

in an arbitrary dimension all Einstein spacetimes of the Weyl type N with an appropriately chosen

effective cosmological constant � are exact solutions to QG and we refer to explicitly known metrics

within this class. For type III Einstein spacetimes, an additional constraint follows from the field equations

of QG and examples of spacetimes obeying such constraint are given. However, type III pp waves do not

satisfy this constraint and thus do not solve QG. For type N, we also study a wider class of spacetimes

admitting a pure radiation term in the Ricci tensor. In contrast to the Einstein case, the field equations of

generic QG determine optical properties of the geometry and restrict such exact solutions to the Kundt

class. We provide examples of these metrics.
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I. INTRODUCTION

In perturbative quantum gravity, corrections have to be
added to the Einstein action. Demanding coordinate invari-
ance, these corrections should consist of various curvature
invariants. One important class of such modified gravities
is quadratic gravity (QG) [1], whose action contains gen-
eral quadratic terms in curvature
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Z
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Varying (1) with respect to the metric leads to vacuum
quadratic gravity field equations [2]
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These field equations are very complex and a direct
approach to finding exact solutions seems to be hopeless.
Nevertheless a few exact solutions, such as four-
dimensional plane wave [3], are known. Very recently,
n-dimensional anti–de Sitter (AdS) waves solving

quadratic gravity were also found in [4] using Kerr-
Schild ansatz.
In recent years, an algebraic classification of the Weyl

tensor generalizing the four-dimensional Petrov classifica-
tion to arbitrary dimension was developed [5] (see also [6]
for an introductory review). Such classification is based
on the existence of preferred null directions—Weyl
aligned null directions (WANDs) and their multiplicity.
Spacetimes not admittingWANDs are of typeG and space-
times admittingWANDs of multiplicity 1, 2, 3, and 4 are of
the principal Weyl types I, II, III, and N, respectively. Note
that both exact solutions of QG mentioned above are of the
Weyl type N. Furthermore, for types N and III the Weyl
part of the Kretschmann invariant RabcdR

abcd appearing in
the action identically vanishes which leads to a consider-
able simplification of the field equations (2). We will thus
seek for exact solutions of QG of the Weyl types N and III.
In Sec. II, we study Einstein spacetimes as exact solu-

tions of QG for dimension n > 4.1 We show that all type N
Einstein spacetimes with appropriately chosen effective
cosmological constant � are exact solutions of QG and
we refer to explicit examples of such spacetimes given in
the literature.
For type III Einstein spacetimes, vanishing of a quantity

~� (20) plays a key role. Namely, it follows that type III
Einstein spacetimes (with appropriately chosen effective
cosmological constant �) are exact solutions of QG if and

only if ~� ¼ 0. We give examples of type III spacetimes

with both ~� ¼ 0 and ~� � 0. Interestingly, the case ~� � 0
contains also all type III Ricci-flat pp waves, and therefore
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1In four dimensions, where the Gauss-Bonnet term does not
contribute to the field equations, all Einstein spacetimes are
exact solutions of QG [7].
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these pp waves are not exact solutions of QG. We also
compare the class of exact solutions of QG with other
related classes of spacetimes, such as vanishing curvature
invariants (VSI) and constant curvature invariants (CSI)
spacetimes.

In Sec. III, we study type N vacuum solutions of QG
with Ricci tensor containing an additional term corre-
sponding to null radiation. In contrast with the results of
the previous section, field equations of generic QG restrict
the geometrical properties of the multiple WAND. It fol-
lows that all vacuum solutions of generic QG with this
form of the Ricci tensor belong to the Kundt class of
spacetimes. We then provide examples of such solutions
with vanishing and nonvanishing effective cosmological
constant �.

Notation: When appropriate we work in a frame n, ‘,

mðiÞ consisting of two null vectors ‘, n and n� 2 ortho-

normal spacelike vectors mðiÞ,

‘a‘a ¼ nana ¼ ‘amðiÞ
a ¼ namðiÞ

a ¼ 0;

‘ana ¼ 1; mðiÞamðjÞ
a ¼ �ij;

(3)

where a; b; . . . ;¼ 0; . . . ; n� 1 and i; j; . . . ;¼ 2; . . . ; n� 1
with n being the dimension of the spacetime.

II. EINSTEIN SPACETIMES

Let us first study Einstein spacetimes

Rab ¼ 2�

n� 2
gab (4)

as exact solutions to quadratic gravity.
If we express the Riemann tensor in terms of the Weyl

and Ricci tensors and scalar curvature R ¼ 2n
n�2�

Rabcd ¼ Cabcd þ 2

n� 2
ðga½cRd�b � gb½cRd�aÞ

� 2

ðn� 1Þðn� 2ÞRga½cgd�b; (5)

then for Einstein spacetimes (4) field equations (2) reduce
to

Bgab � �ðCa
cdeCbcde � 1

4gabC
cdefCcdefÞ ¼ 0; (6)

where

B ¼ ���0

2�
þ�2

� ðn� 4Þ
ðn� 2Þ2 ðn�þ �Þ

þ ðn� 3Þðn� 4Þ
ðn� 2Þðn� 1Þ�

�
: (7)

Note that in the particular case of theories with a vanish-
ing Gauss-Bonnet term (i.e., � ¼ 0), all Einstein space-
times with � and �0 obeying B ¼ 0 solve (6). In four
dimensions, the Gauss-Bonnet term is purely topological
and does not contribute to the field equations and moreover
the effective cosmological constant � is equal to �0 (7).

Thus all four-dimensional Einstein spaces with � ¼ �0

solve (6) as well. At the level of theWeyl tensor, this can be
seen as a consequence of the identity Ca

cdeCbcde ¼
1
4gabC

cdefCcdef which holds in four dimensions and which

is not valid without additional restrictions for dimensions
n > 4 [8]. In the rest of this section we will study various
classes of spacetimes where Ca

cdeCbcde ¼ 1
4gabC

cdefCcdef

holds in arbitrary dimension due to the vanishing of both
terms in the identity.

A. Type N

Let us define the following notation:

Tfpqrsg � 1
2ðT½ab�½cd� þ T½cd�½ab�Þ: (8)

The Weyl tensor of type N expressed in the frame (3),
where null vector ‘ is chosen to coincide with the multiple
WAND, admits the form [5] (using notation of [9])

Cabcd ¼ 4�0
ij‘fami

b‘cm
j
dg; (9)

where �0
ij is symmetric and traceless. It follows that for

type N spacetimes

Ca
cdeCbcde ¼ CcdefCcdef ¼ 0 (10)

and (6) thus reduces to the algebraic constraint B ¼ 0 (7)
which, similarly as in the case of (A)dS vacua, prescribes
two possible effective cosmological constants � of the
solution for given parameters �, �, �, �, and �0. Thus
in arbitrary dimension all Weyl type N Einstein spacetimes
with appropriately chosen effective cosmological constant
� are exact solutions of quadratic gravity (2).2

Large classes of Einstein spacetimes of type N in n
dimensions can be obtained by warping (n� 1)-
dimensional type N Einstein metric d~s2,

ds2 ¼ 1

fðzÞdz
2 þ fðzÞd~s2; (11)

where

fðzÞ ¼ ��z2 þ 2dzþ b; � ¼ 2�

ðn� 1Þðn� 2Þ ; (12)

and b and d are constant parameters. A necessary and
sufficient condition for ds2 being an Einstein spacetime
is [11]

~R ¼ ðn� 1Þðn� 2Þð�bþ d2Þ; (13)

where ~R is the Ricci scalar of d~s2. It has been shown [12]
that warping an algebraically special Einstein spacetime
leads to an Einstein spacetime of the same principal Weyl
type.
Let us briefly overview known type N Einstein space-

times in higher dimensions. The multiple WAND of a

2Note that in the case of the Gauss-Bonnet gravity (�¼�¼0)
and � ¼ 0 this result was already pointed out in [10].
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type N Einstein spacetime is always geodetic (see [13] for
the Ricci-flat case) and without loss of generality we
choose an affine parametrization. Then the optical scalars
of the multiple WAND, shear �2, expansion �, and twist
!2 are given by [13,14]

�2 ¼ ‘ða;bÞ‘ða;bÞ � 1

n� 2
ð‘a;aÞ2;

� ¼ 1

n� 2
‘a;a;

!2 ¼ ‘½a;b�‘a;b;

(14)

respectively. Type N spacetimes can be thus further clas-
sified according to the optical properties of the multiple
WAND.

The Kundt class of spacetimes for which the multiple
geodetic WAND obeys � ¼ 0, �2 ¼ 0, and !2 ¼ 0 admits
a metric of the form [15]

ds2 ¼ 2du½dvþHðu; v; xkÞduþWiðu; v; xkÞdxi�
þ gijðu; xkÞdxidxj: (15)

Einstein Kundt metrics are of principal types II, III, and N
[14]. For Ricci-flat Kundt metrics of types N and III one
can set

gijðu; xkÞ ¼ �ij; (16)

with corresponding functions Wi and H given in [16]. In
addition, the Brinkmann warped product [12] can be used
to generate Einstein type N Kundt metrics with nonvanish-
ing �. Examples of such metrics are given in [15,17,18].

Expanding (� � 0), nontwisting (!2 ¼ 0) type N
Einstein spacetimes: In four dimensions such metrics are
necessarily shear free due to the Goldberg-Sachs theorem
and thus belong to the Robinson-Trautman class. Metrics
for all such spacetimes are known [19] (see also [20] and
references therein).

In contrast for type N Einstein spacetimes in dimensions
n > 4, nonvanishing expansion � � 0 implies �2 > 0 (see
[9,13]). Higher dimensional metrics belonging to this class
can be constructed [21] by warping four-dimensional
Robinson-Trautman type N Einstein spacetimes.

Twisting type N Einstein spacetimes: Very few four-
dimensional exact solutions of Einstein gravity within
this class are known. They include the Ricci-flat Hauser
metric [22] and the Leroy metric [23] for negative � (see
also [24]). Higher dimensional solutions in this class can be
constructed by warping the four-dimensional twisting so-
lutions [21].

B. Type III

For type III spacetimes, the Weyl tensor can be
expressed as [5]

Cabcd ¼ 8�0
i‘fanb‘cmi

dg þ 4�0
ijk‘fam

i
bm

j
cm

k
dg

þ 4�0
ij‘fami

b‘cm
j
dg; (17)

where

�0
ijk ¼ ��0

ikj; �0
½ijk� ¼ 0; �0

i ¼ �0
kik: (18)

It follows that CcdefCcdef vanishes and

Ca
cdeCbcde ¼ ~�‘a‘b; (19)

where

~� � 1
2�

0
ijk�

0
ijk ��0

i�
0
i: (20)

The trace of (6) implies B ¼ 0 and therefore type III
Einstein spacetimes with effective cosmological constant
� obeying B ¼ 0 are exact solutions of QG if and only if
~� ¼ 0.

From (18) it follows that in four dimensions ~� ¼ 0.
Weyl tensor components of Einstein spacetimes ob-

tained by warping seed metrics d~s2 according to (11) and
expressed in coordinates xa ¼ ðz; x	Þ are [12]

C	
�� ¼ f ~C	
��; Cz	
� ¼ 0 ¼ Cz	z
: (21)

It then follows that the components of Ca
cdeCbcde are

given by

C	

��C�
�� ¼ 1

f
~C	


�� ~C�
��; (22)

with all z-components being zero. Therefore, ~� also van-
ishes for all type III Einstein spacetimes obtained by
warping four-dimensional type III Einstein spacetimes
and these spacetimes are thus also exact solutions of QG.
Similarly as in the type N case, we can use seeds d~s2 with
vanishing or nonvanishing expansion and twist. Various
classes of such Einstein spacetimes are given in [21].
Let us emphasize that in contrast with the type N case,

there exist type III Einstein spacetimes which are not

solutions of QG. For instance, ~� is clearly nonvanishing
for type III(a), a subclass of type III spacetimes character-
ized by�0

i ¼ 0 [5]. Type III(a) Kundt spacetimes with null
radiation given in [16] contain type III(a) Ricci-flat sub-
cases. An explicit five-dimensional example of such Kundt
metric (15) and (16) is given by [25]

W2 ¼ 0; W3 ¼ hðuÞx2x4; W4 ¼ hðuÞx2x3; (23)

H¼H0¼hðuÞ2
�
1

24
ððx3Þ4þðx4Þ4Þþh0ðx2;x3;x4Þ

�
; (24)

where h0ðx2; x3; x4Þ is subject to �h0 ¼ 0. Note that this
metric is an example of a type III pp wave [25] (pp waves
are defined as spacetimes admitting a covariantly constant
null vector). In fact, all type III Ricci-flat pp waves belong
to the type III(a) subclass since the existence of the cova-
riantly constant null vector ‘ implies Cabcd‘

a ¼ 0 and thus
�0

i vanishes. Therefore, type III Ricci-flat pp waves are
not solutions of QG.
Let us also note that based on the above results it is

natural to introduce two new subclasses of the principal
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type III, namely, type III(A) characterized by ~� � 0 and

type III(B) characterized by ~� ¼ 0. Obviously type III(a)
is a subclass of type III(A).

C. Comparison with other classes of spacetimes

It is of interest to compare the set of exact solutions of
QG with other overlapping classes of spacetimes, such as
pp waves (pp waves of a particular Weyl type will be
denoted as ppN, ppIII, etc.), VSI spacetimes [26], CSI
spacetimes [15], Kundt subclass of CSI (KCSI), and uni-
versal metrics (U) for which quantum correction is a
multiple of the metric [27,28]. In this discussion we will
often consider Einstein or Ricci-flat subsets of these sets.
They will be denoted, e.g., byQGE andQGRF. We consider
dimensions n > 4.3

From the definition of U it follows that U � QG. From
the results of [26] it follows that VSI � KCSI. pp waves
ppNRF and ppIIIRF both belong to VSI, but as was shown
above ppIIIRF \ QG is [ and therefore VSIRF⊄QG and
ppRF⊄QG. Note also that in higher dimensions ppIIRF
exist [25] and thus also ppRF⊄VSI.

Recently it was conjectured in [28] that U � KCSI.
ppIIIRF are examples of spacetimes which are KCSI
(and VSI) but not U. Notice however that QGE⊄CSI since
examples of QGE metrics with nonvanishing expansion
mentioned in this section have in general nontrivial curva-
ture invariants [21].

III. TYPE N SPACETIMES WITH ALIGNED
NULL RADIATION

One may attempt to find a wider class of solutions of (2)
considering a more general form of the Ricci tensor than
(4) but still sufficiently simple to considerably simplify (2).
Thus let us study spacetimes of the Weyl type N with the
Ricci tensor of the form

Rab ¼ 2�

n� 2
gab þ�‘a‘b; (25)

where ‘ coincides with the multiple WAND. For the Ricci
tensor of the form (25) contracted Bianchi identities
raRab ¼ 1

2rbR can be rewritten as

½D�þ�ðn� 2Þ��‘a þ�‘a;b‘
b ¼ 0; (26)

where D � ‘ara. This implies that ‘ is geodetic and
without loss of generality we can choose an affine parame-
trization of ‘ so that

D� ¼ �ðn� 2Þ��: (27)

Now following the same steps as for Einstein spaces,
we express (2). Note that Weyl type N (9) also implies
Cabcd‘

a ¼ 0 which, together with tracelessness of the

Weyl tensor leads to the vanishing of the terms containing
contraction of the Weyl and Ricci tensors. The field equa-
tions (2) reduce to

ð�hþAÞð�‘a‘bÞ � 2Bgab ¼ 0; (28)

where

A ¼ 1

�
þ4�

�
n�

n�2
þ �

n�1
þðn�3Þðn�4Þ
ðn�2Þðn�1Þ�

�
(29)

and B is given by (7). The trace of (28) yields B ¼ 0
which again determines two possible effective cosmologi-
cal constants � via (7). The remaining part of (28) reads

ð�hþAÞð�‘a‘bÞ ¼ 0: (30)

Let us briefly comment on the special case � ¼ 0. Then it
follows that both A and B vanish and from (7) and (29)
one arrives at

�� 2�0

�
� 8�2n�

ðn� 2Þ2 ¼ 0: (31)

If this constraint on � admits real solutions, then � is
determined from (7) or (29). Therefore for special values
of the parameters of the theory with � ¼ 0 equations (30)
and B ¼ 0 are trivially satisfied and all type N spacetimes
with the Ricci tensor of the form (25) are exact solutions.
However, we are interested in solutions of QG with arbi-
trary parameters �, �, and � and such special classes of
quadratic gravities are beyond the scope of this paper. Thus
in the rest of this section we assume � � 0.
Contraction of (30) with vectors ‘ and n from the frame

(3) gives

�LijLij ¼ �½ðn� 2Þ�2 þ �2 þ!2� ¼ 0; (32)

where Lij ¼ ‘a;bm
ðiÞamðiÞb. This implies that ‘ is nonex-

panding (� ¼ 0), shear free (� ¼ 0), and nontwisting
(! ¼ 0). Thus all type N solutions of quadratic gravity
with the Ricci tensor of the form (25) and � � 0 belong to
the Kundt class.
By contracting (30) with two vectors n we obtain the

remaining nontrivial component of (30)

h�þ4L1i�i�þ2L1iL1i�þ4��

n�2
þA��1�¼0; (33)

where L1i � ‘a;bn
amðiÞb.4

3In four dimensions, all ppRF are of type N, which leads to a
considerable simplification.

4The Ricci rotation coefficients, such as the optical matrix Lij
and L1i introduced above, appear in the higher dimensional
Newman-Penrose formalism [13,14,26] (see also [9]). In the
derivation of (33) we have used some of the Ricci equations
of [14] when appropriate. However, note that for our purposes
the use of the formalism is not essential and one can work with
Eq. (30) instead of (33). In addition we also used the fact that for
the Kundt metrics in the canonical form (15), L1i ¼ Li1.
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A. Explicit solutions

1. Case � ¼ 0

Type N Kundt metrics with null radiation and vanishing
cosmological constant admit the form (15) and (16) with
the frame vectors given by [16]

‘ ¼du; n¼dvþHduþWidx
i; mðiÞ ¼dxi; (34)

‘ ¼@v; n¼@u�H@v; mðiÞ ¼@i�Wi@v: (35)

These metrics split into two subclasses with vanishing
(" ¼ 0) or nonvanishing (" ¼ 1) quantity L1iL1i.

The type N condition on the Weyl tensor and the form
(25) of the Ricci tensor impose the following constraints on
the undetermined metric functions [16] in the case " ¼ 0:

W2¼0; W~{¼x2C~{ðuÞþx~|B~|~{ðuÞ; H¼H0ðu;xiÞ; (36)

�H0 � 1

2

X
C2
~{ � 2

X
~{<~|

B2
~{ ~| þ� ¼ 0; (37)

and in the case " ¼ 1

W2 ¼ � 2v

x2
; W~{ ¼ C~{ðuÞ þ x~|B~|~{ðuÞ;

H ¼ v2

2ðx2Þ2 þH0ðu; xiÞ;
(38)

x2�

�
H0

x2

�
� 1

ðx2Þ2
X

W2
~{ � 2

X
~{<~|

B2
~{ ~| þ� ¼ 0; (39)

where B½~{ ~|� ¼ 0 in both cases and ~{; ~|; . . . ;¼ 3; . . . ; n� 1.

For these metrics (30) reduces to

�;ii � 2"

x2
�;2 þ 2"

ðx2Þ2 �þ ð��Þ�1� ¼ 0; (40)

or

��þ ð��Þ�1� ¼ 0 ð" ¼ 0Þ; (41)

x2�

�
�

x2

�
þ ð��Þ�1� ¼ 0 ð" ¼ 1Þ: (42)

Using (41) and (42), we can rewrite (37) and (39) as

�H0
vac � 1

2

X
C2
~{ � 2

X
~{<~|

B2
~{ ~| ¼ 0; (43)

x2�

�
H0

vac

x2

�
� 1

ðx2Þ2
X

W2
~{ � 2

X
~{<~|

B2
~{ ~| ¼ 0; (44)

respectively, with H0
vac ¼ H0 � ��� corresponding to a

vacuum solution of the Einstein gravity ((37) and (39) with
� ¼ 0). In other words, one may take an arbitrary vacuum
(� ¼ 0) solution of the Einstein field equations (43) or
(44) and independently find � solving corresponding

Eq. (41) or (42) and arrive at a vacuum solution of
quadratic gravity with � � 0, H0 ¼ H0

vac þ ��� and Wi

unchanged.
Note that due to (7) the assumption�¼0 implies�0¼0

and therefore we are not able to satisfy the criticality
condition [29] by tuning the remaining parameters �, �,
and �.

2. Case � � 0

One may perform a similar procedure in the case of
nonvanishing effective cosmological constant �. As an
example of type N Kundt metric with nonvanishing �
we take the n-dimensional Siklos metric [30]

ds2 ¼ 1

��z2
ð2dudvþ 2Hðu; xkÞdu2 þ �ijdx

idxjÞ; (45)

where

� ¼ 2�

ðn� 1Þðn� 2Þ ; z ¼ xn: (46)

The nonexpanding geodetic null congruence is k ¼
kadx

a ¼ du. The condition (25) on the Ricci tensor reads

�H � n� 2

z
H;z ¼ � (47)

and (30) can be expressed as

�ð��z2�Þ � n� 2

z
ð��z2�Þ;z � C

z2
ð��z2�Þ ¼ 0; (48)

where we defined

C � 2�þA��1

�

¼ 2

�

�
1

2��
þ ðn� 1Þðn�þ �Þ þ ðn� 3Þðn� 4Þ�

�
:

(49)

Using (48), and denoting Hvac ¼ H � C�1z2� we can
rewrite (47) as

�Hvac � n� 2

z
Hvac

;z ¼ 0: (50)

Therefore we can take an arbitrary Einstein metric (45)
solving (50),5 and find a solution � of (48). Then the
metric (45) with H ¼ Hvac þ C�1z2� and � solve the
QG field equations (2).6

5A large class of such vacuum solutions of Einstein gravity can
be found in [30].

6Note that this method for generating solutions of QG cannot
be used for critical points of quadratic gravities [29] since in
such case C ¼ 0.
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