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Abstract
Previous work has found a higher dimensional generalization of the ‘geodesic
part’ of the Goldberg–Sachs theorem. We investigate the generalization of the
‘shear-free part’ of the theorem. A spacetime is defined to be algebraically
special if it admits a multiple Weyl aligned null direction (WAND). The
algebraically special property restricts the form of the ‘optical matrix’ that
defines the expansion, rotation and shear of the multiple WAND. After working
out some general constraints that hold in arbitrary dimensions, we determine
necessary algebraic conditions on the optical matrix of a multiple WAND
in a five-dimensional Einstein spacetime. We prove that one can choose an
orthonormal basis to bring the 3 × 3 optical matrix to one of three canonical
forms, each involving two parameters, and we discuss the existence of an
‘optical structure’ within these classes. Examples of solutions corresponding
to each form are given. We give an example which demonstrates that our
necessary algebraic conditions are not sufficient for a null vector field to be a
multiple WAND, in contrast with the 4D result.

PACS numbers: 04.20.Jb, 04.50.−h, 04.50.Gh

1. Introduction

The Goldberg–Sachs (GS) theorem [1, 2] states: in an Einstein spacetime3 which is not
conformally flat, a null vector field is a repeated principal null direction (of the Weyl tensor)
if, and only if, it is geodesic and shear-free. This theorem plays an important role in the study
of solutions of the Einstein equation with an algebraically special Weyl tensor. In particular, it

3 An Einstein spacetime is a solution of the vacuum Einstein equation allowing for a cosmological constant, i.e. in
d dimensions, Rab = (R/d)gab.
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is the first step in exploiting the algebraically special property to solve the Einstein equation,
which is how the Kerr solution was discovered [3].

Given the interest in higher dimensional solutions of the Einstein equation, it is natural
to attempt to use the algebraically special property to obtain solutions. Therefore it seems
desirable to obtain a higher dimensional generalization of the GS theorem. An algebraic
classification of the Weyl tensor in higher dimensions was given in [4]. It is based on the
notion of Weyl aligned null directions (WANDs). In 4D, a WAND is the same as a principal
null direction. The generalization of a repeated principal null direction is called a multiple
WAND. We define a spacetime to be algebraically special if it admits a multiple WAND.

Simple examples reveal that the GS theorem does not extend in an obvious way to
higher dimensions. Consider the Einstein spacetime dS3 × S2 (where dS3 denotes 3D de Sitter
spacetime). For this spacetime, any null vector field tangent to dS3 is a multiple WAND [5].
(This demonstrates that (multiple) WANDs need not be discrete in higher dimensions.) But
not all such vector fields are geodesic. Hence the ‘geodesic part’ of the GS theorem does not
generalize immediately to higher dimensions [6]. However, this example also admits multiple
WANDs which are geodesic. It turns out that this behavior is generic. [7] proved that an Einstein
spacetime admits a multiple WAND if, and only if, it admits a geodesic multiple WAND. Hence
there is no loss of generality in restricting attention to geodesic multiple WANDs.

The ‘shearfree’ part of the GS theorem also does not generalize immediately to higher
dimensions [8–11, 6]. Consider a black brane solution given by the product of the 4D
Schwarzschild solution with some flat directions. The repeated principal null direction of
the Schwarzschild solution is a multiple WAND in this spacetime. This multiple WAND is
geodesic, but shearing because it expands in the Schwarzschild directions and not in the
flat directions. Hence a higher dimensional generalization of the GS theorem must allow for
non-vanishing shear.

To explain what we mean by a ‘higher dimensional generalization of the GS theorem’,
consider a null geodesic vector field � and introduce a set of d − 2 orthonormal spacelike
vectors m(i) that are orthogonal to �. The expansion, rotation and shear of � are defined as the
trace, antisymmetric part, and traceless symmetric part, of the (d −2)× (d −2) optical matrix

ρi j = mμ

(i)m
ν
( j)∇ν�μ. (1.1)

The most desirable form of a higher dimensional generalization of the GS theorem, would be
a statement of necessary and sufficient algebraic conditions on ρi j for a geodesic null vector
field � to be a multiple WAND. However, it is not clear whether or not such a theorem exists
in higher dimensions. There are certainly necessary conditions on ρi j that follow from the
multiple WAND condition. There are also conditions on ρi j that are sufficient for � to be a
multiple WAND. But maybe there are no conditions which are both necessary and sufficient.
In fact, this is what we will show below. But first we will summarize the known sufficient or
necessary conditions on ρi j for � to be a multiple WAND.

Sufficient conditions on ρi j for � to be a multiple WAND in an Einstein spacetime have
been obtained for Kundt spacetimes, defined by ρi j = 0 (i.e. vanishing expansion, rotation and
shear), and Robinson–Trautman spacetimes, defined by ρi j = (d − 2)−1ρkkδi j (i.e. vanishing
rotation and shear, non-vanishing expansion). For both of these cases, � must be a multiple
WAND [11, 12].

Necessary conditions on ρi j following from the multiple WAND condition have been
obtained as follows. Ricci flat spacetimes of type N were considered in [10]. It was shown that
the multiple WAND defined by the type N property must be geodesic, and the optical matrix
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must have rank 2. A basis can be found for which this matrix is zero everywhere except in the
leading 2 × 2 block, which has the form

b

(
1 a

−a 1

)
. (1.2)

This is equivalent to the shearfree condition if d = 4 but not if d > 4. [10] also found that
the same form applies to type III vacuum spacetimes that either (i) are five-dimensional; or
(ii) satisfy a certain genericity condition; or (iii) have a non-twisting multiple WAND, i.e. one
with vanishing rotation (in which case a = 0). As pointed out e.g. in [13], generalization of
the above type N and III results from the Ricci-flat case to the Einstein case is straightforward.

Results have also been obtained for the case of a Kerr–Schild spacetime. Such a spacetime
has a metric of the form

gμν = ḡμν + Hkμkν, (1.3)

where ḡμν is a metric of constant curvature, k is null with respect to ḡμν (which implies that it
is null also with respect to gμν), and H is a function. This class of spacetimes includes Myers–
Perry black holes. Einstein Kerr–Schild spacetimes are algebraically special for any d � 4,
with k being a geodesic multiple WAND [14, 15]. For these spacetimes, it has been shown that
one can choose the basis vectors m(i) so that ρi j is block diagonal, with the diagonal consisting
of a set of 2 × 2 blocks of the form (1.2) (the parameters a, b can vary from block to block,
satisfying the optical constraint discussed below), followed by a set of identical 1 × 1 blocks
and then zeros [14, 15]. Similar results holding for asymptotically flat type II spacetimes are
mentioned in section 3.2.

In this paper, we will investigate the necessary conditions on ρi j for � to be a multiple
WAND in a five-dimensional Einstein spacetime of type II (by ‘type II’ we include also type D,
and refer instead to ‘genuine type II’ in the few cases when the type is II and not D and the
distinction is important). When our results are combined with the results for type III and type N
spacetimes discussed above, one obtains results for general algebraically special spacetimes.
The main result (incorporating the ‘geodesic’ result of [7]) can be summarized as:

Theorem 1. In a 5D algebraically special Einstein spacetime that is not conformally flat, there
exists a geodesic multiple WAND � and one can choose the orthonormal basis vectors m(i) so
that the optical matrix of � takes one of the forms

(i) b

⎛
⎝ 1 a 0

−a 1 0
0 0 1 + a2

⎞
⎠ , (1.4)

(ii) b

⎛
⎝ 1 a 0

−a 1 0
0 0 0

⎞
⎠ , (1.5)

(iii) b

⎛
⎝ 1 a 0

−a −a2 0
0 0 0

⎞
⎠ . (1.6)

If the spacetime is type III or type N then the form must be (ii).

For b �= 0 cases (i), (ii), and (iii) correspond to ρi j being of rank 3, 2, and 1, respectively.
The only matrix belonging to more than one of the above classes is ρi j = 0. Of course a, b are
functions that vary in spacetime.

A 3 × 3 orthogonal matrix has three parameters so one can eliminate at most three
parameters from a 3×3 matrix by a change of orthonormal basis. Hence the canonical form of

3



Class. Quantum Grav. 29 (2012) 205002 M Ortaggio et al

a general optical matrix will have 9 − 3 = 6 parameters. Our theorem shows that the multiple
WAND condition reduces this to the two parameters a, b, thus giving algebraic relations
between the expansion, shear and twist of the multiple WAND. (In 4D the corresponding
result is a reduction from three to two parameters.)

An example of an algebraically special solution for which ρi j can be brought to the form
(1.4) is the Myers–Perry [8] black hole solution (cf [6]). The Kerr black string (i.e. the product
of the 4D Kerr solution with a flat direction) gives ρi j which can be brought to the form
(1.5). We will show in section 6 that a specific geodesic multiple WAND in dS3 × S2 gives an
example of the form (1.6). These examples reveal that theorem 1 is sharp: one cannot obtain
further restrictions on the parameters a, b (except perhaps in the form of inequalities).

As mentioned above, our theorem gives necessary conditions for � to be a geodesic
multiple WAND but these conditions are not sufficient. In section 6.4 we give an example of
an Einstein spacetime that is not algebraically special yet admits a geodesic null vector field
with an optical matrix of the form (iii) above.

We have used a definition of ‘algebraically special’ based on the classification of the
Weyl tensor of [4]. Other definitions of ‘algebraically special’ have been proposed in higher
dimensions. For the special case of five dimensions, [16] performed a spinorial classification
of the Weyl tensor. In this approach, null directions do not play a privileged role and so it
seems unlikely that there is any generalization of the GS theorem. [17] proposed a definition
of algebraically special which, subject to a genericity assumption that the Weyl tensor is not
‘too special’, implies the existence of an ‘optical structure’ generalizing the notion of a 4D
null geodesic congruence with vanishing shear. A spacetime that is algebraically special in the
sense of [17] is also algebraically special in our sense but the converse is not true. Hence the
definition of [17] is more restrictive than the one used here. The relation between our work
and the results of [17] will be discussed in section 5.3.

This paper is organized as follows: section 2 introduces notation. In section 3 we discuss
the algebraic constraints governing type II Einstein spacetimes. In section 4 we restrict to
5D and study the conditions on the optical matrix that allow for a non-trivial solution of
these constraints. By examining all such forms of the optical matrix we prove theorem 1. In
section 5 we discuss consequences of our results in terms of the integrability properties of
certain distributions and, in particular, the existence of an optical structure, and we provide
a comparison with the results of [17]. Section 6 discusses some examples of algebraically
special solutions corresponding to the three canonical forms of the optical matrix and a
counterexample to the converse of theorem 1. Section 7 is devoted to discussion of the results.
Finally, in appendix A we present a result concerning non-twisting multiple WANDs in an
arbitrary number of dimensions.

2. Preliminaries

Throughout this paper we use the higher dimensional GHP formalism of [13]. For convenience
let us summarize necessary notation. We employ a null frame

{� ≡ e(0) = e(1), n ≡ e(1) = e(0), m(i) ≡ e(i) = e(i)} (2.1)

with indices i, j, k, . . . running from 2 to d − 1. The vector fields � and n are null
and the orthonormal spacelike vector fields m(i) obey � · n = 1, m(i) · m( j) = δi j and
� · m(i) = 0 = n · m(i).

The GHP formalism is designed to maintain covariance with respect to two special types
of Lorentz transformation. These are boosts, defined by

� → λ�, n → λ−1n, m(i) → m(i) (2.2)
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Table 1. Weyl tensor components sorted by boost weight b in a d � 4-dimensional spacetime
(cf [4, 13]).

b Component Notation Identities

2 C0i0 j �i j �i j = � ji, �ii = 0

1 C0i jk �i jk �i jk = −�ik j, �[i jk] = 0
C010i �i �i = �kik.

0 Ci jkl 	i jkl 	i jkl = 	[i j][kl] = 	kli j, 	i[ jkl] = 0
C0i1 j 	i j 	(i j) ≡ 	S

i j = − 1
2 	ik jk

C01i j 2	A
i j 	A

i j ≡ 	[i j]

C0101 	 	 = 	ii

−1 C1i jk � ′
i jk � ′

i jk = −� ′
ik j, � ′

[i jk] = 0
C101i � ′

i � ′
i = � ′

kik.

−2 C1i1 j �′
i j �′

i j = �′
ji, �′

ii = 0

for some function λ, and spins, defined by a (position-dependent) rotation of the spatial basis
vectors. A set of tensor components Ti1...is is said to be a GHP tensor of spin s and boost
weight b if, under a spin, it transforms as a Cartesian tensor of rank s, and under a boost as
Ti1...is → λbTi1...is .

The frame components of the Weyl tensor with respect to the null basis are

Cab...c = eμ

(a)
eν
(b) . . . eρ

(c)
Cμν...ρ, (2.3)

where d-dimensional coordinate indices μ, ν, . . . and frame indices a, b, . . . take values from 0
to d − 1. The notation of [13] for various frame components of the Weyl tensor is summarized
in table 1. The GHP formalism uses derivative operators which act covariantly on GHP tensors
[13]. In this paper we will need only the following modification of the directional derivative
along �:

þTi1...is = (
�μ∂μ − bnν�μ∇μ�ν

)
Ti1...is +

s∑
r=1

(
mν

(ir )�
μ∇μm(k)ν

)
Ti1...ir−1kir+1...is . (2.4)

In the following we will assume that spacetime is algebraically special, i.e. it admits a multiple
WAND. We choose � to be aligned with the multiple WAND. Then the algebraically special
condition is [4]

�i j = �i jk = �i = 0. (2.5)

Thanks to the results of [7], with no loss of generality we can choose � to be geodesic, i.e.
κi = 0. The following notation is used for the symmetric and antisymmetric parts of the optical
matrix ρi j:

Si j = ρ(i j), Ai j = ρ[i j]. (2.6)

We sometimes drop spatial indices i, j, . . . and use boldface ρ instead of ρi j. In contrast, the
trace of the optical matrix ρii is denoted by ρ:

ρ = ρii. (2.7)

5
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3. Algebraic constraints for type II spacetimes in arbitrary dimension

3.1. Differentiating Bianchi equations

The components of the Bianchi identity are written out in [10, 13]. For algebraically special
spacetimes, some of these equations reduce to purely algebraic constraints. In particular,
equations (B4) and (B8) of [13], in any number of dimensions, reduce to

2	A
[ jk|ρi|l] − 2	i[ jρkl] + 	im[ jk|ρm|l] = 0, (3.1)

	k jρi j − 	 jkρi j + 	i jρk j − 	 jiρ jk + 2	i jρ jk − 	ikρ + 	ρik + 	i jklρ jl = 0, (3.2)

respectively. Equation (3.2) is traceless and its symmetric and antisymmetric parts read

(2	k j − 	 jk)Si j + (2	i j − 	 ji)S jk − 	S
ikρ + 	Sik + 	i jklS jl = 0, (3.3)

	 jkA ji + 	 jiAk j + 	i jρ jk − 	k jρ ji + 	A
kiρ + 	Aik + 	i jklA jl = 0, (3.4)

respectively. We assume that our spacetime is of algebraic type II and not more special. This
means that at least one of the quantities 	i jkl , 	i j, 	 must be non-vanishing.

In a 4D spacetime, (3.1) is trivial and (3.2) reduces to the condition that ρi j is shear-
free. Some consequences of these algebraic equations for higher dimensional spacetimes were
already studied in [6, 18]. Our main objective in this section is to derive further inequivalent
algebraic constraints by differentiating these equations.

First we recall the ‘Sachs equation’ [11, 13] governing the evolution of ρi j along �, which
for a geodesic multiple WAND reads

þρi j = −ρikρk j, (3.5)

We also recall the following components of the Bianchi identity ((A10), (A11) from [13]):

þ	i j = −(
	ik + 2	A

ik + 	δik
)
ρk j, (3.6)

−þ	i jkl = 4	A
i jρ[kl] − 2	[k|iρ j|l] + 2	[k| jρi|l] + 2	i j[k|mρm|l]. (3.7)

The idea now is to apply the derivative operator þ to (3.3) and use these equations to eliminate
derivatives from the resulting equation, to obtain a new algebraic equation4. After using (3.1),
(3.2) and 	i[ jkl] = 0 to simplify the result, we obtain the traceless symmetric equation

(2	k j − 	 jk)ρilρ jl + (2	i j − 	 ji)ρ jlρkl − 	S
ikρ jlρ jl + 	ρilρkl + 	i jklρ jsρls = 0. (3.8)

To summarize, in addition to the purely algebraic equations (3.1), (3.2) (this being equivalent
to (3.3) and (3.4)) we obtained a new, purely algebraic equation (3.8).

This procedure can be repeated by acting with þ again. In this way, one obtains an infinite
set of algebraic equations which are homogeneous of nth order in ρi j and linear homogeneous
in curvature.

3.2. The optical constraint

Note that equation (3.8) is the same as equation (3.3) with Si j replaced by ρikρ jk = (ρρT )i j

(where ρT is ρ transposed). We can write these equations as

Li jklS jl = 0, Li jkl (ρρT ) jl = 0 (3.9)

where the linear map L acts on symmetric matrices and depends only on the Weyl components.
The matrices S and ρρT both belong to the kernel of L so this kernel must have dimension

4 A similar procedure applied to equation (3.1) or (3.4) does not yield a new constraint.
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at least 1 (ignoring the trivial case ρi j = 0). A kernel of dimension greater than 1 suggests a
more constrained Weyl tensor. So a dimension 1 kernel appears to be generic. In this case, S
and ρρT must be proportional, which gives the optical constraint [14]

ρikρ jk ∝ ρ(i j). (3.10)

It has been proven that the optical constraint holds for all Ricci-flat [14] and Einstein
[15] Kerr–Schild spacetimes (explicit solutions within this class, such as the Myers–Perry
black hole [8], are known), and for all asymptotically flat type II spacetimes admitting a non-
degenerate (det ρ �= 0) geodesic multiple WAND [19] (see equation (14) therein). Although
the above analysis applies only to type II spacetimes, it is worth mentioning that the optical
constraint also holds for all Einstein spacetimes of type N and with additional assumptions
also for Einstein spacetimes of type III [10].

In matrix notation, the optical constraint can be expressed as ρρT = αS. This implies that
(1 − 2

α
ρ) is an orthogonal matrix and therefore also ρT ρ = αS. Since [ρ, ρT ] vanishes, ρ is

a normal matrix and thus, using spins, can be put to a convenient block-diagonal form which
after employing the optical constraint condition reads (see [14, 20] for related discussions)

ρ = α diag

(
1, . . . , 1,

1

1 + α2b2
1

[
1 −αb1

αb1 1

]
, . . . ,

1

1 + α2b2
ν

[
1 −αbν

αbν 1

]
, 0, . . . , 0

)
.

(3.11)

Note that the symmetric part of each two-block is proportional to a two-dimensional identity
matrix, i.e. it is ‘shear-free’.

In 4D, the optical constraint implies that either (i) there is a single 2 × 2 block, in which
case ρi j is shearfree; or (ii) ρi j is symmetric with exactly one non-vanishing eigenvalue.
However, the GS theorem shows that case (ii) cannot occur. So in 4D the optical constraint is
a necessary condition for � to be a repeated principal null direction, but it is not sharp.

In 5D, the optical constraint implies that an orthonormal basis can be found for which the
optical matrix takes one of the forms (1.4), (1.5) or, with a = 0, (1.6) of theorem 1. The form
(1.6) with a, b �= 0 violates the optical constraint. However, as we will discuss later, known
solutions with an optical matrix of the latter form are of type D and admit another geodesic
multiple WAND which has an optical matrix of the form (1.6) with a = 0, and therefore
satisfies the optical constraint. It is thus an open question whether genuine type II spacetimes
with optical matrix of the form (1.6) with a �= 0 exist.

We emphasize that we will not be assuming the optical constraint in what follows.

4. Type II spacetimes in five dimensions

4.1. Algebraic constraints in five dimensions

In five dimensions the above equations can be considerably simplified since the 	i jkl

components are determined by 	S
i j via [6]

	i jkl = 2
(
δil	

S
jk − δik	

S
jl − δ jl	

S
ik + δ jk	

S
il

) − 	(δilδ jk − δikδ jl ). (4.1)

For the spacetime to be type II and not more special, we must have 	i j �= 0. Equations (3.3),
(3.4) reduce to

	i jS jk + 	k jS ji − ρ	S
ik = 1

3δik(2	 jlS jl − ρ	), (4.2)

2	 jkA ji + 2	 jiAk j + 	i jS jk − 	k jS ji + ρ	A
ki + 2	Aik = 0, (4.3)

7
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respectively, while (3.8) becomes

	i jρ jlρkl + 	k jρ jlρil − ρ jlρ jl	
S
ik = 1

3δik(2	 jlρ jsρls − ρ jlρ jl	). (4.4)

Note that in five dimensions (3.1) is equivalent to (4.3).
Since (4.2) is traceless, equations (4.2) and (4.3) can be viewed as eight linear equations

for the nine unknown components of 	i j. Equation (4.4) is traceless and symmetric and, in
general, gives an additional five linear equations and thus the system (4.2)–(4.4) is, for general
ρ, overdetermined. In this section we determine all possible forms of ρ for which there exist
non-vanishing solutions of (4.2)–(4.4).

To simplify the following calculations we choose the spatial basis vectors m(i) so that S
(the symmetric part of ρ) is diagonal:

S = diag(s2, s3, s4). (4.5)

Due to the tracelessness of (4.2) we replace the three diagonal components of (4.2) by their
linear combinations

(s3 − s2 − s4)	
S
33 − (s4 − s2 − s3)	

S
44 = 0, (4.6)

(s2 − s4 − s3)	
S
22 − (s4 − s2 − s3)	

S
44 = 0. (4.7)

It is convenient to divide then the analysis into two cases. The first case corresponds to a
non-twisting multiple WAND, i.e. Ai j = 0. The second case is Ai j �= 0.

4.2. Non-twisting case (Ai j = 0)

4.2.1. Non-twisting case with 	A
i j �= 0. Let us first study the non-twisting case with 	A

i j �= 0.
Without loss of generality we can assume 	A

23 �= 0. The i = 2, k = 3 components of (4.2),
(4.3) and (4.4) read

(s3 − s2)	
A
23 − s4	

S
23 = 0, (4.8)

(s3 − s2)	
S
23 − s4	

A
23 = 0, (4.9)

(
s3

2 − s2
2)	A

23 − s4
2	S

23 = 0, (4.10)

respectively. This is a system of three linear equations for two unknowns 	S
23 and 	A

23. Thus
in order to have non-vanishing 	A

23, all determinants corresponding to pairs of these equations
have to vanish. Two such determinants give

s4
2 − (s3 − s2)

2 = 0, (4.11)

s4(s2 − s3)(s2 + s3 − s4) = 0. (4.12)

It follows that for the non-twisting case with 	A
i j �= 0, S possesses a pair of equal eigenvalues

with the remaining eigenvalue being zero (cf also proposition 10 of [6] and proposition 7 of
[18]). In appendix A, we prove that this result generalizes to any number of dimensions.

4.2.2. Non-twisting case with 	A
i j = 0. In the non-twisting case with 	A

i j = 0, equation (4.3)
implies that 	i j and Si j commute:

[S,�] = 0. (4.13)

Hence we can choose our spatial basis vectors so that both 	i j and Si j are diagonal (	A
i j = 0

implies that 	i j is symmetric). Equation (4.4) reduces to(
s3

2 − s2
2 − s4

2
)
	S

33 − (
s4

2 − s2
2 − s3

2
)
	S

44 = 0, (4.14)

8
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(
s2

2 − s4
2 − s3

2
)
	S

22 − (
s4

2 − s2
2 − s3

2
)
	S

44 = 0. (4.15)

Equations (4.6), (4.7), (4.14) and (4.15) form a set of four linear equations for three unknowns
	S

22, 	S
33, 	S

44. Thus in order to allow for non-vanishing 	i j, the determinant of each triplet
of these equations has to vanish. Two such determinants give

s2(s3 − s4)(−s3 − s4 + s2)
2 = 0, (4.16)

s3(s2 − s4)(−s3 + s2 + s4)
2 = 0, (4.17)

which implies that all non-vanishing eigenvalues of ρi j coincide.

4.2.3. Summary of non-twisting case. Together with the results for types N and III obtained5

in [10] our results can be summarized as

Proposition 1. In a five-dimensional Einstein spacetime admitting a non-twisting (and thus
geodesic) multiple WAND, all non-vanishing eigenvalues of ρi j coincide.

This leads to the following cases:

Rank 3 optical matrix: this is case (i) of theorem 1 with a = 0. These solutions constitute the
Robinson–Trautman class, their metrics are explicitly known [12] and in five dimensions they
reduce to the Schwarzschild–Tangherlini metric with a possible cosmological constant. We
observe that, apart from Kundt solutions, these are the only 5D Einstein spacetimes admitting
a geodesic shearfree multiple WAND (see section 4.3.5 below). From (4.6), (4.7), 	i j = 	

3 δi j,
which fully determines the (type D [12]) Weyl tensor. This corresponds to the spin type
{(000)}0[	 �= 0] in the refined five-dimensional classification recently proposed in [21].6

Rank 2 optical matrix: this is case (ii) of theorem 1 with a = 0. In principle, this case can
have 	A

i j �= 0, however, we are not aware of explicit examples in this class. 	i j is constrained
by equation (4.2) leading to 	i4 = 0 and the spin type is, in general, {111}g[	 �= 0]. A
direct or warped product of any 4D Einstein type II Robinson–Trautman metric leads to a
five-dimensional Einstein type II metric with optical matrix of this type [22] (and the spin
type specializes to {(11)1}0[	 �= 0] in this case). This includes the Schwarzschild black string
solution.

Rank 1 optical matrix: this is case (iii) of theorem 1 with a = 0. (It can also be obtained as
a limit of case (i): a → ∞, b → 0, a2b fixed.) From (4.6), (4.7), 	i j = diag(−	,	,	),
and the spin type is {(11)1}0[	 �= 0]. An example (of type D) belonging to this class is a
non-twisting, expanding and shearing geodesic multiple WAND in dS3 × S2 (see section 6.3).
Another example of type D is the Kaluza–Klein bubble solution [23] (analytically continued
5D Schwarzschild) discussed in [7].

Vanishing optical matrix: this is any of the cases of theorem 1 with b = 0. This is the Kundt
class.

4.3. Twisting case (Ai j �= 0)

4.3.1. Determinants. Now, let us study the twisting case Ai j �= 0. Let Di j be the determinant
of the system of linear equations consisting of (4.6), (4.7), the three off-diagonal components
of (4.2), the three components of (4.3) and the i, j component of (4.4). If the system of all

5 To be precise, [10] considers only Ricci flat spacetimes, however such results extend immediately to Einstein
spacetimes since the Ricci tensor does not appear in the Bianchi identity in that case.
6 Note that our 	 is essentially the quantity R̄ of [21] (see table 1 therein).
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algebraic constraints obtained above is to admit a non-vanishing solution 	i j then all Di j must
vanish. This considerably restricts the possible forms of ρ.

For i �= j, one obtains, up to overall numerical factors,

D23 = [2s4(s3 − s2)(s4 − s2 − s3)A23 − A34A24(s2 − s3 − s4)(s3 − s2 − s4)]F, (4.18)

D24 = [2s3(s4 − s2)(s3 − s2 − s4)A24 + A34A23(s2 − s3 − s4)(s4 − s2 − s3)]F, (4.19)

D34 = [2s2(s4 − s3)(s2 − s3 − s4)A34 − A23A24(s4 − s2 − s3)(s3 − s2 − s4)]F, (4.20)

where

F = (s4 − s2 − s3)
2(s3 − s2 − s4)

2(s2 − s3 − s4)
2 + 4

[
A2

34(s4 − s2 − s3)
2(s3 − s2 − s4)

2

+ A2
24(s4 − s2 − s3)

2(s2 − s3 − s4)
2 + A2

23(s2 − s3 − s4)
2(s3 − s2 − s4)

2
]
.

(4.21)

The structure of the above determinants suggests that cases with si + s j = sk or si = sk or
si = 0 for some distinct values of i, j, k should be studied separately. Therefore first we study
the ‘generic’ case with si + s j �= sk and si �= sk, si �= 0 for all distinct values of i, j, k.

4.3.2. The case with si + s j �= sk and si �= sk, si �= 0 for distinct values of i, j, k. With this
assumption, F is non-vanishing. Now it follows from equation (4.18)–(4.20) that vanishing of
one component of Ai j implies vanishing of all Ai j. Since here we consider non-zero twist, all
components of Ai j are necessarily non-zero.

Now expressing A23 from (4.18), equations (4.19), (4.20) reduce to

A2
34(s2 − s3 − s4)

2 + 4s3(s4 − s2)s4(s3 − s2) = 0, (4.22)

A2
24(s3 − s2 − s4)

2 − 4s2(s4 − s3)s4(s3 − s2) = 0, (4.23)

respectively.
Since D22, D33 and D44 contain only squares of components of Ai j, using (4.18), (4.22)

and (4.23), we can express them in terms of Si j only. We find that

D22 − D33

s4(s2 − s3)
− D22 − D44

s3(s2 − s4)
= k(s3 − s4)s2, (4.24)

where k is a non-zero numerical constant. By assumption, the RHS is non-zero hence not
all of the determinants Di j can vanish. Therefore type II Einstein spacetimes with ρ obeying
si + s j �= sk and si �= sk, si �= 0 (for distinct values of i, j, k) do not exist.

4.3.3. Case with all si non-vanishing and distinct, with s4 = s3 + s2. Let us now study the
branch with si = s j + sk for some values of i, j, k. Without loss of generality we can then
assume s4 = s3 + s2. With this assumption, the vanishing of D24 and D34 implies

D24 = 0 ⇒ A23A24s2s3 = 0, (4.25)

D34 = 0 ⇒ A23A34s2s3 = 0. (4.26)

Thus either A23 = 0 or A24 = A34 = 0.
Subcase A23 = 0. In this subcase F = 0 and consequently all determinants Di j vanish. It

is thus necessary to study various sets of equations containing more than one equation from
(4.4). In particular, vanishing of determinant of the system [(4.6), off-diagonal components of
(4.2), [2, 4], [3, 4] components of (4.3), [2, 2], [2, 4], [3, 3] components of (4.4)] implies

s3
3s2

4A34
3
(
A2

24 + s2
2
) = 0 ⇒ A34 = 0, (4.27)

10
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while vanishing of determinant of the system [(4.7), off-diagonal components of (4.2), [2, 4],
[3, 4] components of (4.3), [2, 2], [2, 3], [4, 4] components of (4.4)] implies

s3
4s2

2A24
2
(
A34

2s2
2 + s3

2A24
2
) = 0 ⇒ A24 = 0, (4.28)

and therefore Ai j = 0, which is a contradiction.
Subcase A24 = A34 = 0. In this subcase vanishing of D33 and D44 imply(

2s2
2 − s3

2)A23
2 − s2

2s3
2 = 0, (4.29)

(
s2

2 + s3
2
)
A23

2 − 2s2
2s3

2 = 0, (4.30)

respectively. However, this also implies s2
2 = s3

2, which is not compatible with the
assumptions of this section (all si non-vanishing and distinct with s4 = s3 + s2).

Putting together these subcases we conclude that there are no twisting Einstein type II
solutions obeying assumptions of this section. Together with the results of sections 4.2 and
4.3.2 this implies.

Proposition 2. For a geodesic multiple WAND in a five-dimensional type II Einstein spacetime,
at least two eigenvalues of ρ(i j) coincide or at least one eigenvalue vanishes.

The rest of the analysis is based on studying all cases compatible with this proposition.

4.3.4. Case with all eigenvalues si non-vanishing with s2 = s3 �= s4. Now D23 = 0 implies

A24A34s4
[
(s4 − 2s2)

2
(
4A2

34 + 4A2
24 + s4

2
) + 4A2

23

] = 0. (4.31)

Therefore we have two cases to consider:

(a) A23 = 0, s4 = 2s2;
(b) A24A34 = 0. Without loss of generality we can set A24 = 0.

Case (a). Vanishing of the determinant of the systems used in (4.27) and (4.28) implies

A34
(
s2

2 + A24
2
) = 0, (4.32)

A24
(
A34

2s2
2 + s3

2A24
2
) = 0, (4.33)

respectively, which yields A24 = A34 = 0. Hence Ai j = 0, which is a contradiction.

Case (b). Now D22 − D33 = 0 implies A34 = 0 and then D33 = 0 leads to

s4 = s2
2 + A2

23

s2
. (4.34)

We thus arrived to ρ of the form

Si j =
⎛
⎝s2 0 0

0 s2 0
0 0 s4

⎞
⎠ , Ai j =

⎛
⎝ 0 A23 0

−A23 0 0
0 0 0

⎞
⎠ , (4.35)

where s4 is given by (4.34). This is case (i) of theorem 1.
After some algebra, the general solution of (4.2) – (4.4) is

	S
i j =

⎛
⎝	S

22 0 0
0 	S

22 0
0 0 	S

44

⎞
⎠ , 	A

i j =
⎛
⎝ 0 	A

23 0
−	A

23 0 0
0 0 0

⎞
⎠ , (4.36)

where the Weyl components 	S
22 and 	A

23 are given by

	S
22 = s2

2 − A2
23

s2
2 + A2

23

	S
44, 	A

23 = 2A23s2

s2
2 + A2

23

	S
44. (4.37)
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Note that in this case [ρ,�] = 0, ρ obeys the optical constraint and 	S
44 has to be

non-vanishing (and thus also 	A
23 �= 0, as long as there is twist). The spin type is {(11)1}‖.

This class of solutions contains, e.g., the Myers–Perry black holes (cf [6]), and KK bubbles
discussed in section 6.1. Note that the non-twisting limit can lead either to a rank 3 optical
matrix (this holds e.g. for Myers–Perry black hole) or can lead to a solution outside this class,
to a rank 1 optical matrix (when a → ∞, b → 0, with a2b fixed and non-vanishing—this
holds for KK bubbles) discussed in 4.2.3.

4.3.5. Shearfree case s2 = s3 = s4. Since we are in odd dimensions, by proposition 3 from
[11] the shearfree case is non-twisting, which contradicts the assumption of this section.

4.3.6. Case rank(S) = 2, s2 �= s3, s4 = 0. First let us discuss the case with vanishing F :
this holds iff s2 + s3 = 0 = A23 (see equation (4.21)). Then the systems used in (4.27) and
(4.28) imply

s2A34
(
s2

2 + A24
2) = 0, (4.38)

s2A24
(
A34

2 + A24
2) = 0, (4.39)

respectively and therefore A24 = A34 = 0, i.e. Ai j = 0, which is a contradiction. In the rest of
this section we can thus assume that F �= 0. Now D23 = 0 and D22 − D33 = 0 imply

A24A34(s2 − s3)
2 = 0, (4.40)(

A34
2 − A24

2
)
(s2 − s3)

2 = 0, (4.41)

and therefore A24 = A34 = 0. D22 = 0 then implies

(s2 − s3)
(
s2s3 + A23

2
) = 0 (4.42)

and therefore

s3 = −A2
23

s2
. (4.43)

We have shown that ρ has the form

Si j =
⎛
⎝s2 0 0

0 s3 0
0 0 0

⎞
⎠ , Ai j =

⎛
⎝ 0 A23 0

−A23 0 0
0 0 0

⎞
⎠ , (4.44)

where s3 is given by (4.43). Note that ρ has rank 1. This is case (iii) of theorem 1 with a �= 0, for
which the optical constraint is violated (ρ is not even a normal matrix). For explicit examples
see section 6.3.

In this case, the solution of the system of equations (4.2)–(4.4) is

	i j =
⎛
⎝	S

22 	S
23 0

	S
23 −	S

22 0
0 0 	

⎞
⎠ , (4.45)

where

	S
22 = A2

23 − s2
2

s2
2 + A2

23

	, 	S
23 = 2s2A23

s2
2 + A2

23

	. (4.46)

Note that in this case 	A
i j = 0. Substituting these results into (3.6) gives the simple result

þ	i j = 0. (4.47)

If one uses a basis parallelly transported along a geodesic tangent to � then this equation
implies that the components of 	i j are constant along the geodesic.

If one performs a change of basis to diagonalize 	i j then the result is 	i j =
diag(−	,	,	) (which also shows that the spin type is {(11)1}0[	 �= 0]). This observation
will be useful in the following.

12
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4.3.7. Case rank(S) = 2, s2 = s3 �= 0, s4 = 0. For this class, vanishing of the determinant of
the system consisting of [(4.6), (4.7), [2, 4] and [3, 4] components of (4.2), (4.3), [2, 2], [2, 4]
and [3, 4] components of (4.4)] leads to

s2
(
A24

2 + A34
2
) = 0, (4.48)

and therefore A24 = A34 = 0. Hence ρ has the form

Si j =
⎛
⎝s2 0 0

0 s2 0
0 0 0

⎞
⎠ , Ai j =

⎛
⎝ 0 A23 0

−A23 0 0
0 0 0

⎞
⎠ . (4.49)

This class represents case (ii) of theorem 1 with a �= 0. Note that ρ satisfies the optical
constraint. An example of a solution belonging to this class is the Kerr black string. See
section 6.2 for more examples.

For this case, the system of equations (4.2)–(4.4) reduces to

	A
24 = −	S

24, 	A
34 = −	S

34, 	S
44 = 0. (4.50)

This means that 	i j has at most rank 2. The spin type is in general {111}g[	 �= 0] (but it
simplifies to {(11)1}‖[	 �= 0] for, e.g., the Kerr black string).

4.3.8. Case rank(S) = 1, s2 �= 0, s3 = s4 = 0. In this case D23 = 0, D24 = 0, D34 = 0
imply

A34A24 = 0, A34A23 = 0, A23A24 = 0, (4.51)

respectively, and D22 = 0, D33 = 0, D44 = 0 give

− 2A34
2 + A23

2 + A2
24 = 0, (4.52)

A34
2 + A23

2 − 2A2
24 = 0, (4.53)

− A34
2 + 2A23

2 − A2
24 = 0. (4.54)

Therefore there are no twisting solutions belonging to this class.

4.3.9. Case with vanishing Si j. By proposition 1 of [11] Ai j = 0, which is a contradiction.

4.4. Summary

We have considered all possible cases and demonstrated that they obey theorem 1, so we have
proved the theorem.

4.5. Type D spacetimes

In the case of type D spacetimes we can extract some more information from the above general
results.

4.5.1. Type D Einstein spacetimes violating the optical constraint. Consider a type D
spacetime with multiple WANDs �, n with � geodesic. Assume that � violates the optical
constraint, i.e. it corresponds to case (iii) of theorem 1 with a, b �= 0. In deriving the above

13
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results, the only basis transformations used were rotations of the spatial basis vectors m(i)

and so n remains a multiple WAND. In section 4.3.6, we mentioned that there is a basis in
which 	i j = diag(−	,	,	). For a type D solution, one can use this to repeat the argument
in section 4 of [7] to show that at any point � belongs to a one-parameter family of multiple
WANDs. This parameter becomes a free function in spacetime. In general, this function will
not satisfy the PDE required for the corresponding multiple WAND to be geodesic. Hence
we have shown that all five-dimensional type D Einstein spacetimes violating the optical
constraint admit a non-geodesic multiple WAND.

All such solutions were classified in [7], and they are the solutions listed in section 6.3
below. In fact type D Einstein spacetimes admitting a non-geodesic multiple WAND admit a
canonical form 	i j = diag(−	,	,	) [6] which is not compatible with cases (i) and (ii) of
theorem 1. Thus in the type D case all solutions admitting a geodesic multiple WAND which
violates the optical constraint are explicitly known, and coincide7 with the family of Einstein
spacetimes admitting a non-geodesic multiple WAND [7]:

Proposition 3. A five-dimensional type D Einstein spacetime admits a geodesic multiple
WAND violating the optical constraint if and only if it admits a non-geodesic multiple WAND.

Note that all such spacetimes also admit non-twisting geodesic multiple WANDs which
respect the optical constraint, with optical matrix of rank 1 (namely, when α is a constant in
section 6.3). In other words, in any 5D type D Einstein spacetime, one can choose two distinct
multiple WANDs which respect the optical constraint. It is conceivable that genuine type II
spacetimes with an optical matrix that does not satisfy the optical constraint do not exist. If so,
we would have the result that a 5D Einstein spacetime admits a multiple WAND if and only
if it admits a geodesic multiple WAND that satisfies the optical constraint.

4.5.2. Possible optical properties of the multiple WANDs. Type D spacetimes admit (at least)
two multiple WANDs. Without loss of generality, we can always consider both of them to
be geodesic8 [7] and identify those with the frame vectors � and n. The results of theorem 1
thus apply to the optical matrices ρ and ρ′ of both multiple WANDs (although, in general, the
canonical frames will be different for each of them). We want to discuss here what are the
permitted combinations of those types for ρ and ρ′, respectively, in the case when ρ �= 0 �= ρ′.
This can be done by looking at invariant properties of the matrix 	i j associated with the
various cases (since interchanging � and n does not affect 	i j, except for changing the sign of
	A

i j), as discussed in section 4.2.3 for the non-twisting case, and in sections 4.3.4, 4.3.6 and
4.3.7 for the twisting case.

First, note that when ρ is of type (ii) then 	i j has rank 2 while 	i j has always rank 3 in
the remaining cases. Therefore if ρ is of type (ii) then also ρ′ must necessarily be such. Next,
in case (i) either 	A

i j �= 0 or 	i j ∼ δi j and neither of these is compatible with the form of
	i j permitted in case (iii). Therefore it is not possible that ρ is of type (i) while ρ′ being of
type (iii). Hence we have shown that in type D Einstein spacetimes if two multiple WANDs
have both non-zero optical matrices then these must fall into the same case (i), (ii) or (iii)
of theorem 1. Note, in addition, that if ρ and ρ′ are both of type (i) then they must be either
both twisting (if 	A

i j �= 0) or both non-twisting (if 	A
i j = 0, which is the Robinson–Trautman

7 For all type D metrics admitting non-geodesic multiple WANDs we present examples of geodetic WANDs not
obeying the optical constraint in section 6.3.
8 If one of the two multiple WANDs is non-geodesic then the spacetime belongs to the case (iii) of theorem 1 and
thus also contains more than one multiple geodesic multiple WANDs, e.g. for different choices of the parameter α in
(6.12) or (6.17).
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case).9 On the other hand, the examples of section 6.3 show that a non-twisting ρ of type
(iii) can pair both with a non-twisting and with a twisting ρ′ of type (iii). In fact, let us note
that the (fully known) case (iii) defines the class of five-dimensional Einstein spacetimes that
admit more than two multiple WANDs,10 whereas in cases (i) and (ii) there exist precisely two
multiple WANDs.

5. Existence of an optical structure

5.1. Definition of ‘optical structure’ [17]

In four dimensions, the existence of a null congruence � that is geodesic and shearfree (g.s.)
can be rephrased in terms of properties of different geometric objects, leading to various
formulations of the g.s. condition (see, e.g., [28–32]). Accordingly, the GS theorem can be
equivalently rephrased in terms of any of such geometric properties. The condition of � being
geodetic and shearfree can be replaced, in particular, by a statement about the existence of
an integrable complex two-dimensional totally null distribution (defined by the span of �

and m(2) + im(3)). It turns out that in higher dimensions, those various formulations of the
g.s. property are not equivalent and one could thus expect, in principle, that the GS theorem
might admit several inequivalent extensions in more than four dimensions. A possible five-
dimensional version of the GS theorem has been proposed in [17], where the notion of a
g.s. null congruence has been replaced by that of an ‘optical structure’. Here we discuss
consequence of our results (in particular, theorem 1) in terms of existence of such an optical
structure, and compare our conclusions with those of [17].

Let us define the totally null distribution

D = Span{m(2) + im(3), �}, (5.1)

and its orthogonal complement

D⊥ = Span{m(2) + im(3), m(4), �}. (5.2)

By definition [17], there is an optical (or Robinson) structure on the five-dimensional spacetime
if both D and D⊥ are integrable, which is equivalent to

κi = 0, ρ33 = ρ22, ρ32 = −ρ23, ρ24 = 0 = ρ34, ρ42 = 0 = ρ43, (5.3)

2
M40 = 0 = 3

M40,
2

M42 = 3
M43,

2
M43 = − 3

M42. (5.4)

See [10, 11, 13] for the definition of
a

Mbc.
Obviously if an optical structure is integrable its complex conjugate is integrable too, and

this will be understood in the following.

5.2. Sufficient conditions for the existence of an optical structure

The following proposition provides sufficient conditions for the existence of an optical
structure in algebraically special Einstein spacetimes in five dimensions. Note that we need
the assumption that the optical matrix of a multiple WAND is non-zero, but on the other hand
the conditions on the Weyl tensor are rather weak.

9 In four dimensions, a corresponding result says that diverging PNDs of Einstein spacetimes of type D are twist-free
if and only if the Weyl tensor is purely electric [24, 25].
10 The set of multiple WANDs is actually infinite and homeomorphic to a 1-sphere [26, 27] (some of these results
were given already in [7]).
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Proposition 4. In a five-dimensional Einstein spacetime admitting a multiple WAND � with
ρ �= 0, there exists an optical structure if any of the following conditions holds:

• the spacetime is of type N, III or D
• the spacetime is of (genuine) type II, and ρ is either of the form (i) or (ii) of theorem 1, or

of the form (iii) with a = 0.

In the case of type D spacetimes there exist in fact (at least) two optical structures if both
geodesic multiple WANDs have a non-vanishing optical matrix.

In other words, all 5D algebraically special Einstein spacetimes with ρ �= 0 admit an
optical structure except, possibly, for those genuine type II spacetimes whose (unique) multiple
WAND has an optical matrix of the form (iii) of theorem 1 with a �= 0 (and is thus twisting).
No examples of the latter subcase are presently known. Note, in particular, that the presence
of an expanding non-twisting multiple WAND ensures the existence of an optical structure for
all algebraically special Weyl types. In addition to the special type II twisting subcase (iii),
also Kundt spacetimes (ρ = 0) evade the proposition. We observe finally that the converse of
proposition 4 does not hold. This can be seen, e.g., by taking a black ring as a counterexample,
since this is (in some region) a spacetime of type Ii [33] and yet admits an optical
structure [17].

Proof. That conditions (5.3) are met already follows from the previous discussion. Namely,
a multiple WAND can always be chosen to be geodesic (κi = 0) [7]. Then, theorem 1 shows
that the conditions on ρi j are also satisfied for all types N and III, and for type II spacetimes
with � such that ρ is of the form (i) or (ii) of theorem 1. Type II spaces whose multiple WAND
has a ρ of the form (iii), instead, do not satisfy ρ33 = ρ22 (unless a = 0). This applies also to
type D(iii), however in that case all such spacetimes are known (see section 6.3) and they all

admit additional multiple WANDs �̃ and ˜̃
� such that the corresponding ρ̃ and ˜̃ρ are both of the

form (iii), but now with a = 0 (so that (5.3) is satisfied by both ρ̃ and ˜̃ρ – up to relabeling
the spatial frame vectors, i.e. 2 ↔ 4). From now on we shall thus exclude twisting genuine
type II (iii) from the discussion.

Next, the canonical forms (i)–(iii) of ρ are compatible with using a parallelly transported

frame [20], so that one can always set
i

M j0 = 0 [11], so that both (5.3) and the first of (5.4)
are now satisfied.

Finally, inserting the permitted forms of ρi j into the Ricci identity (11k,[11]) (or,
equivalently, the NP equation (A4,[13])) one finds that also the last two of (5.4) are satisfied
(cf section IV.D.2 of [20] for an explicit proof in a special subcase; the general proof
works similarly—in fact even with no need to specify the r-dependence of the Ricci rotation
coefficients). One should observe that this argument does not work for Robinson–Trautman
spacetimes, i.e. for a geodesic multiple WAND corresponding to (i) of theorem 1 with a = 0
(i.e. ρi j = bδi j), since (11k,[11]) is satisfied identically in that case. However, in 5D the
Robinson–Trautman class reduces to Schwarzschild-like black holes [12] and one can construct
explicitly an optical structure there.11

11 Namely, the general metric can be written as ds2 = − f (r)dt2 + f (r)−1dr2 + r2�2(dx2 + dy2 + dz2), with

f (r) = k − μr−2 − λr2 and � =
[
1 + k

4 (x2 + y2 + z2)
]−1

. Then, taking the multiple WAND � = f (r)−1∂t + ∂r

and the spacelike frame vectors m(2) = (r�)−1∂x, m(3) = (r�)−1∂y, m(4) = (r�)−1∂z, one finds that
D23 = Span{m(2) + im(3), �} and D⊥

23, D24 = Span{m(2) + im(4), �} and D⊥
24, and D34 = Span{m(3) + im(4), �}

and D⊥
34 are all integrable, so that there exist in fact three optical structures (of real index 1) associated with � (plus

their three complex conjugate ones). Another three (plus three) optical structures are obviously associated also with
the second multiple WAND (obtained from � just by time reflection).
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Table 2. The Ricci rotation coefficients and Weyl frame components relevant to the discussion of
the present paper are compared with the notation used in [17], provided one identifies the frame
vectors m and u of [17] with our 1√

2
(m(2) + im(3) ) and m(4), respectively. In particular, the

definition of ‘algebraically special’ used in [17] is stronger than ours in that it additionally assumes
�0

13 = �1
13 = �2

13 = �14 = 0 (plus a ‘genericity’ condition).

Notation of [17] Notation of this paper

κ 1√
2
(κ2 − iκ3)

κ4

ρ 1
2 [ρ22 + ρ33 + i(ρ23 − ρ32)]

σ 1
2 [ρ22 − ρ33 − i(ρ23 + ρ32)]

ψ 1√
2
(ρ42 − iρ43)

η 1√
2
(ρ24 − iρ34)

ρ44

χ 1√
2
(

2
M40 − i

3
M40)

φ 1√
2
[

2
M42 − 3

M43 − i(
2

M43 + 3
M42)]

�0
13

1
2 [	22 − 	33 − i(	23 + 	32)]

�1
13

1√
2
(	42 − i	43)

�2
13

1√
2
(	24 + i	34)

�0
2 	44

�2
1
2 [	22 + 	33 + i(	23 − 	32)]

�14
1
2 [� ′

224 − � ′
334 + i(� ′

324 + � ′
234)]

It already follows from the remarks above that for type D spacetimes with a
multiple WAND falling into case (iii) of theorem 1 there exist two optical structures. The
same conclusion clearly applies also to type D spacetimes having no multiple WAND of type
(iii): indeed, the argument given above for type II (i)/(ii) spacetimes can be applied to each
multiple WAND separately (provided both have an associated non-zero optical matrix). This
concludes the proof. �

Equation (11k, [11]) is trivial also when ρ = 0, which explains why the proposition
cannot be extended to the Kundt case; however, at least all D23, D24 and D34 (see footnote 11
for definitions) are integrable in that case.

5.3. Comparison with the results of [17]

First, let us remark that the results of [17] apply to a class of metrics larger than Einstein
spacetimes: instead of requiring Rab = R

5 gab, a weaker condition (on the Cotton–York tensor)
was imposed. However, we shall consider the results of [17] as restricted to Einstein spaces,
since only this is relevant to our paper. Note that the (complex) notation of [17] is translated
into ours in table 2 (we give there only the quantities necessary for the present discussion, i.e.
a subset of the Ricci rotation coefficients, all Weyl components of boost weight (b.w.) 0, and
one component of b.w. −1).

Next, note that the class of ‘algebraically special’ spacetimes in the sense of [17] is
narrower than ours: in addition to the vanishing of all positive b.w. Weyl components, the
vanishing of the components (cf table 2) �0

13, �1
13, �2

13 (of b.w. 0) and �14 (of b.w. −1) is also
required.
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Now, in our terminology and notation, theorem 3.4 of [17] can be rephrased as

• In a 5D Einstein spacetime whose associated Weyl tensor is algebraically special and
additionally satisfies (in a null frame adapted to the multiple WAND �)

	22 = 	33, 	23 = −	32, 	42 = 	43 = 	24 = 	34 = 0,

� ′
224 = � ′

334, � ′
324 = −� ′

234, (5.5)

and is otherwise ‘generic’ (except that one can possibly have either 	44 = 0 or
	22 = 	33 = 	23 = 	32 = 0, see subsection 3.4.2 of [17] and table 2) the distributions
(5.1), (5.2) define an optical structure.

This result clearly applies only to a subset of type II Einstein spacetimes (as noted also
in [17]). In particular, an assumption on negative b.w. component is also necessary. It was
derived by a detailed study of the Bianchi identities.

For the special case of type D spacetimes, corollary 3.10 of [17] follow immediately, this
can be rephrased as:

• In a 5D Einstein spacetime whose associated Weyl tensor is of type D and additionally
satisfies (in a null frame adapted to two multiple WANDs � and n)

	22 = 	33, 	23 = −	32, 	42 = 	43 = 	24 = 	34 = 0, (5.6)

and is otherwise ‘generic’ (	22 �= 0, 	23 �= 0, 	44 �= 0) the distributions (5.1), (5.2) and
the corresponding distributions with � replaced by n define two optical structures.

The above result applies, for example, to the Myers–Perry spacetime (see [17] for more
comments), cf the Weyl tensor components given in [6]. However, in this form it does not apply,
e.g., to the 5D Schwarzschild spacetime, since one has 	23 = 0 (and 	44 = 	22) in that case,
so the ‘genericity’ assumption is clearly violated. On the other hand, by using also the Ricci
identity, we have seen above that in all type D spacetimes there exist two optical structures,
provided both multiple WANDs have a non-zero optical matrix. The extra assumptions (5.6)
and the ‘genericity’ condition thus appear to be unnecessary (at least in the non-Kundt case).

Similarly, the comments in section 3.4.2 of [17] demonstrate that the proof of [17] cannot
be extended to type III/N spacetimes in general. However, by studying also consequences of
the Ricci identity we have seen above that the conclusion remains true.

6. Examples

In this section we present explicit examples of type II (or D) Einstein spacetimes for each
of the possible cases (i), (ii) and (iii) of theorem 1 and a counterexample to the converse of
theorem 1. In addition to some familiar solutions, we shall discuss some examples which have
not been considered in the context of algebraically special solutions, notably Kaluza–Klein
bubbles arising from analytic continuation of the Myers–Perry solution.

6.1. Optical matrix of the form (1.4)

As already mentioned, examples of Einstein spacetimes belonging to the case (i) of theorem 1
are Myers–erry black hole and, more generally, all non-degenerate (i.e. det ρ �= 0) Einstein
Kerr–Schild metrics with Minkowski or (A)dS background [14, 15].

Another example belonging to this class is the 5D Kaluza–Klein bubble obtained by
analytic continuation of a Myers–Perry solution [34]. (The original Kaluza–Klein bubble of
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[23] will be discussed below.) We start with the singly spinning Myers–Perry metric in the
form

ds2 = r2ρ2

�
dr2 − dt2 + ρ2dθ2 + (r2 + A2) sin2 θdφ2 + r2 cos2 θdψ2

+ r0
2

ρ2
(dt + A sin2 θdφ)2, (6.1)

where

ρ2 = r2 + A2 cos2 θ, � = r2(r2 + A2) − r2
0r2. (6.2)

After performing a transformation t → iχ, θ − π
2 → iτ, ψ → iσ, A → iα we arrive to a

metric

ds2 = r2ρ2

�
dr2 − ρ2dτ 2 + dχ2 + (r2 − α2) cosh2 τdφ2 + r2 sinh2 τdσ 2

− r0
2

ρ2
(dχ + α cosh2 τdφ)2, (6.3)

with

ρ2 = r2 + α2 sinh2 τ, � = r2(r2 − α2) − r2
0r2. (6.4)

By studying the higher dimensional Bel–Debever criteria [35] one finds that this metric
is of type D with the multiple geodesic WANDs of the form

�±adxa = ± r2 + α2 sinh2 τ

(r2 − α2) cosh τ
dτ + α

r2 − α2
dχ − dφ. (6.5)

We choose � and n coinciding with �+ and �−, respectively (up to a possible rescaling), and
the rest of the frame as

m(2)adxa = γ −1dr, m(3)adxa = γ dχ + αγ cosh2 τdφ, m(4)adxa = r sinh τdσ,

(6.6)

with γ =
√

r2−r0
2−α2

ν
, where ν = r2 + α2 sinh2 τ . Then the optical matrix is

ρi j = − 1

(r2 − α2)

⎛
⎝

α2 sinh τ
ν

−αr
ν

0
αr
ν

α2 sinh τ
ν

0
0 0 1

sinh τ

⎞
⎠ . (6.7)

This corresponds to case (i) of theorem 1 with

b = − α2 sinh τ

ν(r2 − α2)
, a = − r

α sinh τ
. (6.8)

6.2. Optical matrix of the form (1.5)

A large class of Ricci-flat solutions admitting a multiple WAND with optical matrix of the
form (1.5) (case (ii) of theorem 1), such as the Kerr black string, is given by taking the product
of a 4D Ricci-flat algebraically special solution with a flat fifth direction. Similarly, examples
with non-vanishing cosmological constant can be obtained by taking the warped product of a
4D algebraically special Einstein spacetime with a fifth direction, i.e. a solution of the form

ds2 = w(y)2ds2
4 + dy2, (6.9)
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for a suitable choice of the function w(y). In this case, ds2 will be of the same (special) type as
ds2

4 [22], so that several examples of any algebraically special type can be easily constructed.
See [20] for type N/III examples.

6.3. Optical matrix of the form (1.6)

We are not presently aware of any such examples for the genuine type II. By contrast, type D
spacetimes with optical matrix of the form (1.6) (case (iii) of theorem 1) coincide (as shown in
section 4.5.1) with the algebraically special metrics admitting a non-geodesic multiple WAND.
These were all given in theorem 3 of [7] and consist of two subfamilies, which can thus be
presented here (together with a suitable choice of a multiple WAND) as examples falling into
case (iii) of theorem 1.

The first subfamily of the metrics of [7] is given by the direct products dS3 × S2 and
AdS3 × H2, which can be written in a unified form as

ds2 = �2(−dt2 + dx2 + dy2) + �2(dz2 + dw2), (6.10)

with �−1 = 1 + λ

2
(−t2 + x2 + y2), �−1 = 1 + λ(z2 + w2), (6.11)

where λ �= 0 is (proportional to) the cosmological constant. [5] observed that any null vector
field tangent to (A)dS3 is a multiple WAND, e.g. the null vector

�adxa =
(

1 + α2

4

)
dt +

(
1 − α2

4

)
dx + αdy. (6.12)

This is a geodesic, affinely parametrized multiple WAND for any α = α(z, w). Using the
frame

nadxa = 1

2
�2(−dt + dx), m(2)adxa = �

[
α

2
(dt − dx) + dy

]
,

m(3)adxa = �dz, m(4)adxa = �dw, (6.13)

one finds that ρ has the only non-zero components

ρ22 = λ

4�
[−4(t + x) − 4yα + (−t + x)α2], ρ23 = α,z

��
, ρ24 = α,w

��
. (6.14)

For generic α(z, w), ρ(i j) has one vanishing eigenvalue and two non-vanishing and unequal
eigenvalues. This implies that the canonical form must be (1.6) with a �= 0 (indeed this
matrix ρ can obtained from (1.6) using spins). For the special choice α =const the form of ρ

degenerates to (1.6) with a = 0 (i.e. with zero twist). In this case, it is then easy to see that
D = Span{m(3) + im(4), �} together with its orthogonal complement D⊥ defines an optical
structure, in agreement with proposition 4 (the same is true for the null vector obtained from
� by time-reflection, i.e. t → −t, giving rise to another optical structure).

The second subfamily of [7] is given by an analytical continuation of the 5D Schwarzschild
solution (generalized to include a cosmological constant � and planar or hyperbolic
symmetry), and can be written as

ds2 = f (r)dz2 + f (r)−1dr2 + r2�2(−dt2 + dx2 + dy2), (6.15)

with f (r) = k − μr−2 − λr2, �−1 = 1 + k

4
(−t2 + x2 + y2), (6.16)

where μ �= 0, k ∈ {1, 0,−1}, λ is (proportional to) the cosmological constant, and the
coordinate r takes values so that f (r) > 0. A special case is the Kaluza–Klein bubble of
[23]. In all of these cases, any geodesic null vector field tangent to the 3D space of constant
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curvature is a geodesic multiple WAND and the optical matrix has canonical form (1.6). Let
us choose a null vector

�adxa =
(

1 + α2

4

)
dt +

(
1 − α2

4

)
dx + αdy, (6.17)

where α = α(z, r), that is a geodesic, affinely parametrized multiple WAND. Using the frame

nadxa = 1

2
r2�2(−dt + dx), m(2)adxa = r�

[α

2
(dt − dx) + dy

]
,

m(3)adxa = f (r)1/2dz, m(4)adxa = f (r)−1/2dr, (6.18)

one finds that ρ has the only non-zero components

ρ22 = k

8�r2
[−4(t + x) − 4yα + (−t + x)α2], ρ23 = α,z

r� f (r)1/2
, ρ24 = α,r f (r)1/2

r�
.

(6.19)

Similarly as above, in general ρ can be cast into the canonical form (1.6) with a �= 0. In
the special case α =const, i.e. a hypersurface-orthogonal geodesic multiple WAND, the form
of ρ reduces to (1.6) with a = 0 (additionally, also b = 0 when k = 0). With this choice,
D = Span{m(3) + im(4), �} together with its orthogonal complement D⊥ defines an optical
structure (and similarly for the time-reflection of �).

6.4. Counterexample to the converse of theorem 1

Finally we present a counterexample to the converse of theorem 1. We shall exhibit an Einstein
spacetime with a null geodesic vector field whose optical matrix has the form (iii) of theorem 1
but is not a multiple WAND.

Consider a 4D cylindrical Newman–Tamburino solution (see equation (26.23) in [2])

ds2 = r2dx2 + x2dy2 − 4r

x
dudx − 2dudr + x−2(c + ln(r2x4))du2, (6.20)

where c is a constant. This is a type I Ricci-flat spacetime with �adxa = du being a geodesic
principal null direction with optical matrix of the form diag(b, 0). A direct product of this
spacetime with a flat dimension is a five-dimensional type Ii Ricci flat12 spacetime with du
being a WAND [22] but not a multiple WAND. The corresponding form of the optical matrix is
diag(b, 0, 0), i.e. case (iii) of theorem 1 with a = 0. Therefore the existence of a null geodesic
congruence whose optical matrix takes the canonical form (iii) of theorem 1 is not a sufficient
condition for the spacetime to be algebraically special.

7. Discussion

We have presented an extension to five dimensions (theorem 1) of the ‘shearfree part’ of
the 4D GS theorem. Combined with the result of [7] on the ‘geodesic part’ this provides a
five-dimensional generalization of the GS theorem for Einstein spacetimes.

We have given explicit examples corresponding to each case of theorem 1, so this result
is sharp. However, only necessary conditions for a spacetime to be algebraically special have
been obtained. That our conditions cannot be sufficient has been demonstrated by an example

12 A non-Ricci-flat Einstein space can be obtained by taking a warped product with the fifth dimension. Note that
under special circumstances a direct/warp product of an Einstein type I spacetime can lead to an Einstein type D
spacetime, however, this occurs only in dimension d � 6, see [22] for details.
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(section 6.4) of a 5D Einstein spacetime which is not algebraically special yet has geodesic
null vector field whose optical matrix takes the form (iii) of theorem 1. Hence form (iii) is not
sufficient for a geodesic null vector field to be a multiple WAND. An interesting open question
is whether forms (i) and (ii) are sufficient.

Our analysis has demonstrated some restrictions on the possible structure of algebraically
special Weyl tensors of Einstein spacetimes, as expressed in terms of the permitted ‘spin types’
defined in [21]. Our results will lead to a simplification of the Einstein and Bianchi equations
for algebraically special solutions, and it is hoped that this will be helpful in constructing and
analyzing new explicit solutions of the 5D Einstein equations in vacuum.

As discussed in section 3.2 any matrix satisfying the optical constraint can be brought to
one of the forms (1.4), (1.5) or, with a = 0, (1.6) by an appropriate choice of orthonormal basis.
Conversely, each of these forms satisfies the optical constraint. The form (1.6) with a �= 0
violates the optical constraint. But, as discussed, in the examples known to us (sections 6.1–
6.3), solutions with an optical matrix of this type always admit a continuous family of multiple
WANDs (and are thus of type D), and this family contains a geodesic multiple WAND with
optical matrix of the form (1.6) with a = 0, which obeys the optical constraint. In fact, if
one restricts to type D spacetimes, then the solutions admitting a geodesic multiple WAND
which violates the optical constraint are all explicitly known (cf section 4.5.1) and consist
of the examples of sections 6.1–6.3. A question thus remains as to whether there exist 5D
Einstein spacetimes of genuine type II whose unique multiple WAND (is geodesic, twisting
and) violates the optical constraint (i.e. falls into class (iii) with a �= 0). If the answer were
negative then theorem 1 could be reformulated as the statement that a 5D algebraically special
Einstein spacetime that is not conformally flat must admit a geodesic multiple WAND that
satisfies the optical constraint.

We have compared our results with an alternative 5D generalization of the GS theorem
given in [17], which is based on a stronger definition of ‘algebraically special’. (That reference
also obtained only necessary conditions.) Some of the results of [17] have been strengthened
using the Ricci identity. In particular, as a consequence of theorem 1 we have shown the
existence of an optical structure for a large class of algebraically special solutions: only Kundt
spacetimes and non-Kundt genuine type II spacetimes falling in case (iii) of theorem 1 with
a, b �= 0 (of which no example is known to the authors) possibly evade such a conclusion.
Finally, our work also contains a few results that hold in any higher dimensions. An extended
discussion in d dimensions will be presented elsewhere.
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Appendix A. Hypersurface orthogonal multiple WAND � with �A
i j �= 0

In some cases, constraints on the optical matrix can be obtained in arbitrary dimension. Here,
let us discuss a case with a hypersurface orthogonal multiple WAND � with 	A

i j �= 0. Because
hypersurface orthogonal and null, � is automatically geodesic and twistfree. Thus we have

κi = Ai j = 0, (A.1)
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so that ρi j = Si j. equation (3.4) reduces to

ρ	A
i j − 	ikρk j + 	 jkρki = 0. (A.2)

Acting with þ and using the Bianchi identity (3.6) and Sachs equation (3.5) gives

−(ρ2/2 + ρklρkl )	
A
i j − 2ρ	A

[i|kρk| j] + 8	A
[i|k(ρ

2)k| j] + 4	S
[i|k(ρ

2)k| j] = 0, (A.3)

where (ρ2)i j = ρikρk j. Note that this equation can be also obtained without differentiation
using (3.1), (A.2) and an identity from table 1. The final term is the commutator 2[�S, ρ2],
which can be written in terms of [�S, ρ] and thus eliminated using equation (A.2), giving

−(ρ2/2 + ρklρkl )	
A
i j + 2ρ	A

[i|kρk| j] + 4	A
[i|k(ρ

2)k| j] − 4ρik	
A
klρl j = 0. (A.4)

From now on we use a basis in which ρi j is diagonal, i.e. ρi j = diag(ρ2, ρ3, . . .). The above
equation thus reduces to

(−ρ2/2 − ρklρkl + ρ(ρ(i) + ρ( j)) + 2(ρ(i) − ρ( j))
2
)
	A

(i)( j) = 0, (A.5)

where parentheses indicate no summation over repeated indices i, j.
Now let us assume that 	A

i j �= 0 for some i and j. Without loss of generality, we may
assume that 	A

23 �= 0. Then the above equation implies that

−ρ2/2 − ρklρkl + ρ(ρ2 + ρ3) + 2(ρ2 − ρ3)
2 = 0. (A.6)

This can be rewritten as

(tr(ρ̂))2 + 2tr(ρ̂2) = 3(ρ2 − ρ3)
2, (A.7)

where ρ̂ = diag(ρ4, ρ5, . . .). Although we have derived this equation in a particular basis, it
involves only invariant quantities (eigenvalues of ρ) hence it must be basis-independent.

The consequences of this equations can be easily seen by introducing a parallelly
transported frame (in which þ = D = ∂r)13 and looking at the r-dependence of the various
terms. First, let us recall that in the non-twisting case we have [36] (see also [20] and appendix
D of [14])

ρi = s0
i

1 + rs0
i

, (A.8)

which can also be rewritten as ρi = 1/(r − bi) when s0
i �= 0. There are several cases to

consider. First assume ρ2 = ρ3. Then, since the LHS of (A.7) is positive definite, we obtain
ρ̂i j = 0, i.e. ρ4 = ρ5 = . . . = 0.

Now assume ρ2 and ρ3 are distinct and non-zero. Then, plugging (A.8) into (A.7) and
looking at the structure of poles of the RHS and LHS we first find that any non-vanishing ρα

(α � 4) must equal ρ2 or ρ3, but then we arrive to a contradiction.
The final case to consider is (without loss of generality) ρ2 �= 0, ρ3 = 0. In this case,

looking at the structure of poles of the RHS and of the LHS reveals that (permuting the basis
if necessary) ρ4 = ρ2, and ρ5 = ρ6 = · · · = 0. This satisfies (A.7) without further restriction.

We see that in both allowed cases, ρi j has two equal eigenvalues and d − 4 vanishing
eigenvalues. In conclusion:

13 Note that choosing a parallelly transported frame is compatible with using an eigenframe of ρ [36, 20].
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Proposition 5. For non-twisting type II Einstein spacetimes with 	A
i j �= 0, the eigenvalues of

ρ are ρ/2, ρ/2, 0, . . . , 0.

Note, in particular, that ρi j is degenerate, and shearing unless identically zero.14
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See also Pravda V, Pravdová A, Coley A and Milson R 2007 Class. Quantum Grav. 24 1691 (corrigendum)
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