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Abstract

We review recent developments and applications of the classification of the
Weyl tensor in higher dimensional Lorentzian geometries. First, we discuss the
general setup, i.e. main definitions and methods for the classification, some
refinements and the generalized Newman—Penrose and Geroch—Held—Penrose
formalisms. Next, we summarize general results, such as a partial extension of
the Goldberg—Sachs theorem, characterization of spacetimes with vanishing (or
constant) curvature invariants and the peeling behaviour in asymptotically flat
spacetimes. Finally, we discuss certain invariantly defined families of metrics
and their relation with the Weyl tensor classification, including Kundt and
Robinson—Trautman spacetimes; the Kerr—Schild ansatz in a constant-curvature
background; purely electric and purely magnetic spacetimes; direct and (some)
warped products; and geometries with certain symmetries. To conclude, some
applications to quadratic gravity are also overviewed.
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1. Introduction

Almost a decade has passed since a classification scheme for the Weyl tensor of higher
dimensional spaces with Lorentzian signature was put forward [1, 2]. This is based on the
concept of null alignment (as explained below) and extends to any dimensions n > 4 the
well-known Petrov classification [3, 4], to which it reduces for n = 4. Over the last few years,
a deeper geometric understanding of the null alignment method has been achieved, along with
several developments, and a number of applications have been presented. The aim of this
review is thus to summarize those new results which are, in our view, most important. Already
published proofs and extended discussions are not repeated here, and readers are referred to
related references for more details.

In 2008, there appeared a review on the classification of the Weyl tensor in higher
dimensions [5], where some useful information complementary to the one given here can
be found (see also [6] for a recent introductory review). However, several new results have
been published since then, in particular, on the Geroch—Held-Penrose (GHP) formalism [7],
on spacetimes ‘characterized by their invariants’ [8], on the Goldberg—Sachs (GS) theorem

2



Class. Quantum Grav. 30 (2013) 013001 Topical Review

[9-11], on alternative approaches to the classification [ 12—15], on perturbations of near-horizon
geometries [16—18] and on other aspects. We thus believe that summarizing some of these and
other recent developments will be useful.

The plan of this review is already illustrated in detail by the table of contents, and here, it
will suffice to just comment on the general structure. The first part (sections 2 and 3) is devoted
to presenting the formalism. First, a null alignment classification is set up that can be applied
to any tensor. Then, this is specialized to the Weyl tensor, for which refinements and alternative
approaches are also mentioned. The Newman—Penrose (NP) and Geroch—Held-Penrose (GHP)
formalisms are also described since these are extremely useful computational tools, especially
for algebraically special spacetimes, and have already been used to study various distinct
problems mentioned in this review. In the ‘central’ part (sections 4-6), we discuss general
applications of the classification: an extension of the GS theorem; a characterization of
spacetimes for which all curvature invariants vanish or are constant; and the asymptotic and
peeling behaviour of the Weyl tensor, with special interest for asymptotically flat spacetimes.
The final part of the review (sections 7-10) summarizes more specific applications, describing
certain important classes of spacetimes which can be defined invariantly assuming certain
geometric conditions (e.g., their ‘geometric optics’, some discrete symmetry properties of
the Weyl tensor, or some continuous symmetries of the spacetime). No field equations are
generally assumed, so that most of the results are purely geometric. However, in some cases,
emphasis is put on Einstein spacetimes (defined by R, = Rg,»/n, with cosmological constant
normalized as (n—2)R = 2nA), since these represent vacuum solutions in general relativity. A
partial exception to this is section 10, where some algebraically special solutions to quadratic
gravity are considered.

2. Classification of tensors via null alignment

2.1. General tensors

The focus of this review is the algebraic classification of the Weyl tensor based on null
alignment, as put forward in [1, 2], and its applications in higher dimensional gravity. However,
the scheme of [1, 2] applies, more generally, to arbitrary tensors on Lorentzian manifolds.
Thus, in this section, we develop the classification for a general tensor 7. The classification
of the Weyl tensor then follows immediately as a special case.

2.1.1. Null frames. In the tangent space, we introduce a (null) frame

1 . .
{2 =€) = e( ),n =€ = e(o), mg = m(‘) =€; = e(’)}, (21)

with two null vectors £ and n and n — 2 spacelike vectors m¥' = m ;) (hereafter indices i, j, . . .
take values from 2 to n — 1) obeying

04, = nn, =0, n, =1, mDm = 5. (2.2)

Frame indices denoted by 4, i), ... and coordinate indices denoted by a, b, . . . take values from
0 to n — 1. The corresponding form of the metric

8ab = 2 (antp) + 8;;mPmy) (2.3)

is preserved under Lorentz transformations. The group of (real) proper orthochronous Lorentz
transformations is generated by null rotations of one of the null frame vectors about the other:

E=2+zm» — Loz, i=n, m® =m® —zn, 2.4)
A=n+zZm® — 177, i=¢ m® =m® -zt 2.5
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with 2(n — 2) real parameters z; and z;, spins described by an SO(n — 2) matrix X ij

{=4, i=n, m® =X\ m?, (2.6)
and boosts with a parameter A > 0
€=, i=3"n, m® =m®. @7

2.1.2. Definitions and general theory. Before defining the algebraic types of T based on
alignment, we need to present several useful definitions introduced in [1, 2].

Definition 2.1 (Boost weight (b.w.)). A quantity q has a boost weight (b.w.) b if it transforms
under a boost (2.7) according to

§=2"q. (2.8)
For a frame component T}; . = e;‘a)el(’i)) .- ~e‘('5)Tabu.C of a tensor T, it follows that

T =T(e a o(T, ;

T, ;=T @as ... &;) = 20T, 4 2.9)

and thus, b(T, ;) can be conveniently expressed as number of 0’s minus number of 1’s in the
frame component indices. Sometimes we will simply use the symbol b.

Definition 2.2 (Boost order). The boost order of a tensor T with respect to the null frame £, n,
m® is the maximum b.w. of its frame components

bo(T) = max {b(T, ;)| T, ; #0}. 2.10)

Looking at transformations (2.5)—(2.7), it is straightforward to show [1] the following.

Proposition 2.1 (InvariAant character of boost order [1]). Let £, n, m® and é\, n, m® be two
null frames with £ and £ being scalar multiples of each other. Then, the boost order of a given
tensor is the same relative to both frames.

Thus, the boost order of a tensor depends only on the choice of null direction (£) and we
will denote it by boy (T'). For components of the highest b.w., it also follows that, under null
rotations about £ (2.5),

ap=Tmg mg)=Tmg - -mz)=T, ;. (2.11)

Definition 2.3 (ANDs and multiplicity). Let T be a tensor and let bom.x (T) denote the
maximum value of boy (T') taken over all null vectors €:

bOmax (T') = max{boy (T) | (€) is null}. (2.12)

We say that a vector £ is an aligned null direction (AND) of a tensor T whenever
boyg (T) < bowax(T), and we call the integer bomax (T') — boy (T') its multiplicity.

Definition 2.4 (PAT and SAT). We define the principal alignment type (PAT) of a tensor T as
the integer:

PAT = bomax (T) — bomin (T), (2.13)
where

bomin (T') = min{boy (T') | (€) is null}. (2.14)
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Choosing £ with the maximal multiplicity (which is equal to PAT), we define the secondary
alignment type (SAT) to be the integer:

SAT = boyax (T) — bomin(T), (2.15)
with
bomin(T) = min{bog (T) | (n) isnull, (n) # (L)}, (2.16)

Definition 2.5 (Alignment type). The alignment type of an arbitrary tensor consists of the pair
of integers (PAT, SAT).

To determine the alignment type of a tensor one has to project the tensor 7' on the null
frame and sort its components by their b.w.:

T=>Y (T (2.17)
b

where
My =) T, ym@--m®, b(T, ;) =b. (2.18)

Then, using null rotations (2.4) and (2.5) about n and £, one has to set as many leading and
trailing terms in (2.17) as possible to zero.

For a tensor T, we define the following algebraic types in terms of its PAT (and SAT)
[1,2,8, 19].

Definition 2.6 (Algebraic types). A non-vanishing tensor T is of

e type G if PAT= 0, i.e. for all frames (T)(bomax(T)) # 0,

e type I if PAT> 1, i.e. there exists a frame such that (T) y, ) = 0,

e type Il if PAT> bonax (T), i.e. there exists a frame such that T = Zbgo (T) ),

o type D if PAT= bon (T') =SAT, i.e. there exists a frame such that T = (T) ),

o type Il if PAT> bon.x (T) + 1, i.e. there exists a frame such that T = Zb<0 (T)w),
o type N if PAT= 2bon.x (T), i.e. there exists a frame such that T = (T)(fbom(T)).

Note that this definition can be equivalently given in terms of (the maximal possible)
multiplicity of ANDs of T'. Let us remark that, although (for convenience) expressed in terms
of a given frame, the above definitions of algebraic types are in fact frame independent and
thus invariant (this follows from proposition 2.1, see also sections 2.4 and 2.5 for alternative
viewpoints in the case of the Weyl tensor). According to definition 2.6, type N is a subcase
of type III which in turn is a subcase of type II, etc. Sometimes, we use the term genuine
type* 1, 11, 111, meaning that T is of type I, II or III and not more special, i.e. not II/D/III/N,
D/II/N and N, respectively (nor zero). At points where T vanishes the corresponding type is
dubbed O.

Except for the type D, all the above types are principal types (see a summary in table 1)
since they refer to the alignment properties of just one AND (i.e. SAT is not relevant). If there
exist at least two distinct ANDs, i.e. SAT> 1, one may further use another AND for refining
the algebraic types using again definition 2.6, leading e.g. to the genuine types I;, II; or III; for
the secondary alignment types (1,1), (bomax (T'),1) and (bomax (T') + 1,1) , respectively.

Before moving to the Weyl tensor, let us illustrate this classification on simpler examples.

' Sometimes a different definition of type 1 is used, e.g., in [20]. However, in the case of the Weyl tensor, this
definition becomes in fact equivalent to ours.

2 Note, however, that in the literature the algebraic types of the Weyl tensor have a ‘mixed’ meaning, e.g., sometimes
‘type II' means ‘type II or more special’ and sometimes ‘genuine type II’ (note the use of ‘genuine’ in table 3).
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Table 1. (Genuine) Principal alignment types for a tensor T'. Recall that the (secondary) type D is
a subtype of type II such that PAT= bopax (T) =SAT,i.e. T = > _(T)v)-

Genuine type ~ PAT T

G 0 > (M

I > 1’ < bomﬂx Zh<hnmax (T)(b)
II bomax (T) Zhgo(T)(b)

I 2 bomax (T) + 1, < 2boma\x Zb<0(T)(b)

N 2b0max (T) > b=—boma (L))

2.1.3. Application to vectors, symmetric rank-2 tensors and bivectors. A vector
v = von + v;mP + v L (2.19)

has boyax (v) = 1. The three algebraic classes of vectors are the following. (i) A timelike
vector (v¥v, < 0) is of type G (alignment type (0, 0)), i.e. there are no ANDs. (ii) A spacelike
vector (vv, > 0) is of type D (alignment type (1, 1)). (iii) A null vector (v¢v, = 0) is of type
N (alignment type (2, 0)).

The decomposition of a symmetric rank-2 tensor R (such as the Ricci tensor), with
bomax (R) = 2, is

+2 +1 0

(i) (i) )
Rap = Roongny + 2Roinm™” py + 2Ro1n Ly + Rijm™” (qm*’p)

-1 B
+ 2R (@m ) + Ri1Lal . (2.20)

Possible types are G-(0, 0), I;-(1, 1) (note that the alignment type (1, 0) is forbidden by
proposition 4.10 of [19]), II-(2, 0), 1I;-(2, 1), D-(2, 2), I1I-(3, 0), I1I;-(3, 1), N-(4, 0). In the
case of four dimensions, the relation with Segre types is discussed in [1], while a discussion
in arbitrary dimensions can be found in appendix B of [19]. Note, for example, that for proper
Einstein spacetimes the Ricci tensor is of type D.

A bivector (an antisymmetric tensor of rank 2) F can be decomposed as

+1 0 -1

Fab = ZFO,-n[am(i)b] + 2F01n[a€b] + Ejm(i)[am(-f)b] + 2F1i€[am(i>b] . (221)

Thus, bomax (F) = 1. In general dimension, the following cases occur: type G-(0, 0), II-(1, 0),
D-(1, 1) and N-(2, 0). In even dimensions, there always exists an AND, and thus, a bivector is
of type II or more special (see the paragraph before lemma 4.6 of [21] and proposition 4.4 in
[22]). In four dimensions, only two cases exist [4, 23]: type D-(1, 1) with the canonical form
Fyp = dm®;m® ) + png, £y and type N-(2, 0) with the canonical form F, = Al,;m® )y, (in
[23] the relation with the Segre types is also discussed). See appendix B of [19] for related
discussions (including canonical forms and Segre types of F;;) in arbitrary dimension.

2.2. Classification of the Weyl tensor

We can now finally apply the scheme described above to the Weyl tensor (bopmax (C) = 2),
which satisfies the identities

Cabed = Claveay = 5 (Clavijea) + Cleditany)» Cur =0, Calpea) = 0. (2.22)
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Table 2. GHP notation [7] for the Weyl tensor components of boost weight b and spin s for an
n 2 4 dimensional spacetime.

b Component  Notation s  Identities Independent components

2 C(),'()j Q,‘j 2 Q,‘j = jS, Qii =0 %l’l(l’l—:&)

1 Coiji Wi ik 3 Wi ==y, Yy =0 %(" -1 —-2)(n-3)
Coroi v I W= Wy

0 Ciju it 4 Dy = Ppjiun = Puip Pigjen =0 F5(n—1)(n —2)*(n = 3)
Coitj @ 2 @) =0 = —3Pan
Coio1 @ 0 =9,

—1T  Cup vl 3 W =W =0 3 =D(n—2)(n=3)
Cioii v 1 V=W

-2 Cuj Q;; 2 Q;=9,9,=0 sn(n—3)

Thanks to these, in n spacetime dimensions, Cypcq has (n+2)(n+ 1)n(n — 3)/12 independent
components. In the frame (2.1), it admits the decomposition

boost weight +2 +1
; ; X X X P
Cabcd = 4C0,-ojn{aml(f)ncmfij}) + 8C010,-n{albncmf;)} + 4C0,»jkn{am$)m£’)mf1})
. (),
+4C0101n{albncld} + 4C011]n{albmc md} , (2.23)

. . > : I
+8Co,~1jn{aml(,’)lcm[(/]) + Cijklm{(;)méj)mgk)m((]i

—1 -2

, — —
+ 8Ci01i iy lmy) + ACu i mPmly) +4Cu il mi 1my)

where the various components have been ordered by b.w. Throughout the review, the Weyl
components will be expressed in the GHP notation of [7], summarized in table 2 along with
identities following from (2.22). For transformations of the components under null rotations,
boosts and spins, see [14, 7].

In the case of the Weyl tensor, it is useful to specialize definition 2.3 to the following.

Definition 2.7 (WAND). A null vector field £ is a Weyl aligned null direction (WAND) if it is
an aligned null direction of the Weyl tensor. A WAND £ is a multiple WAND (mnWAND) if its
multiplicity is greater than 1.

It will also be useful to introduce a special nomenclature for Weyl tensors of type II or
more special.

Definition 2.8 (Algebraically special Weyl tensor). A Weyl tensor is said to be algebraically
special if it admits a multiple WAND?.

If the Weyl tensor is of the same algebraic type at all points of the spacetime, then the
spacetime is said to be of the corresponding algebraic (Weyl) type (and similarly for an open
region of the spacetime).

The genuine algebraic types of the Weyl tensor (‘Weyl types’, see the text following
definition 2.6) following from definition 2.6 and the comparison with Petrov types in four
dimensions are given in table 3. Note that in four dimensions this algebraic classification

3 Note that this is different from the definition originally used in [1, 2] and later in some other papers. There type
I was also considered ‘special’ when n > 4. However, in analogy with the n = 4 case (where algebraically special
means admitting a multiple PND), and for other reasons [24, 8], we use the terminology of definition 2.8.
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Table 3. Possible Weyl/alignment (genuine) types in higher dimensions (definitions 2.6 and 2.5)
compared to the four-dimensional case [2].

n >4 dimensions Four dimensions
Weyl type alignment type | Petrov type
G (0,0)

I (1,0)

I; (1,1) I

I (2,0)

II; 2,1 II

D (2,2) D

11 (3,0

11, 3,1 11

N (4,0) N

is equivalent to the Petrov classification, and the notion of WAND coincides with that of a
principal null direction (PND). However, the case n = 4 is somewhat special in that there exist
always exactly four PNDs (possibly repeated), so that the type G does not exist, and there are
even fewer possible types since I=I;, II=II;, III=III; [1]. By contrast, an n > 4 spacetime may
admit no WANDs (type G, which is the generic situation [1]), a finite number of WANDs, or
infinitely many. In any dimension, there is a unique multiple WAND for the genuine types II
(double), III (triple) and N (quadruple), whereas there exist at least two (both double) for type
D. However, in the latter case, there may exist also an infinity of mWANDs*. For a given type,
further subtypes can be defined when some (but not all) of the components of the Weyl tensor
having maximal b.w. vanish [2, 12, 14]; see section 2.3 and table 4.

2.3. Spin types: a refinement

From the viewpoint of the null alignment classification, for any given Weyl type more special
than G, it is natural to employ a null frame (2.1), where £ has maximal multiplicity’. This frame
is defined up to null rotations about £ (2.5), spins (2.6) and boosts (2.7). Boosts act ‘trivially’
on the frame Weyl tensor components (in the sense that they produce a simple rescaling, at
most), while null rotations leave the Weyl components of maximal b.w. unchanged. On the
other hand, components of fixed b.w. can be characterized in terms of basic constituents which
transform under irreducible representations of the spins (for instance, for b.w. —2 components,
these reduce to the tracefree symmetric matrix €2; 5 for b.w. 0 components, the constituents are
the tracefree part of ®; i, ®, ®(;;), and the tracefree part of ®;;); and similarly for other b.w.s,
cf table 2). It follows that spin-invariant quantities defined by the highest b.w. constituents are
the properties associated with £. As proposed in [14] (but see also [2]), it is thus sound to build
a refinement of the alignment classification based on geometric relations between the highest
b.w. constituents. The types arising are referred to as spin types. In particular, these include
the coarser subtypes (such as I(a), II(a), II(b), etc) defined in [2] (cf also [12, 14]), see below.

4 As shown in [25], for a general n, the set of mMWANDs of a type D Weyl tensor is homeomorphic to a sphere S¥,
with the dimension k being at most n — 4. When k = 0, the sphere S° reduces to two points, representing the unique
pair of mWAND:s. This is in fact the generic situation in any dimension and the only possibility for n = 4.

3 For type G, there is no aligned null direction, and for type I;, there are more than one with the same multiplicity.
In order to be able to define the ‘spin type’ at a point, for these types, one thus additionally needs to define a ‘total
ordering’ between the spin types associated with different null directions—see [15] for more details and for an explicit
choice of total ordering in 5D.

8



Class. Quantum Grav. 30 (2013) 013001 Topical Review

Table 4. Equivalent criteria for various algebraic types of the Weyl tensor. Note that the Bel—
Debever criteria or conditions involving the superenergy tensor have not been worked out for all
subcases. The last four columns list vanishing Weyl components for a given (sub)type ordered
by boost weight (components vanishing due to the identities given in table 2 are in parentheses).
A useful ‘mixed’ subtype of type II, namely II'(abd) (for which also some b.w. —1 components
vanish), has also been defined (see also section 8.4.5). The same conditions can be also used
for the secondary classification (e.g., the condition for type II applied to a second mWAND n in
type D spacetimes). Recall (section 2.3) that in four dimensions the following equivalences hold:
(a)=11=I1(b)=11(c), I(abc)=11(a), I(abd)=I1I and II'(abd)=111(a)=N [12].

Type Bel-Debever Superenergy +2 +1 0 -1
I Z[eCaJ;,C[df_/JZ"E” = 0 'Z,bcdﬂ"ﬂ"ﬁcﬂd = O Q,‘_/
I(a) £Capeal”€° =0 Q2 v
1(b) Qij Wi ik
II LeCapreals€? =0 Tabeal®LP€6 =0 Qij Wi (W)
(a) £ Coppreal it =0 Q2 Wi (W) )
Coupeal?lc =0
11(b) Q;j Wi (W) ‘D,-Sj
I(c) Qjj Wi () D
1(d) Capfealat® =0 Q;; Wi () o
H(abc) L1eCaplicaly =0 Q;j Wi (W) D
(@, D7)
1l(abd) Cabetalert® =0 Tapeal™” =0 QWi (W) P
(@, @)
W(abd) — Cupeal” =0 Qi Wi (W) ij v
(P, P%)
I L1Cablicalyy = 0 Tapcalc =0 Q;j Wi () Dijur, P
Cahc[deejec =0 (CI)’ CD,S])
1(a) €eCasiical sy = 0 Qi Wi (W) P, @Y
Cupeal® =0 (®, D7)
11(b) Qi (W) P P
(P, P%)
N Cabeales =0 Tapeal® =0 ;5 Wije (W) Dijur, P Wiy

(@, 05) (V)

In four dimensions, spins reduce to a U(1) transformation so that this refinement is trivial
(except for type II(D), where it takes into account the possible vanishing of the real/purely
imaginary part of W,). However, in any higher dimensions, the spin-type refinement indeed
enables one to discriminate between Weyl tensors having the same alignment type. As a
peculiar feature of five dimensions, the highest b.w. constituents are represented only by
square matrices, vectors and a single scalar [14, 15] (see also below). This makes it possible
to carry out the 5D spin-type refinement, and its intersections with the null alignment and the
bivector operator (section 2.6) schemes, in a fully explicit manner [15]. As it turns out, spin
types can be used, for instance, to discriminate between different type N (or type III) Weyl
operators having the same Segre type. The same method works in principle in any higher
dimensions but working out all details explicitly may become cumbersome. In particular, the
tracefree part of @, is itself a “Weyl tensor’ (in an (n — 2)-dimensional Riemannian space),
so that clearly the classification cannot be given in the closed form for a generic n. Nevertheless
this scheme may be very useful for particular purposes. Here, we simply summarize the coarser
subclassification consisting of the ‘subtypes’ mentioned in [2, 12, 14]: although this does not
cover all spin types, it has the advantage that it applies to arbitrary dimensions.
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Type I. Type lis characterized by b.w. +1 components. These can be irreducibly decomposed
as [14]

Wi = — 15 (W — 80 ¥)) + i, iy =0, Wy =0, Wy =0. (2.24)
Thus, one can define two invariant subtypes:

(a) I(a): ¥; =0 & W;;; =0,

(b) Ib): ¥ix =0 & Wy Vi = %‘I’i‘l’i-

In four ~dimensions, W, vanishes identically, so that I=I(b) and I(a)=II. In five
dimensions, ¥;jx can be reduced by duality to a symmetric traceless matrix [14, 15].

Type II(D). Zero b.w. components are specified by CDZAj and ®;;;. When n > 4, the latter can
be decomposed like a Riemann tensor in an auxiliary (n — 2)-dimensional Riemannian space
(see also table 2):

~ 4 S S -
Dy = Piju — p— (B ®; — S ®yy) + mq)ai[kal]j’ D=0 (n>4).
(2.25)
In turn one can decompose
O ~ -
s _ &S S _
o = o+ 8, Bl =0 (2.26)

Therefore, the following subtypes appear:

(a) I(a): @ = 0,
(b) TI(b): ®; =0,
(©) TI(c): Dy =0,
(d) T(d): @} =0.

These subtypes can also combine if two or three of the above conditions hold
simultaneously—some of such possible combinations are given in table 4. The same subtypes
apply to type D with a similar notation. In four dimensions, <I>$. is fully specified by <I>§S, and
®; j; reduces to the only non-trivial component ®,3,3 = —®, so that II=II(bc) and II(ad)=III.
In five dimensions, CTDi ki vanishes identically, so that II=II(c), and II(abd)=III; moreover, by
duality, CIDZ‘? can be reduced to a vector [15]. In six dimensions, &D,- ki and CblAj can be further
decomposed into their (anti-)self-dual parts [14].

!

Type 11l.  The subclassification of type III is fully analogous to that of type I, with W,

replacing W, j;:

(a) M(a): ¥/ =0 < V. =0,

iji
T ’ / 2 INTU
(b) TM(b): ¥}, =0 & W/, W/, = -2 W)W,

Obviously, in four dimensions, III=III(b) and III(a)=N. In five dimensions, ‘11[’ x can be
reduced to a symmetric traceless matrix [14, 15].

Type G and N. Type G and type N spacetimes are characterized by b.w. +2 components,
respectively, which are represented by a symmetric traceless matrix €2;;/€2;;. These types can
thus be further classified in any dimension according to, e.g., the Segre characteristic (or/and
spin types, see above) of such matrices. See [14, 15] for discussions in four and five dimensions.

10
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2.4. Bel-Debever criteria for the Weyl tensor

The Weyl types are defined above in terms of the multiplicity of one (or two) WANDs, i.e. by
the vanishing of certain Weyl components in a null frame. However, by proposition 2.1, the
multiplicity of a WAND does not depend on the chosen frame. Indeed, there exist manifestly
frame-independent criteria that uniquely determine the multiplicity of a given null direction.
These are either based on the Weyl tensor itself (the Bel-Debever criteria, this section), or
on a superenergy tensor (built as a ‘square’ of the Weyl tensor, see the next section). The
Bel-Debever criteria represent a set of polynomial conditions for an unknown null vector £ to
be a WAND of a given multiplicity. At present, solving these polynomial equations (or prove
the non-existence of a solution) seems to be the simplest way how to determine the algebraic
type of a given metric.
For a null vector £, the following equivalence holds in an arbitrary dimension [1, 12]:

£ is a WAND (type I) @Z[eCa]hC[dﬂf]EbEC =0, (2.27)
£ is a WAND of multiplicity > 2 (type II) < £;.Cujpica’ f]Zb =0, (2.28)
£ is a WAND of multiplicity > 3 (type III) < €1.Cupjieals) = 0 = Capcralert’, (2.29)
£ is a WAND of multiplicity 4 (type N) & Capjeale) = 0, (2.30)

where it is understood that each type is a special subcase of the preceding types (i.e. each of
the conditions on the r.h.s. implies the preceding conditions).

Similar conditions for several of the subtypes of section 2.3 also take a simple form
and are summarized in table 4. Note that (2.27) [1] coincides with the standard Bel-Debever
condition for type I in four dimensions, while relations (2.28)—(2.30) [12] are distinct from
their four-dimensional counterparts [26-29] (see also, e.g., [4, 23]). However, they become
in fact equivalent when n = 4. This is due to the fact that various distinct Weyl subtypes
are equivalent in the special case n = 4 (see section 2.3) and thus are the corresponding
Bel-Debever criteria [12].

2.5. WAND:s as the principal null directions of the superenergy tensor

In higher dimensions, a superenergy tensor can be defined as [30, 13]
Tobed = CaecfCo’a” +CaoafCre’ — 18avCefeeC i 18cdCaessCp! LS %gabgcdcefghcef " (2.31)
with symmetries

Tabea = Tiav)cd) = Ticdav)- (2.32)
In four and five dimensions, the superenergy tensor is completely symmetric [30]. In four

dimensions, it is moreover traceless, and it reduces [31, 30] to the well-known Bel-Robinson
tensor [27, 32]

%bcd = Caechbedf + Caedfcbecf - %gabgcdcefghcefgh (11 = 4) (233)

Necessary and sufficient polynomial conditions for WANDs of a given multiplicity can also
be elegantly expressed in terms of the superenergy tensor [13]:

¢ isa WAND & Topeat®llece? =0, (2.34)
¢ is a WAND of multiplicity >2 < Typea?te? =0, (2.35)
¢ is a WAND of multiplicity >3 < Tyt =0, (2.36)
¢ is a WAND of multiplicity 4 < Topeat? = 0. (2.37)

These conditions are equivalent to the Bel-Debever conditions of section 2.4 [13]. Applications
of similar ideas to arbitrary tensors are also discussed in [13].
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2.6. Bivector operator approach and further refinements of the classification

In four dimensions, the Petrov classification of the Weyl tensor admits various formulations
that, while describing properties of different geometric objects (bivectors, null directions,
spinors), are in fact equivalent (see, e.g., [4, 33, 23] for reviews and references). It is thus
natural to investigate whether such alternative methods also extend to higher dimensions,
and whether they are still equivalent to the null alignment scheme. Two such approaches
have been already summarized above in sections 2.4 and 2.5. Here, we discuss the bivector
operator approach, originally proposed by Petrov himself [3] and recently studied in higher
dimensions in [14, 15].° As it turns out, and in sharp contrast with the n = 4 case, this method
is inequivalent to the null alignment classification when n > 4. Since the latter is rather coarse,
developing the algebraic classification of the Weyl bivector operator will thus also lead to a
more refined scheme. A further refinement can be obtained by intersecting this with the spin
types described in section 2.3.

Given a spacetime point p € M, let A’T,M be the N = n(n — 1)/2-dimensional real
vector space of contravariant bivectors (antisymmetric two-tensor F% = Fl%1) at p. By the
first equation of (2.22), the map

C: F%r CPyF“ =FCy™ (2.38)

determines a linear operator on A2T,M, which we shall refer to as the Weyl operator. In a
given basis of /\ZT,,M , C can be represented by an N x N matrix. One can thus study invariant
properties of C in order to classify the possible algebraic structures of the corresponding Weyl
tensor. As originally suggested by Petrov [3], one can in particular characterize the Weyl
operator in terms of its elementary divisors and the corresponding Segre type. It is well known
that in four dimensions the Petrov (i.e. Segre type) classification of the Weyl operator is fully
equivalent to the null alignment type classification: type I corresponds to [111, 111], type D
to [(11)1, (11)1], type II to [21, 21], type N to [(21, 21)] and type III to [(3, 3)] [3. 4, 23].
However, this appears to be a ‘miracle’ of the n = 4 case only, and in higher dimensions,
a particular alignment type can allow for different Segre types, and vice versa. For example,
in five dimensions, the type N includes two different Segre types, namely [(2221111)] and
[(22111111)] [15] (the former, in turn, consists of two different spin types). Furthermore, in
higher dimensions, a type Il Weyl operator can be nilpotent [15] (in contrast to the 4D case):
as a consequence, for instance, a nilpotent type D operator and a (certain) type III operator
may have the same Segre type [15]. It is clear that the two classification schemes are thus in
general independent.

This new feature of higher dimensions can in fact be exploited to arrive at a refinement
of the null alignment classification: by intersecting the Weyl types with the Segre types, one
can define a number of subtypes and, thus, discriminate between spacetimes which would be
undistinguishable by considering only one of the two classification schemes. The examples
mentioned above already demonstrate this. Additionally, let us mention that Myers—Perry
black holes and Kerr black strings are both of type D, but they possess a different eigenvalue
spectrum (see appendix C of [15] for details in the 5D case).

In addition to the Segre type, one may study other properties of the Weyl operator, such as
rank, kernel, image, etc. This may be useful also for practical purposes, and for algebraically
special Weyl types in 5D, it has been discussed in some detail in [15] (but some of these
results hold for any #). Let us just mention here, for example, that the two possible Segre types

6 Petrov already observed that the bivector method (in particular, a classification based on the Segre characteristic of
a curvature operator acting on bivector space) was well applicable in any dimensions and with an arbitrary signature.
But, as he noticed ‘the number of possible types ...increases rapidly with n and depends on the possible signatures’
[3], he then naturally developed his scheme in full detail only in the n = 4 case with the Lorentzian signature.

12
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of type N Weyl operators can be also distinguished by just looking at rank(C). Furthermore,
the difference between the indices of nilpotence serves as an easily testable criterion for
distinguishing the alignment types III and N (this was also previously noted in [34]), with no
need to find the mWAND and counting its multiplicity.

Finally, let us observe that the bivector operator approach has also proven fruitful in the
study of spacetimes that can (or cannot) be characterized by their curvature invariants (see
section 5 for some results and references).

2.7. Inequivalent methods for the classification of the Weyl tensor

2.7.1. Spinor approach in five dimensions. In four dimensions, Penrose presented a spinor
classification of the Weyl tensor based on the multiplicity of the factors of the Weyl polynomial
(which is constructed from the totally symmetric, four-index Weyl spinor) [35]. Owing to the
fact that an SL(2, C) spinor naturally defines a null direction in spacetime, it is straightforward
to see that Penrose’s scheme is equivalent to the 4D null alignment (as well as to the Petrov—
Segre type) classification (see also [33, 4]).

As an extension of the Petrov—Penrose classification, De Smet put forward a spinor
classification of the Weyl tensor in 5D [36] (recently further investigated in [37]). In contrast to
the 4D case, in 5D, the spinor classification is not equivalent to the null alignment classification
considered in this review (section 2.2). We thus only briefly summarize here a few basic facts
about the spinor approach and mention some examples that demonstrate essential differences
w.r.t. the null alignment classification, referring the reader to the relevant references for more
details.

Compared to 4D, a new feature of the 5D Weyl spinor is that, in general, the corresponding
Weyl polynomial does not factorize (corresponding to the algebraically general ‘type 4°).
When factorization takes place, one has an ‘algebraically special’ spinor (or De Smet) type.
According to the possible multiplicity of the factors, there exist in principle 12 spinor types
[36]. However, a careful analysis of the reality condition on the Weyl spinor reveals that
only eight of those are actually permitted [37]. Explicit examples of most De Smet types are
known (see [36] for a definition of the notation): vacuum black ring (‘type 4’ [37]); static
black string (‘type 22’ [36]); Schwarzschild and Myers—Perry black hole (‘type 22’ [36, 38]);
direct product of a 4D type N spacetime with a spacelike dimension (‘type 1111’ [37]); and
direct product of a timelike dimension with an Euclidean (self-dual and conformal to a Kéhler
metric) 4D Einstein space (‘type 11 11’ [37]). In fact, the possible De Smet types of general
5D direct/warped product spacetimes have been determined [37]. See [36, 39, 37] for more
examples.

The null alignment type of (some of) the above-mentioned metrics is given in table 7
so that one can compare how the two schemes work for such examples. More generally,
the connection between the 5D null alignment and the De Smet scheme has been analysed
systematically in [37], and the possible De Smet type of type D, type III and type N Weyl
tensors (in the sense of section 2.2) has been determined. It turns out, for example, that type III
and type D Weyl tensors may be algebraically general in the spinor classification (such an
explicit example, pointed out in [40], is the direct product of a Robinson—Trautman (RT) type 111
vacuum spacetime with a spacelike dimension), while type N is algebraically special also in
the spinor classification. Conversely, any special spinor type (except possibly for ‘type 317)
may correspond to null alignment type G: for instance, the homogeneous wrapped object’ is
of De Smet special type 22 [36] but of null alignment type G [24]. It is thus clear that the two
classification schemes are really distinct, and neither of these is a refinement of the other one.

To our knowledge, in dimension greater than 5, a spinor classification of the Weyl tensor
has not yet been developed.
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2.7.2. Optical structure approach. The notion of a 4D null geodesic congruence with
vanishing shear admits various higher dimensional generalizations; see, e.g., [41, 42] (and
[11] for a recent overview). Consequently, it is conceivable that an extension of the GS
theorem to higher dimensions might admit various, inequivalent formulations. One possible
such extension was studied in [43, 44] (a different one is discussed in section 4). A definition of
‘algebraically special’ spacetimes was proposed which, subject to a genericity assumption on
the Weyl tensor (along with assumptions on the Ricci tensor allowing for Einstein spacetimes),
implies the existence of an ‘optical structure’ (see [43, 44] for a definition). In four dimensions,
this reduces to the standard type II condition (and an optical structure indeed defines a
geodesic shearfree null congruence in 4D). However, in five and higher dimensions, the
‘algebraically special’ condition of [43, 44] is more restrictive than the condition defined in
section 2.2 (definition 2.8) since, in addition to the vanishing of positive b.w. components, it
also constraints certain b.w. 0 and —1 components (see [10] for details in five dimensions).
Counterexamples are known [43, 44] showing that such ‘algebraically special’ condition is not
necessary for the existence of an optical structure. As shown in [10, 11] (see proposition 4.7
of this review), in 5D, this ‘algebraically special’ condition can in fact be relaxed to the type
IT (or more special) condition defined in section 2.2 (which is also not a necessary condition
for the existence of an optical structure [10]). By contrast, in more than five dimensions, this
is likely not to be the case.

2.8. Interpretation of different boost-weight components of the Weyl tensor using the equation
of geodesic deviation

Recently, the equation of geodesic deviation

D?z¢

dr?

which describes the relative acceleration of close free test particles (with no charge and no
spin, and ‘small’ relative velocities), has been used for interpreting different b.w. components
of the Weyl tensor in higher dimensions [45] (thus extending the classical works [46—48] for
n = 4). Here, u = u“d,, with u® = %, is the velocity of the reference particle moving along a
timelike geodesic x? (t), with t being its proper time. The separation vector Z = Z“9, connects
the reference particle with another test particle moving along a nearby timelike geodesic.

= R, uz?, (2.39)

In a frame with one timelike vector Eg) = u and (n — 1) spacelike vectors Ey, % =0,
and by choosing initial conditions, one can set Z[°! = 0. Introducing a frame (2.1) by
1 1
t=—(@+Epn), n=—(u+Epy), mg = Ey,  (2.40)

V2 V2
and decomposing the Riemann tensor in terms of the Ricci and Weyl tensors (and using
Einstein’s equations to express the Ricci tensor in terms of the energy—momentum tensor 7;;),
equation (2.39) becomes

.. 2A 1 :
7 7z o7z _ _—(y. 4 @) zU]
(n—1)(n—2) ﬁ( el
8 (1 1 2 [
to— | T 2 + T 27 = (T[oum t— T) Z (2.41)
. 2A . . 1 1 ;
gl — =7 gl @S U v whyzI _ Z Q. QL zU
n—Dm—2- T ﬁ( +¥) 5 (82 + )
8 . 2 .
R— [Tmm 2N+ Ty 2V — (TlOJlOJ o7 T) A } : (2.42)
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One can observe that, similarly as in 4D, the influence of cosmological constant A is
isotropic, the effect of €/ ; [£25] is transverse and corresponds to a transverse gravitational
wave propagating in the +E;; [—E[;] direction, the components W, [¥;] cause longitudinal
deformations, and ® and CD?J. lead to ‘Newton—Coulomb’-like tidal deformations. Effects of
T.» obviously depend on the specific matter content. Note that, in the approximations under
which (2.39) applies, only (some of) the electric components [30, 49, 19] of the Riemann
tensor appear, and magnetic effects are thus not detectable at this level. See [45] for references
going beyond this approximation.

3. NP and GHP formalisms

In four dimensions, NP and GHP formalisms are very useful computational tools, especially
when studying spacetimes with a given Petrov type or admitting a null congruence with
special geometric properties. These have been extended to higher dimensions in [50, 51, 34]’
and [7], respectively, and have been already proven fruitful in several studies. In addition to
the applications discussed in this review, let us mention that the GHP formalism has also been
useful in the study of perturbations of near-horizon geometries [16—18]. Let us now summarize
these methods.

3.1. Ricci rotation coefficients, optical matrix and optical constraint

3.1.1. Ricci rotation coefficients and optical matrix. We denote the covariant derivatives of
the frame vectors as

Lab = Vbea’ Nab = Vbnaa Map = me(i)a- (31)

i
The projections onto the basis are the Ricci rotation coefficients L,;, N,;, M ;. Orthogonality

‘ab> “'ab’
properties of the basis (2.2) imply

i i i Jj
Noa+Liz=0, Mo+Ls=0Msz+Nz=0, Mjz+Ms=0, (3.2)

i
Lo =Nz =M;; =0. (3.3)
The transformation properties of the Ricci rotation coefficients under Lorentz transformations
of the basis vectors are given in [51].
The vector field £ is tangent to a null geodesic congruence if, and only if,
k; = Lig = Lypym™P¢® = 0. (3.4)
In such case, one can always choose an affine parameterization with L;p = 0. Moreover, one
can pick up a frame parallelly transported along ¢, i.e. such that ]ll/l jo 0 = Ny [51]. If
det p # 0 (see definition (3.5)), one can further set t; = L;; = 0 by an appropriate choice of

the frame [7].
In the space of the spacelike frame vectors, the optical matrix p is defined as

pij = Lij = Lym*m"". (3.5

It is convenient to decompose p into its trace & (expansion), trace-free symmetric part o;; and
antisymmetric part A;;:

1 1
pij = 0ij +068;j + Aij,  0ij = pij) — mpkk&j» 0= 5 Pk Aij = prijl- (3.6)

7 Note a minor correction to [51]: the missing term msi{k‘sl]j should be added on the r.h.s. of equation (11p).
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Shear and twist of £ are then given by the traces 0> = 07 = 0;;0;; and w* = —A2 = —A;;A ;.

For an affinely parametrized £, the optical scalars can be expressed in terms of £ as
1

. 1 2 .
2 b _ 2 _ b
o~ = E(a;b)ﬂ(a ) m (Zafa) s 6= " Zfa;a, w = E[a;b]Z” . (37)
Let us also introduce covariant derivatives along the frame vectors by
D = ¢V, A =nV,, 8i = m;Va. 3.8)

Their commutators can be found in equations (21)— (24) of [34].

3.1.2. Sachs equation. Contractions of the Ricci identity v,.pe — Vg:ep = Ryapev® With
various combinations of the frame vectors (2.1) lead to the full set of Ricci identities (or ‘NP
equations’) given in [51]. Among these, the Sachs equation turns out to be particularly useful
as it determines how p ‘propagates’ along £. For a geodesic, affinely parametrized £ and using
a frame parallelly transported along £, it reads simply [50, 51]

1

Dpij = —pirprj — uj — 2R005,»J-. (3.9)

This can be decomposed into its irreducible parts as [S1] (see also [52] for previous related
results)

1 1
Daij = — (Gzij — P 20'28,'J‘) - (Alzj + —2w28,-j> — 290ij - Qijv (310)

Roo, (3.11)

DA,-J' = —2914,']' — 2Uk[in]k~ (312)

3.1.3. Optical constraint. When the Riemann type is I (w.r.t. £), the curvature tensor does not
enter (3.9). Under this assumption, this equation has been integrated in various special cases
in order to determine the dependence of p on an affine parameter r along £ in [53]; see also
[54, 51, 55-57]. Certain important consequences will be discussed in an appropriate context
in the following. It is however worth mentioning already here the case in which p obeys the
so-called optical constraint (OC) [56] (see [10, 11] for recent discussions):

PikPjk X Pij)- (3.13)
This implies [p, p”] = 0 so that p is a normal matrix; by using spins, it can be put into a
block-diagonal form

. 1 1 —ab 1 1 —ab,
p_adlag(l’”'l’m[abl 1 ]"'.’Tazb%[abu 1 ],0,...,0).
(3.14)

This condition appears to be of interest in the study of algebraically special Einstein spacetimes
and will occur several times in the following sections. In particular, it is satisfied by the
Kerr—Schild vector of all (generalized) Kerr—Schild spacetimes [56, 58] (section 8.1), by non-
degenerate geodesic double WANDs in asymptotically flat type II vacuum spacetimes [57]
(section 6.2), by the mWAND of type III/N [50] (section 4.2.3) and (in five dimensions)
genuine type II [10, 59] Einstein spacetimes (see sections 4.2.3 and 4.2.1, which also includes
a discussion of type D). In 4D, this is a necessary condition for mWANDs [10], but it is not
so in higher dimensions, in general [10, 11]. See [56, 53, 10], for further discussions. Let us
emphasize that we will not assume (3.13) in what follows.
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Table S. List of those Ricci rotation coefficients L.; and N; (defined in (3.1)) which are also GHP
scalars. The first column gives the coefficients in the NP notation, and the second column gives the
corresponding GHP quantities. Columns b and s, give, respectively, the boost weight and spin of
each quantity.

NP GHP b s Interpretation

L pij 1 2 Expansion, shear and twist of £
L; 0 = pPii 1 0 Expansion of £

Lo «; 2 1 Non-geodesity of £

Ly 0 1 Transport of £ along n

Nij  pj —1 2 Expansion, shear and twist of n
N;i p' =p; —1 0 Expansionofn

Ny K] —2 1 Non-geodesity of n

No T 0 1 Transport of n along £

3.2. GHP scalars

By studying the transformation properties of L; and N,; under spins (2.6) and boosts (2.7)

[51], we observe that, with the exception of L;; and 1\1/[ ja» the Ricci rotation coefficients are
GHP scalars®, as defined in [7] by the following:

Definition 3.1. A quantity q is a GHP scalar of spin s and b.w. b if, and only if, it transforms as

Tiyoiy &> Xijy oo Xij Ty (3.15)
under spins X € SO(d — 2), and as
T+ AT, i, (3.16)

under boosts.

GHP scalars appearing in the NP and GHP formalisms, their b.w. b and spin s, and their
geometric interpretation are summarized in table 5 [7].

If g is a GHP scalar, then Dg, Aq and §;q are not. However, one can define new GHP
differential operators, which are covariant, as follows [7]:

Definition 3.2. For a GHP scalar T,;,..;. of b.w. b and spin s, the GHP derivative operators
b, b, O; are defined as

s
k
bTiy...; = DTiyiyniy — bL1o T iy...0, + ZMi,OE1~--i,,|ki,+l---iSa (3.17)
=1
i 5
, k
D' Tiviped, = ATy, = DLt T, + O Mit Tk (3.18)
=1
i s
k
O0iTj gy = 8iTjjpse = DLAiT oy + D Mji T k- (3.19)

r=1

As pointed out in [7], b, b” and 0; obey the Leibniz rule and annihilate §;;. Note that for a
GHP scalar T;,;,...;, of b.w. b and spin s, bT;,j,...;,, D'T},sy..i, and 0,7}, ;,..;, are GHP scalars, with
boost weights (b + 1, b — 1, b) and spins (s,s,s + 1), respectively. Note also that the derivative
operators p and D coincide if £ is geodesic and affinely parametrized and a parallelly transported
frame is employed.

8 Note that GHP scalars are scalars under the coordinate transformation, but not under frame transformations.
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For the Weyl components, we will follow the notation of [7], summarized in table 2 (see
[7] for the Ricci components).

Contractions of the Bianchi identity Rp(cq:c] = 0 with various combinations of the frame
vectors (2.1) lead to the full set of Bianchi identities. They were first given in [50] and rewritten
and simplified in the GHP notation in [7] (where some redundancy in the equations of [50]
was also removed”). The Ricci identities and the commutators have also been rewritten in the
GHP notation in [7].

4. Extensions of the Goldberg—Sachs theorem

In four-dimensional general relativity, the GS theorem [60] (see also [61]) has played an
important role in the study of solutions of the Einstein equation with an algebraically special
Weyl tensor. It is, in particular, the first step in exploiting the algebraically special property to
solve the Einstein equation—this is how the Kerr metric was discovered [62], for example. In
this section, we shall restrict to the case of Einstein (including Ricci-flat) spacetimes. If matter
fields are not considered (but see, e.g., [4, 33, 63] and references therein for generalizations),
the 4D GS theorem can be stated as follows: in a non-conformally flat Einstein spacetime, a
null vector field is a multiple PND if, and only if, it is geodesic and shearfree (i.e. « = 0 = o).
It thus provides one with a fundamental connection between the geometric optics of a null
congruence and the algebraic structure of the Weyl tensor.

It is therefore natural to investigate whether a similar connection holds also in the case
of higher dimensional Einstein spacetimes, with the notion of PND replaced by that of
WAND (see section 2.2). However, it became clear already from the pioneering work of
Myers and Perry [64] (see also [65]) that higher dimensional spinning black holes possess
mWANDs with non-zero shear (although still geodesic), as opposed to the PNDs of the
Kerr spacetime. More recent work has shown that in fact this behaviour is generic when
n > 4, algebraically special shearfree solutions being a very special subset of all algebraically
special spacetimes. For instance, the mWAND is shearing in the case of direct products of an
expanding algebraically special 4D solution with some flat direction (such as Schwarzschild or
Kerr black strings/branes) [66]'° and for expanding type III/N Einstein spacetimes [50], and all
geodesic twisting WANDs are shearing in odd dimensions [51]. Furthermore, it was observed in
[66, 67] that the higher dimensional Bianchi identities applied to type II spacetimes do not
require the corresponding mWAND to be geodesic (as opposed to the 4D case), unless a
‘genericity’ assumption on the Weyl tensor is made. While the first example of non-geodesic
mWANDs was given in [66] in any n > 7 (see also [68]), a number of solutions with the
same property have been subsequently constructed using product geometries [24, 67], also for
n=>5,6.

The above examples clearly demonstrate that the GS theorem does not extend in an
obvious way to higher dimensions. A question thus arises as to whether an n > 4 extension
of the GS theorem exists at all, and if so, whether such an extension is unique, and what
formulation(s) it admits. The most desirable form of a higher dimensional generalization of
the GS theorem would be a statement of necessary and sufficient algebraic conditions on
certain Ricci rotation coefficients (such as k, p) for a null vector field £ to be a multiple

9 L Wylleman has observed that some further redundancy can still be removed (private communication).

10 et us here correct some typos and minor mistakes in [66]: there should be m = n — 2 instead of n = m — 2 in the
last sentence of iectlon 2; in the third line of section 6, m should be replaced by #; as pointed out in [67], there is a
missing term + % CDI*}L on the Lh.s. of equation (44); in point (2) after proposition 10, the conditions on <I>S /<1>A should
be replaced by <I>24 = 0 = &3y = Pyy; there should be ‘Az is arbitrary’ instead of A3 in case (c) after proposmon
11. Note that the expression for Cj7p; in (14) of [66] is valid also for n; = 2.
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WAND. Moreover, this statement should reduce (at least in some sense) to the standard GS
theorem when n = 4.

However, recent work seems to indicate that there are no conditions which are both
‘necessary and sufficient” when n > 4. Moreover, it turns out that in higher dimensions it is
much more convenient to treat the ‘geodesic part’ and the ‘shearfree part’ of the ‘would-be-GS
theorem’ separately. The results obtained so far are summarized below.

4.1. Geodesic part

Preliminary results were obtained in [50, 66, 67] but the complete formulation of the geodesic
part has been proven in [9]. The main result is the following.

Proposition 4.1 (Geodesic part of the HD GS theorem [9]). An n > 4 Einstein spacetime
admits a multiple WAND if, and only if, it admits a geodesic multiple WAND.

Thanks to this result, there is no loss of generality in restricting attention to geodesic
multiple WANDs.

To arrive at this result, the authors of [9] proved an intermediate result which is of interest
in its own right, since it characterizes spacetimes that admits a non-geodesic mWAND, namely

Proposition 4.2 (Spacetimes with a non-geodesic mWAND [9]). An n > 4 Einstein spacetime
that admits a non-geodesic multiple WAND is foliated by totally umbilic, constant curvature,
Lorentzian submanifolds of dimension 3 or greater and any null vector field tangent to the
leaves of the foliation is a multiple WAND.

By combining propositions 4.1 and 4.2, it immediately follows that a spacetime admitting
a non-geodesic mWAND is necessarily of type D '! and possesses a continuous infinity of
mWANDs (this infinity being oo! or greater—cf also footnote 4).

The result of [9] is in fact stronger in the special case n = 5, namely

Proposition 4.3 (Geodesic part of the HD GS theorem for n = 5 [9]). A five-dimensional
non-conformally flat Einstein spacetime admits a non-geodesic multiple WAND if, and only if,
it is locally isometric to one of the following:

(i) A direct product dS; xS? or AdS3; x H?,
(ii) A spacetime with metric

ds’> = f(rdz? + f(r)~'dr* + r*Q*(—d? + dx® + dy?), 4.1)

k
with f(r) =k—ur2—x?2, Ql'=1+ Z(—ﬂ +x2+yh, (42

where 1 # 0, k € {1,0, —1}, X is (proportional to) the cosmological constant, and the
coordinate r takes values so that f(r) > 0.

4.2. Shearfree part

As seen above, the standard shearfree condition o = 0 (& p(j) « §;;, cf (3.6)) is by far too
restrictive when n > 4 [64, 65, 50, 51, 54]. On the other hand, various geometric conditions
can be considered which are different from o = 0 for a generic n, but which all reduce to
o = 0 if one makes the special choice n = 4 [41, 42, 69-72, 56, 43, 44, 11]. Dealing with

! More specifically, the type is D and purely electric (cf the definition in section 8.2); see [25] and remark 3.15 of
[19].
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the shearfree part of the GS theorem is thus more delicate since one should first find what a
proper formulation of a ‘generalized shearfree condition’ is.

There appear to be conditions on p that are sufficient for £ to be a multiple WAND, namely
p = 0 or p;; o §; [54, 51], which are however clearly non-necessary. On the other hand,
certain necessary conditions on p follow from the multiple WAND condition. Here, we will
summarize the latter results. However, explicit examples [10, 11] imply that (at least some of)
these necessary conditions on p are not sufficient for the spacetime to be algebraically special.

4.2.1. Results in five dimensions. Let us first discuss the n = 5 case, for which we have a
clear-cut result. In [10], the following is proved.

Proposition 4.4 (Shearfree part of the HD GS theorem for n = 5 [10]). In a five-dimensional
algebraically special Einstein spacetime that is not conformally flat, there exists a geodesic
multiple WAND £ and one can choose the orthonormal basis vectors m®so that the optical
matrix of £ takes one of the following forms:

1 a 0
@ p=b|—a 1 0 , “4.3)
0 0 1+4d?
1 a O
@) p=bl—a 1 0], “4.4)
0 0 O
1 a 0
(iiy p=b|—-a —-a* 0], 4.5)
0 0 0

where a and b are functions that may vary in spacetime. If the spacetime is type Il or type N,
then the form must be (ii) [50].

Kundt spacetimes (p = 0) are the only spacetimes belonging to more than one of the
above classes (in the trivial case b = 0). For b # 0, p is of rank 3, 2, 1 in case (i), (ii),
(iii), respectively. Only in case (iii) with a # 0 # b does £ violate the optical constraint
(3.13). Recently, it has been proven that case (iii) with b % 0 cannot occur for genuine type
II spacetimes [59] (see also [73]), so that in five dimensions the mWAND of a genuine type 11
Einstein spacetime always obeys the optical constraint. Furthermore, all type D (and thus all)
solutions are known in case (iii) with a # 0 # b, since one has the following further result.

Proposition 4.5 (n = 5 type D violating the OC [10]). A five-dimensional type D Einstein
spacetime admits a geodesic multiple WAND violating the optical constraint (i.e. case (iii) of
proposition 4.4 with a # 0 # b) if, and only if, it admits a non-geodesic multiple WAND (and
is thus comprised of the spacetimes of proposition 4.3).

And thus combining these results one has the following.

Proposition 4.6 (OC in n = 5 [10, 59]). Any five-dimensional algebraically special Einstein
spacetime admits a geodesic multiple WAND obeying the optical constraint (3.13).

In the twisting case, examples for each of the above canonical forms (i), (ii) and (iii)
are, respectively, Myers—Perry black holes (with b = /x/(x + x?), a = x/+/Xx, where

X = \/ a?cos?h + B2 sin® 6, a and B being rotational parameters [66]); Kerr black strings;
and dS; x S? (in the latter case see [10] for the form the corresponding mWAND £). When the
twist vanishes (a = 0) corresponding examples are, respectively, RT spacetimes [54] (which
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in fact exhaust case (i) with a = 0); Schwarzschild black strings dS;xS? (with a suitable
choice of a non-twisting £ [10]).

In [10], an example was given of an Einstein spacetime that is not algebraically special
and yet admits a geodesic null vector field with an optical matrix of the form (iii) above (with
a = 0), showing that the above necessary conditions on £ are not sufficient.

Consequences of proposition 4.4 have a geometrical meaning in terms of integrability
properties of certain totally null distributions [10, 11]. Combining the results of [10] with
the refinements of [59] (about type II) and of [11] (about Kundt spacetimes), we arrive
at sufficient conditions for the existence of an ‘optical structure’ [43] in five-dimensional
spacetimes (strengthening proposition 4.6 of [10]), namely

Proposition 4.7 (Sufficient conditions for an OS whenn = 5[10, 11, 59]). All five-dimensional
algebraically special Einstein spacetimes admit an optical structure. In the case of type D
spacetimes, there exist in fact (at least) two optical structures.

Observe that the converse of proposition 4.7 does not hold. This can be seen by taking a
black ring as a counterexample, since this admits a region where the Weyl type is I; [74] while
still possessing an optical structure [43].

A more detailed comparison between the results of [10] and those of [43] (where a
definition of ‘algebraically special’ is used which is different from the one of this review, see
also sections 2.7.2 and 4.3) can be found in [10].

4.2.2. Resultsinn > 6 dimensions for a non-twisting multiple WAND €.  There is a qualitative
difference betweenn = 4, Sandn > 5, i.e. the Weyl tensor possesses new ‘degrees of freedom’
in the components ®;;; in the latter case. This makes, in particular, the study of the Bianchi
identities more difficult. At present, there is thus no analogue of proposition 4.4 for n > 5.
Nevertheless, in the case of a non-twisting mWAND £ (i.e. A;; = 0), several interesting
conclusions have been obtained that constrain the possible form of p [11]:

Proposition 4.8 (Eigenvalue structure of p for n > 6 and A;; = 0). In an algebraically
special Einstein spacetime of dimension n > 6 that is not conformally flat, the (symmetric)
optical matrix of a non-twisting multiple WAND has at least one double eigenvalue. In the
following special cases, stronger conditions hold and the most general permitted forms of p
are, respectively:

(i) ifd>§‘j #0:{a,a,0,...,0}[10],

(ii) ifdetp # 0, ®;; #0: {a, a, ..., a} (RT, ®;; « 8, type D(bd)) [11],
(iii) if ®;; = 0 (type ll(abd)): {a, a, b, b, c ..., co_s} [11, 59],
(iv) for types N, IlI: {a, a, 0, ..., 0} [50].

Note that in the above cases (i)—(iv) the matrix p possesses at least two double eigenvalues.
This is, however, not true in general, as shown by further special cases studied in [11]. In
particular, it is worth observing that explicit solutions for which all the non-zero eigenvalues
of p are distinct and rank(p) > 1 have been constructed in more than five dimensions [11].
These clearly violate the OC (3.13) and are forbidden for n = 4, 5. Examples constructed in
[11] demonstrate that the condition that p has a double eigenvalue, given in proposition 4.8,
is again not sufficient for £ to be an mWAND (whereas the stronger condition on p in (ii) is
sufficient [54]). Integrability properties of certain totally null distributions that follow from
the results presented above have also been analysed in [11]. In particular, the case n = 6 has
been discussed in some detail there.
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4.2.3. Results for type III /N in any dimensions. In the case of type N Einstein spacetimes, the
five-dimensional result of proposition 4.4 (case (ii) therein) extends in fact to any dimensions:

Proposition 4.9 (Shearfree part of the HD GS theorem for type N [50]). In a type N Einstein
spacetime of dimension n > 4, one can choose the orthonormal basis vectors mDso that the
optical matrix of the unique multiple WAND £ (which is geodesic) takes the form

1 a 0... 0
—a 1 0... 0

o=h 0 0 O0... 0 ’ (4.6)
0O 0 O0... 0

where a and b are functions that may vary in spacetime.

Note that rank(p) = 2 or 0 in any dimensions and that p obeys the OC. In the non-twisting
case (a = 0), proposition 4.9 is contained in proposition 4.8 (case (iv)). Proposition 4.9 holds
also for type III Einstein spacetimes provided any of the following conditions is satisfied: (a)
n = 5; (b) £ is non-twisting; (c) n > 5, £ is twisting but certain ‘genericity’ assumptions on
the Weyl tensor hold (see [50] for the Ricci-flat case, while a generalization to proper Einstein
spacetimes is straightforward). More general results including those types Il and D that possess
a twisting mWAND in more than five dimensions are presently not known (except in special
cases, see sections 6.2 and 8.1).

4.3. Optical structure approach

In [43, 44], a higher dimensional extension of the GS theorem different from the one discussed
above is studied. Instead of looking for ‘canonical forms’ of p, a generalized shearfree condition
was phrased there in terms of the existence of an optical structure. We have already briefly
discussed this in section 2.7.2, and we refer the reader to [43, 44] for more details (see also
[10] for additional comments on five dimensions).

5. Curvature invariants and VSI/CSI spacetimes

Curvature invariants provide a coordinate-independent characterization of spacetime curvature
and they are thus often used to study its invariant properties. A textbook example is the use of the
Kretschmann scalar R,5.4R% to distinguish between coordinate and curvature singularities
in the Schwarzschild spacetime. Furthermore, in diffeomorphism-invariant theories (such as
general relativity), the metric tensor (or, more generally, any tensor) takes different forms in
different coordinate systems: given two metrics in different coordinates, one is faced with
the equivalence problem (see, e.g., [4]), i.e. how to decide whether they represent the same
geometric object or not. Since it is clearly desirable to have simple invariant (and possibly
algorithmic) criteria to answer this question, one is naturally led to study spacetime invariants,
and in particular scalar polynomial curvature invariants, defined as follows.

Definition 5.1 (Curvature invariants of order p). A scalar polynomial curvature invariant of
order p is a scalar polynomial invariant obtained by contracting polynomials in the metric,
the Riemann tensor and its covariant derivatives up to order p.

For brevity, ‘scalar polynomial’ will always be understood in what follows and we will
simply talk of ‘curvature invariants’. Note that curvature invariants also comprise invariants
constructed from the Weyl and Ricci tensors (and their derivatives).
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The Riemann tensor and (a finite number of) its covariant derivatives with respect to a
fixed frame uniquely characterize the metric (up to isometries) [4] (see also a recent discussion
in [75]). Therefore, the issue of characterizing a metric by its curvature invariants eventually
amounts to the possibility of reconstructing the Riemann tensor and its covariant derivatives
(hereafter just ‘the curvature tensors’) from the curvature invariants. Obviously, if two metrics
possess different (curvature) invariants, they are not equivalent. But the converse is not true,
since, in general, curvature invariants contain less information than the curvature tensors.
A striking illustration of this fact is provided by the so-called vanishing scalar invariants
(VSI) spacetimes (section 5.2), for which all curvature invariants of all orders are zero—in this
specific sense, VSI cannot even be distinguished from flat space. In addition to VSI, a subset of
the constant scalar invariants (CSI) class, for which all scalar curvature invariants of all orders
are constant, also contains spacetimes which cannot be characterized by their invariants, even
if these are non-zero (section 5.3). Even before considering curvature invariants to address
the equivalence problem, it is therefore important to clarify in what cases this can in principle
be done, i.e. to determine spacetimes characterized by their curvature invariants. Recent
relevant results are summarized in section 5.4. Let us note, in passing, that apart from the
equivalence problem, VSI and CSI spacetimes contain exact solutions in supergravity (see,
e.g., for discussions and references, [76, 77]) and are also important in the context of the so-
called universal metrics [78], which are of special interest since they have vanishing quantum
corrections [79-82].

5.1. Algebraic VSI theorem for general tensors

Before focusing on curvature invariants, let us first look at the polynomial invariants of an
arbitrary type III tensor T'. By definition 2.6, T possesses only negative b.w. components in

an appropriate frame. In other words, Typ... = e@el” ---¢@T,; . is a linear combination of

terms e@el” - . @ containing always more vectors e(!) = ¢, than e”’ = n,. Consequently,
all polynomial invariants of a type III tensor T vanish: indeed, any arbitrary full contraction
of powers of T, such as T T ¢, vanishes since at least one vector £, has to be contracted
with either £¢ or mV¢, In [34], it was conjectured that the type III condition is not only a
sufficient but also a necessary condition for all polynomial invariants of 7" to vanish (algebraic
VSI conjecture). This conjecture has recently been proved by Hervik.

Proposition 5.1 (Algebraic VSI theorem [8]). All polynomial invariants (of order zero) of a
tensor T of arbitrary rank on a Lorentzian manifold of arbitrary dimension vanish if, and only
if, T is of type Il or more special.

5.2. VSI spacetimes

Proposition 5.1 applies, in particular, to the curvature tensor, telling us that a spacetime is
of Riemann type III/N iff all curvature invariants of order zero vanish. One can still try to
construct invariants from covariant derivatives of the curvature tensor. However, there exist
metrics for which all such invariants are zero, defined as follows.

Definition 5.2 (VSI spacetimes). We say that a manifold M with a metric of arbitrary signature
is VSI if all curvature invariants of all orders vanish at all points of M.

The VSI condition is obviously very restrictive and the only such space in the case of a
positive-definite metric is flat space (this immediately follows already from the vanishing of
the Kretschmann scalar, which is a sum of non-negative quantities in Riemannian signature).
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However, in the Lorentzian case, the set of VSI metrics is non-trivial. Obviously, using
proposition 5.1, a spacetime is VSI if, and only if, the Riemann tensor and its covariant
derivatives are of type III or more special at all orders. The precise conditions under which
this occurs are given as follows.

Proposition 5.2 (VSI theorem [34]). A Lorentzian manifold of arbitrary dimension is VSI if,
and only if, the following two conditions are satisfied.

(A) The spacetime possesses a non-expanding, twistfree, shearfree, geodesic null vector field
L, i.e. it belongs to the Kundt class.
(B) Relative to £, the Riemann tensor is of type Il or more special.

(Note that requiring the curvature invariants up to order 2 to vanish is in fact equivalent
to VSI, as follows from the results of [34].) The four-dimensional version of this theorem was
proven in [83], and subsequently extended to any » in [34]. To be precise, in [34], it has been
proven that conditions (A) and (B) imply VSI in arbitrary dimension. The part of the proof
showing that the VSI property implies (A) and (B) is incomplete in [34] since it holds only
under the assumption that the algebraic VSI conjecture is valid—however, the proof is now
complete thanks to proposition 5.1 (proven in [8]) and footnote!?.

VSI spacetimes admit a special form [84] of the general Kundt metric (7.1):

ds? = 2dul dr + H (u, 1, x) du + W, (u, 1, ) dx*] + 84p dx* dx”, (5.1)
with
¢ )
Wo(u, 1, x) = — 8qp—r+ W, (u, x), (5.2)
X2
er’ M ©
H(u,r,x) = +rHY (u, x) + H (u, x) (e=0, 1). (5.3)
2()C2)2

Note that the transverse space is necessarily flat. The value of € = 0, 1 specifies to which of
the two main subclasses T = 0 and 7 # 0 of the Kundt family spacetime (5.1) belongs (see
section 7.1). The Riemann (and thus also the Ricci and Weyl) tensors of metric (5.1)—(5.3) are
indeed of type III or more special. Various subcases of type III, N and O Ricci and Weyl tensors
are studied in [84, 85] (where the vacuum equations are also given). In particular, the case
€ =0 = H" represents VSI pp-waves (not all pp-waves are VSI'>—see also section 7.1.3).

5.3. CSI spacetimes

As an extension of the VSI family, it is also of interest to consider CSI spacetimes, defined as
follows.

12 An additional problem already discussed in [34] is that, in order to show that type III Ricci-flat non-Kundt
spacetimes always possess a non-vanishing curvature invariant, the form of p for a ‘generic’ type III (as discussed
in section 4.2.3) was assumed so that some special type III cases could have evaded the proof of [34]. However,
this can be now circumvented by showing that, for p # 0, the first covariant derivative of any type III Weyl
tensor, for which the (unique) mWAND is geodesic (which holds in particular in the Einstein-space case,
see [50]), necessarily contains non-vanishing b.w. 0 terms and therefore, by proposition 5.1, possesses a non-
vanishing curvature invariant. More specifically, some b.w. 0 components of the first derivative of the Weyl
tensor are as follows: (a) Cupeq:en®€2n04m®e w]’.pji, () Caped:elmDPnem®dmDe p,-kw]’. — plk‘p}iz’ (c)
Cuped:emDm Do ¢y Dy (e o W;-;dl’ih + o+ wl’ijpkh + W/éjiplh- For type 111, the vanishing of all these b.w.
0 components implies p = 0. (This can be seen by multiplying (b) by pi and (c) by pj.) Thus, type III Ricci-flat
spacetimes with p # 0 admit a non-vanishing Weyl invariant of order 1 and consequently are not VSI.

13 Not even in 4D, unless some conditions on the matter content are imposed.
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Definition 5.3 (CSI spacetimes). We say that a manifold M with a metric of arbitrary signature
is CSI (constant scalar invariants) if all curvature invariants of all orders are constant at all
points of M.

Obviously, VSI is a proper subset of CSI. In 4D, the CSI class is fully determined by the
following proposition.

Proposition 5.3 (n = 4 CSI theorem [86]). In four dimensions with Lorentzian signature, the
CSI class consists of all (locally) homogeneous spacetimes and of a (proper) subset of the
degenerate Kundt metrics, i.e. the ‘degenerate CSIx’ metrics'.

(‘Degenerate Kundt metrics’ are defined in arbitrary dimension in section 7.1.2, while
‘degenerate CSIk’ are given in (5.4) and (5.5).) Homogeneous 4D spacetimes can be of any
Weyl type [4], and thus, the Petrov type of CSI is unrestricted. However, degenerate CSIg
cannot be of Petrov type I (see the discussion below in n > 4 dimensions), but all algebraically
special types are permitted [86].

Now, let us discuss what is known in arbitrary dimension. Obviously, all locally
homogeneous spacetimes are CSI. There exist also higher dimensional degenerate CSIg
spacetimes (some of which may be locally homogeneous). But, contrary to the case n = 4, it
has not yet been proven that these two families exhaust the CSI class when n > 4 (this is due
to the fact that proposition 5.4 has not been proven in higher dimensions, see [20, 8]). That is,
there might in principle still exist some (non Z-non-degenerate, as defined in section 5.4) CSI
which are neither homogeneous nor degenerate CSIx (necessarily of Riemann type II or more
special at all orders, and with all b.w. zero components being constant [8]). Nevertheless, let
us briefly describe the degenerate CSIk class here.

In arbitrary dimensions n > 4, the degenerate CSIx metrics are of the form [87, 86]

ds® = 2du[dr + H (u, r, x) du + W, (u, r, x) dx*] + 8ap (x) dx* dx?, 5.4)
where gqp(x) (note g4, = 0) is a (locally) homogeneous space, and

Wo (u, 1, x) = rW. P (u, x) + W (u, x),
2
Hu,rx) = % (a+wWOWD) 4 rHO 1, x) + HO (u, x). (5.5)

The index of W is raised with the inverse of g,4(x) and a is a constant. Equation (5.5)
provides only necessary conditions for degenerate CSl: further conditions on W") must also
be fulfilled (in 4D see equations (5)— (8) of [86]). Degenerate CSlk are of Riemann type II
(or more special) at all orders, since they are a subset of the degenerate Kundt metrics (i.e.
precisely those Kundt spacetimes for which the Riemann tensor and all its covariant derivatives
are of type II, or more special, and are all aligned with £ [20, 88], see section 7.1.2). Moreover,
all b.w. zero components of the curvature tensors are constant. Conversely, however, not all
degenerate Kundt metrics are CSlk, since (5.5) is more restrictive than (7.2) (take, e.g., the
Melvin spacetime for an explicit counterexample). If W = a = H) = 0 in (5.5), one is
left with CSI pp-waves (a proper subset of degenerate CSlIk). In [87], it is discussed how to
construct examples of degenerate CSIx by warping certain VSL.

Similarly as for the VSI class, also CSI spaces are more restricted for positive-definite
metrics and coincide with the class of locally homogeneous spaces [89].

14 Note that these two subsets of CSI spacetimes are not disjoint: the Bertotti-Robinson and Nariai-like spacetimes
[4] are homogeneous (and symmetric) and belong to degenerate CSlk, cf [77, 86, 75]; similarly, the Kaigorodov
spacetime [4] is also homogeneous and degenerate CSIk [77] (homogeneous pp-waves [4] are another such example,
however falling into the VSI class—clearly VSICCSIk). More trivial examples are given by constant curvature
spacetimes, which are both degenerate CSIk (in the dS/AdS case, and VSI in the Minkowski case) and homogeneous.

25



Class. Quantum Grav. 30 (2013) 013001 Topical Review

5.4. Spacetime characterized by their curvature invariants

VSI are thus clear examples of spacetimes that cannot be uniquely characterized in terms
of their curvature invariants (in the sense of the equivalence problem). The same is true for
degenerate CSlk (as discussed below). A natural question is thus to determine all spacetimes
which have the same property. Certain important results are now summarized.

By definition [20], a metric g is said to be Z-non-degenerate if there does not exist a
(one-parameter) metric deformation g’ of g that possesses the same set of curvature invariants
as g (see [20] for more details—in particular, g must not be diffeomorphic to g)'>. Obviously,
if a metric is not Z-non-degenerate, then it cannot be uniquely determined by its curvature
invariants (since other metrics will have the same curvature invariants). It is thus of interest to
determine what metrics are (not) Z-non-degenerate. In four dimensions, the issue is settled by
the following proposition.

Proposition 5.4 (n = 4 T-non-degenerate spacetimes [20]). In four dimensions, the degenerate
Kundt metrics are not T-non-degenerate, and they are the only metrics with this property.

This includes, in particular, all degenerate CSIk (discussed in section 5.3). Degenerate
Kundt metrics are not I-non-degenerate also in higher dimensions [88], and inequivalent
degenerate Kundt metrics can thus have identical curvature invariants. However, it has not yet
been proven that these are the only non-Z-non-degenerate metrics when n > 4. If proposition
5.4 turns out to hold also in higher dimensions, then proposition 5.3 can also be extended to
any n > 4 [8].

Spacetime characterized by their curvature invariants have recently been determined in
terms of the alignment type of curvature tensors [8] (see also [19] for related discussions).
Let us finally note that when the signature is Riemannian all spaces are characterized by their
invariants [75].

6. Asymptotic properties of the gravitational field

In this section, we mainly focus on asymptotic properties of asymptotically flat spacetimes
at null infinity (see [90] for a study at spacelike infinity). This is of particular interest in
the study of gravitational radiation, and in four dimensions, it is related to the algebraic
classification of the Weyl tensor via the well-known peeling theorem. There are essentially
two approaches towards studying asymptotic flatness at null infinity. The method based
on conformal compactification can be used only in even dimensions (in odd dimensions
smoothness at null infinity fails because of a half-integer power in the conformal factor
[91, 92]). On the other hand, a generalization [93] of the Bondi approach can be applied
in all dimensions. Combined with the GHP formalism [7], it allowed [94] to determine the
peeling behaviour of the Weyl tensor for any asymptotically flat n > 4 spacetime, as described
in section 6.1. In section 6.2, we focus instead on asymptotically flat spacetimes that are,
additionally, vacuum and algebraically special, arriving at considerable differences between
n = 4 and n > 4. Finally, in section 6.3, we briefly discuss the asymptotic behaviour of (not
asymptotically flat) type N and III spacetimes.

6.1. Peeling of the Weyl tensor and gravitational radiation

In four-dimensional asymptotically flat spacetimes, the well-known ‘peeling’ theorem

JUE P20 —2~(1I) -3 ~(UID) —4 ~(I) -5 _
Coci =T Cai;éj +r Cd%j +r Cd%dA +r Cdi;&f +OF™) (n=4), 6.1)
closely connects the behaviour of the Weyl tensor near null infinity with the Petrov
classification—in equation (6.1) the terms C(g[i:gj’ C;;ICZ, etc, are of Petrov type N, III, IT and

15 See [20, 75] for more details on these definitions and related discussions.
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I, respectively, and their components are expressed in a frame parallelly propagated along an
outgoing affinely parametrized geodesic null vector £ = 9,. In particular, the leading 1/r-term
represents gravitational radiation.

This 4D result can be obtained using a definition of asymptotic flatness given either
via expansions in suitable coordinates [61, 95, 96] or via a conformal compactification
[97, 98]. However, as mentioned above, in higher dimensions, the conformal method can
be employed only in even dimensions [91, 92]. Hence, a higher dimensional generalization
of Bondi coordinates [93] has been used in [94] for deriving the peeling fall-off of the Weyl
tensor near null infinity of asymptotically flat spacetimes in arbitrary n > 4 dimension, as we
now review.

6.1.1. Bondi coordinates. Let us first recall the setup of [99, 93] for asymptotically flat
spacetimes in higher dimensions. A spacetime is said to be asymptotically flat at future null
infinity if Bondi coordinates (u, 7, x') can be introduced outside some cylindrical world tube
such that the line element reads

ds? = —Aef du? — 2 du dF + Phyy(dx! + C'du) (dx’ + ¢/ du). (6.2)

The metric functions are assumed to allow for an asymptotic expansion (for 7 — 00) in inverse
powers of 7 [ﬁ] for even [odd] n:

Ak+D) u, x B&+D u, x
R N

= 7/ 2+k—1 = 7n/2+k
( (
C(k-H)I(u X) h(k-‘r] ) (u, x)
I __ ’ 1J
=) —mw—  w=es®+) S (63)
k>0 k>0

Here, k € Z for even n and 2k € Z for odd n, r is a (non-affine) parameter along null geodesic
generators (1, x' =const) £ = —d; of the null surfaces u =const and det h;; = det w;;, where
wyy is the metric of a unit sphere S$"=2. For n = 4, this reduces to the standard definition
proposed in [95, 96].

Some of these coefficients have a direct physical meaning, e.g., A”/>~1 enters the
definition of the Bondi mass, and h;}) determines (in vacuum) the Bondi mass decrease [93]:

2
M) = — =2 [ 402D g, (6.4)
167'[ Sn—2
1 . .
Mu)= — — WY ROV 4g, 6.5
(u) 327'[ sn—2 IJ @ ( )

where §"2 is a sphere, dw its volume element and (from now on) a dot denotes differentiation
w.r.t. u.

So far no field equations have been imposed. However, the functions h;}) remain freely
specifiable even if one further demands that the asymptotic vacuum Einstein’s equations are
satisfied [93]. Their u-derivatives h}}) represent a generalization of Bondi’s ‘news’ function.
If the spacetime contains (outgoing) gravitational radiation, there is mass decrease and h;})
is non-zero'®.

6.1.2. Weyl tensor and Bondi flux. Now, let us summarize the main results of [94] forn > 5
(the case n = 5 is ‘exceptional’ and will be discussed below), i.e. the behaviour of the Weyl

16 L et us observe that the Schwarzschild-Tangherlini metric in RT coordinates (7.7) with (7.8), K = 1, A = 0 is an
example (albeit ‘trivial’) of a vacuum spacetime admitting the Bondi form (6.2), (6.3): in this case, one immediately
finds M = (n — 2)ju(Vol) gu—2 /(167r) (which here coincides with the ADM mass) and M = 0 (recall that indeed the
spacetime is static).
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tensor in spacetimes (6.2) with (6.3) ‘far away’ along the direction of the outgoing twistfree
null (and consequently geodesic) vector field £.
In an adapted frame [94] (not parallelly propagated along £), one finds

51 577, (1)
e:e’h
ro_ Ar e ~—n/2
Qij - 2 11/2 1 + O( )
(i’l _4)’\1’\/],1(1)
S _ ~—(n/2+1)
ij = 4712 + 0@ ),

(1)
0le) ol 1 S (n/2+1
Piji = (€ €3dn; — e_/e[k51]i);n7 + O@F D),

w=O0G", =00, (n=4,n>5)
ijk =0®F (n/2+1))’ U, = O(;f(n/2+1))’
q)ll“j — (’)(,’t—(ﬂ/Z-ﬁ-l))7 d = O(f_("/2+1)),
(=) —4)2 &lhy)
L= ~—(n/2+2)
Q’] - Srn/2+1 O(I" )7 (66)

where ¢! is an orthonormal basis for the metric wyy, i.e. wyy = €;€;;8;;. The leading-order
behaviour of the Ricci tensor is also given in [94].
A parallelly transported frame is then introduced using a simple rescaling (a boost)

A

¢ = e84, a suitable null rotation and spin, while an affine parameter r along £ = —9, is
given by

= /e3d7= Ft+c+O@F D), c,;=0. (6.7)
One can finally conclude that the higher dimensional ‘peeling theorem’ reads [94]
Cade = /2= I)C(N) + r—(n/Z)C(II) + r—(n/2+1)C;fC)d 4. (n>5), (6.8)

where the ellipsis corresponds to terms of order r~"/>+2) [r~(/243/2)] for even (odd) n. The
algebraic type of each term is indicated as a superscript (note that C. U is not of the most
general type II but it is in fact of type Il(ad) [94]). This result should ‘i)e contrasted with the
different 4D behaviour (6.1). In particular, the type III term is absent in higher dimensions.

In even dimensions, this behaviour follows immediately from the asymptotic expansions
(6.3) (with no use of Einstein’s equations). By contrast, in odd dimensions, additional
assumptions are necessary, namely it is required that h3/ 2 = 0 (to avoid e.g. a term of
order 7~/>1/2) in the expansion of ;) and that the RICCI tensor decays ‘sufficiently’ fast
near null infinity. Einstein’s equations then eliminate additional terms of order 7~"/2+1/2) in
the Weyl tensor expansion.

Note that in a particular case when £ = —0; is a (twistfree) WAND, i.e. ;; = 0, equation
(6.6) implies forn > 4 that h;}) = 0 and thus also M (u) = 0, and the spacetime is non-radiative
[94] (see also [57] and section 6.2).

The case of five dimensions is exceptional in that the order 7~ "/>*1/2) = 7=3 term cannot
be eliminated [94]. The resulting peeling is thus described by
Cei = r2CW 4 52C 3 ICO L 0G (n=5),  (69)
where the new type N term C( ) .1is in general non-vanishing in radiating spacetimes. The type
II term is in fact type II(acd)

The above results for the Weyl tensor also enable one to rewrite the decrease of the Bondi
mass at future null infinity in terms of the ‘radiative’ Weyl components. Namely, assuming
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that no Bondi flux is present in the far past (i.e. h}}) — 0 for u — —o00), from (6.5) and the
first of (6.6) one arrives (for any n > 4) at [94]

~n—2 u 2
M) = — lim / ( / (@, F,x)dﬁ> do, (6.10)
N —00

o0 8T

where on the r.h.s. a compact notation (¥;;)? = Y;;Y;; is used.

To conclude, let us observe that [94] has also shown that the Bondi approach is equivalent
to the conformal definition for even n, which is stable under linearized metric perturbations
with initial data on a compact support [91].

6.2. Asymptotically flat algebraically special vacuum spacetimes

It was noticed by Sachs [100] that four-dimensional algebraically special spacetimes, while
leading to considerable mathematical simplification, still asymptotically retain the essential
features of more realistic (outgoing) radiation fields. As mentioned in section 6.1.2, one now
expects significant differences when n > 4.

Prior to the work [94], in [57], the asymptotic behaviour of the Weyl tensor along a
geodesic multiple WAND £ in an algebraically special vacuum spacetime was studied, and
a distinct behaviour for n > 4 was indeed found. Moreover, the leading Weyl components
at null infinity were also characterized in [57], as we now summarize. Although not proven
rigorously, it was argued in [57] that, due to asymptotic flatness, £ must be non-degenerate,
i.e. det p # 0. On the other hand, £ was not restricted to be twistfree (so the results of [57] are,
in this narrow sense, complementary to those of [94]). Thanks to the conclusions of [50] (cf
section 4.2.3), this condition rules out spacetimes of type III and N, leaving us in the following
with the genuine type II (D) only. An affine parameter r is defined along £ = 9,, and a frame
parallelly transported along £ is employed. The mWAND conditions read W;x = 0 = £2;;.

Now, with the above assumptions from the Sachs equations (section 3.1), one immediately
fixes the r-dependence of p = (vl — b)~!, where I and b represent (n —2) x (n — 2) matrices,
with 7 being the identity and b , = 0. Note, in particular, that the (possible) vanishing of twist
is determined by A;; = 0 < by;;; = 0. Then, the behaviour of p for large r follows (after
restoring matrix indices):

(M) oy 1o .
pij = 2:(:) rm+1j + 00" = ~bij+ b+ O 3, 6.11)
which, to the leading order, simply becomes p;; ~ r18; ; (and the expansion 6 is clearly
non-zero).

One can then fix the r-dependence of the Weyl tensor by integrating the Bianchi identities
containing D-derivatives. We assume that the Weyl components can be expanded in non-
positive integer powers of r (positive powers would lead to a p.p. curvature singularity and
can thus be excluded, while half-integer powers for b.w. 0 components can be excluded by
inspection of Bianchi equations (6) and (7) of [57]—see also [11]).

It is convenient to first study b.w. zero components, for which we further assume the

following condition for asymptotic flatness'”:

Qi ~ O ). (6.12)

17 By this we do not mean that terms of order 73 in b.w. zero components have to be non-zero (in fact for n > 4 they
will vanish, as explained below), but rather that terms of order 1/ 2 vanish. This is natural to demand since this is the
case already in four dimensions and the fall-off will be faster in higher dimensions. This is confirmed more rigorously
(at least in even dimensions) by a study of the asymptotic behaviour of gravitational perturbations [91, 92, 101] and
is consistent with the results of [94] summarized in section 6.1. Recall instead that in the case of n = 4 vacuum
algebraically special spacetimes, this is not an assumption but follows from the Ricci/Bianchi identities [100]. For
general vacuum n = 4 spacetimes, it is related to the vanishing of the unphysical Weyl tensor on scri, which holds if
asymptotic flatness is assumed [97].
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With these assumptions, one arrives at the leading terms of the b.w. zero Weyl components
[57]

(”71)5[- 1 -1 (nfl)b,” 1
;.gj = ¢—21_1 +0u™), = (n )¢ Lij1 * + O(rin*l),
n— -

YT n=2)(n—3)
207D (8 Sim — 8jmdu) 1 .
—2m_3 1O 6.13)

D;jm =

where ¢'~!) = 0. Subleading terms can similarly be determined to any desired order [102],
and ¢~V and b are the only integration ‘constants’ characterizing the full expansions.
For negative b.w. components, one can show that for n > 4 [57]

/ 1 / 1
%ﬂ~o(wl>, QU~O<F7) (n > 4). (6.14)

Again higher order terms can be determined to any desired order [102] (in particular, one finds
that if =1 = 0, the spacetime is flat)—they all vanish in the non-twisting case, so that the
spacetime is of type D (and the second mWAND is parallelly transported along £), see also
proposition 6.1.

It is worth observing that as a byproduct of the expansion of ®;j,, one also finds (if
¢~ # 0) the important condition (n — 2)b;j, = bd;;. This is equivalent to p obeying the
optical constraint. In particular, if £ is non-twisting (i.e. b;; = b(;;), then p is automatically
shearfree, so that the considered spacetime is RT. Combing these observations with the results
of [54], one can formulate the following proposition.

Proposition 6.1 (mWANDs in asymptotically flat spacetimes [57]). In an asymptotically
flat algebraically special vacuum spacetime, a non-degenerate geodesic mWAND £ obeys the
optical constraint. If £ is twistfree and n > 4, then the spacetime is Schwarzschild—Tangherlini.

The second part of this proposition should be contrasted with the 4D case [4]; see [57]
for more comments (note that, in fact, one arrives at the same conclusion also with weaker
assumptions, see proposition 4.8 and [11]). Moreover, also the fact that all b.w. components
display the same fall-off rate (equations (6.13) and (6.14)) is peculiar of algebraically special
spacetimes in higher dimensions. In particular, there is no peeling and radiative terms are
absent, as opposed to the n = 4 case [100]. This is in agreement with the results of [94]
(section 6.1), at least in the non-twisting case. Contrast again (6.13) and (6.14) with the
general behaviour (6.8) and (6.9), which occurs instead when £ is not a WAND.

6.3. Type IlII/N Einstein spacetimes

Algebraically special vacuum spacetimes that are asymptotically flat can be only of type II
or D, as discussed in section 6.2. Here, we consider instead the Einstein spacetimes of types
[T and N [50]. For these, the (unique) mWAND is necessarily geodesic and p is degenerate.
This may be of interest for spacetimes with, e.g., Kaluza—Klein asymptotics. With no need of
assumptions on the asymptotics of the Weyl tensor, its full r-dependence can now be fixed in
the closed form by using suitable Ricci and Bianchi identities [53]. Again, we take an affinely
parametrized mWAND £ = 9, and a parallelly transported frame.

Concerning the optical matrix p of £ = 9,, type N and (‘generic’) type III Einstein
spacetimes allow for just two possibilities. Either p = 0 (Kundt spacetimes), or s = py = p33
and A = pp3 = —p3; can be taken as the only non-zero components of p [50] (see section 4.2.3
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and recall that A # 0 requires s # 0 [51]). In the latter case from the Sachs equations
(section 3.1), one readily obtains

pES+1A=

—, (6.15)
r— iag

where ap , = 0. These two subcases will be now discussed separately.

6.3.1. Kundt spacetimes. When p = 0, one arrives at the general behaviour for type III
Einstein spacetimes [55, 53]

q"/i _ \IJ’? _ \L’/O

~ 0 0
/o / /
jij? $2ij = Qyr+Q

19
\llijk—“ll ij

ijko (6.16)
where quantities with superscript ‘0’ do not depend on r. These ‘integration constants’
are related to certain Ricci rotation coefficients and must satisfy some relations due to
Q' = 0= Q1 [55, 53] (in particular, for pp-waves, discussed in section 7.1.3, it follows
from [53] that Q/:)J =0= \Il’?). This is the typical peeling-off of type III Kundt spacetimes,

cf [100] in four dimensions. By setting \If’?jk =0 = Q/?j, one finds the (plane-wave-like)
behaviour of type N spacetimes.

Recall that the Einstein spacetimes of type III/N belonging to the Kundt class are VSI (if
A = 0) or CSI (if A # 0) [34, 83, 53] (section 5), and no physically useful information can
thus be extracted from their invariants.

6.3.2. Expanding spacetimes. When p # 0, in the type N case, the Weyl r-dependence is
given by [53]

/0 -0
Q5 +182'5,

Q) + 1925, = -
2 23 7 — idg

(type N). (6.17)
This is similar to well-known results in 4D—see [53] for comments, e.g., on the ‘rotation’
of the polarization modes. Knowing the r-dependence of the Weyl tensor is also useful
for studying possible spacetime singularities. Namely, for the simplest non-trivial curvature
invariant admitted by type N spacetimes in four [103] and higher [34] dimensions (i.e.
Iy = Calbla2b2;01CzCaldlazdz;qc‘zCEIdleZdz;f]szelblezbz;flfg)7 one finds
AO

If a vanishes at some spacetime points, then there will be a curvature singularity atr = 0 = ag
(this always occurs in the non-twisting case [55]), see [53] for more details. Note also that
Iy — 0 for r — o0, i.e. far away along the mWAND.

For type III, the Weyl r-dependence is more complicated and we refer to [53] for full
details. Let us just present here the r-dependence of the simplest non-trivial curvature invariant
(namely Iy = C1baebzeac, ., Chadexac, , ..., see [104, 34]). One finds [53]

A° B° c®
PR R N S Ny S S IV
PHa)l " Pra)} P ra)

Iy (6.18)

I (6.19)

As in the type N case, there may be curvature singularities localized at points where 1 +a(2) =0,
which may or may not exist, in general (but they always do in the non-twisting case [55]).
Again, Iy — 0 for r — oo.

Explicit examples of expanding type N/III Einstein spacetimes were also given [53].

31



Class. Quantum Grav. 30 (2013) 013001 Topical Review

7. Shearfree solutions

As we have seen in section 4, for higher dimensional Einstein spaces, the condition & = 0 does
not in general follow from assuming the existence of an mWAND. Nevertheless, there still
exist classes of shearfree spacetimes that are necessarily algebraically special and satisfy the
vacuum Einstein equations. Below we review the known examples with these properties. By
converse, recall also the general result that in odd spacetime dimensions a geodesic twisting
WAND is necessarily shearing [51].

7.1. Kundt spacetimes

Here, we give the line element of general Kundt spacetimes and discuss its algebraic type and
its main subclasses, also in relation with the VSI and CSI spacetimes described in sections 5.2
and 5.3.

7.1.1. General line element and alignment type. Kundt spacetimes are defined as spacetimes
admitting a null geodesic vector field £ with vanishing shear, expansion and twist, i.e.
k; = 0 = p. These spacetimes admit a metric in the form [105, 87, 106]

ds® = 2du[dr + H (u, r, x) du + W, (u, r, x) dx*] + 8ap (u, x) dx* dx?, (7.1)

wherea, B = 2,...,n—1and £ = 9,. In an adapted frame with n,dx* = dr+H du+W,dx“ (so
that the vectors m;live in the ‘transverse space’ spanned by x¥), the covariant derivative of £
reduces to €., = Li14,l, + t,-(Zam}(f) +m¢,) [108], where L;; = H,andT =0 & W, , =0
(recall the definition of the Ricci rotation coefficients in section 3.1 and table 5).

From the Sachs equations [50, 51] (see equations (3.10) and (3.11)) with p = 0, it follows
immediately that b.w. +2 components of the Ricci and Weyl tensors identically vanish (see
also [85, 106]) so that, in particular, £ is always a WAND. Furthermore, it follows directly
from the Ricci identity (11k) of [51] that £ is an mWAND iff R,,0” o £,, i.e., for Kundt
spacetimes the Weyl type II condition and the Ricci type II condition are equivalent (this has
been noticed in [107]). We can thus state the following proposition.

Proposition 7.1 (Weyl type of Kundt spacetimes [51, 85, 106]). An arbitrary Kundt spacetime
is of Riemann type I or more special, and the non-expanding, non-twisting and non-shearing
geodesic null congruence £ automatically defines a WAND (as well as an AND of the Ricci
tensor). £ is a multiple WAND (i.e. the Weyl tensor is of type Il or more special) if, and only if,
the Ricci tensor is of type II or more special w.r.t. £ (i.e. Rypt? o £,, equivalent to Warr =0
in(7.1)).

The above condition for the Ricci tensor R,0” o £, is satisfied, e.g., by Einstein
spacetimes (see section 2.1.3).

The Kundt class is very rich and contains several interesting subclasses; some of which
are discussed in what follows and in figure 1 (see [85, 108, 106, 84] for studies of various
aspects). First of all, it contains two invariantly defined subfamilies with either T # Oor 7 = 0
(see [105, 84, 106] for more details in special cases). In the subclass T # 0, one can always
set L;; = 0 by a null rotation about £. In the subclass T = 0, which can also be equivalently
defined by the presence of a recurrent null vector field (see [109, 110] and section 8.4.5), L,
is invariant under null rotations about £—it vanishes iff £ is covariantly constant (so that the
corresponding spacetime is a pp-wave, see section 7.1.3). Both families T # 0 and 7 = 0
contain spacetimes of all algebraically special types (see, e.g., [76, 111, 24] and the examples
mentioned in sections 5.2, 5.3 and 7.1.3). Recall that the Kundt spacetimes of Riemann type
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Kundt spacetimes

Figure 1. Various subsets of the Kundt class of spacetimes in n > 4 dimensions. There is no
meaning associated to the use of different line formats — the only purpose of this is to make
the picture better readable. ‘pp’ stands for ‘pp-waves’ while ‘degK’ for ‘degenerate Kundt’.
The set CSIx\(CSIxNdegK) might be empty, i.e. no Z-non-degenerate CSIx spacetime seems
to be presently known (but if it exists it is necessarily homogeneous). All depicted subsets are
proper subsets and all depicted intersections are non-empty. Recall that Kundt Einstein/Ricci-flat
spacetimes are a proper subset of degK intersecting pp, VSI and CSlk, as well as both subclasses
T # 0, T = 0. For n = 4, 5 Ricci-flat pp-waves are a proper subset of VSI. See the text for more
details.

III/N give precisely the VSI class, already discussed in section 5.2: these spacetimes fall into
both subclasses T # 0 or T = 0. On the other hand, the overlap of Kundt spacetimes with the
CSI class is more complicated, see section 5.3.

The general form of the Riemann and Ricci tensors corresponding to the Kundt metric (7.1)
has been given in [106], where the vacuum Einstein equations (with A) as well as the Einstein—
Maxwell equations with an aligned electromagnetic field have also been explicitly presented.
In particular, all Einstein spacetimes of the Kundt class must satisfy Wy ., = 0 = H ,,, (these
are necessary, but not sufficient, conditions). For these, in the case of Weyl type III and N,
the r-dependence of the Weyl tensor has been given in section 6.3.1. The Ricci-flat Kundt
spacetimes of type N coincide with non-expanding Ricci-flat Kerr—Schild metrics of type N
(see proposition 8.4).

Note also that Kundt Einstein spacetimes of type III/N are VSI (if A = 0) or CSI (if
A #0) [34, 83, 53] (see sections 5.2, 5.3).

7.1.2. Degenerate Kundt metrics. A degenerate Kundt metric is defined as a Kundt spacetime
in which the Riemann tensor and all its covariant derivatives are of type Il or more special
(and all aligned with £). This happens iff W, ,, = 0 = H ,,, [20, 108], i.e. substituting into
(7.1) the functions

Wo G, 1, ) = Wy (u, x) + W, (u, %),

H(u,r,x) = r*H? (u, x) + rH (u, x) + HO (u, x). (7.2)
In particular, all VSI spacetimes, all degenerate CSlgx spacetimes and all Kundt Einstein
spacetimes are thus degenerate Kundt (but not vice versa).
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Degenerate Kundt metrics are spread over both subclasses T # 0 and T = 0 and can
have any algebraically special Weyl type (already in 4D vacua [4]). They are important in the
context of the equivalence problem (see section 5) since they are not Z-non-degenerate [88],
and, in general, one cannot use (only) curvature invariants to distinguish among them, since

Proposition 7.2 (Degeneracy of degenerate Kundt spacetimes [88]). In a degenerate Kundt
spacetime, the b.w. 0 components of all curvature tensors (and thus also their curvature
invariants) are independent of the functions Wofo) (u, x), HY (u, x) and HO (u, x) in (7.2).

Proposition 7.2 is relevant, in particular, to Kundt spacetimes representing gravitational
waves (typically type II or N) propagating on a given background (typically type D or 0)'®;
see, e.g., [112, 113, 111, 24] for some special examples.

7.1.3. pp-waves. pp-waves are defined as spacetimes admitting a covariantly constant null
vector (CCNV) field €, i.e. £,., = 0, which is thus, in particular, a Killing vector field (see also
sections 8.4.2 and 8.4.5). They obviously belong to the Kundt class, with L;; = 0 = 7. The
corresponding metrics were introduced already in 1925 in arbitrary dimension by Brinkmann
[114] and are given by the Kundt line element (7.1) (in which €,.;, = %gub,, [54, 106]) but
with metric functions independent of the affine parameter r along the CCNV £:

ds® = 2 duldr + H (u, x) du + W;(u, x) dx'] + g;; (u, x) dx’ dx’. (7.3)

They are thus in fact a (proper) subset of degenerate Kundt metrics. Moreover, they can (but
need not) be VSI (section 5.2) or CSI (section 5.3). The functions W; and H can be (locally)
set to zero by a coordinate transformation [114] (although this choice is not always convenient
since it will affect the form of g;;).

From £,.;, = 0 and the definition of the Riemann tensor, one finds

Rapeal? =0, (7.4)

which immediately implies that b.w. +2 and +1 components of the Riemann tensor, and
thus also of the Ricci and Weyl tensors, vanish (this can be also seen by inspecting explicit
expressions for the Riemann tensor of the metric (7.3) given in [106]), along with some b.w. O
and —1 components [74, 12]. In particular, £ = 9, is thus a multiple WAND. It is also easy to
see that proper Einstein spacetimes cannot occur [114]. Due to the comments relative to certain
subtypes in section 2.3, equation (7.4) is more restrictive in four and five dimensions than in
higher dimensions. Let us summarize and extend results [84, 12, 56] on possible algebraic
types of pp-waves.

Proposition 7.3 (Alignment types of pp-waves). A generic pp-wave is of Weyl type II(d) and
Ricci type I with R, = 0 (or more special). pp-waves cannot be properly Einstein. Ricci-flat
(non-conformally flat) pp-waves are of Weyl type:

(i) N for dimension n = 4,
(ii) Ill(a) or N for n =5,
(iii) II’(abd), D(abd), Ill(a), or N for n > 6.

In particular, Ricci-flat pp-waves of type Ill(a)/N are VSI.

Note that these bounds cannot be improved since, apart from the well-known type N case,
also type III(a) and II'/D(abd) Ricci flat pp-waves indeed do exist. A simple example of a

18 Provided that the metric functions satisfy the corresponding Einstein (typically vacuum) equations.
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type III(a) Ricci-flat pp-wave in five dimensions [56] can be obtained by specializing results
of [84] to the vacuum case:

W, =0, W5 = h(u)x’x*, Wi = h(u)x*x, gij = 8ij»

H = Hy = h(u)’[5 () + oHY) + 162, 2, a9, (7.5)
where h0(x%, x3, x*) is linear in x2, x3, x*. See proposition 8.19 for examples of vacuum
pp-waves of type II'(abd) or D(abd) [56, 12].

pp-waves are also briefly mentioned in section 5.2 in the context of VSI spacetimes (which
they intersect) and in section 10, where it is pointed out that while type N Ricci-flat pp-waves
are also exact vacuum solutions of quadratic gravity, type III Ricci-flat pp-waves are not. The
general field equations for Ricci-flat pp-waves were given in [114] (in particular, it is necessary
that also g;; is Ricci flat). Isometries of pp-waves and the subset of pp-waves which are also
CSI have been studied in [115].

7.1.4. Gyratons. Let us finally briefly mention gyratons, which describe the gravitational
field of a localized spinning source propagating at the speed of light. These solutions are
constructed by matching two different Kundt solutions (which may be of various types, e.g.,
either T = 0 or not, etc)—the ‘external’ solution is typically taken to be vacuum, while the
‘internal’ one possesses non-vanishing 7, and 7,, components of the stress—energy tensor
(in the coordinates of (7.1)), which represent spinning ‘gyraton matter’. Gyratons were first
introduced in 4D by Bonnor [116] and extended to higher dimensions in [117, 118]—cf, e.g.,
[84, 106, 119] for comments and more references.

7.2. Robinson—Trautman spacetimes

RT spacetimes are defined by the existence of an hypersurface-orthogonal, null (and thus
automatically geodesic) vector field £ with zero shear and non-zero expansion, i.e. x; = 0,
pij = nf—zéii ;- Natural coordinates can be defined such that £,dx* = —du and £49, = 9, (i.e. r
is an affine parameter along £), along with (n — 2) ‘transverse’ spatial coordinates x* which
are constant along the null geodesics generated by £ (cf [114, 120]). The resulting metric is
[54]

ds® = p 2 Yup (dx* + K* du) (dx? + KP du) + 2 dudr — 2H du?, (7.6)
where «, 8 = 2,...,n — 1, the matrix y,g is unimodular and independent of r, while p, K¢
and H are the arbitrary functions of (x, u, r), and the expansion of £ is given by 6 = —(In p) ,.

Such a metric is left invariant by a coordinate transformation x* = x*(x, u), u = u(u),
r=ro(x,u) +r/u(i).

7.2.1. Vacuum solutions. By imposing that the spacetime is Einstein and using the coordinate
freedom, one can simplify the above line element and arrive at [54]

ds? = P hgp(u, x) dx* dxP + 2 dudr — 2H (u, r, x) du’. (7.7)
The (n — 2)-dimensional Riemannian metric h,g is of the factorized form h.p =
P2 (u, X)Yap(x) and must be Einstein, with the Ricci scalar R = (n — 2)(n — 3)K and
K = 0,+£1. Here, 6 = 1/r. In order to specify H, one needs to consider the following two
possibilities.

(i) hap = hap(x) (i.e. P = P(x)):
2A
PO S ST
n—1)n-2) =3

where  is a constant (parametrizing the mass).

2H — (7.8)
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(i) frap = P2, 2) Y (0):

2A )
2H=K—-2r(InP), — ——r".
' n—1Dm-2)

Spacetimes (i) are warped products with a two-dimensional Lorentzian factor and an
(n—2)-dimensional Einstein factor and are thus of type D(bd) (see proposition 8.16), as one can
also check by explicitly computing the Weyl tensor [54]. The vector field 9, is clearly Killing.
When the transverse space is compact, these solutions describe various well-known static
black holes in Eddington—Finkelstein coordinates, with ‘Einstein’ horizon geometries, non-
standard asymptotics and, possibly, non-spherical horizon topology [121-123]. In particular,
if the horizon has constant curvature, one obtains Schwarzschild—Kottler—Tangherlini black
holes [124], of type D(bcd) (cf propositions 8.16 and 8.22)—these are constant-curvature
spacetimes iff © = 0. For spacetimes (ii) the non-vanishing components of the Weyl tensor
are Cogys = rZCagwg [54], where C, gy 5 is the Weyl tensor of /44, so that now the type is D(abd)
(in five dimensions Cyp,s = 0 identically and these spacetimes are of constant curvature). A
technique to obtain explicit examples of metrics (ii) was illustrated in [68] and is based on
[114]. These spacetimes seem not to have a clear physical interpretation, yet they have been
useful in the context of the GS theorem as first known examples of Einstein spacetimes with
a non-geodesic mWAND (of course different from £) [66].

Let us remark that, in contrast to the four-dimensional case, vacuum RT spacetimes of
genuine types II, III and N are not permitted in higher dimensions, nor does an analogue of
the C-metric exist within the RT class. This seems to be related to the fact that the condition
o = (Qistoorestrictive when n > 4 (see also section 4). More general RT spacetimes admitting
aligned pure radiation are also of type D and were considered in [54].

(7.9)

7.2.2. Electrovac solutions. The authors of [125] extended the above solutions by allowing
for an aligned Maxwell field, i.e. F, 07 o £,. After integration of the Einstein—-Maxwell
system, one arrives again at metric (7.7), with hyg = hyg(x) being an Einstein space with
the Ricci scalar R = (n — 2)(n — 3)K and K = 0, £1. Now, H = H(r) and the associated
Maxwell field are given by

2A 5 u 20? 1 F? 1

M=K T he=2 3t a3 =D m=9r

(7.10)

Q 1 o B
F = mdr/\du—l-zFaﬁ(x)dx Adx”, (7.11)

where u, Q and F? = F,, Fg;h*#h"? are constants. In odd dimensions necessarily Fyg(x) = 0,
and F obeys both the Maxwell and the Maxwell-Chern—Simons equations. In even dimensions,
if F2 = 0, then hy g must be not only Einstein but (almost-)Kéhler Einstein, with g (x) related
to the (almost-)complex structure by J% = |F|~' (n — 2)'/?F% (which guarantees that indeed
F? is a constant). As argued above in the vacuum case, all these spacetimes are of type D(bd).
The Maxwell field is also of type D (w.r.t. the same null directions), whereas in 4D it can
also be of type N (cf also [68, 7] for related results). When F? = 0, these solutions represent
generalizations of the familiar Reissner—Nordstrom-(A)dS spacetimes [124, 126], where u
parametrizes the mass and Q is the electric charge (see [125] for more details and related
references). A non-zero F? gives rise to a magnetic ‘monopole-like’ term; however, in this
case, hyp cannot be a sphere of constant curvature. The case n = 6 is special in that there
can also be some solutions (not included above) with F2 = FZ(u, x) and hop = hop(u, x), in
which case d, need not be a Killing vector field; see [125] for details (the algebraic type of
these special solutions, which are not warped products, has not been studied). The inclusion
of aligned pure radiation is also discussed in [125].
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7.3. Shearfree twisting solutions (even dimensions)

All shearfree geodesic WANDs also satisfy, in particular, the optical constraint (3.13) (see
equation (3.10)). In sections 7.1 and 7.2, we described Einstein spacetimes with a shearfree
and twistfree (thus geodesic) mWAND. Here, we summarize the known results for the case
of shearfree but twisting, geodesic mWANDs. First, an obvious consequence of the Sachs
equation (section 3.1) is that the twist of a geodesic WAND (multiple or not) is constrained
by (n — 2)AjAy; = —a)z(Sij so that a twisting geodesic WAND can be shearfree only in even
spacetime dimensions [51]. If, additionally, Ry = R0%¢% = 0 (such as for Einstein spaces),
then £ must necessarily be expanding so that det p # 0 [51]. To our knowledge, so far only
one solution with a shearfree, twisting, geodesic mWAND has been identified [11]. This is the
six-dimensional Ricci flat static Taub-NUT metric [127]:

d 2
ds> = —F (r)(df — 2k cos 6, depy — 2k cos 6, deby)? + F(r )
p

+ ( + k) (6 + sin 6 dg} + d5 + sin 65 dg3), (7.12)

where £ is a constant and

4 2,2 4

3+ 2k°r —2mr — k
F(r) = /3 + mr

(r2 4 k2)?
We observe that this is a spacetime of type D (for k = 0, it reduces to a generalized
Schwarzschild-Tangherlini solution with S?xS? transverse space). A geodesic mWAND is
given by

(7.13)

0,dx* = dt + F(r)~ ' dr — 2k(cos 6y d; + cos 6, dg,), (7.14)

while a second one can simply be obtained by reflecting £ ast — —¢, 1 —> —¢1, P» > —»
[66]. These mWANDs are both shearfree, twisting (for k % 0) and expanding [11]. One can
also show that in the spacetime (7.12) there exists an optical structure, as well as certain other
integrable totally null distributions with totally geodesic integral surfaces (see [11] for details).

8. Other invariantly defined classes of solutions

In this section, we describe certain classes of spacetimes that admit an invariant definition and
that are interesting from various perspectives. In particular, we discuss their permitted Weyl

types.

8.1. Kerr—Schild spacetimes and generalizations

Generalized Kerr—Schild (GKS) metrics have the form
8ab = gab - 2”_lkakbs (81)

where the background metric g,, can be any spacetime of constant curvature, H is a scalar
function and k is a null vector with respect to g,,—and thus automatically also with respect to
the full metric g,.'° The background line element is of course conformally flat, i.e. g, = Q214
for a suitable €2, and represents the (A)dS spacetime—trivially, GKS includes Kerr—Schild
(KS) for 2 = 1, and this will be understood in the following, unless stated otherwise.

The KS class of spacetimes has played an important role in 4D containing, e.g., Kerr and
Kerr—Newman black holes, the Vaidya metric, vacuum pp-waves and type N Kundt metrics

19 n fact, one can consider an even more general GKS ansatz in which the background metric g, can be an arbitrary

spacetime, but we will not discuss this possibility here—see [4] for results and references in 4D, and [128] for some
results in higher dimensions. A different extension of the KS ansatz has been studied in [129, 130].
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[4]. In arbitrary higher dimensions, the KS ansatz led to the discovery of rotating vacuum black
holes—the Myers—Perry black holes [64]. In addition, the GKS class of metrics contains, e.g.,
rotating black holes with de Sitter and anti-de Sitter backgrounds in four and higher dimensions
[131-133].

In general, the null vector k can be arbitrary. However, it turns out that

Proposition 8.1 (Geodesicity of the GKS vector k [56, 58]). The null vector k in the GKS
metric (8.1) is geodesic if, and only if, it is an AND of the Ricci tensor; i.e. Rypk“k” = 0.

Note that if Einstein’s field equations are employed, this is equivalent to the condition
T,k = 0 on the matter content. This includes, in particular, Einstein spacetimes and
aligned matter fields such as an aligned Maxwell field (F,k* o kp) or aligned pure radiation
(Tap o kgkp). From now on, we will thus focus on GKS spacetimes in which k is geodesic. Note
also that k is geodesic w.r.t. to g, iff it is geodesic w.r.t. g,». Moreover, k has the same optical
properties both in the background and in the full geometry, i.e. the matrix p is unchanged
[56, 58].

Assuming that k is geodesic, in [56], it was shown that KS spacetimes are algebraically
special. These results were subsequently generalized to the GKS class in [58].

Proposition 8.2 (Multiple WAND in GKS spacetimes [56, 58]). GKS spacetime (8.1) with a
geodesic KS vector k is algebraically special with k being a multiple WAND. Moreover, k is
also a multiple AND of the Ricci tensor (i.e. Rpk® o kp), so that the Riemann type is I1.

In what follows, we will restrict to GKS spacetimes that solve the vacuum Einstein
equations with a possible cosmological constant. For these, the algebraic type can be further
constrained according to whether the KS vector k is expanding (6 # 0) or not (6 = 0). Let us
discuss these subfamilies separately.

8.1.1. Non-expanding (Kundt) subclass.

Proposition 8.3 (Algebraic type of Einstein GKS spacetimes with 8 = 0 [56, 58]). (Non
conformally flat) Einstein GKS spacetimes (8.1) with a non-expanding KS congruence k are of
type N, with k being the multiple WAND. Twist and shear of the KS congruence k necessarily
vanish and these solutions thus belong to the Kundt class.

In fact, in the Ricci-flat case also the converse result has been proven, so that

Proposition 8.4 (Ricci-flat KS spacetimes with 6 = 0 [56]). (Non-conformally flat) Ricci-flat
KS spacetimes with a non-expanding KS vector k coincide with the class of Ricci-flat Kundt
spacetimes of type N.

This case includes type N vacuum pp-waves. The explicit metric for Ricci-flat type N
Kundt spacetimes can be found in [84].

8.1.2. Expanding subclass. As turns out, the algebraic types III and N are not compatible
with an expanding k in the GKS ansatz.

Proposition 8.5 (Einstein GKS spacetimes with expanding k [56, 58]). (Non-conformally flat)
Einstein GKS spacetimes (8.1) with an expanding KS congruence k are of Weyl types II or D,
and the multiple WAND k obeys the optical constraint (3.13).
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This subclass contains all the black hole solutions mentioned above (which are of type
D)—in particular, static black holes lie in the intersection of the KS and RT classes [56]. The
fact that k is generically shearing when n > 4, and yet obeys the optical constraint, suggested
a way towards a possible extension of the GS theorem [56], later developed elsewhere, as
described in section 4. It was also shown in [56, 58] that k has in general caustics corresponding
to curvature singularities. If there is another mWAND (type D subcase), this must also be
geodesic [56, 58].

Note that it follows from propositions 8.3 and 8.5 that type III Einstein spacetimes are
incompatible with the GKS ansatz. However, it can be shown [134] that Ricci-flat type III
spacetimes of the Kundt class are compatible with the extended KS ansatz of [129, 130].

8.2. Purely electric and purely magnetic spacetimes

8.2.1. Definitions and general properties. The standard 4D decomposition of the Maxwell
tensor Fy, into its electric and magnetic parts E and B w.r.t. an observer (identified here with its
normalized timelike n-velocity u#) can be extended to any tensor in an n-dimensional Lorentzian
space [30, 49, 19] (here we will adhere to the terminology of [19], where a comparison with
the earlier works [30, 49] can also be found). In the following, we will discuss this in the case
of the Weyl tensor (see [30, 49, 19] for results for general tensors; in particular, in [19], several
useful results for the Ricci and Riemann tensors have been also worked out). In 4D, such an
‘electro-magnetic’ splitting of the curvature tensor was first considered in [135], and there is
now an extensive literature on the subject [4] (some more recent references can be found in
[19]). Some of the 4D results have been extended to higher dimensions, but there are also
some differences, as shown in the following.

The ‘electric’ and ‘magnetic’ parts of C,.q can be defined, respectively, as the tensors
[19]

(C)eq = hRP R 81" Cyp g + 4 uy CP g puen? 8.2)

(C)™ g = 20hPT C, pryettayd® + 2ux*C™" b by, (8.3)
where

hah = &ap + UaUp (84)

is the projector orthogonal to u. These extend the well-known 4D definitions [135, 4]. In any
orthonormal frame adapted to u, the electric [magnetic] part accounts for the components of
the Weyl tensor with an even [odd] number of indices u (i.e. those which are invariant [change
sign] under a time reflection u — —u 2°). There are (n*> — 1)(n — 3)/3 independent magnetic
components and, due to the tracefree property, (n> — 2n 4+ 4)(n + 1)(n — 3)/12 independent
electric components, which together add up to the (n + 2)(n + 1)n(n — 3)/12 independent
components of the Weyl tensor. We can give the following definition.

Definition 8.1 (PE/PM spacetimes). At a spacetime point (or in a region), the Weyl tensor is
called purely electric [magnetic] (from now on, PE [PM]) w.rt. u if C_ = 0 [Cy. = 0]. The
corresponding spacetime is also called PE [PM].

According to the above definition, a zero Weyl tensor is (trivially) both PE and PM. In
no other cases can a Weyl tensor be both PE and PM (even w.r.t. different timelike directions)
[19].

20 Note that the opposite rule applies if one defines the electric/magnetic components of the Maxwell tensor Fjp
[30, 49, 19].
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There exist frame-independent criteria, similar to the Bel-Debever conditions considered
in section 2.4, to assess whether a Weyl tensor is PE or PM:

Proposition 8.6 (Weyl PE/PM Bel-Debever criteria [19]). A Weyl tensor Cpeq is

e PEw.rt u iﬁ”uag”beC[deufJ =0,
e PMwrt u zﬁ‘u[aCbC][deuf] =0.

In connection to the bivector approach of section 2.6, the following necessary conditions
are also of interest.

Proposition 8.7 (Eigenvalues of PE/PM Weyl operators [19]). A PE or PM Weyl operator
is diagonalizable, i.e. a basis of eigenvectors for /\szM exists. A PE [PM] Weyl operator
has only real [purely imaginary] eigenvalues. Moreover, a PM Weyl operator has at least
%2("74) zero eigenvalues.

Note that in 4D (only) the above conditions are also sufficient (see [4, 136] and references
therein).

8.2.2. Relation with the null alignment classification. The electric/magnetic splitting is
defined w.r.t. a timelike vector field u, and there is no obvious reason, a priori, that this has
anything to do with the null alignment classification. However, it turns out that only certain
Weyl types are permitted for a PE/PM Weyl tensor. More specifically one has the following
proposition.

Proposition 8.8 (Algebraic types of PE/PM Weyl tensors [19]). A PE/PM Weyl tensor w.r.t.
a certain u can be only of type G, I;, D or O. In the type I; and type D cases, the vector u
‘pairs up’ the space of WAND:s, in the sense that the second null direction of the timelike plane
spanned by u and any WAND is also a WAND with the same multiplicity. Furthermore, a type
D Weyl tensor is PE iff it is of type D(d), and PM iff it is of type D(abc).

This can thus be also viewed as another possible refinement, for some subcases closely
related to the spin type one [15]. The (non-)uniqueness of u is described for different Weyl
types by the following proposition.

Proposition 8.9 (Uniqueness of u [19]). A PE [PM] Weyl tensor is PE [PM] w.r.t.

e a unique u (up to sign) in the type I; and type G cases,

e any u belonging to the space spanned by all nWWANDs (and only w.r.t. such us) in the type
D case (noting also that if there are more than two mWANDs the Weyl tensor is necessarily
PE (type D(d)) [25]).

8.2.3. PE spacetimes. Here, we present a class of PE spacetimes. More examples will be
given in section 8.3.

Proposition 8.10 (Spacetimes with a shearfree and twistfree observer [19]). All spacetimes
admitting a shearfree, twistfree, unit timelike vector field u are PE w.r.t. u. These admit a line
element of the form

ds® = =V (t,x)* dt* + P(t, x)*&,p (x) dx* dx”. (8.5)
In these coordinates, one has u = V=19, and the remaining kinematic quantities are
® =V '(nP), and i, = (InV) ,.*

21 Recall that, in general, the kinematic quantities of a unit timelike vector field are defined as the irreducible parts
of ug.p, 1.€. Ug.p = —lgltp + Wgp + Ogp + %hab, where wgpu® = Oupu = opu® = uu® = 0 (cf (8.4)). See, e.g.,
appendix C of [19] for more details.
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The above class of spacetimes includes, in particular, direct, warped and doubly warped
products with a one-dimensional timelike factor, and thus all static spacetimes (see also [66]
and propositions 8.15 and 8.20).

Also the presence of certain (Weyl) isotropies (e.g., SO(n — 2) for n > 4) implies that the
spacetime is PE, see [14, 19] for details and examples. Certain spacetimes possessing also a
purely electric Riemann tensor are discussed in [19].

8.2.4. PM spacetimes. PM spacetimes are most elusive, also in four dimensions (see, e.g.,
[136] and references therein). In particular, no properly PM Einstein spacetimes are presently
known (even for n = 4). Although there is no general non-existence proof of PM Einstein
spacetimes, one has the following restriction (extending the 4D results of [137, 138])

Proposition 8.11 (No type D PM Einstein spacetimes [19]). Einstein spacetimes with a type
D, PM Weyl tensor do not exist.

However, examples of PM spacetimes can be constructed by taking appropriate products,
as described in [19], where explicit (non-Einstein) metrics have also been constructed (to our
knowledge, the only PM examples known in higher dimensions so far).

To conclude this part, let us just mention that PE/PM tensors (in particular, PE/PM
Weyl or Riemann tensors) provide examples of minimal tensors [139]. Thanks to the recently
proved alignment theorem [8], the latter are of special interest since they are precisely the
tensors characterized by their invariants [8] (cf also [19]). This in turn sheds new light on the
algebraic classification of the Weyl tensor, providing a further invariant characterization that
distinguishes the (minimal) types G/I/D from the (non-minimal) types II/ITI/N.

8.3. Direct product and warped spaces

Several known solutions (e.g., Schwarzschild—Tangherlini) are described by a warped line
element. Moreover, direct/warped product spaces represent a useful tool to generate examples
with relative ease, which can be employed to test or falsify certain conjectures about properties
of higher dimensional gravity (see, e.g., [24, 11] and section 4 for instances in the context
of the GS theorem, or the construction [19] of PM spacetimes mentioned in section 8.2.4).
It is thus the purpose of this section to summarize the main properties of such spacetimes,
especially in connection with the Weyl tensor classification.

8.3.1. Definition and general properties. Let us start with the following definition.

Definition 8.2 (Product spacetimes). The n-dimensional spacetime (M, g) is called a ‘doubly
warped product’ if

e M is a direct product manifold M = M x M) of factor spaces M and M, where
n=ny +n >4, and M™ represents the Lorentzian (timelike) factor;

e g is conformal to a direct sum metric g = 1) (g(’“) @ g(”Z)), where g™ is a metric
on M™ (i = 1,2) and f1 and f, are the smooth scalar functions on M ) and M™),
respectively.

If either f) or f> are constant, the spacetime is dubbed as a ‘warped product’, and if both
are constant, then it is dubbed as a ‘direct product’.

(Doubly) warped spacetimes are clearly conformal to direct products so that the Weyl
tensors of both will have the same properties. From now on, quantities denoted by an index »;
will refer to the factor geometry (M), g)). A basic property known for a long time is the
following proposition.

41



Class. Quantum Grav. 30 (2013) 013001 Topical Review

Proposition 8.12 (Decomposability of Riemann, Ricci and Weyl tensors [139]). In a direct
product spacetime, the Riemann and Ricci tensors and the Ricci scalar are decomposable; the
Weyl tensor is decomposable iff both product spaces are Einstein spaces and ny(ny — 1)R,,) +
ni (I’Ll — 1)R(n2) =0.

Note that the latter condition is identically satisfied whenever n; = 1 or n, = 1, while
for n; = 2 (n, = 2) it implies that (M ™), gy (M), g(2))) must be of constant curvature.
Proposition 8.12 has the following important consequences.

Proposition 8.13 (Conformally flat products [139]). A direct product is conformally flat iff
both product spaces are of constant curvature and ny(ny — 1)R,,y +ni(n; — 1)R(,) = 0.

Proposition 8.14 (Einstein direct products [139]). A direct product is an Einstein space iff
each factor is an Einstein space and their Ricci scalars satisfy Rn,)/n1 = Ru,)/na.

The latter result and proposition 8.12 implies that a direct product with a decomposable
Weyl tensor cannot be properly Einstein (and it is Ricci-flat iff both factor spaces are Ricci
flat).

8.3.2. Relation with the null alignment classification and PE/PM character. Here, we
consider various cases of product spacetimes, which describe several important classes of
metrics and in which the Weyl type can be constrained. First, (doubly) warped and direct
products with a one-dimensional timelike factor are special cases of metric (8.5) (see [19]), so
that from propositions 8.8 and 8.10 we immediately have the following proposition.

Proposition 8.15 (Warps with n; = 1 [66, 19]). A (doubly) warped spacetime with a one-
dimensional timelike factor can be only of type G, I;, D(d) or O, and it is PE.

In particular, static spacetimes belong to the above family (see also propositions 8.20 and
8.24). If the ‘timelike’ (Lorentzian) factor is two dimensional, we instead have

Proposition 8.16 (Warps with n; = 2 [66, 19]). A (doubly) warped spacetime with a two-
dimensional Lorentzian factor is either of type O, or type D(d) and PE w.r.t. any unit timelike
vector living in M, the uplifts of the null directions of the tangent space to (M™, g"))
being double WANDs of the complete spacetime (M, g). If (M), g™)) is Einstein, the type
specializes to D(bd) and if it is of constant curvature to D(bcd).

In particular, all spherically, hyperbolically or plane symmetric spacetimes belong to the
latter special case (see also proposition 8.22).

For warped products in which the Lorentzian factor is at least three dimensional the
above proposition does not hold, in general. However, if (M), g®)) is three dimensional
and Einstein one has the following proposition.

Proposition 8.17 (Warps with n; = 3 [66, 19]). A (doubly) warped spacetime in which
(M), gy s a three-dimensional Einstein spacetime can be only of type D(d) or O. The
uplift of any null direction of the tangent space to (M™,g") is a double WAND of the
complete spacetime (M, g), which is PE w.r.t. any unit timelike vector living in M.

The above are thus examples of spacetimes admitting a continuous infinity (co') of
(including non-geodesic) mWANDSs, such as dS3 xS~ see also [24, 67, 9].
If n; > 3, one needs stronger assumptions to arrive at a similar result:

Proposition 8.18 (Warps with n; > 3 [66, 19]). In a (doubly) warped spacetime with n; > 3
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(a) if (M™), g")) is an Einstein spacetime of type D, (M, g) can be only of type D (or O)
and the uplift of a double WAND of (M, g™ is a double WAND of (M, g),

(b) if (M™, g™ is of constant curvature, (M, g) can only be of type D(d) (or O) and the
uplifts of any null direction of the tangent space to (M™, g™ is a double WAND of
(M, g); (M, g) is PE w.r.t. any unit timelike vector living in M,

Examples of class (a) are Kerr black strings, which are indeed of type D but not D(d).
Spacetimes of class (b) (clearly a subfamily of (a)) contain a continuous infinity (c0™~?) of
mWANDs. A vacuum example of the latter is the KK bubble [141] (see also [24]), while an
Einstein—-Maxwell example is the Melvin fluxbrane [142, 126], which belongs to the Kundt
class—thus, both these spacetimes are of type D(d).

More generally, necessary and sufficient conditions for a direct product spacetime to be
PE or PM (w.r.t. a unit timelike vector either living in M) or not) have been given in [19],
along with some examples.

Certain vacuum pp-waves of type more general than N can be easily constructed as direct
products (recall also proposition 7.3 for a more general result):

Proposition 8.19 (Direct product vacuum pp-waves [56]). In a direct product spacetime
M® = pm) o ppn2)

(a) if (M), g™y is a vacuum pp-wave of type N or Illl(a) and (M"?, g is Ricci-flat
(but non-flat), then (M™, g™ is a vacuum pp-wave of type Il (abd) and not more special
(here ny, n, > 4, and ny > 5 if the ny-dimensional pp-wave is of type Ill(a)),

(b) if (M™, g™y is flat and (M), g™ is Ricci flat (but non-flat), then (M™,g"™) is a
vacuum pp-wave of type D(abd), and not more special (withny > 2, ny > 4).

The above specific subtype D(abd) was mentioned in [12].

Einstein spacetimes given by a warp with n; = 1 and f, =const, or n; = n — 1 and
/1 =const are described by Brinkmann’s metrics [114]. In the former case, they are comprised
of proposition 8.15; in the latter case, they can be of any Weyl type and have been analysed in
detail in [143], as reviewed in section 8.3.3.

8.3.3. Brinkmann’s warps. As mentioned above, a special class of warped metrics with a
single spacelike ‘extra dimension’ (i.e. n; = n — 1 and f; = const) is particularly interesting
if one restricts to Einstein spacetimes. These were first considered by Brinkmann in his study
of Einstein spaces that can be mapped conformally on other Einstein spaces [114]. From our
perspective, the interest in such metrics is twofold. On the one hand, Brinkmann’s line element
can be used to generate Einstein spacetimes with given algebraic properties and optics (see
[68, 66, 53, 143] for some applications). On the other hand, it essentially consists of a slicing
of an Einstein spacetime by hypersurfaces which are, in turn, also Einstein. It is thus of interest
also in brane-world scenarios, where it provides a consistent embedding of (n— 1)-dimensional
Einstein gravity in n-dimensional Einstein gravity (with various possible values for the bulk
and lower dimensional cosmological constants), see, e.g., [144—148] and references therein,
where various supergravity extensions (relying on the same metric ansatz) have also been
studied.
Brinkmann’s line element reads

ds*> = ]% dz*> + f(z) ds?, (8.6)
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Table 6. Possible relation between the Weyl type of the seed spacetime d5? and the full spacetime
ds? for metric (8.6) with (8.7) (from [143]). In the case n = 5 (only), if ds? is type D, then d§?
must be type D as well [12, 143].

Given type  Possible type Given type  Possible type
of ds? of ds? of ds? of ds?

G G, I;, Dypa G G

I LI I I

I; L, Dapa I; G LI

I I I I

D D D G,1,D

I I I 111

N N N N

(0} (¢} (0] (0]

where ds? is an (n — 1)-dimensional metric. Assuming that ds? is an Einstein spacetime, it
follows that

f@@) = =A% +2dz + b, A= L, 8.7
n—1nm—-2)
with b and d being constant parameters. The ‘seed’ metric ds*> must also be Einstein, with the
Ricci scalar (hereafter tildes will denote quantities referring to the geometry of ds?)

R=m—1)(n—2)(\b+d?). (8.8)

These are precisely the Einstein spacetimes that can be mapped conformally on other Einstein
spacetimes by a proper map [114]. In order to preserve the signature, we require f(z) > 0,
which may restrict possible parameter values and (possibly) the range of z [143]. In particular,
not all possible combinations of the signs of R and R are permitted. Note that (8.6) is
form invariant under a redefinition z = a7 4+ 8, under which M’ = A, d’ = a~'(d — AB),
b = a2[b+B(—rB+2d)] and d5? = a2 ds? (so that R’ = o~ 2R). Alternative coordinates for
the metric (8.6) have also been presented in [143]. These may sometimes be more convenient
for certain applications, e.g., for the Kaluza—Klein reduction.

Using coordinates x* = (x*, z) (with Greek indices ranging from O to n — 2), for the
coordinate components of the Weyl tensor, it is straightforward to show that [114]

C;wpcr = fé;wpo» Czﬁwp =0= Czuzw (89)

First, it is obvious that ds? is conformally flat (and thus of constant curvature since Einstein) iff
ds? is such [114]. Therefore, in four dimensions, metric (8.6) describes only spaces of constant
curvature (a three-dimensional Einstein space ds? is necessarily of constant curvature). For
n > 4, this is generically not the case, and one can show [143] that ds? inherits WANDs from
ds? with the same multiplicity. In particular cases, ds? can however also possess additional
WAND:s unrelated to those (if any) of ds?. Consequently, ds? is in general of the same Weyl
type of ds?, but in special cases (see [143] for details and some examples) it can be more
special. In particular, if ds is algebraically special, then ds? is of the same algebraic type (but
not vice versa). This is summarized in table 6.

Using scalar curvature invariants and components of the Weyl tensor in a parallelly
propagated (p.p.) frame, it has also been shown [143] that all spacetimes ds? (8.6) with (8.7)
contain (p.p.) curvature singularities arising in the full spacetime ds® due to the warp factor (at
points where f(z) = 0), except when both the cosmological constant of ds? and that of ds* are
negative (and in the trivial case of a direct product spacetime f = const). Two explicit five-
dimensional examples of warped metrics without naked singularities have also been discussed
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in [143]: an AdS black string sliced by an AdS spinning black hole, and an accelerated AdS
black string generated from the four-dimensional AdS C-metric. Many more general solutions
can be easily obtained.

8.4. Spacetimes with symmetries

In this section, we summarize classes of spacetimes with isometries (sections 8.4.1-8.4.4)
or other ‘symmetries’ (section 8.4.5) for which the intersection with the Weyl classification
has been studied (see, e.g., [4, 23] and references therein for corresponding results in 4D).
Properties of spacetimes admitting certain isotropies are discussed in [14, 19].

First of all, let us recall that an n-dimensional spacetime is of constant curvature iff it
admits a group of motions of dimension n(n + 1) /2. Furthermore, an n-dimensional spacetime
(with n > 3) is of constant curvature (and thus of type O) iff it admits an isotropy group
of dimension n(n — 1)/2. These are local results and hold, in fact, for any signature. The
corresponding maximally symmetric spacetimes are of course only Minkowski or (A)dS (see,
e.g., [4]). In the following, we first discuss consequences of the presence of a single Killing
vector field*? and then review results on spacetimes admitting larger isometry groups, such as
spherical/hyperbolic/plane or ‘axial’ symmetry (note that the considered classes of spacetimes
are not necessarily disjoint). Most of the results are purely geometric, i.e. no field equations
are initially assumed, except for sections 8.4.4 and, in part, 8.4.5.

8.4.1. Spacetimes with a timelike Killing vector field. If the timelike Killing vector field is
hypersurface orthogonal, we have static spacetimes, for which

Proposition 8.20 (Static spacetimes [66, 19]). An n > 4 static spacetime can be only of type
G, I,, D(d) or O, and it is PE.

This can also be seen as a special case of propositions 8.8 and 8.10. Indeed, the general
line element of static spacetimes is (8.5) with V. = V(x) and P = P(x). See table 7 for
the corresponding examples of all permitted Weyl types. Obviously, the conclusions of
propositions 8.20 apply also to spacetimes that are conformal to a static spacetime, such
as (doubly) warped products with a one-dimensional timelike factor (proposition 8.15).

When the timelike Killing vector field is not hypersurface orthogonal, the corresponding
spacetime is stationary. By adding some extra assumptions, one arrives again at the types G,
I;, D(d) or O (but counterexamples, not obeying the extra assumptions, are also known) [66].
However, stationary spacetimes in general are neither PE nor PM [19]. Typical examples are
rotating black holes/rings (table 7).

8.4.2. Spacetimes with a null Killing vector field. In this case, one can extend well-known
4D results [4] by the following proposition.

Proposition 8.21 (Null Killing vector field [66, 51]). A null Killing vector field k is necessarily
geodesic, shearfree and non-expanding, with twist given by > = R,k°k". Ifk is twistfree (i.e.
R,k%kP = 0), then it must be a WAND (and vice versa if nis odd), so that the spacetime is of
Weyl (and Riemann) type I (or more special) and belongs to the Kundt class. If, additionally,
Rupk® o kp, then the Weyl (and Riemann) type is Il (or more special).

22 Namely, a timelike or null one. A single spacelike Killing vector does not impose any constraints on the algebraic
type of the Weyl tensor, in general, and all types are in fact possible [66].
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Note that both conditions on the Ricci tensor (the latter implying the former) hold, in
particular, in the case of Einstein spacetimes, while the existence of a twisting null Killing
vector field requires the presence of ‘null” matter (see [4] for examples in 4D). On the other
hand, a special subfamily admitting a twistfree null Killing vector field is represented by the
full class of pp-waves (for which k,., = 0), see also section 7.1.3. See instead [111] for an
example of a (Ricci-flat) spacetime of type II; that belongs to the Kundt class with T # 0 (and
thus is not a pp-wave) and admits a null Killing vector field.

8.4.3. Spherically, hyperbolically or plane symmetric spacetimes. A line element with
spherical, hyperbolic or plane symmetry can be written as a warped spacetime with a two-
dimensional Lorentzian factor (see, e.g., [149, 150]), which implies (cf the more general
proposition 8.16)

Proposition 8.22 (Spherical, hyperbolic and plane symmetry [19, 66]). An n > 4 spherically,
hyperbolically or plane symmetric spacetime is of type D(bcd) (in particular, PE) or O.

If one adds the assumption that the spacetime is Einstein, a generalized Birkhoff theorem
[149, 150] implies that the only non-conformally flat solutions are Schwarzschild—Tangherlini
metrics (7.7) with (7.8) and hqp representing a space of constant curvature (with K = £1,0
depending on the isometry group), or Nariai-like solutions, i.e. dS, x S"~2 (spherical symmetry)
or AdS; xH"~? (hyperbolic symmetry).

8.4.4. Axially symmetric Einstein spacetimes. In [24], higher dimensional Einstein
spacetimes with axial symmetry (i.e. invariance under an SO(n — 2) isometry group whose
orbits are (n —3)—spheres) were studied. The authors of [24] first considered the static subclass
and gave conditions on the metric functions (in adapted coordinates) for these spacetimes to
be of type G, I; or D (other types are not permitted [66], see proposition 8.20). Examples here
include the type D Schwarzschild—Tangherlini black hole and Schwarzschild black string, the
type G static Kaluza—Klein (KK) bubble (i.e. a direct product of a flat time direction with
Euclidean Schwarzschild), and other spacetimes of type G or I;. Some of these solutions have
the interesting property of being of type G in an open subset of spacetime and of type I; in
another open subset. See also [151] for other properties of this class of metrics.

Next, in [24], general (i.e. not necessarily static) axisymmetric Einstein spacetimes were
studied and all such solutions for which the type is II or more special were determined.
These comprise (cf also table 7, where some of the following Weyl types are further
constrained) (generalized) Schwarzschild black holes (type D), (warped) black strings (type
D), axisymmetric Kundt solutions (II, D, or N)2, dS,_,»xS? (type D, A > 0), and an
analytic continuation of Schwarzschild-Tangerlini, i.e. KK bubbles (type D, arbitrary A).
The latter two solutions are unique in that they possess (a continuous infinity co"~* of) non-
axisymmetric mWANDs, some of which are non-geodesic (see also [9]). On the other hand,
the only axisymmetric Einstein spacetime admitting a non-geodesic, axisymmetric mWAND
is dS3xS"3 (type D, with A > 0). All remaining solutions possess geodesic, axisymmetric
mWANDs. Note in particular that type III spacetimes are not permitted, and the only possible
type II/N spacetimes belong to Kundt. All type D solutions turn out to admit an isometry group
larger than the assumed SO(n — 2). The analysis of [24] also shows that, within the considered
class, a geodesic, axisymmetric WAND must be an mWAND, and must be twistfree.

23 Note that axisymmetric Kundt solutions of type D also include, e.g., the products dS3xS"~3, dS;xS"2,
AdS; xH"~2. However, within the axisymmetric Kundt class, only the type N subclass solutions can be fully
determined in an analytic form and it represents non-expanding axisymmetric gravitational waves propagating on a
constant-curvature background. See also [113, 111] for examples of types II and N.
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8.4.5. Other symmetries. So far we have considered metrics with certain isometries. We
now consider spacetimes that admit a vector or a tensor field with other special properties and
discuss consequences in terms of the permitted Weyl types.

First, let us mention spacetimes whose holonomy is (a subgroup of) Sim(n — 2). These are
spacetimes which admit a recurrent null vector field (included in the class of metrics studied
in [109]), for which we have the following proposition.

Proposition 8.23 (Recurrent null vector field [109, 12]). Spacetimes that admit a recurrent
null vector field, i.e. k,k* = 0, kg.p = kapp, coincide with the subclass T = 0 of the Kundt
family; they are of type II(bd) if Einstein, and Il(abd) if Ricci flat.

More explicitly, upon defining a suitable rescaling £ = «k, one can always arrive at
Ly:p = L11€,¢p, which indeed defines the particular subset of Kundt metrics having T = 0, and
the corresponding line element is thus (7.1) with W, , = 0[109, 110] (so that these spacetimes
intersect the degenerate Kundt family, cf section 7.1.2), see also [84] in the VSI subcase. In
particular, constraints on the metric functions arising in the case of Einstein spacetimes have
been studied in [110] (see also [106])—in 4D these metrics are ‘universal’ [78]. A special
subfamily of the spacetimes of proposition 8.23 is obtained if one restricts the holonomy to
(a subgroup of) E(n — 2) [110]. Then, the null vector field must be covariantly constant,
i.e. also Lj; = 0, and one is left with the already discussed pp-waves (7.3) (i.e. (7.1) with
Wot,r =0= H,r)~

Next, spacetimes with a covariantly constant timelike vector field (u,,;, = 0) are those for
which the holonomy is (a subgroup of) SO(n — 1). They are, in particular, static, and one has
the following proposition.

Proposition 8.24 (Covariantly constant timelike vector field [12, 19]). Spacetimes that admit
a covariantly constant timelike vector field can only be of Weyl type G, I;, D(d) or O, are PE,
and cannot be properly Einstein. For Ricci-flat spacetimes, the possible types reduce to G,
1;(a), D(abd) (and O, this being the only possibility if n = 4, 5).

The corresponding line element is (8.5) with V = V(¢), P = P(x), i.e. a direct product
spacetimes with a one-dimensional timelike factor (cf also propositions 8.8, 8.10 and 8.20).
In fact, to arrive at the conclusions of proposition 8.24, it suffices to assume Rupeatt® = 0 (and
not necessarily u,;, = 0) [12, 19].

Apart from considering vector fields with certain properties, it is sometimes also useful
to characterize spacetimes by the existence of special tensor fields. Having in mind the Weyl
tensor classification, here we briefly summarize some results for spacetimes admitting a rank-2
conformal Killing—Yano (CKY) tensor, i.e. a 2-form h,;, = —hy, that satisfies

2
hab;c = Teab + gc[a‘i:blv (8 10)
n—2

where 7.4, is a 3-form. If A, is closed, i.e. 1.5 = 0, and ‘non-degenerate’ (i.e. of maximal
matrix rank), it is dubbed principal CKY tensor. First, the presence of a CKY tensor restricts
the algebraic type of the Weyl tensor:

Proposition 8.25 (Conformal Killing—Yano tensor [72]). A spacetime of dimension n > 4 that
admits a non-degenerate rank-2 conformal Killing—Yano tensor with distinct eigenvalues is of
Weyl type D.

For spacetimes admitting a principal CKY tensor the authors of [152, 153] went a step
further (see also [154]). First, they proved the existence of preferred coordinates in which
the line element takes a canonical form. Next, by enforcing the vacuum Einstein equations
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(with a possible A) they proved that the only solution is represented by the Kerr—-NUT-(A)dS
spacetimes (including special subcases such as Myers—Perry black holes). Note however that
this uniqueness result has been proven only for the Euclidean signature ‘continuation’ of those
spacetimes. Furthermore, certain technical assumptions such as functional independence of
the eigenvalues of h,;, were made.

Let us just mention that the interest in CKY tensors arises in connection with the
integrability of geodesic motion and separability of certain PDEs (such as Hamilton—Jacobi,
Klein—Gordon and Dirac) in the corresponding spacetimes. See, e.g., the recent reviews
[155—157] for a number of related references.

9. Miscellanea of examples and summarizing table

In table 7, we present examples of higher dimensional spacetimes of all Weyl types. We mainly
focus on Einstein spacetimes but a few solutions with matter/electromagnetic field are also
mentioned. BR and BH stand for ‘black ring’ and ‘black hole’, respectively. Certain spacetimes
may have different Weyl types in different regions; in those cases, we have generally indicated
only one of those types (for example, black objects are always of type II or more special at
Killing horizons, provided the null generator is an eigenvector of the Ricci tensor [52, 66]).
Similarly, ‘static’ and ‘PE’ spacetimes are often such only in a certain region—this is
understood. In the last column, we have indicated references where the Weyl type was
discussed, whereas references where the corresponding solution was first presented (when
different) are given in the second column. Note that some of these classes of solutions overlap,
and some are subsets or others, yet it seems convenient to display them separately due to their
own importance: for instance, RT includes Schwarzschild-Tangherlini BH, and the same does
Myers—Perry BH if one sets rotation to zero; all pp-waves belong to the Kundt class, etc. When
more details of some examples are discussed in the main text, the corresponding sections are
given in the last but one column. The symbol ‘C’ means that the mentioned family is a subset
of a larger class of solutions (e.g., Kundt), whereas ‘e’ means that the considered spacetime
belongs to a certain class.

10. Applications in quadratic gravity

As we have seen in section 5, the curvature structure of Riemann type Il and type N spacetimes
is so restricted that all curvature invariants of order O (see definition 5.1) vanish?*. It thus seems
natural to study whether some subclasses of these spacetimes solve the vacuum field equations
of modified gravities with Lagrangians constructed from curvature invariants of order 0 in n
dimensions [178].

One important class of such modified gravities is quadratic gravity, whose action contains,
in addition to the standard Einstein—Hilbert term, also general quadratic terms in the curvature
[179]

1
S = /d"x« /_—g<; (R —2A¢) + aR> + BR2, + y (Royy — 4R2, + R) ) (10.1)

24 Recall that some curvature invariants of higher order are non-vanishing even for type III and type N spacetimes as
long as p # 0O; see also footnote 12.
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Table 7. Examples of spacetimes of various Weyl types in higher dimensions. See the text and the indicated sections for more details.

Type Spacetime Matter n Comments Cf section  Reference

G static KK bubble vac >5 PE 8.4.4 [24]
‘homog. wrapped object’ [36]* vac 5  static, PE 2.7.1 [24]
static charged BR [160-162] electrovac 5 PE [163]

I; (non-)rotating BR [164, 165]° vac 5 4.2.1 [74]
Gross—Perry [158, 166]° vac 5  static, PE [159, 111, 24]
lifted Lozanovski [19, 168] imperfect fluid 5 PM 8.2 [19]

D Myers—Perry BH [64] vac >5 8.1,8.4.5 [50, 66, 169]
Kerr-NUT-(A)dS [132, 133, 170] A =5 8.4.5 [159, 169, 66]
Tangherlini BH [124] (electro)vac, A >5 D(bcd) (PE);oc =0 7.2,8.3,8.4 [50, 159, 66, 125]
Robinson-Trautman? (electro)vac, A, purerad. =5 D(bd) (PE); o =0 7.2 [54, 125]
black strings/branes vac > 5 static, D(d) (PE) 8.3,8.4.4 [159, 66]
warped black strings [24, 171, 172] A > 5 static, D(d) (PE) 8.3,8.4.4 [24, 143]
(A)dS,,, x(Einst)™ [140] A Gf Rfl—"l‘) = Rfl—"f)) >5 D() (PE); 00"~2 mWANDs; eKundt 8.3 [66, 24, 67, 11]
Schwarzschild KK bubble [141] vac, A i >5 D(d) (PE); 00" * mWANDs 8.3,8.4.4 [24, 66]
Myers—Perry KK bubble [173, 174]  vac 5 [10]
Taub-NUT [127, 175] vac 6 o=0,p#0 7.3 [11]
C pp-waves vac > 6 D(abd) 7.1,8.3 [56, 12]
Melvin [142, 126] electrovac > 5 static, D(d) (PE) 8.3 [66]

11 C pp-waves vac > 8 II’(abd) 7.1,8.3 [56, 12]
C Kundt vac >5 I 8.4 [111]
C warps of 4D [114] vac, A >5 p#0 8.3 [143]

I C Kundt/pp-waves vac, pure rad. > 5 VSI; also A for Kundt 5.2,7.1 [84, 56]

C warps of 4D [114] vac, A >5 p#0 8.3 [53, 143]

N C Kundt/pp-waves vac, pure rad. >5 VS KS; also A for Kundt 5.2,7.1,8.1  [84, 56, 58]
C warps of 4D [114] vac, A >5 p#0 8.3 [53, 143]

(0] Minkowski/(A)dS vac/A =5 8.4
ds,, xH™, AdS,, xS™ [176, 177] ny-form (up to duality) >5 (flgl) = —ﬁ; CSIk 8.3 [140, 66]
Einstein universe R x §"! perfect fluid, A > 5 static, PE 8.3 [140, 66]
LFRW-like universes perfect fluid, A >5 PE 8.3 [140, 66, 14, 19]

2 This metric is a special case of a family of solutions given in [158]. Note that the type is more special according to [159]; however, the WANDs considered in this reference are
complex (cf their equations (30)— (32)), which is of no relevance to the present discussion.

b To be precise, in the rotating case, it has been proven only in certain spacetime regions that the type is I; [74].

¢ The Weyl type is G in certain spacetime regions [24]. These metrics contain, for a special choice of parameters, the Gross—Perry—Sorkin soliton [166, 167], while they degenerate to
type D for other parameter choices (including static black strings) [24].

4 Note that for a ‘special’ electrovac 6D case (cf section 4.3 of [125]) the Weyl type has not been determined.
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in which Ay, «, «, B and y are constants?>. This action leads to the vacuum quadratic gravity
field equations [180]

1 1 1 .
; (Rab - ERgab + AOgab> + 2aR (Rab - ZRgab) + (20[ + IB) (gavaVc - Vavb) R

) . 1
+2y (RRab = 2RachaR + RacaeRy"™ = 2RacRy — 78ab (Riger = 4Rey + ) )

. 1 1 )
+ﬁvc Vc <Rab - ERgab> + 213 (Rucbd - ZgabRcd) RCd =0. (102)

24

For Einstein spacetimes?, i.e. Ry, = nZTAz 8ab» the equations of quadratic gravity (10.2)

reduce to [178]%

Bgas — ¥ (C,**Crede — $8aC! Ceaer) = 0, (10.3)
where
_A—Ao o (m—4) n—=3)Y(n—4)
B= P + A |:(n_2)2(na+ﬂ)+(n_z)(n_l)y}. (10.4)

10.1. Type N Einstein solutions to quadratic gravity

For type N spacetimes, one has CaCdeChcde = 0 (see equation (2.23)) and cedef Cegey =0
(section 5), so that equations (10.3) and (10.4) reduce to a simple algebraic constraint
B = 0 relating the effective cosmological constant A to the parameters «, 8, y, k, Ay.
These spacetimes are thus ‘immune’ to corrections of quadratic gravity:

Proposition 10.1 (Type N solutions of QG [177]). In arbitrary dimension, all Weyl type N
Einstein spacetimes with cosmological constant A (chosen to obey B = 0) are the exact
solutions of quadratic gravity (10.2).

Many higher dimensional type N Einstein spacetimes are known and thus in proposition
10.1 we identified a large class of exact vacuum solutions of quadratic gravity. These include
type N Kundt spacetimes (see section 7.1) and expanding, shearing (and possibly twisting)
type N solutions obtained by (repeatedly) warping known four-dimensional type N Einstein
spacetimes (see [53] for examples and section 8.3.3 for comments on the warping method).

10.2. Type III Einstein solutions to quadratic gravity

Clearly, for type III spacetimes C°4¢/ Cegey vanishes as in the type N case (see section 5).
By contrast, the remaining Weyl term appearing in (10.3) is in general non-vanishing. From
(2.23), it follows

C, % Chege = WL,y (10.5)
where
U=, — W (10.6)

25 Recall that in four dimensions one can set y = 0 since the corresponding (Gauss—Bonnet) term in the Lagrangian
does not contribute to the field equations.

26 There are at least three reasons to study Einstein spacetimes in this context: (i) this assumption leads to a dramatic
simplification of the field equations of quadratic gravity; (ii) it is of interest to know which spacetimes are vacuum
solutions of both theories, i.e. they are ‘immune’ to the corrections of quadratic gravity; (iii) Einstein spacetimes are
relatively well studied and one can thus use the know-how of (higher dimensional) Einstein gravity.

27 Note that in general the cosmological constant A appearing in the Lagrangian (10.1) is distinct from the effective
cosmological constant of the Einstein spacetime A.
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By tracing (10.3), we obtain B = 0, so that (10.3) reduces to y\fl = 0, and thus, (assuming
y # 0) type IIl Einstein spacetimes are exact vacuum solutions of QG if, and only if, U =0
(assuming of course that the effective cosmological constant A is chosen to obey (10.4)).

Let us first observe that not all type III Einstein spacetimes are solutions of vacuum
QG, since there do exist type III Einstein spacetimes with W # 0. For instance, U is clearly
non-vanishing for the type IIl(a) subclass of type III spacetimes, characterized by W) = 0 [2]
(section 2.3). Take, for example, type III Ricci-flat pp-waves, which are automatically of type
III(a) (proposition 7.3), and thus not vacuum solutions of QG (an example of such metric is
given by (7.5)). Similarly, also type III() Einstein spacetimes cannot solve QG (unless n = 4,
cf the definition given in section 2.3).

On the other hand, many other type III Einstein spacetimes do obey U = 0. To see that
this is indeed the case, note first that in four dimensions ¥ = 0 identically (this follows from
symmetries of ‘Illf jk). Next, from the results of section 8.3.3, it follows that for Brinkmann’s
warped metrics (8.6), one has

1

C,"" Crrpy = ?é;ﬂ“éw,m, (10.7)

with all z-components being zero. Therefore, W also vanishes for all type III Einstein
spacetimes of the form (8.6), i.e. obtained by warping four-dimensional type III Einstein
spacetimes. Such spacetimes are thus also exact solutions of QG. Various classes of such
Einstein spacetimes are given in [53].

10.3. Type III and type N spacetimes with aligned null radiation

The above results for Einstein spacetimes may be partially generalized to the case of a Ricci
tensor of the form

=

ab =

2A
2gab+X£a£b~ (108)

Assuming further U= 0, equation (10.2) reduces to [134, 178]
(BO+A) (xLaty) =0, (10.9)

with

o p_ n=3n=4) ) (10.10)

A ! 4A

=T <n—2+n—1 n—2mn-10n"
As it turns out [178], for 8 # 0 equation (10.9) implies that p;; vanishes, and these spacetimes
thus belong to the Kundt class (section 7.1). Explicit examples of such solutions of QG
(obtained by solving (10.9)) can be found in [178, 134]. Note that these vacuum solutions of
QG are not vacuum solutions of Einstein theory due to the non-vanishing Ricci tensor.
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