Space complexity of computations

Pavel Pudlék Stanislav ¥4k

Mathematical Institute
Czechoslovek Acedemy of Sciences

Prahe, 115 67, Zitnd 25, University

Czechoslovekia Praha, 128 00, Horski 3
Czechoslovakig
Aﬁatract

Nonuniform space complexity is charascterized in several ways:
using models of computation based on some set operations per-
formed with subsets of {0,1}n y and by the size of contact
schemes (two-terminal switching networks). A geometrically de-
fined complexity of partitions of [O,l}n is introduced end
is related with the models based on set operations. A language
is exhibited such that if a mechine is allowed to investigate
each input cell at most once, then it requires space Vﬁ', while

the bound log n can be achieved without this restriction.

Key words: Turig machine, lenguage, nonuniform space comple-

xity, contact scheme, treshold function.

Institute for Computatién

Techniques of the Technical

Introduction

The object of this paper is to investigate space comple-

xity of Turing machine computations. we shall study nonuniform

complexity; here nonuniformity means that a Turing machine can
use restricted.édditional informetion for free. In fhiéfbaper
the additional information will be called an oracle.

We restrlct oureelves to the languages over the two ele—

ment alphabet’ B = {O 1} O denotes the set of p091t1ve

1ntegers.

Essentially there are two kinds of oracle Turing machlnes
which can be used to define nonuniform space comﬁlex1tyu Let
S be a function defined on w . :

(1) An oracle is = sequehce_ {a,t ned gne.B* . The iiput
for a machine T isg alweys a peir (x,a), where x ¢BD . ‘Then
we define: a lenguage LC?B* ie accepted 1n nonuniform Space
or -

L € NU-SPACE (s) ,
' aucé that
2 oS(n)

if there is a machine T with an orecle {en} nee
T is S - space bounded snd the length of e, is
for ne€ & eand some constant c. -
(2) An orecle is an arbitrary langusge A< R* ., The maéﬁine
hes a specisl work tape = ‘called oracle tzpe - end is sdbplied
with informetion, whether the current word on the orecle: tape

belongs to A or not. Then L ¢ NU-SPACE(S) if there is

S,

a machine T with an oracle A such ‘that the work tapes,
ingluding the oracle tape, are S -~ bounded.

It is easy to show that these definitions are equivalent.
We omit the proof of it, since we neced only the first defi-
nition. The non_uniform nondeterministic space classes

NU-NSPACE(S)

are defined in the same way using nondeterﬁinistic machines.
» The mgin reason for studying hoﬁuhiform éomplexity is that
it unifies two different approaches to tﬁe compléxity: the
Turing machine compléxity and the Boolean cirquit complexity.
There are other reasons for that; for exampie, it is:knbwn tﬁat
the complexity classes based on random Turing machines are ré-
lated to nonuniform complexity classeg [1,27.

The following is a summary of the paper.

In Section 1 we introduce a model of computation basged

enymore, i i
ymore. The situation becomesg quite different ir the space

bound i i !
1s sublinear, Thep the machine has to investigate the

input ce l e eBth Ve n ect on we rove .hat tl]ele 1
1 S r P = l I S 1 2 p t
g

Ay
& lsengu i
guage such that if 4 machine can invéstigate each input
» p

cell i
at most once, then 1t requires space 11; » wWhile the

bound i
log n cen be achieved without this restriction

4.

Aleliunas, Karp, Lipton, Lovdsz and Rackoff [2}proved that
directed graph reachability is in NU~-SPACE(log n). This has
the important consequence that nonuniform space can be charac-

terized by the size of contact schemes. This will be discussed

in Section 3.

A conservative model of compuitaition is, roughly speaking,
2 model in which the algorithms are allowed to use only some
restricted operations and hence such algorithms cannot be
regarded as a model of a general purpose computer, In conser—
vative models one can prove lower bounds which are not known
for nonconscrvative ones. In Section 3 we shall extend methods

of some geometrically oriehted conservative mcdel to a non-

congservative case,

1, Cutting elgorithms

Suppose the vertices of the n-dimensional cube B® are of
two colours Yes and No. Our task is to separate verﬁices of
different colours using only the two following operations.
(a) We may cut a part of the cube along a coordinate 1,

(thet is we may divide AS3B" into

{ge#;5i= 0},igeA{af=1},

where a = (al,o.., an)n)

(b) Ve may. join different parts of the ciibe, '

If we do not require that every two vertices of the éémé:
colour belong to the same piece of the finel decomposition,
then this can always be done without opération:(b); However
we want to use as few operstions as possible. Operation (b)
enables us to reduce essentially the number of cuttings, since
we do not have to cut meny éﬁall pieces seperately. Once
operation (b) is allowed, it is convenient to require that
the result of cuttings and joinings is the partition {Yes,No} .

There are several possibilities how one can define cutting

algorithms precisely. We give only two definitions,

Definition 1

A computetional structure is & finite oriented acyelic graph
; Y ,

lzbeled by subsets of B? such that

l. it has exactly one gource - inpui vertex - vertex with

indegree O, which is labeled by Bn;

2. every vertex has outdegree 2 except for two sinks - output

vertices - vertices with outdegree O; theilabels of the -
successors of every vertex with outdegree 2 are produced
by operation (2) above from its label; 3

3. only the label of a sink may be empfy;‘l

Definition 2

A cutting algorithm is a sequence of partitions of-Bn,

which starts with the partitioh {Bn} and at every step one
operation of the form (a) or (b) is uged to produce the next

partition.

We say that a computation structure (resp. cutting al-

gorithm) combutes -~ accepts - a éet I iff A is a label ;,
of a sink (a block of the last partition resp,). The cutting
complexiiy of_AF;Bn,is the minimum of the number qf_vertipes;‘i“;i
(length of tﬁé.éé§ueﬁéé”féap.) in computational structures 2l
(cutting algorithm resp.) which compute A. The two pdssiblef
oo] give Pumbe?s which) w T

definitions of cutting p%ﬁiIEEE?? differ only in a multlpl;f o
cative factor <£2; thus we;sﬁéli prefer neither of them, The
cutting complexity of a language <3 is ‘the

function C, where C(n), is the cutting complexity of LB

) The labels of a cbmpufafional structure are quité complex,
since they are subsets of Bn, Sometimes it is useful to use A
a different labeling, Namely, we can label vertices of the
structure by coordinates allong which the cuttings are done,

To get full information about the computational structure,
we have to label the two edges going out of a vertex v ‘by

0 end 1, for every v which is not a sink., Thus we get a .

computation graph (2-way integer comzutation graph) of [4]. d

(Here we have "2" because wé use z two element alphabet).

Every 1nput a eBn, a = (al,...,an), determines a path,_
in a computational structure or in a computaztion graph, which
starts in the source end ends 3i# a sink, In a computational
structure the path isrdetermined by the property that a is

an element of the label of every vexrtexz of the path. In

a2 computation graph vertex u follows vertex v in the
path iff (v,u) is an edge labeled by a; and v is
labeled by i, The path will be called the computation on a
and denoted by comp(g); The label ACE® of a vertex v ié,

in fact, the set of all g € B” such that v is in comp(a).

We are going to show that»the cutting complexity chaf

racterizes the space complexity.

Theorem 1.1,

For a function FP:l -1y, let CUTL(F) idehoté the class of

lenguages with cutting complexity bounded by p(F) , D a
polynomial, If F(n)‘n , for new, then {L*Q‘a' :
CUL(F) = NU-SPACEflog IR

Proof:
Both simulations are easy; so we shall only sketch them.

Let 8 be an optimal computetional structure for _—
L = LnB" and let v, be the sink of’ c, labeled by L. The
computation graph corresponding to C; and the vertex v, can
bee%bded by a string Sy s the length of which is bounded by
a polynomial in the number of vertices qf (9n. If a suitable
code is chosen, there is a log-space Turing machine, which
for 5, and z¢ B" determines, whether 2 belongé to the lebel of
Ve The machine-just follows the path comp(z) and if it reaches

Vpe then a is in L . If we consider {8

n} new @8 an oracle,

n?
then we have an oracle Turing machine working in spacde

log(n + anl). This proves the inclusion from the left to

the right,

Wow let T be a Turing mechine with anioréclé;”Sﬁpposé‘T‘r

accepts I in space S(n), S(n) > log n. The déébfipfioﬁibfj

positions of heads of T, a content of work tape.ofJT;‘é state."

-

of T and the number of steps already performed by T will be :
called a confipuration of T. The initial configuration ié the
same for all inputs, since the input is not containéd’in thé;
configuration, Without loss of generality we may suppose that
T never loops and, ends in one of two special configurations, -
Let n be given, Then é computation structﬁre for Lﬁ can be”' :
defined as follows. The vertices will be the configurations

of T, wh;ch can be reached during a computation on a word of
length n, the label of 2 configuration K will be the setlof J
all werds 2 of lengith n such thet T reaches K when working pﬂ Be
Two configurstions form an oriented edge if during some com=-
putation of T they appear sucégssively. Using contractions we
can easily eliminate fertices, which heve outdég}ee one, The
number of configurationa can be estimated by ks(n) for some

constant k>0, which gives the sccond part of the theorem, o

Proposition 1.2. which accepts & nontrivial set,

For every computational structure (E,there is a compu-
tationsl structure o) such that the number of vertices of o)
is smaller or equel to the number of different lsbels of e

and o0 accepts the same set .

Proof:

For a vertex u in £, let f denote 1ts label. We
define two partial orderlngs on the set of vertlces of £ .

u2v 1f there is an orlnted path from u to 4V: iﬁjfur'bJ

the graph of (° ;

uxv if ux v snd fh e, s
If u»v end ud»w, then u end v are cohparable in >,
since v &nd w 1ley on the same péth comp(a) for some
a€f < f} N (; . Thus, for every vertex u , we can define

min(u) as the unique > -minimsl vertex such that u > min u .

Let C be the set of vertices of £, put
cmiri' =af {min(u) 3 _uec} = {u’ ' u=m1n(u)}.
Clearly, all the vertices of cmin have peirwise different

lebels. Both smks belong to fcmi"n‘_f.- Let v & Cp; be the

Vertex with label. B® , <.

We define a computatiuu éfapﬁ lbldh Cuin @ If uy,u,
are successors oi’»' :ué c' n iu (f: 5 then u has the successors
mln(ul), m1n(u2) + The label of (u mln(u ;) ~equals ‘to the ;
label of (u,ui) » 1=1,2 in the computation graph sssociated
with &, 1f it heppens thst there are vertices in 0’ which
are not reacuable from vV, » they must be omitted. _

We shall show that {0 accepts the seme sets as €. Let
g be an input. For every vertex u of comp(a) also min(u)
belongs tu. comp(a) , since ae-(éuln(u) . Hence there is
a subsequence of - comp{a) which is a computation in 3'. This
sequence starts in the vertex V, and ends in the -same’ sink as
comp(a) does. Thus the labels of sinks in the computational

. . ,
structure & associated with @’ are the same as in . n

Corollary 1.3.

Let & be a computational structure with the minimal num-
ber of vertices such thet accepts given set A, 0 # a ¢ B"
Then the labels of any two different vertices of & are diffe-
rent. O A A :

Thus in a mlnlmal computatlonal structure we do not heve
to dlstlngu1sh between a vertex and 1ts label. It is not dlf—'
flcult to prove that a minimel computational structure ig in

fact completely determined by the set of its labels.

2, Algorithms asking at most once

We want to define when is some input vealue used during

a computation, We say that a machine M agks about X5 in confi-
guration K, if there are two inputs a, b such that M reacaes K
on both a2 and b, M scans the i-th input letter in K and the
next configurations for g and b are different,

We prefep:to use computational structures, in Sectiou 1 .
we havé shoWﬁ‘that the vertices of a domputatidnal stfuctu?é-

correspond to configuretions of a Turing machine. Hence it is

natural to call them configurationg too. By Qgro;lary 1.3
we can
‘agsume further that
K = {_ée P oK occurs in comp(g)k]’ ,
for any configurastion K;
Let a computational structure be given, let g¢ B be an
input, K € comp(a) a configuration in the computation on a.

Then we say that comp(a) asks the i-th coordinate in confi-

guration X if the cutting associ ated with X ig along the 1—th
coordinate, Computational structures, such that every compu-
iation asks each coordinate at most once, will be czlled

1-structures (once asking comnuiational structures), It is

a simple fact}that every path in 2 l-structure is a part of
a computation, ' ‘ :

Our a1m 1s to show that "one ac<1ng" restriction sometimes
causes a vastantlal 1ncreaseJof cutiing complexity, Tranclated
for machlnes once asklng machines require sometlmes essentlally

more gpace than ordinary ones,

11,

" Now, let us pregent some technical definitions and lemmas,
Let us have an input 2€B” and a configuration K€ comp(a).
Then we write

{ i i before hav1ng reached K, comp(a) asks

I
b
]

the i-th coordinate },

K {i ; after having reached K, comp(a) asks the i-th

1]
I

coordinate} .

The complement of X ¢ {l,...,n} wil; be denqted by_i; Clea?ly,
S EK, Tor any l-structure. Let a, b € Bn, a=(al,....an),

b= (bl,...,n Jo Let S be a set of coordinates. We write

a=gh iff (V¥ ie) (a; =1l

Lemma 2,1,
Let a l-structure be given. Let a, b be inputs and K be

a configuration common to comp(a) and comp(b).

a) If ay = by, & = éKg’ c = 5 b then ¢ is accepted iff b

ig accepted, B

Q)lﬁgﬁ gK‘ (i.e. after K, by is inaccessible not only for

comp(®) but elso for comp(a)).

¢) If ¢ = a then comp(ec) = comp(a) .
ek = = N

Proof:

\
a) comp(g) follows comp(a) until X is reached, then it

follows comp(b).

b) Let p be the path whlch Iollows comn(b) to K and whlch
follows comp(a) after K P must be a compuuarlon since we

have gz 1-struciure, (in fact, p'=:comp(g); where

12.

c = EK Db, ¢ = 8.)a Now, suppose
QKJN.QK # @. Then p asks twice an i€y, A contradiction,
¢) comp(a) and comp(c) can branch only in by = ax; but by b)
this is unaccessible for comp(z). O
" .
A finite graph {vl} & E) mey be given by a 0-1 matrix
m 1= .
(aij)i,j =1, where aj5 = 1 iff (Vi, vj) &€ E, Assuming

irreflexivity and symmetry of E,such a graph can be codded

by the binary string 315 873 "’al,m ay3 agy "‘_az,m"‘amel,mfd

By a half-cHgue we mean (the code of) any finite graph
G = (Vi-u»Vé;'Ei) where card (V1) = card(V,) and
E; = v x V - {(V v) ver } For slmnllclty, we shall usé
the same letter to denote both the code of G end V

Lemma 2,2, Lla ==

Let a l-giruciure accepting the set of half-gtiques be
given, Let a be a half-olique, b be any input and K be a con-
figuration common for comp(a), and comD(bl Then Dy - ay= e

(If b is also 8 half-clique then by = zp.).

Proof:

Suppose by - ax £ B By Lemma 2,1, c¢) there is an input ¢
such that comp(e) = comp(a) and such that ¢ is not a half-

¢lique, A contradiction, O

Thegrem 2.1&

For l-structures %he:language ot half-cliques is of comp-

. 3 /6
lexity at least 2 i

13.

Tet a once asking machine be any machine which generates

only l-structures.

Corollary 2.4s

For once asking machines the language of half-cliques
is of space complexity ai least 17?.

The proof is based on the intgitive idea that, treating
the last vertices of a half-cligue, the computation "has
to realize"bwhat are the other Vertices of this half-cliques
Generaliy:this is possible in two ways: eitﬁer to remember
all these vertices, or to ask oﬂce again, For l-structures
the second p0531b111ty is forbldden.
Now, in order to remember many half-cllques 1t is necessary

to have many conflguratlons.

Proof of Theorem 2,3,:
Let us fix a cube B's Each a € B cen be considered as
a code of a graph with m vertices, where m is maximal

such that (m2 - m)/2 £ n, and therefore m > Vu .

For a half-clique a, let F(a) be the first configuration
in comp(a) such that the edges which are asked in configurations
preceeding F(a) and in F(a) cover at least m/2 - 2 vertices

of the cligque of a.

We choose a maximal set S of half-cliques such that each
twp half-cliocues in S differ on at least 6 vertices. The
cardinality of 8 is ai least

i), >

/6

(To see this, group the vertices into triads.). Now it suffices

to prove that our F is 1-1 on S,

14,

Suppose a, b€S, a # b and F(a)= F(p)=
By Lemma 242., 2p = Dby, and we can choose an input ¢ such that

b, By Lemma 2.1. &), ¢ is a half-clique too,

9

Let vea -)b be a vertex with 2% least one edge in
& s hence(ve'g. Let uw € b be & verivex with no edge in EK;
let web - g, w# u, Clearly w ¢ ¢, Zut there is no edge
between v and w in g, since in g there are only edges which
are in g or in b Therefore ¢ is not a half-cliigue.

A contradiction, O

It is not difficult to construct @ once asking machine
which recognizes the language of half-cliques within the Tn
space bognd (and therefore it is an optimal once asking
machine), and that there is a twice asking machine which re;
cognizes this language within the log n space bound, We see
that the number of asking is important, since a small change
of it dramatically reduces the complexity bound., ; There are
many questions about hiererchies with respect to asking and
space, asking-space trade-offs and so on, But we do not know-
even how to prove that there is a language in P or NIOG which
cannot be accepted by twice asking machines within the log

space bound,

T

3. Contact schemes

A contact 'scheme, or two terminal switching network, is

a finite undirected loop free multigraph, the edges of which
gre labeled by n varibles and their negstions xj,...,%X,,
il"‘f’in’ with two distinguished vertices - terminals.
Every word géBn defermiheeh‘a submultigraph of the multi-
graph of the scheme, which consists of the same set of ver-

tices and of the edges labeled X resp. X; if a; = 1 resp.

i 1 i
= O The scheme accepts ‘the set A B® of the words, for
i wh1ch the termlnals are connected in the associated submulti-

greph. Thus a word aeB is accepted 1ff there is a path

h~‘connect1ng the. two termlnals satlsfylng the followlng cond1t10n~

’:For every edge of the path the edge is 1abeled by xl Ciff

A contact gating schéme is a generalizaetion of a contact

scheme, where the multigraph is directed and acyclic.

The size of a scheme is the number of edges, This de-
termines in a natural way iwo complexities (one for contact
schemes, one for contact gating schemes) of subsets of B® and

of languages in the alphabet B,

Our aim is to show that size of a minimal contact scheme
characterizes nonuniform space, The following modification of
computation graphs will be useful in the proofi A contact

gating scheme ¥ will be called deterministic contact scheme

ift
(i) every vertex in .f except for one of the termlnals -

the output termlnal has outdegree 1 or 2;

(ii) if a vertex has outdegree 2, then the out-going edges
are labeled complementarily (ise, x; end .. i& for some
E = 1,.-.’n)l

Lemma 3.1,

Iet F be a deterministic coniact scheme, let ' be
the contact scheme which resulis from ¥ if the orientation
of the edges is forgotten,

Then ¥ accepts the same set.

Proof:

Suppose Y is labelled by n variebles end let a € Bn,

Let T be the subgraph of ¥ determired by g. Ve have %o show
that if there is an unoriented path connecting the terﬁinals,
then there is an oriented one too. Every vertex has outdegree

4 1 in T and the output terminal has outuegree 0. Thet 1s,
the components of T are orlented trees and the output terminal
igs the root of some tree., In an oriented tree, there is an
oriented path from any vertex to the root. Therefore if the
terminals are in the same component, than there is an oriented

path from the input terminal to the output terminal, O

Theorem 3.2,
For a function F: w —= ¢to , let CS(F) (resp. DCS(F)) be the

cless of languages with contact scheme (resp. deterministic con-

tact scheme) complexity bounded by p(¥), p a polynomial. Let
F{n)2n, neéw , then '
CS(F) = DCS(F) = NU-SPACE(logFr) .
Sketch of the proof:

We have to prove three inclusions:

DCS(F) & 4CS(F) g:l\TU— PACE(log T') & DCS(F).
The . first one is a consequence of Lemma 3.1, The procf of the
second inclusion is ‘based on a result of[2] which says that

reachability in unoriented grephs is in NU-3PACE(log n).

‘Tt is easy to adapt any slgorithm for reachability in such
a way ‘that 1t determines for a palr (2 fv, 2 ¢ BP J

2 {(code of a) contact scheme, whether ‘f accepts 2. Now, as
in the proof of Theorem l.l., we can talke the optimal contact
schemes 2s an oracle, (along with the universal sequences of
[2]). Then the machine will work in space bounded by logarithm
of the size of these echemes.

The last inclusion follows from the fact observed in
gection 1. that Tﬁring machines cen be simulated by compu-
tatlon graphs. The transformetion of a computatlon graph to
a determlnlstlc contact scheme is simple: In fact, we have . ;
only to omit vertices from which the output vertex cannot be

reached and change the labelllng U

A qlmllar theorem can be proved for size of contact gatlng

schemes and nonuniform nondeterministic space.

Borodin [3] related formula size to deterministic end
nondeterministic space, His proof is valid also for nonuniform
complexity., If we denote by L(F) the class of languages with

formula size complexity p(F), p-polynom, then the result reads
L(F) & NU~SPACE (log F);
NU-NSPACE (log F)C L(F'°8 T,

for Fn)> n, new o, It seams to us that neither inclusion

can be improved to the equalitye.

Neéiperuk [11] has constructed e eCnerete;langﬁege (in

fact s eequence of Boolean functions) L & B™ and proved that

its Torpula size complexity is > cy G log"1

2

n, and con-

tact scheme complexity is > ¢, n log'_2 Ny Cyy Eé ? conetants.’

Using his method one can show that the size ofiopntac’tigatingi
Scheme for L is 2> cq n3/2 10g"1 n, For combinational com-
plexity (e;eize of minimel Booleen cirquits), there is no.

toncrete I, for which a nonlinear lower bound is known,

Nonuniform nondeterministic space can be chsracterized
elso by set operations on B®, similarly as nonuniform space
is characterized by cutting algorithms, The difference is very
subtle: while in deterministic case we lose every sgetto which
an operation is applied, in nondeterministic case we can store
any set already constructed., That is, instead of a sequence
of partitions in the cutting algorithm, we have a gerieral .
sequence of gets of subsets of B®, If we allow also the ope-
ration of intersection, then we obtain a kind of algorithms

the complexity of which characterizes nonuniform time,

It is well- knoWn-‘hat the minimal number of states of
a two way automaton can also be used to cbaracterlze non-
unlform conplex1ty classes. Thus we have four basic apnroa&es‘
to nonuniform complexity; they are schematically depicted on’
Figure 1. For every two entries in a row a theorem of the form
of Theorem 1,1, or 3.2, can be proved , cf. [2,4,6,7] .

i
e

Set operations
sets cannot be stored
sets can be stored
sets can be stored

cutting along e
coordinate,
cutting along =z
coordinate,
cutting along a
coordinate,
intersgection,

union,
union,
union,

Cirquits
Boolean cirquits

contact schemes
schemes

contact gating

Migure 1,

Automata
nondeterministic

deterministic

two-way
automaton
two~-way
automaton
alternating
two-way
automaton

log 1{

NU-SPACE
NU-NSPACE

Turing machines
NU-TINME

with oracles

4, 4 geometrical approach

Consider the hypercube B” as & subset of the n-dimensicnal
Euclidean space En. Then the operation of cutting along the
i=th coordinate corresponds tola separziion by a hyperplane
perpendicular to the i-th axis, This suggests a natural
guestion, whether we can gain essentially more by using ar-
bitrary hyperplanes, We shall show that the answer is no, and

find relations to some conservative model of computation,

Definition

(1) & sequence B, P, ;;;; PmAQf partitions of_Bn will be .

called an affine algorithm if
(1) p_ = B?,
O . -
(i1) for i = 1,eu.,n, P; is either coarser than Pi;l or
there exists a block A & Pi—l and real numbers
B1sesegyy D sucyiﬁhathi,resultS'from Pi—i when

A is split into two blocks

fo=lxen s Zayx; 20},

(2) A deterministic affine scheme will be an oriented acyclic
graph the edges of which are labelled by inequalities

21 Xy 4 oo + a3, T DD OF &1%) + eos + @, X, < b, one

vertex (the input) has indegree 0, one vertex (the output)

has outdegree 0 and

(1) every vertex, except.for the output vertex has olte-

degree 1 or 2, :

La
an 7 _
; = a; logesrithmic space. Now the
(1i) if a vertex has outdegree 2 then the outgoing edges Then we can compube >3 1 s) s e ame ol

are labelled by complementary inequalities, A word elgorlithm splits :_nto.three I e
. r q .
gt_eBn is accepted by such a scheme iff it satisfies a) If A=22 log n , then 3 ai,é 0 =zince

all inequalities along an oriented path from the '

4 & e r Za.=2af.2m+Za§.>.A.'2m-Zfa£|>
input to the output, * & :
It is obvious that every cutting algorithm is an affine >a.2%-n, 2% >0, : .

algorithm and every deterministic contact scheme is in- fact oA e ry A : ‘s .
g Ty ’ ’ D) If AL =2 log n , then X a.,< 0 by a similar com-

a special kind of deterministic affine scheme.

putation.
i o S o ' T Pk Wt .
7 Lemma 4,1, T c) If |Al<2 leg n , then put
(1) There exists a constant C such that every threshold om gl .
' a1:=A._2“+_a1,

function can be represented in the form ‘ : icid e
' g, t =2'al For i ="2,4u.y1;.
i i

89Fy + eae + anxn_; b, | it

N ' n . end repeat the progedur‘e. We do not have tq sﬁq_re new a; 8,

where a,,b are integers and lasl,Ipl€C” for i = 1,,..,n, P ' : S 4
, . all the information is given by the input , A , and m. The
(2) Inequalit A ' . . s
4 7 last two numbers require only logarithmic space, since :

> i ar
a; + +a, =20, ,A’<21°gn,m<n. o

where a; are integers in the binary representation, can be

. . Now we cen prove that the size of a minimal determinjsti
decided in deterministic logarithmic space, . inistie

affine scheme characterizes nonuniform space in '_the same

Froot manner as the contact schemes do, The minimel number of stebs-.
(1) See for example Murogg [10]‘_ 2 : of an affine algorithm is at most twice larger than the size
(2) 1f lajl¢n for i = 1,...,n, then we can decide the ine- of & minimal deterministic affine scheme, Alco one can easily
quality simply by édmputing Zai. If this is not the case, let generalize the following theorem for affine schemes in the
ay be the number with the larg_est absolute value, Let rlog n' +m spirit of Theorem 3,2,

be the number of digits of 21y wherg rlog n? is the smallest

infeger 2 logyn . Let a; , 2;" be the integers | :

such that 1 : For & function F: t>»w , let AS(F) denote the class

e : m e of ua jith determiniestic affine complexity bounded b
Ay =a; . 2042l , 'ai"’<2maai'~a{ 20 . lengueges w e) P ¥ y

P(F)}, p & polynomisl. If ¥(n)=n , for new , then

AS(F) = NU-SPACE(log F).

Sketch of the proof:

tl) Every deterministic contact scheme is a deterministic

affine scheme, hence AS(F)2 NU-SPACE(log F).

(2) To prove the converse inclusion we have only to find a
sui%able eimulation of an effine scheme by a Turing machine,
Given an affine scheme. f& . the Turing machine will have

a code of fé on 1ts oracle tape. Let n be the 1ength of 1n-
Duts and k ' the 31ze of . By Lemms, 4 1. (l), we can choose

a code of R the length of which is bounded by a polynomisl in
n and k o Hence log n + log k gpace is enough to control

the oracle head. Now, by Lemma 4,1. (2) 1og n space will
suffice to compute the threshold . functions of #& . Therefore

the simulation can be performed in log n + log k space, O

Corollary 4.3,

There is 2 polynomial p(n) such that every n~dimensional
threshold function can be computed by a contact scheme of size
p(n).
Let us compare deterministic affine schemes with a con~-
servative model of computation studied by J. Mordvek, In 1967

he introduced the concept of linear separating algorithm [8];

later i% was called linear comparison algorithm [9], (ef. also
[5]). The concept is close to affine scheme, thus we list

only the differences instead of presenting the definition:

(1) trichotomic branding is used instead of dichotonic branching

of* ours,

(2) only trees are used instead of general acyclic‘graphs; this

also requires more outputs,

(3) the set of inputs is E_ instead of B",
(4) the measure of complexity is the depth i.e. the length of

the longest oriented path of the scleme.

Clearly, the difference (1) is not important. Because of
(4), neither (2) is relevant, The main dlfierence is therefore
(3)e There are partltlons of D that require arblurarlly 1arge
depth, some partitions of E cannot be realized by a linear -
comparison algorithm at all. On the othexr hand every partltlon
of the discrete éet B can be tr1V1ally realized with depth n.ﬁ
Therefore it is not clear how to make use of the euperllnear :

lowen bounds of Mordvek 1n the nonconeervatlve caseas.

The questlon about the depth makes"ense for.affine_sehemee_
£004 By Shannon [147, most functions £ : 5 have oot
plexity about 2 /n, if the complexity 1s measured by the number »
of edges of a contact scheme realizing f. Hence, by Theorems:' ‘
362 and 4.2., the determinigtic affine complexity of most
functions f£ : B'—> B must be at least 2°® for some c> 0,
Therefore the‘depth of deterministic affine schemes ﬁdst be
at least ce.n for these functions., We do pot have an example
of a concrete gequence of such functions,

We shall adaptea'eoﬁcept of Mordvek for our model of &
computation, We shall call a partition {Al,..;,Am} of B"
convex, if, for every 1£ i< j<m, the convex hulls of Ai end:gE

A. in E are disjoint.
J n

Definition

The convex complexity of a pgrultlon P of BT is the

smallest m such that there is-a convex refinement {Al,..;,km }

of P, The convex complexity of a Boolean funciion is the

convex complexity of the corresponding partition.

The convex complexity is an analogy of the index of con-

vexity of [9].

Theorem 4.4,

If a Boolean function f hasg convex complexity m , then
every affine scheme, which realizes f , has depth at least
log2 me

the
The proof is¥same as the proof of Theorem 3.6, in [9]. O

.

We are going to show how one can approximaste the convex comp-

léxity by the complexity of some restricted affine algorifhms.

Let the sequence of partitions Po,...,P be an afflne algo-,

rithm #, Then the width of R is e
max : ',Pi‘
i=04aeeslm .

where [Pi’ is the number of blocks in P, (cCf. [12], where

& similar concept is defined). We define,for a Boolean

function f ,
MM (F) =

where m is the smellest number such that there is an affine

2lgorithm Pysesss P with width £ k.

Thecrem £&,5,

If m is convex complexity of f, then
[)AA4(f) < cym £ CohAg(£)y

where ¢q,c; are rositive constants.

Proof:

(1) Let Pyrese, P be an affine algorithm, Suppose each Pi, i> 0,
has at least two blocks. Let Q = Po;Ql’QZ""’ Qg = P, result
from Po""’ o when the partltlonb with three blocks are

omitted, Then it holds for i= 2,3, sa.y f :
{C\S;: pu(cns)}f .
there Q; ; = {c; D} and S is a halfspace in E_. With every
Qi, i>1, we associate a convex rgfinemgnt Ri with i+l blocks
as follows:
Ry = Q-

if Qi;l and Q; are as above and:Ri_l = Ajgeseyhy then

Ry = {a;x Syessshs\ 8y {0,1} n S},
Hence Pm has a convex refinement with st most m+l blocks,

This provesg the second ineouality. -

m : ’
(2) Let a partition P= { U Ay U 1 Ai} be given,
i=j+

where {Al,...;Am} is a convex partition, We are going to
describe briefly a procedure which can be easily inferpreted

as the work of an affine algorithm with width £ 4,

Four‘qél;gLfGi}C;;éB;C4‘are_given. The first two are
worlk cellé; in the third the words which has been accepted
are stored; the fourth serves for trensporting words
between cl,c 03. Inltlally all the words of B" are in C1
the others being empty, At every step of computation we
separate a part of the content of some cell Ci’ i=1,2,3,
by a hyperplane, and translate it into snother one using C,

This is cuite similar as in the first part of the proof,

Since Al,...,Am is convex, for every i> 1, there ig a
hyperplane that separates Al and Ai’ Thus we pged only m=1
steps to translate the words of.Bn\ A into C,, Then the con-
tent of C;, which is the set Aq, is put in Cy. The same pro-
cedure is applied to Ay, AB;...,Aj. Thus we shall get the first
block of P in 03; the second Wil; remaip in Cl or 02. Thg
number of steps is bounded by mz; which proves the first

inequality. @

Unfortunately we lack an efficient method for evaluation
of the convex complexity. Let fn : B"+B be the éum modulo 2
function thet is £ (a) = 1 iff the :number of ones in g is odd.
Then the convex complexity of-fﬁ is & n+l. (One can také thg
partition into n+l blocks determined by the number of ones.).
We conjecture that convex complexity of fn is exactly n+l,

What we can prove is however much weaker,

Proposition 4.6,

Convex complexity of the sum modulo 2 function £ is

2c,log n ., (log log n)—l , for some c¢> 0,

Proof:
Using induction over n we prove the following assertion:
(#) If {Al,...,Ak} is a convex partition of B” such that the

sum modulo 2 function fn is congtant on every block of it, then

B Qe dy s L fopiyp) Be

Since the lefthand side is bounded by e.kk, the theorem
follows from (®).
Forn =1 is () trivial. Suppose (#) is true for every n,

n<m, Ve shall prove (%) for n = m, Let such a partition

" This ends the pfoof; o

{Al""?Ak} of Bﬁ be givén; Tet - SPP gnléBm be the words

with exactly one 1. There is a block that contains at least

m/k of these words, and it must be different from the block

that contains Q. We can agsume thas gf?Al,.gl,”.,gje_Az,

j > m/k, Let k be the SuPCUbe of Bﬁ generated by gy ».. &je

Then the convex hull of gi,...,gj gseparates QO from the other :
points of k, that is 0 is the unicue point of Kr)Al. Let L

be the subcube of K withldimension J-1 which contains € but

not Q0. Then {AE, A3,...;Ak } induces a convex partition on 1

with € blocks, £<k, and such thet f is constant on it, gt
Clearly we can zpply the indﬁbtion agsunption to such a paftition,

hence

{K—1)!{1+_%?+.-'+‘(ki-_2]_!—) é

~ ‘ll') ’1 . e SR
= /! (1+—1-!- + see +'(7-:-I-j!) = J -1,
Using j = m/k we get (%) for n = m,

M2

References

L; A@leman, Two Theorems on Random Polynomial Time,

Proc, lQ;th IEEE Symp. pn Foundations of Computer

Science, (1978), pp. 75-834

R, Aleliunes, R.M. Karp, R.J. Lipton, L, Lovész, C. Reckoff,

" Random Walks, Unlversal Traversal Seouences, and the

- ZCompIQY1ty of Maze. Proc. 20—th ILE Symp. on. Foundatlons

;lof Computer 501ence, (1979), pp. 218-223.'

A.Borodln On Relatlng Time and Space to Slze and Depth.

STAM J. on Computlng, 6 (1977)4 PP, 733-744.

A, Borodln, Se Cook, A Tlme-Space Trade-off for Sorting
on a General Sequential Model of Computation. Proc,

12-th ACM Symp. on Theory of Computing, (1980), pp. 294-301,

D, Dobkin, R.J, Lipton, A Lower Bound of 1/2 n2 on Linear
Search Programs for the Knapsac Problem, J, Computer and

Systems Sciences, 16 (1978), 3, pp. 413-417.

MeJ, Fischer, Lectures on Network Complexity, Preprint,

University of Frankfurt 1974,

R.M, Karp, R,J, Lipton, Some Connections Between Honuniform
and Uniform Complexity Classes, Proc, 12~th ACM Symp., on
Theory of Computing, (1980), pp. 302-309,

{. Mordvek, On the Compléxity of Discrete Prbgramming
Problems, Aplikace matematiky, 14 (1969), 6, pp, 442-474,
Je Mo“avek A, Geometrical Method in Comblnatorlal Comp-

1ex1uy. Apllkcce mauematlky 26 (1981), 2, pp. 82-96,

10

13

14

S. Muroga, Threshold Iogic and Its Applications,
John VWiley & Sons, 1971,
E.I. Weliporuk, Ob 0dnoj bulevsko] funkoii. Doklezdy

AN SSSR, 169 (1966), 4, pp. 765-766,

N. Pippenger, On Simultaneous Resource Bounds, Proc.
20-th IEEE Symp. on Foundationsg of Computer Science,
1979, ppre 307-311,

We Ruzzo; On Un¢Torm Cirquit Complexity. - ibidem,

pp. 312-318.

CueXe Shannon, The Synthesis of Two-Terminal Switching

30,

Cirquits., Bell Syst., Techn, J., 28 (1949), 1, pp. 59~98,

