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Summary. We develop a complexity theory based on the concept of the graph
instead of the Boolean function. We show its relation to the Boolean complex-
ity and prove some lower bounds to the complexity of explicitly given graphs.

0. Introduction

The theory of Boolean functions deals mainly with two basic complexity mea-
sures: the formula size and the circuit size. The complexity of a Boolean function
f is the minimal size of a formula resp. circuit needed to compute f. We can
consider the computation to be performed on the algebra of all Boolean func-
tions (with a given number of variables) i.c. we have some initial functions
and generate new functions using Boolean operations. The initial functions,
let us call them generators, are just the projections on coordinates.

Given a formula or a circuit with variables x, ..., x, we can evaluate it on
any Boolean algebra. We only need to assign some elements of the Boolean
algebra to the variables x, ..., x,, put otherwise we have to choose the genera-
tors. We consider two such Boolean algebras: (1) subgraphs of a complete graph,
(2) subgraphs of a complete bipartite graph.

Our reason for studying the Boolean complexity of graphs instead of Boolean
functions is that graphs have simpler structure and have been extensively studied
for a long time. However we consider the graph complexity only as a tool
for proving lower bounds for Boolean functions. Therefore we introduce systems
of generators (stars in the first case, complete bipartite graphs in the second)
so that lower bounds on the complexity of graphs could be transferred to the
lower bounds on the complexity of some Boolean functions associated with
them. We have not considered other sets of generators, but they might be inter-
esting too.

* The paper was written while the first author was visiting Department of Mathematics, Statistics
and Computer Science, University of Illinois at Chicago
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We would like to find some properties of graphs which imply high complex-
ity. We prove two theorems in this direction (2.4, 2.5), which show that such
nontrivial lower bounds for graph complexity are possible. However both theo-
rems us€ techniques known in Boolean complexity and give only bounds which
are too small, hence do not imply nontrivial lower bounds for the complexity
of Boolean functions. Theorem 2.5 uses a condition which is very similar to
the conditions in Ramsey theory. We had hoped that if the parameters of this
condition were close to the parameters of a random graph, the complexity must
be quite large, since no explicit constructions of such graphs are known. Sur-
prisingly, it has turned out that there are such graphs which have formula
size complexity only O(nlogn) and linear circuit size complexity (Corollaries
5.4 and 5.8).

It is an open problem whether it is possible to construct a “Ramsey graph”
which is a graph without large cliques and large independent sets, say, using
a deterministic Turing machine and polynomial time. When defining the graphs
mentioned above we shall also show the existence of a Ramsey graph with
the same upper bounds to its complexity. Our proof uses probabilistic methods,
but it is in a sense more explicit than the classical existence proof of P. Erdos.
We shall show that these graphs occur as relatively large subgraphs of the
graphs associated with Hadamard matrices. The question of defining Ramsey
graphs and related combinatorial objects by small formulas was extensively
studied by A.A. Razborov in his recent paper [8].

Questions related to the graph complexity as presented here have been con-
sidered in the literature. Especially, it has been well known that in communica-
tion complexity one works, in fact, with bipartite graphs instead of Boolean
functions. For instance, deterministic communication complexity has a simple
graph-theoretical characterization [15]. The graph complexity based on stars
as generators has been considered by Bublitz [4].

1. Basic Definitions

We consider the following general situation. Let V be a set of vertices,
%<P([V]* a set of graphs on V and B a set of Boolean (set) operations.
Given a graph H on V we ask how difficult it is to express H using graphs
% and operations from B. We shall consider two basic ways of expressing H
using % and B, namely, formulas and circuits.

In the sequel the size of V will be denoted n, if not stated otherwise; the
graphs in & will be called generators; B will be called the basis.

We shall consider also bipartite graphs. In this case V=U U W, |U|=|W| =-§,
(neven), 4= 2(U x W).

We shall use two sets of generators, one for arbitrary graphs, one for the
bipartite graphs described above. Both sets are motivated by the goal of obtain-
ing lower bounds to Boolean complexity. However, one can consider other
sets of generators. A natural requirement is that 4 should be closed under

isomorphisms (in the case of bipartite graphs, under isomorphisms preserving
U and W).
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We shall only use bases that are complete for the given set of generators,
which means that any graph (bipartite graph resp.) can be expressed. Since
the completeness of the basis depends on the set of generators, it is not surprising
that this concept is different from the concept of completeness used in the theory
of Boolean functions.

Formulas. In order to simplify the definition, suppose the basis B contains only
unary and commutative binary operations. A formula with variables x, ..., x,,
and basis B is a binary (i.., fan-in <2) rooted tree with leaves labelled by
variables and other vertices labelled by operations from B respecting the arity
of operations. The size of a formula is the number of leaves or equivalently
the number of occurrences of variables. Given a mapping from the set of variables
{X1, ..., X,,} into the set of generators ¥, a formula determines a graph (perform
the operations on vertices and take the graph which appears on the root). Some-
times it is more convenient to assume that the leaves are just labelled by genera-
tors. The formula size complexity of a graph H, denoted by L(H), is the smallest
k such that H can be computed by a formula of size k (assuming ¥ and B
is fixed).

Circuit. A circuit with variables x,, ..., x,, in basis B is a sequence of equations
ey, ..., e, where, fori=1, ..., k, e; has the form

Vi=X;
or

yi=a(z)
or

Yi= oc(z, t)
where

aeB and z,te{xy, ..., X, Y1y coos Vio1}-

Given a mapping {x,, ..., X,,} = % the circuit determines a graph (computed

at y,). The size of the circuit is k. The circuit size complexity of a graph H,
denoted by C(H) is the smallest k such that H can be computed using a circuit
of size k (assuming ¥ and B is fixed).

We shall use standard graph theory notation. In particular K, is a complete
graph on p vertices, K, , a complete bipartite graph with blocks of size p and
g, E, an empty graph on p vertices.

2. Star Complexity

Let V be the set of vertices |V]|=n. Let ¥={G<[V]*|G=K, ,_} be the set
of generators. The associated formula and circuit complexity will be called star
complexity. In this section we assume that the basis B is any basis containing
~ and v, if not stated otherwise.

We shall explain how this complexity is related to the Boolean complexity.
Let f: {0, 1}"— {0, 1} be a Boolean function. Each ae{0, 1}" can be associated
with a subset X, < {1, ..., n} by defining

iEXaHai’—‘"- 1.
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Then f corresponds to the set system X +S2({1, ..., n}) defined by
Zf:{Xa: f(a)=1}.

It is obvious that Boolean operations on Boolean functions correspond to partic-
ular set operations on set systems; e.g., the conjunction A corresponds to the
intersection M. The initial functions, the “generators”, are the projection functions

f(xla sy xn)::xia
i=1, ..., n. The set system corresponding to such a function is a “star”
Zi={X<{l,..., n}liex}.

Now, given a formula or a circuit we can transform all the set systems occurring
in such a computation into graphs just by intersecting them with set of all
two element subsets of {1, ..., n}. Clearly, the initial graphs, the generators,

Zin[{1,...,n}]?

will be isomorphic to K, ,,_ ;. Thus we can think of this kind of graph complexity
as Boolean complexity where we use only a special part of each Boolean function.
As a consequence we have that a lower bound to the circuit resp. formula
size complexity of a graph H is a lower bound to the circuit resp. formula
size of any Boolean function f which extends H, i..,

Z,n[{1,...,n}]?=H.

We shall show a better trade-off in the next section.
First we shall estimate the maximal star complexity of graphs on n vertices.
This is a result of Bublitz [4].

Theorem 2.1. For both circuit and formula size complexity the maximal complexity

2 2
of graphs on n vertices is at least Q & ) and at most O (-——).
logn logn

The lower bound follows by the standard counting argument. For the upper
bound we need a lemma.

Lemma 2.2. (K, ,VE,_,_)<p+q.

Proof. Let G be such a graph with sets of vertices A4, B, |A|=p, |B]=q on
which it is a complete bipartite graph. Let S; be the star with the root i. Then

G"‘“(U Si)m(U Sy),
icAd ie B
which proves the inequality. []

The idea of the proof of the upper bound in Theorem 2.1 is the following.
Let G be an arbitrary graph on n vertices. We cover the edges of G by complete
bipartite graphs Gy, ..., G, so that, for i=1, ...,I, G, is the largest subgraph
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of H;=G— | G; which is of the form K, ,UE,_,,. If H; has m edges and

(7))

then there is such a graph with p>t, see Erdds, Spencer [5]. Using the estimate
1

t satisfies

and the lemma above one can compute that the size of the formula for G= U G:
5 i=1
n

will be 0(
log

). Independently and in purely graph theoretical terms such
n

an estimate was proved by Tuza [9]. O

Lower Bounds

Theorem 2.3. For the basis B={n, U}
L(K,-1VE)z(n—1)-log,(n—1)—1.

Proof. Let G be the graph, V=V'u{v} the vertex set, where V' is the n—1
element clique of G.

Claim 1. Any minimal formula for G does not use S,, the star with the root
v. Suppose some formula does use S,. If we replace the occurrences of S, by
the empty graph we obtain some G’ < G, because the operations are monotone.
On the other hand no edges can be missing in G', since S, does not contain
any edges from G. Now the empty graphs are obviously superfluous and we
can reduce the size of the formula by eliminating them; which proves the claim.

Claim 2. If ¢ is a formula computing G which does not use S,, then ¢ is a
formula for the threshold function T3~ *: {0, 1}"~* — {0, 1} such that

T? Y a)=1Za()=2.

So (x4, ..., X,—,) is a formula in which we substitute different S/s, i€ V'’ for
different x;’s, in order to compute G. Since ¢ must output 1 for every edge
of the clique, we have ¢(a)=1 whenever Za(i)=2. By monotonicity this must
be true also for Ta(i)>2. If p(a)=1 for some a such that Za(i)=1 then ¢
would output 1 for some edge (u, v), ue V', which is not possible. By monotonicity
we have ¢(0)=0 too.

To prove the theorem it is now sufficient to apply a result of Kricevskij,
see [9], which says that the formula size of Ty ™! even in a larger basis {v,
A, 1} is at least (n—1) log, (n—1)—1. [

Observe that K,_,UE, is the complement of a star. Hence the theorem
shows that the complexity of the complement may be substantially larger than
the complexity of the graph itself.

The next theorem uses a technique similar to the well-known Neciporuk
lower bound.
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Theorem 2.4. There exists ¢>0 such that Jor any graph G on V, |V|=n, if for
every X<V, | X Igg— there exist K nonisomorphic induced graphs on G|X each

with [ vertices, then
log K
l-logl”

L(G)ze-n

Remark. We can assume that the vertices V are linearly ordered and that two
induced subgraphs are isomorphic only if there is an isomorphism which pre-
serves the ordering. Thus we can obtain K slightly larger.

Proof. Let ¢ be a formula for G, let n-y be its size. There are at least g— variables

which occur in ¢ at most 27y times. Let X be the corresponding set of vertices.
To each I element subset Yof X there corresponds an [ element subset of variables
of ¢ such that if we substitute zeros into the other variables the resulting formula
computes the subgraph induced by Y. Thus for each such an induced subgraph
we get a formula such that each variable occurs in it at most 2y times. W.lo.g.
assume that the basis B contains all at most binary operations. Then each
formula can be reduced either to a constant or to a formula not containing
constants. The number of such formulas with [ variables and size <2y[ can
be easily estimated by

(e

where ¢ is a suitable constant. This number must be larger or equal to the
number of nonisomorphic graphs induced by I element subsets of X, hence
we get

log K

ogl+loge)

K< (c- )" =
S D=y 250

In the estimate above we did not identify the formulas which are identical
only after renaming variables. Hence the theorem is true also if we use ordered
graphs as stated in the remark above. []

Remarks. 1. An easy computation shows that the largest bound which can be
obtained using the above theorem cannot exceed

logn

‘n—————  caconstant.
loglogn

Cc

2. An easy counterexample shows that in the theorem it is not sufficient
to count the number of I elements induced subgraphs in the whole graph G.
Let G’ have K nonisomorphic | element induced subgraphs and suppose G’

has %]/;; vertices. Let G be G’ plus n~—§—ﬂ isolated vertices. Then L(G)<n.
If the theorem could be strengthened, then G should have complexity
log K

>eop.
=E M ol
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But we shall see later, that for suitable graphs the factor

log K
l-logl

is not constant.

Theorem 2.5. There exists an >0 such that for every graph G on V, |V|=n,
n
L(G)gs-n-log-k—,

where k is maximal such that, for some A, B< Vdisjoint, k=|A|=|B|, G is mono-
chromatic on A X B (i.e., either contains each edge (u, v), ue A, ve B or none).

Proof. To prove the theorem we shall use one of the results of [2], Theorem 1.
This theorem says that functions computed by small formulas are, in a sense,
locally simple. Let G be a graph computed by a formula ¢ of size n-y. Let
f be the Boolean function computed by ¢. Thus G is determined by the restric-
tion of f to the inputs with exactly two I's. We can identify the variables of
f with the vertices of G. Now we shall apply the result mentioned above to
/- By this theorem there exist disjoint subsets of variables 4, and By, |A¢|=|Bo]|
=nb~? such that f|A4,uU B, (f restricted to variables of A,u B, with other
variables set to 0), satisfies the following property called [ay] simple in [2],
(a, b are constants): There are partitions

X,u...uX, ={0,1}4
Yiu...uY,={0,1}%,
with [,, [, <[ay] such that the function f| A, B, is constant on each set
i——-—l, cens ll! j:I, ceey lz.

Denote by
Yi={acY|Za()=1}.

Let X; be a largest one among X4, ..., X, and Y; be a largest one among

Yy, ..., ¥,,. The cardinality of X is at least

1

| 4ol > "
[ay] ™ b'[ay] ¢

for a suitable constant ¢, and the same bound holds for Y;. The sets X; and
Y; correspond to subsets A=A, and B&B,. It is not hard to see that the
graph computed by ¢ is monochromatic on A x B. Hence

kzmin (4], |B) =min( X}, | %)=,
C

from which we get yglogc% |
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Remarks. 1. The largest bound obtained from this theorem cannot exceed
c-nlogn, ¢ constant.

2. A slightly stronger theorem can be proved. Namely, if V=U U W, |U|=|W],
it suffices to maximize k over subsets A< U and BS W,

Circuit Complexity

The only lower bound which we know of is due to Jifi Sgall, [10]
C{n,u}(Kn—l UEl)gzn_O(l)

An interesting fact shown by Wegener [10] (also for other “slices” of Boolean
functions) is that the circuit complexity in the monotone basis {n, U} can
be at most linearly larger than the complexity in the basis {n, U, T1}. An
explicit calculation gives

C{r\,u}éz' C{m,u,ﬁ}(G)+9n“23

for graphs with n vertices, n=>3.

Bounded Depth Formulas

A un-formula is a formula in basis {U, N} in which all intersections precede
unions. The dual concept is an N U-formula. The corresponding measures will
be denoted by L, and L.

The measure L., , is trivial since L., . (G) equals the number of stars contained
in G plus two times the number of remaining edges.

The measure L., can be characterized as follows.

L..(G)=min {} (n—|X;])| {X,}:c1»a system of independent sets of G
iel
which cover the complement of G}
where n is the number of vertices. That is {X,};.; is a system of cliques for
the complement of G which covers all the edges of the complement of G. Such

systems have been studied, see Berge [3]. The following is an easy corollary
of a well-known theorem of Erdés, Goodmann and Posa, see [3]

Corollary 2.6. For every graph G on n vertices

LMU«D§F§1m~2x

where we have equality for

C=K UKy
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Thus the maximal complexity is attained by very simple graphs. Another charac-
terization of this measure is the following. The representation graph of a hyper-
graph (X, {Xi}i;), X;=X, is the graph with vertices I and (i, j) is an edge
if and only if X; n X;+0.

L,,(G)=min{} |X —X,||the representation graph of (X, {X itien)

iel
is isomorphic to G}.
Things become much more complicated if we allow more alternations. For the

measure L., we know that almost all graphs have L(G) close to L, (G).
This follows from the proof of Theorem 2.1, where we actually showed that

2
Lnun(G)=O(lOng ) for graphs on n vertices. It seems very unlikely that for
n

every graph L, .(G) is close to L(G), but we cannot disprove it. We can only
prove that for some graphs the representation from Theorem 2.1 (covering by
complete bipartite graphs which is a special kind of U N U formulas) is much
worse than representation by an unrestricted formula, cf. Sect. 5, Remark 3.

It is possible that in some special cases L., can be estimated easily. This
would be the case if e.g., the following problem had an affirmative answer.

Problem

Is for every G which does not contain a star or K, , L. (G)=the number
of edges in G? (This is equivalent to the question if the same holds for L, (G).)

3. Bipartite Complexity

. . ) . n
In this section we assume that the set of vertices is V=UUW, |U|=|W|=—

n even. The set of generators will be
B={AxW|A<U}u{U x B|BSW).

The associated formula and circuit complexity will be called bipartite complexity.
Again we assume that the basis contains at least N and u. Thus the set of
generators and the basis is complete w.r.t. bipartite graphs on U and W, As
we shall compare the two graph complexities, we shall use subscripts & and
4 to distinguish them.

Let us consider the relation to the Boolean complexity. Let f: {0, 1}'”
{0, 1} be a Boolean function, let m be even. Then we can wnte {0, 1}2 X
{0, 1}2 — {0, 1}, which shows that f i is essentially a 22 x 22 0,1-matrix or a
bipartite graph with blocks U ={0, 1}2 and W={0, 1}2. Now, as in the case
of the star complexity, Boolean operations correspond to set operations on
graphs. Thus it only remains to find out what the generators are, ie., graphs
corresponding to the projection functions. These are easily seen to be graphs
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isomorphic to Kﬁ,_, 2 and K » The system of graphs which correspond

2% 9571

to the projection functions is very special, in particular it contains only m graphs,

while l%|=2%+1=225+1. As a result the measure determined by such a system
is not invariant under isomorphisms. E.g., it is possible to show that there
is a matching (between U and W) which has complexity linear in m and there
is another one which has complexity exponential in m (using a counting argu-
ment). Therefore we prefer a larger system such as #. The motivation for the
particular choice of 4 is in communication complexity. The basic idea of commu-
nication complexity is that there are two “computers”, each having access to
half of the input and each one can compute arbitrary function on its part of
the input just for a unit cost. In graphs it means that the graphs A x W and
U x B have complexity one, for arbitrary A< U and B W,

Since the number of vertices of the graph corresponding to a Boolean func-
tion is exponential in the number of variables of the function, we get the following
proposition.

Proposition 3.1. A lower bound F(logn) for bipartite complexity of a graph on

. o . m .
n vertices, with n=22""_m even, gives a lower bound F (54— 1) for an m variable

Boolean function. This is true for any system % which contains the graphs corre-
sponding to the projection functions (and formula size as well as circuit size com-

plexity). [

We shall show that suitable lower bounds to the star complexity may imply
exponential lower bounds to the Boolean complexity too. This is because of
the following relation between the star complexity and the bipartite complexity.

Proposition 3.2. Let G be a bipartite graph with blocks U, W, |U|=|W|=

n
Then 2

Ly (G)=La(G)5+n,

where on both sides we take the same basis containing N, U. Moreover the same
inequality holds for C, and Cg.

Proof. Let ¢ be a formula computing G which uses the generators . Replace
each graph 4 x Wresp. U x B by

J Siresp. | S;,

ieAd ieB
where S; is a star with root i. Let ¢, be the resulting formula. Let , be a
formula computing the complete bipartite graph U x W using the stars. Then
Y10y, is a formula for G. The size of ¥, is < size of ¢ times —;— The size
of Y, is n (Lemma 2.2). The same construction works with circuits. []

For circuits we can obtain a better bound if we consider the measure C,
for some % =% small. The proof is exactly the same.
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Proposition 3.3. Let ¥ =4, let G be a graph as in Proposition 3.2. Then
Co(G)=Cy(G)+1¢1-Z4n. O

Corollary 34. 1. A lower bound Q(n- F (log n)) for L ,(G), where G is as in Proposi-
tion 3.2, gives a lower bound (F(m)) to the formula size of an m variable Boolean
function.

2. A lower bound on log, n, with o> 1, for C 4(G), G as above, gives an exponen-
tial lower bound to the circuit size of an m variable Boolean function.

Proof. 1. Follows from Proposition 3.2.
2. Let 4 be the set of bipartite graphs corresponding to the projection func-
tions. Then |9|=m=2 log n— 2. Hence by Proposition 3.3

Co(6)2Cy(G)—3 (2logn—2)—n
=oanlogn—nlogn
=(ax—1)2"°e" log n.

By Proposition 3.1 this gives a bound

(@—1)-22*1. (f;-—+1)=(a—1)-2%-(m+2)

for an m variable Boolean function. [

For general graphs we have only a slightly weaker relation because of the
following proposition which reduces the complexity of a general graph to the
complexity of a bipartite graph.

Proposition 3.5. Let G be a graph on V, |V|=n, n even. Then there exists a partition
V=U u Winto two equal size blocks such that

L,(GAUXW)= Ly(G) .
[log, n]’

C,6) 1

Co(GNUXxW)= e
7 [log, n] [log, n]
Proof. Clearly the first inequality is equivalent to

Ig%} Ly(GNUx W)-[log, n|2 Ly,

where we maximize over all partitions into equal size blocks U, W. The latter
inequality is a consequence of the fact that G is the union [log, n] graphs
of the form G N U x W. The proof for C is similar. []
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Maximal Complexity

Let C% resp. L'z denote the maximal circuit resp. formula size complexity of
graphs on n vertices.

Proposition 3.6.

—;-—logzn—O(l)gc;a, g-—-ou)gﬂ'@, Ch<Iiy<n.

n2

Proof. 1. Lower bounds. There are 24 bipartite graphs and there are at most

(k!«f 11) (o, k2 <26+ D% (o k2, o, constant,

circuits of size <k, since a circuit of size k can have at most k+1 inputs.
There are at most

(03| B = (05 - 22 1)

formulas of size <k, a,, a, constants. Comparing the number of graphs with
the number of circuits and the number of formulas we get the lower bounds.
2. Upper bound. Let G U x W. Then

G= U Gi’

ieU
where
Gi={)EHeG={EL N jeW}n{(L)IIeU, (i, j)eG}.

Hence L4(G)<2|U|=n. [

Lower bounds. The only lower bound that we know of is the following trivial
one.

Proposition 3.7. Let GS U x W be a graph computed by a formula or a circuit
which uses only | generators from % (this is true in particular if Lgz(G)<!1 or
Cx(G)=1—1). Then there exist partitions U=U,u...0U,, W=W,u...uW_,
l,, 1, £2', such that G is the union of some complete bipartite graphs U;x W;. [

Remarks. 1. The largest bound that one can obtain here is only log, n— 1. There
are simple graphs for which this value is attained:

(a) matching;

(b) G U x Wwhere

n n
U={d——, ..., =14,  w=d1, ..., 24,
{=3 -t we{teng)
G, ))eG iff i+j=0.

2. This simple idea has been used implicitly many times. Weaker conditions
have been used often, e.g.,
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(a) there exists a partition
U=U,uv..uU,, 1,2

such that G is a union of some complete bipartite graphs U, x B, B< W arbitrary;
implicit in Neciporuk [7], see also [9];

(b) G is the disjoint union of £2' complete bipartite graphs Ax B, A< U,
B< W;see Yao [12];

(c) there exist sets 4, B, A< U, B< Wsuch that

n
|A] =|B|Z§—,+—1

and G is monochromatic on 4 x B.

Bipartite complexity is very much related to some recent research in commu-
nication complexity. We should at least briefly comment on this connection.
The classical concept of deterministic communication complexity is essentially
bipartite complexity with formulas, respectively circuits replaced by decision
trees, and where the measure is the depth of the tree. This model is much weaker
even than formulas, hence large lower bounds for this complexity do not imply
significant lower bound for formula size and circuit size of Boolean functions.
In a recent paper [1], analogues of X; and II; classes of the polynomial time
hierarchy and PSPACE have been defined for communication complexity. The
classes X; and II; correspond to the graphs whose bipartite bounded depth
formula size complexity is <2#"° ¢>0 constant (with just a small proviso).
The analogue of PSPACE corresponds to the graphs with Lg(G) < 20°#™" (with-
out any restriction to the depth of formulas). We are indebted to G. Turan
for pointing out the connection between [1] and the present paper.

4. Hadamard Matrices

We shall use the graphs associated with Hadamard matrices to determine the
limits for our lower bound theorems. We shall use results proved in [6]. In
this section we shall investigate combinatorial properties of these graphs.

Definition. 1. A Hadamard matrix is an nx n matrix M with entries +1 such
that

M-M'=n-1,

ie., each two different rows (resp. columns) are orthogonal, see [14].
2. The graph associated with a symmetric Hadamard matrix H has vertices
V={1...n} and edges {i, j} where H;;=1, for 1Si<j<n.

Definition. A graph G is n-uniform if for every A, B€V(G), A4, B disjoint,

1
éil/nIAl'lBl-

Lemma 4.1 [6]. The graph associated with a symmetric n x n Hadamard matrix
is n-uniform. [

IGnAxBI—I—{l—%—lﬁl—
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Corollary 4.2. Let G be associated with a symmetric n x n Hadamard matrix. Then

for any two disjoint sets of vertices A, B, |A|=|B| >W, G is not monochromatic
on A xB.

Proof. If G is monochromatic on 4 x B, then, by Lemma 4.1,

IGAAx BI—IA!;BI‘= 'A'é'Bl §—;—]/n|A|.|B[

hence [A]-|B|£n. []

Theorem 4.3. V6>0 36’ >0YnVI<(3—3J) log, n such that for every graph H on
I vertices, every n-uniform graph G on n vertices and every induced subgraph
G’ of G on p vertices with p**% > n there are

P\ -ty 1 4
(1)2 iaus L 7oW)

induced subgraphs of G’ isomorphic to H. If we assume that the graphs are linearly
ordered and we consider only isomorphisms which preserve also the ordering the

|Aut H|

(|Aut H| is the size of the automorphism group of H.)

Note that here and in the next theorems o(1) denotes a fixed function, which
we shall not specify, that tends to zero as [ tends to infinity.

A slightly weaker version of this theorem with p=n with unordered graphs
was proved in [6]. The proof can be adapted to prove the theorem above.

same formula without the factor is true. []

Theorem 4.4. Let G be an n-uniform graph on n vertices, >0,

lé(%—é) log, n
m<——1-—-£-2”2-(1——0(1)).
H e

Then G contains an induced subgraph F with m vertices with the property that
neither F nor its complement contain K.

Accidentally, the theorem gives an alternative proof to a well-known theorem
of P. Erdds, see [5] Theorem 5.1, on a lower bound for the Ramsey function.

Proof. Suppose the contrary — this means that every set of m vertices spans
a subgraph which contains either K; or E, as an induced subgraph. As every

' . . . —1 . . .
copy of K, (or E)) is contained in (n l) m-sets we obtain the inequality
m —

m-— m

(h(E,, G)+h(K,, G»(”“’l);("),
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where h(H, G) denotes the number of induced subgraphs of G isomorphic to
H. Using Theorem 4.3 with p=n this yields

(")2'(5)“(1—-o(l»z(ﬁ)’(l—oa»
l m
and thus
| I
mz-1. Lot oy,
2 e

which contradicts to our assumption on m. [

The same proof yields another result.

Let us define that a graph H is special if its vertex set can be decomposed
into two disjoint part V(H)=Au B, |A|=|B| with the property that H contains
all edges of the type {u, v}, uc 4, ve B. The statement that a graph G is monochro-
matic on 4 x B for some 4, B disjoint, |4|=|B| =1, is equivalent to the statement
that G or its complement contains a special graph on 21 vertices, but the latter
one will be more convenient for the next theorem.

Theorem 4.5. Let G be an n-uniform graph on n vertices, 5> 0,

1
21§(—2~——5> log, n
m < 242 i(1 +o(1)).
e

Then G contains an induced subgraph F with m vertices with the property that
neither F nor its complement contain a special induced subgraph with 21 vertices.

Proof. The same consideration (with K, and E, replaced by special graphs and
their complements) as in the proof above leads to the inequality

s (- 2-()

where we sum over all special graphs and their complements and h*(H, G)
denotes the number of nonisomorphic ordered induced subgraphs. As the
number of special graphs on 2/ vertices can be clearly bounded from above

by
%(i’) 4(3)

we infer (using () and Theorem 4.3 with p=n) that

(2'11).24221).(1 ~0(1)).(211).4(5).(;’1:2211)2(::z)_
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Simple calculation yields now

m2(1+o(1)-22. 1,
[

which similarly as in the proof of Theorem 4.4 gives a contradiction. [7]

In particular, for fixed §>0 (say d=31), Theorem 4.4 shows that there is
a graph G with m vertices which is an induced subgraph of the graph associated
with a symmetric Hadamard matrix with n vertices such that

m~const-n*/*~%2.1og n

and the size of the largest clique and largest independent set in G are similar
as in a random graph on m vertices. Theorem 4.5 implies a similar statement
for special graphs instead of the cliques and independent sets.

There are several constructions of Hadamard matrices. We shall need the
following one.

Let X be a set, let V=2(X) be the power set of X, n=|V|. An n x n symmetric
Hadamard matrix H with rows and columns indexed by the elements of V
is defined by

Huu=(— I)quvl'
To prove that H is Hadamard we should show that, for u4u', u, ' < X,

Z Huv'Hu’v:O'

ve X

Let x belong to the symmetric difference of u and . Then we can write the
sum as follows
Z (Huu'Hu’v+Hu(vu{x})'Hu’(vu{x)))'

ve X —{x}

Clearly each pair in the sum sums to zero, which proves that H is Hadamard.
The associated graph has V as the vertex set and (u, v) is an edge iff |[uuv|
is even. The matrices described above are called Sylvester matrices, see [14].
The corresponding Boolean function has been studied in the communication
complexity under the name “inner product mod 2”.

5. The Complexity of Graphs Associated with Hadamard Matrices

Lower Bounds. We shall apply Theorems 2.4 and 2.5. Let G denote a graph
on n vertices associated with a symmetric Hadamard matrix; in fact, it suffices
to assume that G is n-uniform. We consider only the star complexity in this
section.

Corollary 5.1.

L(G)zg(n._loﬁ_.)'
loglogn
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Proof. Let G’ be an arbitrary induced subgraph of G with m vertices, m=1n,
let I=|%log, n|. By Theorem 4.3, if n is sufficiently large, then each graph H
on [ vertices occurs as an induced subgraph of G'. This is because for I large

the factor
1—o0(1)

in the theorem is positive. To simplify the computation we consider ordered
graphs. Thus there are

ko)

such subgraphs of G'. By Theorem 2.4 we have the following lower bound,

(l)

2

L(G)zg.n. :Q(n__.l.@__)_
I-log! loglogn

We have proved this corollary only in order to show that Theorem 2.4 can
give such a lower bound. The next theorem gives a better bound for G.

Corollary 5.2
L(G)=Q(n-logn).

Proof. By Corollary 4.2 the largest pair A, B&V, |A|=|B| such that G is mono-
chromatic on A x B has size §W. Hence by Theorem 2.5

L(G)gs-n~log~l;_—=—§--n-logn. |
n

Upper Bounds. In the rest of the section we consider the graph G defined at
the end of Sect. 4, ie., a graph associated with a Sylvester matrix, n=2* is
the number of vertices of G.

Proposition 5.3. For every G’ on m vertices which is an induced subgraph of G,
L(G)<m-log, n,

where the basis should contain U, @ and 1.

Proof. Suppose the vertices of G are subsets of {1, ..., k}. then we have the
following formula for G’

k
G=1o8@ U S,

i=1 ieveV(G)

where S, is the star with the root v. Clearly, an edge (u, v) belongs to G’ iff
luuwv| is even iff the number of unions to which u or v belongs is even. Each
union has size <|V(G')|=m, there are k=1og, n such unions. []

Corollary 5.4. For every m there exists a graph G' on m vertices such that
(i) L(G')=0(m logm),
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(ii) G’ does not contain K, nor its complement with | =(2—o0(1))-log, m,

(iii) G' does not contain a special graph on 2l vertices with =2
—o(1))-log, m.
Proof. By Theorem 4.4 there exists a subgraph G’ of G whose size is
m~plid=s

and which satisfies (ii). By Proposition 5.3

L(G)<mlogn~

1/41_“5 m log m~ O(m log m),

for fixed 6, 0<d6<1/4. Using Theorem 4.5 we can also show that there exists
G’ satisfying (i) and (iii). Since the proofs of Theorems 4.4 and 4.5 show the
conditions (ii) and (iii) for random subgraphs of G, they can be satisfied simulta-
neously. [J]

Remarks. 1. Corollary 5.4 shows that Ramsey type properties of graphs do not
imply lower bounds to the formula size complexity larger than Q(m log m), where
m is the number of vertices.

2. A similar conclusion concerning Theorem 2.4 can be reached using Propo-
sition 5.3 and Theorem 4.3. That is even the condition that graphs with [ vertices
with I<(3—0) log, n, occur in each subgraph with m vertices, m!*% >n, with
the frequencies similar as in random graphs on m vertices cannot imply a larger
lower bound than Q(n-logn). We, however, cannot exclude that counting the
number of nonisomorphic induced subgraphs on [ vertices with | larger than
log n could lead to larger lower bounds. Of course, if this were true, then the
formula relating the number of such subgraphs to the complexity must be differ-
ent from the formula of Theorem 2.4.

3. The graph G’, about which we spoke in the first remark, also shows
that for some graphs any covering by complete bipartite graphs gives much
larger formula than an optimal one. Namely, we know that L(G')=0(m-logm),
but the largest K, ; in G’ has /= 0(log m). Hence any formula

V(U sy 5]

which computes G’ must have the size Q( e
logm

Q(m?) edges and each K, ; has the complexity 21 but covers only [? edges.

The last thing that we want to show is that the conditions considered above
cannot imply nonlinear lower bounds to the circuit complexity. The following
lemma and its corollary might be of an independent interest.

Lemma 5.5. Let f be a Boolean vector function, f: {0, 1}"— {0, 1}*, determined
by

). This is because G’ contains

g X/ Xi ) xi)-

iel iEIk

Then there is a circuit of size n+2**'—k—2 for f. (This is true also for any
commutative and associative operation instead of \VA)




Graph Complexity 533
Proof. For we{0, 1} =* define sets J,<{1, 2, ..., n} by
ieJ, Vi wl(ielj«>w(j)=1).

For |w|=k the sets J, are disjoint since ieJ, iff w is the characteristic function

of the occurrence of i in I, ..., I,. We can compute all nonempty disjunctions
\/ xi’ lwl = k
ieJyw

using only <n or’s as each variable occurs in at most one. Next we compute
nonempty disjunctions
V x;

ieJw

for |w| <k using the equality

\ x=\V xiv V x.

ieJw ieJwg iedy,

Thus we need 2% — 1 more or’s. Now we can compute \/ x; using equality

lte

\/xiz \/ \/ Xi»

iel; fwl=j=1iely,

which requires
{wllw]=j—1}]—1=2/"1~1

new or’s. Thus for j=1, ..., k all together

k
Y Tl )=2—1—k
ji=1

or’s. Hence the size of the circuit is
<n4+2%—142%—1—k=n+2¢"1—k-2. O
Corollary 5.6. If | divides k, then f can be computed by a circuit of size
<ln—2)+2"" —k.

In particular if k=0(log n) then f has a linear size circuit.

k
Proof. 1. Decompose f into [ functions {0, 1}"— {0, 1}’ and compute each of
these functions separately using Lemma 5.4.
2. Suppose k<C-logn, C a constant. Let [ be an integer such that [>C.

Let k’=l[% log n1gk. Extend f onto an f': {0, 1}"— {0, 1}, say, by repeating
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some coordinates, and apply the first part of the corollary. We get a circuit
of size

<In+2F0mm+2_0) _p<imiomh. O

Theorem 5.7. Let ¢>0 be fixed. Then the induced subgraphs of G with m vertices,
where m = n® have the circuit complexity at most linear in m.

Proof. We already know that if G’ is an induced subgraph of G then

k
G=10@d \/ S.,

i=1 ieveV(G’)

. 1 )
where k=1log, n. Since m>n®, we have k <= log m. Thus the vector function
' €

<V oS VS

leveV(G") keveV (G')

can be computed (by Corollary 5.5) using a circuit of size O(m). Hence G’ has
a circuit of size O(m) too. []

Corollary 5.8. For every m there exists a graph G’ on m vertices such that
(i) C(G)=0(m),
- (ii) G’ does not contain K, nor its complement with | 2(2—o0(1))-log, m,
(iii) G’ does not contain a special graph on 21 vertices with
I2(2—0(1))-1og, m.

Proof. The same as the proof of Corollary 5.4 with Theorem 5.7 used instead
of Proposition 5.3. []

Appendix

In a recent paper [8] Razborov proved several results related to our approach.
For instance he associates a graph G on 2™ vertices with any Boolean function
S of 2m variables and proves that there exists a Boolean function f whose
formula size is polynomial in m and such that the corresponding graph G does
not contain cliques and independent sets larger than 2m. It is an open problem
whether a sequence of such Boolean functions can be computed by a determinis-
tic Turing machine in polynomial time.
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