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1. Introduction

In this chapter we shall consider the problem of determining the minimal
complexity of a proof of a theorem in a given proof system. We shall deal with
propositional logic and �rst order logic. There are several measures of complexity of
a proof and there are many di�erent proof systems. Let us give some reasons for this
research, before we discuss particular instances of the problem.

1.1. Our subject could be called the quantitative study of the proofs. In contrast
with the classical proof theory we want to know not only whether a theorem has
a proof but also whether the proof is feasible, i.e., can be actually written down
or checked by a computer. An ideal justi�cation for such research would be a
proof that a particular theorem for which we have only long proofs (such as the
four color theorem), or a conjecture for which we do not have any proof (such as
P 6= NP ), does not have a short proof in some reasonable theory (such as ZF).
Presently this seems to be a very distant goal; we are only able to prove lower
bounds on the lengths of proofs for arti�cial statements, or for natural statements,
but in very weak proof systems. The situation here is similar to the situation in
the study of (weak) fragments of arithmetic and complexity theory. In fragments of
arithmetic we can prove unprovability of �0

1 sentences only for sentences obtained
by diagonalization, and in complexity theory we can separate complexity classes also
only when diagonalization is possible. These three areas are very much connected
and it is not possible to advance very much in one of them without making progress
in the others.

Nevertheless there are already now some practical consequences of this research.
For instance in �rst order logic we know quite precisely how much cut-elimination
increases the size of proofs. In propositional logic we have simple tautologies which
have only exponentially long resolution proofs. This is very important information
for designers of automated theorem provers.

Another reason for studying the lengths of proofs is that information about
the size of proofs is very important in the study of weak fragments of arithmetic,
namely when metamathematics of fragments is considered. For instance, in
bounded arithmetic the exponentiation function is not provably total. Therefore
the cut-elimination theorem is not provable in bounded arithmetic (in fact �rst
order cut-elimination requires more than elementary increase in the size of proofs).
Consequently we have (at least) two di�erent concepts of consistency in bounded
arithmetic: the usual one and cut-free consistency.

Furthermore there is a relation between provability in bounded arithmetic and
the lengths of proofs in certain proof systems for propositional logic. This seems
to be the most promising way of proving concrete independence results for bounded
arithmetic.

Finally this area is important because of its tight relation to complexity theory.
Actually, research into the lengths of proofs should be considered as a part of com-
plexity theory. There are two kinds of connections with computational complexity.
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On the one hand there are explicit connections such as the fact that a proof system
for propositional logic is a nondeterministic algorithm for the (coNP complete)
set of tautologies. On the other hand there are intuitive connections which are
not supported by theorems. For example the relation between Frege systems and
extension Frege systems (see below for de�nitions) for propositional logic is very
much like the relation between the complexity measures of boolean functions based
on formula size and circuit size, respectively. It is an open problem whether Frege
systems are as powerful as extension Frege systems and also it is an open problem
whether formulas are as powerful as circuits; but we are not able to prove any of two
implications between these apparently related problems. Some people think that the
di�cult problems in complexity theory such as P = NP? are essentially logical (not
combinatorial) problems. If it is so, then proof theory, and in particular the lengths
of proofs, should play an important role in their solution.

1.2. Now we shall brie
y outline the contents of this chapter. Section 2 introduces
some basic concepts. In section 3 we describe a technique of constructing short
formulas for inductively de�ned concepts. This technique has various applications.
Section 4 contains results about dependence of di�erent measures of complexity
of proofs and a remark on the popular Kreisel Conjecture. In section 5 we shall
consider the cut-elimination theorem from the point of view of the lengths of proofs;
namely, we shall show a lower bound on the increase of the length. In section 6 we
shall prove a version of the second incompleteness theorem for �nite consistencies.
This enables us to prove some concrete lower bounds and speed-up. In section 7 we
survey speed-up theorems, namely results about shortening of proofs when a stronger
theory is used instead of a weaker one and related results. Section 8 is a survey of
the most important propositional proof systems. In section 9 we give a nontrivial
example of a lower bound on the lengths of propositional proofs in the resolution
system. In section 10 we present important relations between the lengths of proofs
in propositional logic and provability in fragments of arithmetic. The �nal section 11
surveys especially those results which have not been treated in the main text.

2. Types of proofs and measures of complexity

In this section we introduce notation and some basic concepts used in both
propositional logic and �rst order logic.

2.1. One can consider many di�erent formalizations and it is di�cult to �nd
a classi�cation schema which would cover all. There is however one basic property
which all formalizations of the concept of a proof must satisfy: it must be computable
in polynomial time whether a given sequence is a proof of a given formula. Here
we assume, as usual, that proofs and formulas are encoded as strings in a �nite
alphabet and we identify feasible computations with polynomial time computations.
This trivial observation gives us important link to computational complexity. The
proof systems in such a general setting are just nondeterministic decision procedures
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for the set of tautologies or the set of theorems of a theory in question. More
speci�cally, an upper bound on the size of proofs for a particular proof system gives
a nondeterministic decision procedure with the bound on the running time and,
conversely, a lower bound on the nondeterministic time complexity is a lower bound
for any proof system.

In particular, let TAUT be the set of propositional tautologies in some �xed
complete basis of connectives. A propositional proof system is a binary relation
P (x; y) which is computable in polynomial time and

' 2 TAUT � 9y P ('; y):

Since the set of propositional tautologies is NP -complete, we get the following
immediate corollary.

2.1.1. Theorem. (Cook and Reckhow [1979]) There exists a proof system for

propositional logic in which all tautologies have proofs of polynomial length if and only

if NP = coNP . 2

This general concept of a proof system can be generalized even further. Firstly,
we can allow randomized computations; secondly, we can assume that the proof is
not given to us, but we can access parts of the proof via an oracle. Usually such an
interactive proof system is presented as a two player game, where we are the Veri�er
and the oracle is the Prover. It turns out that the Veri�er can check with high
probability that a proof for a given formula exists without learning almost anything
about the proof. The most striking example is the so-called PCP theorem by Arora
et al. [1992]. Roughly speaking, they showed, that there there are interactive proof
systems, where the Veri�er needs to check only a constant number of randomly
selected bits of the sequence in order to check with high probability that the proof is
correct.

Note, however, that these results concern only the question how can be proofs

checked but do not give new information about the lengths of proofs.

2.2. We turn now to more structured proofs, which are typical for logic, while the
above concepts rather belong to complexity theory. Such proof systems are usually
de�ned using a �nite list of deduction rules. The basic element of a proof, called a

proof step, or a proof line, is a formula, a set of formulas, a sequence of formulas or a
sequent (pair of sequences of formulas). A proof is either a sequence or a tree of proof
steps such that each step is an axiom or follows from previous ones by a deduction
rule. The complete information about the intended way of proving a given theorem
should also contain the information for each step of which rule is applied and to
which previous steps it is applied. However in most cases this does not in
uence the
complexity of the proofs essentially.

It is important to realize that when proof lines and deduction rules are determined,
there are two possible forms of proofs: the tree form and the sequence form. In the
tree form, a proof line may be a premise of an application of a rule only once, while
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in the sequence form it can be used again and again. The trivial transformation from
the sequence form to tree form results in exponential increase of size.

The most important measure of complexity of proofs is the size of a proof. We
take a �nite alphabet and a natural encoding of proofs as sequences (words) in a
�nite alphabet. Then the size of a proof is the length of its code.

The next one is the number of proof lines. Trivially, the number of proof lines is
at most the size, however, a proof may contain very large formulas, thus there is an
essential di�erence between the two measures.

Quite often it is important to bound the maximal complexity of formulas in
the proof. Usually we consider the quanti�er complexity or the number of logical
symbols. Thus we get other measures.

Comparing the above measures with the complexity measures in computational
complexity we see that the size corresponds clearly to time. At �rst glance it may
seem that the maximal size of a formula (or proof line) should correspond to space,
but this is not correct. In order to present a proof in a lecture, or to check it on a
computer we cannot show a single formula (proof line) at a time, we have to keep
the formulas (lemmas) on the blackboard until they are used for the last time as
premises. The minimal size of a blackboard on which the proof can be presented
is the right concept corresponding to space. Note that a suitable choice of the
concept of a proof line and rules leads to linear proofs, where each rule has at most
one premise (Craig [1957a]). In such proofs the maximal size of a proof line is the
measure corresponding to space.

In �rst order logic we consider also the proofs in a theory T . This means that
we can use axioms of T in proofs. Talking about theories is not quite precise
here; di�erent axiomatizations give clearly di�erent concepts of proofs and hence
the smallest size proofs of a given formula may be di�erent. Therefore we shall use
preferably the term axiomatization.

2.3. We shall use the following notation. The size of a formula ' resp. a proof d
will be denoted by j'j resp. jdj. Let A be a proof system or a proof system plus an
axiomatization of a theory. Then we write d : A ` ', if d is a proof of ' in A; A ` ',
if 'is provable in A; and A `n ' , if ' has a proof of size � n in A. Note that the
same notation is often used for the number of proof steps. We shall distinguish it by
writing A `nsteps '. Often it is more convenient to use the alternative notation:

k'kA =

(
minimal n such that A `n ' if A ` '
1 otherwise.

This enables us to write inequalities such as

k kA � k'kA + k'!  kA + j j+O(1);

which holds in the presence of modus ponens in A.
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2.4. Suppose that we consider a particular logical calculus. In propositional logic,
this simply means that we �x a set of connectives; in �rst order logic, this means
that we �x a language and, possibly consider some theory. Then we can compare
the power of di�erent proof systems with respect to the complexity of proofs. If
we consider the size of proofs, then it is quite natural to disregard polynomial
di�erences in proofs. In particular we de�ne P1 � P2, if there exists a polynomial
p(x) such that for each tautology (resp. theorem) ', if d1 : P1 ` ', then for some
d2; jd2j � p(jd1j); d2 : P2 ` ', (using the norm notation: k'kP1 � p(k'kP2)).

Usually, if P1 � P2 , then there exists a polynomial time algorithm to construct
d2 from d1; in such a situation we say that P2 polynomially simulates P1 , (see Cook
and Reckhow [1979]). We say that P1 is polynomially equivalent to P2, if P1 and P2

polynomially simulate each other.

A well-known theorem of Craig states that a theory has a recursive axiomati-
zation, if it is recursively enumerable. It is an easy exercise to prove the following
modi�cation of the theorem.

2.4.1. Proposition. Let P1 be an arbitrary proof system for a calculus with the

connective of implication. Then there exists a polynomially equivalent calculus P2

based on a polynomial time decidable set of axioms and the single rule of modus
ponens. 2

Consequently one has to consider stronger assumptions in order to restrict the
class of proof systems. The usual approach is to work with the schematic theories of
Parikh [1973], where we have a �nite set of rules and axiom schemas.

2.5. We shall conclude this section by presenting the most often used proof systems
for �rst order logic; we consider those used in mathematical logic, there are several
others used in arti�cial intelligence, see Chang and Lee [1973] and Eder [1992].

2.5.1. Gentzen [1935] attributes the following system to Hilbert and Glivenko:

Rules

(6:1)
A;A! B

B

(6:2)
A! �(x)

A! 8y�(y) ; where x does not occur in A,

(6:3)
�(x)! A

9x�(x) ! A
;where x does not occur in A.
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Axiom Schemas

(1:1) A! A

(1:2) A! (B ! A)
(1:3) (A! (A! B))! (A! B)
(1:4) (A! (B ! C))! (B ! (A! C))
(1:5) (A! B)! ((B ! C)! (A! C))
(2:1) (A ^ B)! A

(2:2) (A ^ B)! B

(2:3) (A! B)! ((A! C)! (A! (B ^ C)
(3:1) A! (A _ B)
(3:2) B ! (A _ B)
(3:3) (A! C)! ((B ! C)! ((A _B)! C))
(4:1) (A! B)! ((A! :B)! :A)
(4:2) :A! (A! B)
(5:1) 8x�(x)! �(t)
(5:1) �(t)! 9x�(x)
(t stands for a term, x; y are variables).

We shall refer to this calculus as the Hilbert stylecalculus.Note that in a system
such as above we can either say that we have axiom schemas or that we have axioms

and allow the substitution rule to be applied only to axioms. We shall consider the
power of various proof systems for propositional logic in section 8. The propositional
part of the Hilbert style system is a special case of calculi called Frege systems.
Contrary to the history, the general substitution rule is not permitted in Frege
systems.

There are more compact Hilbert style systems, e.g. the one considered by Hilbert
and Ackermann [1928], use only the connectives _ and :. As we shall see, the
propositional parts simulate each other and (unless we use some strange quanti�er
rules) this can be extended to the whole systems.

Let us note that there are natural proof systems for �rst order logic which have
only modus ponens as a rule and the quanti�er rules are replaced by a �nite number
of simple axiom schemas, see e.g. Grzegorczyk [1974].

2.5.2. Another important system has been introduced by Gentzen [1935]. The ba-
sic elements of the proof are sequents which are sequences '1; : : : ; 'n �!  1; : : : ;  m .
Here �! is a syntactical symbol, a di�erent symbol ! is used for implication. The
interpretation of such a sequent is '1 ^ : : : ^ 'n !  1 _ : : : _  m (with ! standing
now for implication). The system has a single axiom scheme A �! A; where A is a
formula, and several rules which have one or two sequents as assumptions and one
sequent as a conclusion. A proof is a tree of sequents where leaves are instance of
the axiom and every other sequent follows from its predecessors by a rule. The tree
structure is very convenient for analyzing proofs, but one can also consider sequences
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of sequents as a proof. The most important rule as the cut rule

�1; : : : ; �k �! �1; : : : ; �l; ' '; 
1; : : : ; 
m �! �1; : : : ; �n

�1; : : : ; �k; 
1; : : : ; 
m �! �1; : : : ; �l; �1; : : : ; �n

Observe that for k = l = m = 0; n = 1 we get essentially modus ponens. The whole
system is described in Chapter I. Gentzen presented transformations of proofs from
the Hilbert style calculus to his sequent calculus and vice versa. In Eder [1992] it is
shown that this in fact gives polynomial simulations of the systems if

1. in both we take tree-proofs or

2. in both we take sequence-proofs.

In section 4 we shall show that there is also polynomial simulation of sequence-proofs
by tree-proofs in the Hilbert style calculus. Thus the most commonly used systems
are polynomially equivalent.

The systems above are prototypes of what is called a schematic theory. This
concept is a natural extension of the concept of the Frege system used in propositional
logic. In �rst order logic, however, it is not easy to de�ne precisely such a concept
especially because restrictions on occurrences of variables in quanti�er rules (or
axioms) are needed. For possible de�nitions of schematic theories see Vaught [1967],
Parikh [1973], Kraj���cek [1989a], Farmer [1984,1988] and Buss [1994].

Hilbert's "-calculus is based on a di�erent language. Instead of quanti�ers it
uses "-terms "'(x) whose meaning is an element which satis�es the formula '(x) if
there is any, otherwise "'(x) is an arbitrary element. This system is described in the
famous book of Hilbert and Bernays [1934,1939]. Other popular systems are Beth's
system of semantic tableaux, described in Beth [1959] and Smullyan [1968], and
Prawitz's natural deduction system, described in Prawitz [1970] and Girard [1989].
Brief descriptions of these systems can be found in Chapter I of this volume.

For most systems polynomial simulations have been found and it seems very
likely that mutual polynomial simulations with other systems can be found. Thus
I do not expect that interesting results on the length of proof can be obtained
here. Nevertheless various systems may be useful in some other situations. E.g., as
Matthias Baaz pointed out, the "-calculus is useful in situations where we study the
structure of the terms in the proof; the prominent example is Kreisel's Conjecture
(see section 4).

2.6. The main theorem of Gentzen [1935] asserts that the sequent calculus without
the cut rule is still complete. This is a very strong statement, since the cut rule
is the only rule where some structure present in the assumptions is missing in the
conclusion (if we disregard the terms). Some of the numerous application of the
cut-elimination theorem and its proof can be found in Chapters I and II of this
handbook. Of course we have to pay something for it and the price is high: the
increase of the size cannot be bounded by an elementary recursive function, i.e.,
cannot be bounded by a constant number of iterations of the exponential function.
We shall prove such a lower bound in section 5.
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2.6.1. There are several theorems which are in a sense equivalent to the cut-
elimination theorem: Herbrand's theorem, Hilbert's "-theorem (see Hilbert and
Bernays [1934,1939]), semantic tableaux. Each of them can be used to de�ne a
concept of a proof and the resulting measures are closely related. Namely, the known
transformations give mutual simulations in time bounded by iterated exponential
functions, see 5.1. Thus we have two main classes of proof systems for �rst order
logic: (1) the unrestricted ones, and (2) cut-free (and the equivalent ones).

Considering the undecidability of �rst order logic, which means that we cannot
bound the size of a proof of a formula by any computable function, it is quite
surprising that the spectrum of natural complexity measures consists essentially of
two elements. Can this empirical evidence be supported by a mathematical theorem?

3. Some short formulas and short proofs

In this section we discuss basic concepts used in the study of the length of proofs
in �rst order logic and prove some bounds on the length of proofs. The upper bounds
have two applications: �rstly they enable us to show big di�erences in lengths
between di�erent types of proofs, the so-called speed-up; secondly, they are needed
for reductions of the lower bounds on the length of proofs of one set of formulas to
another one.

3.1. We shall use the Hilbert style proof system described in the previous section
with the following axioms of equality:

x = x

x = y ! y = x;

x = y ^ y = z ! x = z;

x1 = y1 ^ : : : ^ xn = yn ! (R(x1; : : : ; xn)! R(y1; : : : ; yn))

for each predicate symbol R, and

x1 = y1 ^ : : : ^ xn = yn ! F (x1; : : : ; xn) = F (y1; : : : ; yn)

for each function symbol F:

3.2. The �rst question that we consider is the length of formulas de�ned by
iterating a certain construction (some examples will be considered below). Let
�(R; a1; : : : ; ak; b1; : : : ; bl) be a formula with a speci�ed k-ary predicate symbol and
where a1; : : : ; ak; b1; : : : ; bl are all free variables of �. Let us abbreviate the strings of
variables by �a and �b. Now suppose a formula '0(�a;�b) is given and we need a sequence
of formulas '1; '2; : : : such that

'n+1(�a;�b) � �('n; �a;�b) (1)

is provable in �rst order logic. Here � denotes the biconditional.
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In order to understand better what is going on, let us write � as

�(R(�x1); : : : ; R(�xt); �a;�b); (2)

where R(�xi) denote particular occurrences of R in � and �xi is a string of k bound,
not necessarily distinct, variables of �. Thus (1) is better represented by:

'n+1(�a;�b) � �('n(�x1;�b); : : : ; 'n(�xt;�b); �a;�b): (3)

The variables �b do not change, they are \parameters", thus we shall omit them from
now on.

A trivial solution is to take 'n+1(�a) to be equal to �('n; �a). However often we
need 'n to be of polynomial size and, in fact, we need a polynomial (in n) size
proof of (3). If t > 1, which is usually the case, then mere substitutions lead to
exponentially large formulas. The solution is to replace �(R; �a) by an equivalent
formula, in which R occurs only once. This is always possible if � as a connective is
present in our language.

3.2.1. Theorem. (Ferrante and Racko� [1979]) Suppose � is present in the

language. Then, for every formula �(R; �a), there exists an equivalent formula

	(R; �a), in which R occurs only once. 2

We shall not prove this theorem here, because we want to construct polynomial
size formulas not using biconditional. Several people observed that the assumption
about biconditional is essential for Theorem 3.2.1, (of course the negation of � is
su�cient too). If we consider, say, all binary connectives without biconditional and
its negation, then one can de�ne positive and negative occurrences of R and it is not
possible to replace one by the other. Therefore the theorem fails to hold in this case.

Let us consider the construction of formulas satisfying the inductive condition
(1) using Theorem 3.2.1. If we disregard the size of variables, i.e., we assign a
unit cost to each variable, we clearly get formulas 'n(�a) of linear size by iterating
'n+1(�a) =def �('n(�a); �a).

In order to obtain a polynomial size proof of (1) we prove, for every n,

	('n; �a) � �('n; �a): (4)

The proof of this formula is obtained from the proof d of 	(R; �a) � �(R; �a) by
substituting 'n for each occurrence of R in d. Hence the proof is also of linear size
in n.

In a more precise computation of proof size, we have to take into account the size
of variables. After the reduction to one occurrence the inductive condition is

'n+1(�a) = 	('n(�x); �a); (5)

where �x is a string of variables bound in 	. Clearly, we cannot use the same string
�x for all n (except in trivial cases) because of the possible clashes. If we use di�erent
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strings �x for each n, we get formulas of size of the order n � logn, since the n-th
variable can be coded by a word of length O(logn). Alternatively we can use just
two strings: one for odd n's and one for even n's. The resulting formulas are of linear
size but a little unnatural, since one variable occurs in the scope of several quanti�ers
bounding it. Though unnatural it is usually permitted.

3.2.2. Now we prove the existence of polynomial size formulas de�ned by iteration
in the case when � is not present in the language.

3.2.3. Theorem. (Solovay [unpublished]) Suppose : and at least one of the

connectives !; _; ^ are present in the language. Let '0(�a) and �(R; �a) be given.

Then it is possible to construct formulas '1(�a); '2(�a); : : : such that

'n+1(�a) � �('n; �a) (6)

have polynomial size proofs.

Proof. We shall use only the fact that p ! q has an equivalent formula in the
language where q occurs once. We use p � q in (6) and below as an abbreviation of
an equivalent formula in the language, e.g. (p! q) ^ (q ! p), if both ! and ^ are
present.

The idea of the proof is the same as for the case with � plus an additional trick.
The trick is to �rst de�ne the graph of the truth value function for 'n's. If fn(�a) is
the truth value function, then both 'n(�a) and :'n(�a) can be expressed as positive
statements fn(�a) = 1 and fn(�a) = 0 respectively.

In order to get simpler formulas we shall use inessential assumptions that a
constant 0 is in the language and 9x9y(x 6= y) is a logical axiom. Consider the
formula

�(R; �a) � y = 0:

Take a prenex normal form of it

Q �(R(�x1); : : : ; R(�xt); �a; y);

where Q denotes the quanti�er pre�x which bounds, among others, the variables
�x1; : : : ; �xt , and all occurrences of R in � are displayed. Now we de�ne formulas for
the graphs of fn(�a)'s. In order to simplify the formulas, truth will be represented by
0 and falsehood by anything di�erent from 0. De�ne 	0(�a; y) to be the formula

'0(�a) � y = 0 (7)

and de�ne 	n+1(�a; y) to be the formula

Q8y1 � � � 8yz(8�z8u(((�z = �x1 ^ u = y1) _ � � � _ (�z = �xt ^ u = yt))! 	n(�z; u))
! �(y1 = 0; : : : ; yt = 0; �a; y));

(8)

where Q is as above, �z = �xi is an abbreviation for z1 = xi1 ^ : : : ^ zk = xik and
yi = 0 are substituted for R(�xi) in �. Note that the meaning of the antecedent in
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the de�nition is that yi codes the truth value of 'n(�xi); below we give a formal proof
of this.

Since 	n occurs only once in the recurrence relation, we get 	n of polynomial
size (O(n logn) if we use di�erent variables and linear if we \recycle" variables).

De�ne formulas

'n(�a) =df 	n(�a; 0);
�n+1(�a; y) =df 	n+1(�a; y) � (�('n; �a) � y = 0);
�n(�a; y) =df 	n(�a; y) � ('n(�a) � y = 0):

3.2.4. Lemma. Let �x be the string of all free variables of formulas � and � ; let

�(�) and �(�) be obtained by substituting � and � in �(R) for R. Then

8�x(�(�x) � �(�x))! �(�) � �(�)

has a polynomial size proof in the size of �; � and �.

The idea of the proof is to use induction on the depth of �. 2

3.2.5. Lemma.

(i) 9y	0(�a; y) is provable.
The following formulas have polynomial size proofs.

(ii) 8y�n+1(�a; y)! 9y	n+1(�a; y);
(iii) 8y�n+1(�a; y)! 'n+1(�a) � �('n; �a);
(iv) 8y�n+1(�a; y)! 8y�n+1(�a; y);
(v) 8 : : : �n(�a; y)! 8 : : : �n+1(�a; y); where 8 : : : denotes the universal closure.

Proof. (i) Use (7): if '0(�a), then take y = 0, if :'(�a), take an arbitrary y 6= 0.
(ii) Similar as in (i): to �nd y such that 	n+1(�a; y) holds distinguish the cases

�('n; �a) and :�('n; �a). In the �rst case take y = 0, in the second any y 6= 0. The
formulas involved are of polynomial size, the number of steps is constant, thus the
whole proof is polynomial.

(iii) Assume 8y�n+1(�a; y); in particular we have �n+1(�a; 0) which is
	n+1(�a; 0) � (�('n; �a) � 0 = 0):

Using the de�nition of 'n+1(�a) this reduces to the statement

'n+1(�a) � �('n; �a):

(iv) Assume 8y�n+1(�a; y). By (iii) we can substitute 'n+1(�a) for �('n; �a) in
8y �n+1(�a; y), which we assume. Thus we get 8y �n(�a; y). As we do not have the
substitution rule, we must use Lemma 3.2.4 to estimate the length of the proof.

(v) Assume 8 : : : �n(�a; y). By the de�nition of 	0 and (iv) we have also
8 : : : �n(�a; y). From de�nition (8) we immediately get

	n+1(�a; y) � Q8y1 : : : 8yt(	n(�x1; y1) ^ : : : ^	n(�xt; �yt)!
! �(y1 = 0; : : : ; yt = 0; �a; y));
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using a polynomial size proof. By 8 : : : �n(�a; y) we can substitute 'n(�xi) for yi = 0.

Thus we get

	n+1(�a; y) � Q8yt(	n(�x1; y1) ^ : : : ^	n(�xt; yt)!

! �('n(�x1); : : : ; 'n(�xt); �a; y)):

Pushing the universal quanti�es inside, we get

	n+1(�a; y) � Q(9y1	n(�x1; y1) ^ : : : ^ 9yt	n(�xt; yt)!

! �('n(�x1); : : : ; 'n(�xt)�a; y)):

Now, by (ii), 9yi	n(�xi; yi) have polynomial size proofs, thus we get

	n+1(�a; y) � Q �('n(�x1); : : : ; 'n(�xt); �a; y):

By de�nition of �, this is equivalent to

	n+1(�a; y) � (�('n; �a) � y = 0):

The calculation that the proofs are of polynomial size use Lemma 3.2.4 and the same
ideas as we have already used before. For instance, the last equivalence is obtained
by taking the constant size proof of

(�(R; �a) � y = 0) � Q �(R(�x1); : : : ; R(�xt)�a; y)

and substituting 'n for each occurrence of R in the proof.

2

To �nish the proof of the theorem we �rst prove 8 : : : �1(�a; y). The proof
is identical with (v) above, except that we get 8 : : : �0(�a; y) directly from
the de�ning equation (7). Now we combine the polynomial size proofs of
8 : : : �1(�a; y) ! 8 : : : �2(�a; y); : : : ; 8 : : : �n(�a; y) ! 8 : : : �n+1(�a; y) to obtain a poly-
nomial size proof of 8 : : : �n+1(�a; y). Then, by (iii), we get a polynomial size proof
of

'n+1(�a) � �('n; �a):

2

3.2.6. Suppose we allow repeated use of the same variables, hence 'n's are of
linear size. Then one can easily check that the sentences in Lemma 3.2.5 have linear
size proofs hence (6) has quadratic size proofs.
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3.3. We consider two applications of Theorem 3.2.3. The �rst application is to
construct a partial truth de�nition.

We shall consider T , a su�ciently strong fragment of arithmetic or set theory;
namely, we need to be able to formalize syntax in T . A natural assumption is that
the theory T is sequential which means that T contains Robinson arithmetic Q (see
Chapter II) and a formula formalizing the relation \x is the i-th element of y"; we
only require that there exists an empty sequence and each sequence can be prolonged
by adding an arbitrary element. E.g. in the G�odel-Bernays set theory GB we can
de�ne the i-th element of the sequence coded by a class X by

(X)i =def fx ; (x; i) 2 Xg:

Let us stress that it is important to code all elements, it would not su�ce to code,
say, only sets in GB.

Let d�e denote the G�odel number (the code) of a formula �. By a well-known
theorem of Tarski [1936], there is no formula '(x) such that

T ` '(d�e) � �

for all sentences � (it is a simple application of the diagonalization lemma). However
it is possible to construct such a formula for some classes of sentences �, in particular
for � with bounded quanti�er complexity. We shall need the following particular
case. We would like to de�ne satisfaction for formulas �(�x) of bounded size and a
string �x of elements. Let (x)i denote some coding function in T , i.e., (x)i is the
i-th element of the sequence x (we may assume that every element is a code of some
sequence). We want to construct formulas 'n(x; y); n = 1; 2; : : : ; such that for every
�(y1; : : : ; yn) of depth � n,

T ` 'n(d�e; x) � �((x)1; : : : ; (x)k); (9)

using a polynomial size proof, (depth 0 are atomic formulas etc.). In fact we need
more: we want to have polynomial size proofs of Tarski's conditions for 'n. Tarski's
conditions are conditions which de�ne satisfaction by induction on the depth of
formulas. For each connective and each quanti�er there is one condition. E.g., for
implication Tarski's condition is

'n(d� ! 
e; x) � ('n(d�e; x)! 'n(d
e; x)):

It is assumed that satisfaction for open formulas is easily de�nable. This is true
in our case, since we assume that T is su�ciently strong. Let R(x; y) be a new
binary predicate. Let '0 be a formula de�ning satisfaction for open formulas and let
�(R; x; y) be a formula expressing the following:

1. if x is atomic then '0(x; y),

2. if x is :u then :R(u; y)
3. if x is u! v then R(u; y)! R(v; y),
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4. if x is 8zi u and R(u; y0) for every sequence y0 identical with y on all coordinates
j 6= i, then R(x; y),

etc. for the other connectives and for quanti�ers.
By Theorem 3.2.3 we have polynomial size formulas 'n(x; y) and polynomial size

proofs of

'n+1(x; y) � �('n; x; y): (10)

What we need is a little di�erent; namely, we need polynomial size proofs in T of

dptn(x)! 'n(x; y) � �('n; x; y); (11)

where dptn(x) is a formula saying that x is a formula of depth � n. To prove this, it
su�ces to prove, using polynomial size proofs in T ,

dptn(x)! 'n+1(x; y) � 'n(x; y): (12)

To prove (12) we observe that for n = 0 it follows from the de�nition of � and for
n > 0

8x; y(dptn(x)! 'n+1(x; y) � 'n(x; y))!

! 8x; y(dptn+1(x)! 'n+2(x; y) � 'n+1(x; y))
(13)

have polynomial size proofs. Let us prove the implication. Assume the antecedent
and dptn+1(x). We distinguish the cases: x is atomic, x is a negation, x is an
implication etc. If x is atomic, then, by the de�nition of � and (10), both 'n+2(x; y)
and 'n+1(x; y) are equivalent to '0(x; y). If x is the negation of x0 then we have (by
the de�nition of �)

'n+2(x; y) � :'n+1(x0; y)
and

'n+1(x; y) � :'n(x0y):
By our assumption we have

'n+1(x
0; y) � 'n(x

0; y);

since we have also dptn(x
0). Thus 'n+2(x; y) � 'n+1(x; y). The other cases are

proved in the same way. In order to see that the resulting proof has polynomial size,
observe that it does not use the structure of formulas 'n; 'n+1; 'n+2. Thus these
proofs can be constructed from a �nite proof schema by substituting the formulas
'n; 'n+1; 'n+2. The resulting proof has size linear in the size of 'n; 'n+1; 'n+2. This
�nishes the proof of (11).

Now we can show easily that (9) have also polynomial size proofs provided � is
of depth � n (and of polynomial size, i.e., does not use variables with long codes).
This is done by induction on the depth of �; we leave out the details.

The following theorem summarizes what we have proved above.
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3.3.1. Theorem. (Pudl�ak [1986]) Let T be a sequential theory. There exists a

sequence of formulas 'n(x; y) (of polynomial size) and such that there are polynomial

size proofs in T of Tarski's condition for 'n(x; y) where x is of depth � n and

polynomial size proofs of

'n(d�e; x) � �((x)1; : : : ; (x)n)

for � of depth � n. 2

3.4. Now we consider another application of Theorem 3.2.3. Let T be a fragment
of arithmetic, let S be a function symbol for the successor. Now T can be much
weaker; we shall specify the condition that we need later. Let '(x) be a formula. We
say that '(x) is a cut in T of T proves

'(0); (14)

8x('(x)! '(S(x))); (15)

8x; y(x � y ^ '(y)! '(x)): (16)

If '(x) satis�es only (14) and (15), then '(x) is called inductive. Let '(x) be
inductive and assume that T proves x + 0 = 0; x + S(y) = S(x + y) and the
associative law for +.

De�ne  (x) by

 (x) �df 8z('(z)! '(z + x)): (17)

Then one can easily show that  (x) is also inductive in T and

T `  (x) ^  (y)!  (x+ y); (18)

(this construction is due to Solovay, unpublished). If (18) is satis�ed, we say that
 is closed under addition. Assuming a little bit more about T and that '(x) is a
cut, we get that  (x) is also a cut. Suppose that T contains exponentiation 2x along
with axioms

20 = S(0); 2S(x) = 2x + 2x: (19)

Then we can continue by �rst taking

'1(x) �df  (2
x): (20)

We get that '1(x) is inductive (resp., is a cut) and

T ` 8x '1(x)! '(2x); (21)

since T `  (x) ! '(x). Then we can repeat the construction, since '1(x) is
inductive, and we obtain some '2(x) with

T ` 8x '2(x)! '(22
x

)
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etc. Observe that the above construction is schematic, we could have assumed that
' is just a second order variables and derive (21) from (14) - (16). More precisely it
means the following: let R(x) be a unary predicate, let Ind(R(x)) (resp. Cut(R(x))
denote the conjunction of (14) and (15) (and (16) resp.). Then there exists a formula
	(R; x) and a �nite fragment of arithmetic T0 such that

T0 ` Ind(R(x))! Ind(	(R; x)) ^ 8y(	(R; y)! R(2y)):

Applying Theorem 3.2.3 to �(R; x) de�ned by

�(R; x) �df

^
T0 ! 	(R; x)

we obtain the following theorem.

3.4.1. Theorem. Let T be a su�ciently strong fragment of arithmetic; suppose

'0(x) is inductive (resp. is a cut) in T . Then there exists a sequence of formulas

'1(x); '2(x); : : : ; such that for each n

Ind('n+1(x)) ^ 8x('n+1(x)! ('n(x) ^ 'n(2x)))
(resp. the formula with Cut instead of Ind) has a proof in T of size polynomial in n.

2

3.5. Since cuts are quite important in the study of theories containing some part
of arithmetic, we shall mention a few basic facts about them, though they are not
needed in this chapter. More can be found e.g. in H�ajek and Pudl�ak [1993].

In order to obtain a cut closed under multiplication and contained in '(x) one
can apply the trick of (17) to  (x). It is possible to go on and get cuts closed
under more rapidly growing functions, but not for 2x (unless '(x) has some special
properties). There is another way to get such cuts, using which we can better see
what these functions are. Let 2xn denote n-times iterated exponential function. Let
!n(x) be nondecreasing functions such that

2S(x)n = !n(2
x
n); (22)

we assume that these properties are provable in T .
Let  n(x) be de�ned by

 n(x) �df 9y('n(y) ^ x � 2yn): (23)

By construction
T ` 'n(y)! '(2yn); (24)

hence  n(x) is contained in '(x). Also it is easy to check that 'n(x) is a cut in T .
To see that  n(x) is closed under !n(x) just observe that

T ` x � 2yn ! !n(x) � !n(2
y
n) = 2S(y)n :

For instance take !2(x) = x2 , then we obtain  2(x) closed under x2 , hence closed
under multiplication.
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4. More on the structure of proofs

In this section we shall prove two basic results. First we prove that for the usual
calculi for predicate logic proofs as sequences can be replaced by tree-proofs with
only a polynomial increase. Thus the size measures based on proofs as sequence and
proofs as trees are polynomially related. (We shall sketch a di�erent proof of the
same result for some propositional proof systems in section 8.) The second result says
that the depth of a proof can be bounded by a square root of its size, provided the
proved sentence has negligible size. The proof is based on the theory of uni�cation
of terms. We shall survey a few other results which use uni�cation, in particular
Kreisel's Conjecture on generalizations of proofs in arithmetic.

4.1. Theorem. (Kraj���cek [1994a]) Let k'ksequence resp. k'ktree be the size of the

smallest sequence-proof resp. tree-proof of a provable sentence ' in the Hilbert style

calculus. Then there exists a polynomial p(x) such that

k'ktree � p(k'ksequence)
for every provable sentence '.

We consider here only the Hilbert style calculus, but the result can be extended to
the Gentzen sequent calculus, as there are polynomial simulations for both versions
- tree and sequence, cf. Eder [1992].

This result is quite surprising, since there is an obvious similarity between
sequence-proofs and circuits on the one hand, and tree-proofs and formulas on the
other hand. In circuits the output of a gate can be connected with several other gates,
thus we can use the boolean function computed at this gate several times. While a
formula is represented by a tree, thus each node has at most one successor. Similarly
in a sequence-proof we can use a formula several times as a premise of a rule, while in
a tree proof it is allowed only once. It is generally accepted, through still a di�cult
open problem, that circuits are exponentially more powerful for computations of
boolean formulas than formulas. Still the corresponding statement for proofs is false
as we shall see below.

Proof. We shall �rst prove the theorem for the propositional calculus. The idea
is quite simple. Let ('1; : : : ; 'n) be a proof. We shall replace this sequence by
'1; '1 ^'2; : : : ; (: : : ('1 ^'2)^ : : :)^'n. In this sequence each formula follows from
the previous one. This sequence is, however, not a proof, thus we have to insert some
proof trees in it such that a leaf of a tree is (� � � ('1 ^ '2) ^ � � �) ^ 'i and the root is
(� � � ('1 ^ '2) ^ � � �) ^ 'i+1 .

In order to simplify notation we agree to omit parenthesis in expressions like
(� � � (('1 ^ '2) ^ '3) � � �) ^ 'n. Furthermore let us say that a class of sentences has
polynomial size tree proofs, abbreviated by pst-proofs, if there is a polynomial upper
bound on the size of tree proofs in terms of the size of a formula. We shall use this
also for proofs from assumptions.

The proof now reduces to the two statements in the following lemma.
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4.1.1. Lemma.

(a) �! � ^ � has a pst-proof provided � is an instance of an axiom;

(b) �1 ^ � � � ^ �n ^ 
 has a pst-proof from �1 ^ � � � ^ �n provided �i ! 
 is �j for

some 1 � i; j � n.

Proof. (a) The proof of (a) is trivial, but since we shall use the same argument
several times below we shall spell it out at least once. Suppose � is an instance
of an axiom  (p1; : : : ; pk), thus � is  (�1; : : : ; �k) for some �1; : : : ; �k . Consider
the following formula pk+1 ! pk+1 ^  (p1; : : : ; pk). It is a tautology, thus it has a
tree-proof d0. Let arbitrary � and �1; : : : ; �n be given. Then we obtain a tree-proof
of �! � ^  (�1; : : : ; �n) simply by substituting �1; : : : ; �k; � for p1; : : : ; pk+1 in d0.
Thus the size of this tree-proof will be bounded by c � (j�j + j�1j + � � �+ j�kj) � c �
(j�j+ j�j) = O(j�! � ^ �j), where the constant c is determined by d0.

(b) To prove the second statement we derive another lemma. (We shall not need
it in its full strength.)

4.1.2. Lemma. Let � be a permutation on f1; : : : ; ng; �1; : : : ; �n formulas. Then

�1 ^ �2 ^ � � � ^ �n ! ��(1) ^ ��(2) ^ � � � ^ ��(n) (25)

has a pst-proof.

Proof. First we prove that

� ^ � ^ �1 ^ �2 � � � ^ �n ^ 
 ! � ^ 
 ^ �1 ^ �2 � � � ^ �n ^ � (26)

has a pst-proof. Clearly

(� ^ 
 ! � ^ �)! (� ^ � ^ 
 ! � ^ � ^ �) (27)

have a pst-proofs for any �; 
; �; �; �. Thus start with a pst-proof of

� ^ 
 ! 
 ^ �;

take the pst-proofs of

(�i ^ 
 ! �i ^ �)! (�i+1 ^ � ! �i+1 ^ 
)

given by (27) for �j equal to � ^� ^�1 ^ � � � ^�j and �j equal to � ^ 
 ^�1 ^ � � � ^�i ,
and then apply modus ponens inferences to get (26).

Notice that (26) shows that also

�1^� � �^�i�1^�^�i+1^� � �^�n�1^
 ! �1^� � �^�i�1^
^�i+1^� � �^�n�1^� (28)

has pst-proofs. Since
(� ! �)! (� ^ � ! � ^ �)
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has a pst-proof, we get from (28) a pst-proof of (25) for any transposition �. In
order to get it for a general � just recall the well-known fact that each � can be
decomposed into a polynomial number of transpositions. 2

Using the same argument as in (a) one can show that

� ^ (� ! 
) ^ � ! � ^ (� ! 
) ^ � ^ 
 (29)

has a pst-proof for any �; �; 
 . Now we can �nish the proof of (b). For a given
�1 ^ � � � ^ �n, �rst move �i ! 
 and �j to the end of the conjunction using Lemma
4.1.2, then apply (29) to add 
 at the end, and �nally, again using Lemma 4.1.2 move
�i ! 
 and �j back.

2

This �nishes the proof of the theorem for the case of propositional logic.

4.1.3. Now we sketch how the above argument should be modi�ed in order to
get the result for the predicate calculus. We cannot simply take the conjunction of
formulas in the proof, since clashes of variables may occur and it is no longer true that
'1 ^ � � � ^ 'i+1 follows from '1 ^ � � � ^ 'i. Therefore we work with universal closures
of the formulas '1; : : : ; 'n. Let 8 : : : ' denote a universal closure of a formula '.
Instead of modus ponens and the two quanti�er rules we need now, for some formulas
 ; '; �; � ,

(1) to derive 8 : : :  from 8 : : : ('!  ) and 8 : : : ';
(2) to derive 8 : : : (� ! 8y�(y)) from 8 : : : (� ! �(x)), where x does not occur

in �;

(3) to derive 8 : : : (9y�(y) ! �) from 8 : : : (�(x) ! �), where x does not occur
in � .

This can be done as follows. For each particular case of (1){(3) prove the
corresponding implication, i.e.,

8 : : : '! (8 : : : ('!  )! 8 : : :  );
8 : : : (�! �(x))! 8 : : : (�! 8y�(y));
8 : : : (�(x)! �)! 8 : : : (9y�(y)! �):

(30)

Insert these subproofs in the sequence 8 : : : '1; 8 : : : '2; : : :8 : : : 'n obtained from the
original proof and then use the proof for the propositional calculus. Thus the proof
reduces now to following lemma whose proof we omit.

4.1.4. Lemma. The sentences (30) have pst-proofs. 2

Let us note that the above formulas (30) are essentially the schemas used to
formalize �rst order logic by a �nite number of schemas and the single rule modus
ponens. Thus what we actually did above was replacing the quanti�er rules by
quanti�er axiom schemas and applying the result for the propositional logic.
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4.2. We shall prove the next result, Theorem 4.2.5, using an estimate on uni�ca-
tion. It is also possible to prove it directly, but uni�cation is a very useful tool and it
is natural to express the combinatorial statement that we need using it.

Consider terms in a language consisting of variables constants and function
symbols. A substitution � is a mapping from the set of variables into the set of
terms. We shall write t� for the result of substitution � applied to t which means
that we replace each variable x in t by �(x). A uni�cation problem is a set of pairs
of terms f(t1; t2); (t3; t4); : : : ; (t2k�1t2k)g. A substitution � is a uni�er if

t1� = t2�; : : : ; t2k�1� = t2k�:

We think of a uni�cation problem as a system of equations with variables being
unknown terms; however variables may occur in a solution (=uni�er) too. A uni�er �
is a most general uni�er if for every uni�er � there exists a substitution � such that
�� = �. The following result is easy but has very important applications, see
Chapter I and Chang and Lee [1973].

4.2.1. Proposition. If there exists a uni�er then there exists a most general

uni�er. 2

We shall use this proposition later. Now we only need to observe that the most
general uni�er gives the smallest possible solution.

As usual, we shall think of terms as rooted trees. We say that the root is in depth
0, its sons in depth 1 etc. The depth of a term t, denoted by d(t) is the maximal
depth that occurs in it; the size of t, denoted by jtj, is the number of subterms (i.e.,
the nodes in the tree). We say that a subterm s of a term t is in depth d if the root
of s in depth d in t.

The following lemma is the combinatorial substance of the bound on the depth of
formulas which we are going to prove.

4.2.2. Lemma. Let � be a most general uni�er of a uni�cation problem

f(t1; t2); (t3; t4); : : : ; (t2k�1; t2k)g:

Let d = max
i
d(ti); S =

P
i
jti�j and D = max

i
d(ti�): Then

D �
q
(2 + o(1))(d+ 1)S:

Proof. Let w be a term ti0� with the maximal depth; thus d(w) = D. Consider a
branch B in w of length D. Let B1; : : : ; Br , r = b D

d+1
c, be the end segments of B of

lengths d+ 1; 2(d+ 1); : : : ; r(d+ 1) respectively.

4.2.3. Claim. For each subterm u of any ti� with d(u) > 0, there exists j such

that u occurs in tj� in depth < d(tj).
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To prove the Claim, suppose it is false. Then u can occur only in the part of the
terms tj� which belongs to �. Thus we can obtain a smaller uni�er by replacing all
occurrences of u by a variable. 2

We shall show that B1; : : : ; Br have disjoint occurrences. For each Bi take the
term wi corresponding to the �rst vertex of Bi and take an occurrence of wi in the
depth � d(tj) in some tj�. Then the occurrences of Di's in these occurrences of wi's
must be disjoint. Thus we have

S � jB1j+ : : :+ jBrj
> d+ 1 + 2(d+ 1) + : : :+

�
D

d+ 1

�
(d+ 1)

= (d+ 1) � 1
2
�
�
D

d+ 1

�
�
��

D

d+ 1

�
+ 1

�

� 1

2

�
D

d+ 1

�
�D

� D2

2(d+ 1)
� D

2
=

D2

2(d+ 1)
� (1� o(1)):

2

4.2.4. Suppose that � = ('1; : : : ; 'n) is a proof of ', i.e., 'n = '. The skeleton
of � is a sequence of the same length where each 'i is replaced by an axiom schemas
or a rule used in � at this step; moreover, if a rule was used, then there is also
information about the proof lines to which the rule was applied. E.g. a formula
obtained by modus ponens from formulas 'j and 'k will be replaced by (MP; j; k).

We shall show that for a given formula ' and a skeleton � there exists in a sense
a most general proof. This proof will be constructed from a most general uni�er
for a uni�cation problem obtained from �. In de�ning the uni�cation problem
assigned to the proof � we shall follow Baaz and Pudl�ak [1993], the idea goes back
to Parikh [1973].

Replace all atomic formulas in � by a single constant c; let �0 = ('01; : : : ; '
0
n) be

the resulting sequence. The language for the terms in the uni�cation problem will
consists of the constant c, distinct variables v� for every subformula � of �0 and
a function symbol for each connective and quanti�er, i.e., f!; f:; f9 etc. We shall
write the pairs of the uni�cation problem as equations:

(1) For each propositional axiom schema used in the proof we add an equation
which represents it; e.g., if '0i is �! (� ! �), then we add equation

v'0

i
= f!(v�; f!(v�; v�));

(2) if 'i is derived from 'j and 'k via modus ponens, where 'k is 'j ! 'i, we
add

v'0

k
= f!(v'0

j
; v'0

i
);
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(3) if 'i is an instance of a quanti�er axiom, say 'i is �(t) ! 9x�(x), then we
add the equation

v'0

i
= f!(v�; f9(v�));

here � is the formula obtained from �(t) by substituting c for atomic formulas, this
is the same formula which we thus obtain from �(x);

(4) in the same way we add equations for quanti�er rules: e.g., suppose '0j is
�! �; '0i is 9x�! � and 'i is derived from 'j by the quanti�er rule (6.3), then we
add equations

v'0

j
= f!(v�; v�);

v'0

i
= f!(f9(v�); v�);

(5) �nally we add
v'0

n
= �;

where � is obtained from '0n by replacing connectives and quanti�ers by the
corresponding function symbols f!; f:; f9; : : :.

Now we are ready to prove the result. Let dp(') denote the depth of ' a formula,
where we consider ' as a term but we treat atomic formulas as atoms. Let dp(�),
for a proof �, denote the maximal depth of a formula in �.

4.2.5. Theorem. (Kraj���cek [1989a], Pudl�ak [1987]) Let � be a proof of ' and

suppose � has smallest possible size. Then

dp(�) = O

�q
j�j � (dp(') + 1)

�
:

Proof. Consider a proof � of ' of minimum size. Let U be the uni�cation problem
assigned to �. Clearly � determines a uni�er � for U in the natural way. Let �
be a most general uni�er of U . We shall construct a proof � = ( 1; : : : ;  n) from
�. Let � be the substitution such that � = ��. Choose a small formula � which
does not contain any variable which occurs in �, e.g., 0 = 0 if it is in the language.
Consider the i-th formula in the proof �, i.e., 'i, and terms v'0

i
� and v'0

i
�. We

have v'0

i
�� = v'0

i
�; this means that v'0

i
� is v'0

i
� with some subformulas replaced

by variables. Thus we de�ne  i to be 'i with the subformulas corresponding to
variables in v'0

i
� replaced by � .

4.2.6. Let us consider an example. Suppose 'i has been obtained from 'j by the
quanti�er rule (6.3). Suppose 'i is

9x(P (x)! (Q(x)! R(y)))! R(y);

Then v'0

i
� is

f!(f9f!(c; f!(c; c)); c):

By case (4) of the de�nition of U ; v'i� has form

f!(f9(t); s);
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for some terms t and s. Because � is most general, s is either c or a variable and t
is either as in v'0

i
� or f!(c; v�); or a variable. Let us suppose that v'i� is

f!(f9f!(c; v�); c):

Then  i is

9x(P (x)! �)! R(y):

Furthermore  j must be

(P (x)! �)! R(y):

We see that the structure of formulas needed in axiom schemas and rules is preserved.
Note that also the restrictions on variables in quanti�er rules are satis�ed, since �
does not contain any variable which should be bounded. Finally we have also
 n = 'n = '.

4.2.7. Now we can apply Lemma 4.2.2. The terms in U have constant depth
(where the constant is determined by our choice of the proof system) except for the
last equation where we have a term whose depth is equal to dp('); thus the maximal

depth is O(dp(')). Hence the maximal depth of a term v'0

i
� is O(

q
dp(')S), where

S =
P
i jv'0

i
�j. Clearly also S = O(

P
i j ij). Furthermore j�j = O(j�j), since we

have replaced some subformulas in � by a constant size formula � in �. This �nishes
the proof of Theorem 4.2.5. 2

4.2.8. Remarks. (1) Clearly the theorem holds for a variety of other systems. In
particular it holds for every Frege system, (see section 8 for the de�nition).

(2) In the proof we have actually constructed \a most general" proof � with the
same skeleton �. To make it more precise, we should allow propositional variables
in our �rst order formulas and then keep the variables v� in � and treat them as
propositional variables.

4.3. Now we consider the relation of the number of steps to the size and depth of
a proof. A relation to the depth is easy to obtain, since the depth does not include
information about terms. For instance we can also bound the depth of a most general
uni�er as follows (see Kraj���cek and Pudl�ak [1988]).

4.3.1. Lemma. Let � be a most general uni�er of a uni�cation problem

f(t1; t2); : : : ; (t2n�1; t2n)g. Then

max
i
d(ti�) � �ijtij:

2

Then using a similar proof as above derive:
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4.3.2. Theorem. (Parikh [1973], Farmer [1984], Kraj���cek [1989a]) If ' has a proof

with n steps, then ' has a proof with n steps and depth bounded above by

O(n+ j'j):

2

This result gives a bound on the size of a proof in terms of the number of steps,
if we disregard terms or use a language without function symbols.

It is more di�cult to bound the size of a proof using the number of steps and the
size of the formula, if we use the usual de�nition of the size which includes terms.
The technique based on uni�cation works only in cut-free Gentzen sequent calculi.
An ordinary proof must be �rst replaced by a cut-free proof, which results in a big
increase. Again we state the result without a proof; see Kraj���cek and Pudl�ak [1988]
for a more precise bound and a proof (the idea will be also sketched in the proof of
Theorem 4.4.1).

4.3.3. Theorem. There exists a primitive recursive function F such that for every

sentence ' and number n, if ' has a proof with n steps, then it has a proof with size

bounded by F ('; n). 2

4.3.4. Problem. (Kraj���cek and Pudl�ak [1988], Clote and Kraj���cek [1993]) Can
F be elementary, i.e., bounded by a constant time iterated exponential function (in
j'j+ n)?

The following interesting result of S. Buss shows very nicely that it is hard to
determine the structure of terms in �rst order proofs. He proved this theorem for a
particular version of a sequent calculus.

4.3.5. Theorem. (Buss [1991b]) Given a number n and a sequent � ! �, it is

not decidable whether �! � has a proof with � n steps. 2

At �rst it may seem that this contradicts Theorem 4.3.3, however notice, that
Theorem 4.3.3 does not claim that given a proof of ' with n steps, there must exist
a proof of ' with size � F (j'j; n) and n steps. Consequently it is not possible to
minimize the size and the number of steps at the same time. For some solvable cases
see Farmer [1988].

4.4. Finally we mention a related topic which is very popular in this �eld and
also demonstrates that the structure of terms in �rst order proofs is rather complex.
Kreisel stated the following conjecture, see Friedman [1975] and Takeuti [1987]:

Kreisel's Conjecture Suppose for a formula '(x) and a number k, one

can prove '(Sn(0)) in Peano Arithmetic using � k steps for every n.

Then 8x'(x) is provable in Peano arithmetic.
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Here Sn(0) stands for the term obtained by applying the successor function S n-times
to 0. The statement seems to be also quite sensitive on particular formalization of
Peano Arithmetic. We shall sketch the idea of a proof for the case where Peano
Arithmetic is replaced by a �nite fragment of arithmetic. The validity of Kreisel's
Conjecture for �nite fragments was �rst proved by Miyatake [1980] using a di�erent
proof.

4.4.1. Theorem. There exists a primitive recursive function G such that for every

formula '(x) and numbers k; n, if '(Sn(0)) has a proof with k steps and n > G('; k)
then 8x'(Sn(x)) is provable.

In the theorem we use the provability in pure logic; note that this implies that
the theorem is true also for any �nitely axiomatized theory T as we can incorporate
�nitely many axioms in '. We need to add only a very weak assumption about T in
order to deduce Kreisel's conjecture.

4.4.2. Corollary. Let T be a �nite fragment of arithmetic such that

T ` 8x(x = 0 _ x = S(0) _ : : : _ x = Sn�1(0) _ 9y(x = Sn(y)))

for every n. Then Kreisel's Conjecture holds for T .

Proof-hint. By the assumption on T we have

T ` '(0) ^ '(S(0)) ^ : : : ^ '(Sn�1(0)) ^ 8x'(Sn(x))! 8x'(x);

for every formula '(x). 2

Proof-idea of Theorem 4.4.1. Let '(x) and k; n be given such that '(Sn(0)) has
a proof with k steps. We shall see how large n must be.

First we transform the proof into a cut-free proof in the Gentzen system. By
Corollary 5.2.2 below, the number of steps in a cut-free proof can be bounded by a
constant which depends only k and j'(x)j.

Then we apply the technique of uni�cation. This time, however, we consider
also the terms in the proof. This is done in two stages. First we consider all
proof-skeletons of length K , (there are �nitely many). For each of them we �nd a
most general proof (with respect to the propositional and quanti�er structure) as
in the proof of Theorem 4.2.5. Then for each of these proofs we �nd most general
terms which can be used in them. This can also be done using the theorem about a
most general uni�er. However, now we treat terms Sn(0) in the sentence '(Sn(0)) as
unknown, which means that it is represented by a variable in the uni�cation problem.
If in terms in the most general solution remain variables for terms, we replace them
by �rst order variables. Thus we obtain a proof whose size is bounded by a primitive
recursive function in K and '(x), thus also in k and '(x). Let us denote the bound
by L. (This was essentially the idea of the proof of Theorem 4.3.3, except for the
treatment of the term Sn(0).)
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Let us have a look on what happens with '(Sn(0)) in the most general proof.
This formula is replaced by '(t) for some term t which has two properties

(1) jtj � L;

(2) t� = Sn(0), for some substitution �.

Thus t is either Sm(y) for m � L and some variable y, or Sn(0) and n � L.
Hence, if we choose n > L, we get a proof of '(Sm(y)), with m < n. Then, applying
generalization, we get a proof of 8y'(Sm(y)) with m < n, which in turn implies
8x'(Sn(x)). 2

4.4.3. If we now consider full Peano Arithmetic, we can also perform the �rst part
of the proof. But in the second part, where we want to bound the size of terms,
the proof fails. It is not possible to write the conditions on terms in the form of a
uni�cation problem. Some time ago Baaz proposed a program for proving Kreisel's
Conjecture. Among the most important ideas of his are the use of Hilbert's "-calculus
and semiuni�cation (a generalization of uni�cation). This program has been so far
realized only for a subtheory of existential induction Baaz and Pudl�ak [1993]; the
proof uses Herbrand's theorem instead of the "-calculus.

5. Bounds on cut-elimination and Herbrand's theorem

The undecidability of �rst order logic is caused by the fact that we cannot
bound the size of a proof in terms of the size of the proved sentence. Nevertheless
it is still possible to deduce something about the proof from the structure of the
formula. (Fortunately proof theoretical studies in this direction started before the
undecidability was discovered and therefore they were not hindered by this negative
fact.) The theorems of this type are Herbrand's theorem, Hilbert's "-theorem
and Gentzen's cut-elimination theorem. The important consequence for all natural
systems is that one can bound the quanti�er complexity of the proof in terms of the
quanti�er complexity of the formula. This is achieved on the expense of lengthening
the proof, however the lengthening can be bounded by a primitive recursive function.
This raises an interesting question which we are going to deal with in this section:
determine the growth rate of this function.

These theorems give more information about the structure of proofs. The most
important is the cut-elimination theorem, which states that a general proof can
always be replaced by a cut-free proof. Cut-free proofs have the so-called subformula

property, which means that all formulas in the proof are subformulas of the proved
formula '. Here the concept of being a subformula is slightly weaker: the terms in
the subformula may be di�erent from those in '. Hence there are in�nitely many
subformulas of ', (even if we do not use function symbols, since there are in�nitely
many variables).

The three theorems are equivalent in the sense that there are easy proofs of
one from another one. More important the simulations are polynomial, or at most
exponential (depending on particular proof systems). Hence, if we are satis�ed with
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a precision up to an exponential function, it is su�cient to give bounds only to one
of them.

5.1. Let us consider the important speci�c case of the relation of the Herbrand
theorem and the cut-elimination theorem. An easy extension of the cut-elimination
theorem is the Midsequent Theorem. It states that each proof of a formula in
the prenex form can be transformed into a proof where there is a sequent above
which no quanti�er rule is used and below which only quanti�er rules are used.
This can, in fact, be easily constructed from a cut-free proof. An easy analysis of
the midsequent shows that it is essentially a Herbrand disjunction (see H�ajek and
Pudl�ak [1993,Chapter V]). Recall that a Herbrand disjunction is a disjunction of
term instances of a Herbrand variant of a formula, where the Herbrand variant is
obtained by systematically omitting the quanti�ers, starting from the outermost,
and replacing each universally bounded variable x by F (y1; : : : ; yk), where F is a
new function symbol and y1; : : : ; yk are the free variables of the current formula.
A midsequent does not contain these new function symbols, but the dependencies
among the occurrences of variables allow us to replace variables by such terms while
preserving the propositional validity of the disjunction.

Now suppose we are given a Herbrand disjunction. First replace the maximal
terms whose outermost function symbol is a Herbrand function symbol by distinct
variables. Then omit disjunctions and interpret it as a sequent. It has a propositional
proof in the sequent calculus. Now each sequent provable in the propositional sequent
calculus has a proof of at most exponential size. Thus we get the upper part of the
sequential proof. The lower part is obtained by applying quanti�er rules in a suitable
order. This is possible due to the structure of the Herbrand disjunction. The number
of the proof lines with quanti�er rules is, of course, bounded by the number of
variables. For more details see Takeuti [1987] and H�ajek and Pudl�ak [1993,Chapter
V, section 5].

5.2. We shall use the Hilbert style system of Chapter 1. Note however that when
no restrictions are posed on the complexity of formulas in the proof the Hilbert style
and Gentzen's sequent calculi are equivalent up to a polynomial increase of size. By
Theorem 4.1 it is true even if we take proofs in a tree form in one of them and in a
sequence form in the other one.

We shall start with an upper bound to cut-elimination.

5.2.1. Theorem. Suppose a sentence ' has a proof of size n and depth d (i.e.,

each formula in the proof has logical depth at most d). Then ' has a cut-free proof of

size 2nO(d). 2

The proof can be found in Chapter I.

5.2.2. Corollary. If ' has a proof of size n, then ' has a cut-free proof of size

2n
O(j'j�pn).
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Proof. This follows from Theorems 5.2.1 and 4.2.5. 2

Now we consider a lower bound. The proof will be easy since we have already
developed the theory of de�nable cuts.

5.2.3. Theorem. There exists a sequence of sentences  1;  2; : : : such that  n
has a proof of size p(n), n = 1; 2; : : : ; where p is a �xed polynomial, and there is no

cut-free proof of  n with less than 20n proof-lines for n = 1; 2 : : :.

Proof. Consider the following very weak fragment of arithmetic. It has the constant
0, the successor function S(x), addition + and exponentiation 2x. It has axioms of
equality, say those considered in section 3, and the following mathematical axioms:

0 + x = x

x+ (y + z) = (x + y) + z;

x+ S(x) = S(x+ y);

20 = S(0);

2S(x) = 2x + 2x:

Furthermore the theory contains a unary predicate symbol I(x) with interpretation
\an initial segment of integers without the last element". Thus we also include the
axioms saying that I is inductive:

I(0)
I(x)! I(S(x)):

(31)

Let us call this theory A. For a natural number n and a term t we denote by
En(t) the term de�ned inductively by

E0(t) = t;

En+1(t) = 2(E
n(t)):

In particular the value of En(0) is 20n. Now we de�ne  n by

9 : : : (^A! I(En(0)));

where
V
A denotes the conjunction of the axioms of A and 9 : : : denotes the existential

closure.

5.2.4. Claim.  n's have polynomial size proofs.
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Proof. We shall use Theorem 3.4.1. By this theorem there exists a sequence of
formulas '0(x); '1(x); '2(x); : : : with '0(x) equal to I(x) and

'i+1(0) ^ 8x('i+1(x)! 'i+1(S(x))); (32)

8x('i+1(x)! 'i(2
x)); (33)

having polynomial size proofs in A for i = 0; 1; : : :. Combining (33) for i = 0; : : : ; n�1
we get a polynomial size proof of

8x('n(x)! I(En(x)))

in A. The �rst half of (32) for i + 1 = n together with the last sentence give a
polynomial size proof of I(En(0)) in A, hence a polynomial size proof of  n in �rst
order logic. 2

5.2.5. Claim. Let t be a closed term of A with value in IN equal to m. Let � be a

conjunction of term instances of axioms of A such that

� ! I(t)

is provable in �rst order logic. Then � contains at least m term instances of the axiom

I(x)! I(S(x)).

Proof. W.l.o.g. we may assume that all the terms in � are closed (otherwise
substitute 0). Suppose � contains fewer m occurrences of the axiom. Consider the
values of terms t such that I(t) ! I(S(t)) occurs in � . By the pigeonhole principle
there is an i0 < m which is not the value of any such a term. Assign truth values
to the atomic subformulas of � ! I(t) as follows: assign an identity a truth value
according to its interpretation in natural numbers, and assign I(t) the value TRUE
if the value of t is less then or equal to i0 and FALSE if it is bigger. Thus all the
instances of axioms of A get the value TRUE giving this value also to � , while I(t)
gets FALSE. Thus � ! I(t) cannot be provable. 2

Now we derive the lower bound. Let a cut-free proof d of  n be given. Let

 denote 9 : : : (VA ! I(En(0))). All the quanti�er rules of d are the rules of
9-introduction applied to a term instance of 
 or a term instance of a formula
obtained from 
 in this way. Let d0 be the proof obtained by applying the same rules
to initial segments of d but omitting the quanti�er rules. We have to omit also the
contractions applied to formulas with 9, since such formulas will not appear in the
new proof d0. Thus the end sequent of d0 is a sequent �! 
1; : : : ; 
k where 
i's are
term instances of 
 . Let 
i be �i ! I(En(0)), (where �i is a term instance of

V
A).

Then
�1 ^ � � � ^ �k ! I(En(0))

is a tautology. By Claim 5.2.5, k � 20n. Since in the original proof d all 
; : : : ; 
k
must eventually merge into one formula, d must contain at least k � 20n proof-lines.
2
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Let us note that the above proof can be applied directly to Herbrand theorem
too. Namely, the above argument also shows that any Herbrand disjunction for  n
must have at least 20n disjuncts.

5.3. The question whether mathematical reasoning as represented by Zermelo-
Fraenkel set theory is consistent has intrigued a lot of mathematicians and philoso-
phers. The approach of �nitists is to discard it as meaningless and ask instead
whether there is a feasible proof of contradiction from our axioms of set theory. We
shall say more about this modi�ed question in the next section. Now we only want
to show that there are theories, not quite unnatural, which are inconsistent but in
which no feasible proof of contradiction exists. Such theories have been considered
by several researchers including Parikh [1971], Dragalin [1985], Gavrilenko [1984] and
Orevkov [1990]; the �rst and the most in
uential was the paper of Parikh.

Let T be any fragment of arithmetic (it can be even the set of all true sentences
in the standard model). Let t be a closed term whose value m is so large that no
proof of size m can be ever constructed. Note that t can be quite simple, say 2100 .
Extend T to T 0 by adding axioms

I(0);

I(x)! I(S(x));

:I(20t ):
Clearly T 0 is not consistent. We shall show, however, that there is no feasible
contradiction in T 0.

Suppose we can derive a contradiction in T 0 of size less than n. Then, by the
bound on cut-elimination, there is a cut-free proof of contradiction of size less than
20n. This means that we have such a proof of �! :VT0 , for a �nite fragment T0
of T 0. Let T1 be a Skolemization of T0 . Then the proof of �! :VT1 is at most
polynomially larger than 20n (since each sentence has a polynomial size proof from its
Skolemization). Thus by taking m, hence also t, only slightly larger than n, we get
an upper bound 20m to the open theory T1 . Then we use the same \interpretation"
argument as in the lower bound proof above to show that such a proof cannot exist.

Let us note that we can add also other closure properties such as I(x) ^ I(y) !
I(x + y) and the same for multiplication, if we take t a little larger, since we can
interpret such a theory in T 0 using small formulas and short proofs (see 3.5).

6. Finite consistency statements { concrete bounds

We have already remarked that there are almost no concrete examples of sentences
for which one can prove nontrivial bounds on the length of proofs. There is, however,
one exception; namely, the sentences expressing that a theory T does not prove
a contradiction using a proof of length � n; (we shall say that the theory T is
consistent up to n).

These are not real mathematical theorems, which would be interesting for
an ordinary mathematician, but they are very interesting for people who study
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foundations of mathematics. We shall prove bounds on the length of such a statement
in the theory T itself. This could be called a �nite (or, if you prefer the word, feasible)
version of the second G�odel Theorem. Furthermore, these bounds (especially the
lower bounds) have interesting applications.

6.1. Formalization of syntax. We shall derive a strengthening of the second
G�odel Incompleteness Theorem and some speed-up results. We shall try to avoid the
boring subject of the formalization of syntax as much as possible. However we have
to say something about it, since the classical way of formalizing syntax cannot be
used here.

6.1.1. First we need a more e�cient way of representing numbers by terms. The
classical numerals Sn(0) cannot be used, since their length is already greater than n,
while we want to bound the lengths of proofs by a polynomial in jnj { the length of
the binary representation of n. Thus we de�ne the n-th numeral n as follows. If

n =
kP
i=0

2iai; ai 2 f0; 1g, then n is the closed term

a0 + 2 � (a1 + 2 � (a2 + � � � (ak�1 + 2 � ak) � � �)));
where 1 = S(0), 2 = 1 + 1.

We need also to represent sequences by numbers. A suitable one-to-one mapping
from f0; 1g� onto IN is given by

(a0; : : : ; an) 7!
X

2i(ai + 1):

A formula ' is �rst represented as a 0� 1 sequence a, then we take the number m
which codes a as the G�odel number of '. We shall use the symbol d'e for such a
G�odel number of '.

6.1.2. Suppose that we want to formalize a concept which can be represented as a
subset R � INk . If R is formalized by a formula �(x1; : : : ; xk) in a theory of T , then
we clearly need that

(n1; : : : ; nk) 2 R, T ` �(n1; : : : ; nk):
This alone is usually not su�cient. The key property for our proof is that the above
formula has a proof of polynomial length. As it is an important concept, we shall
de�ne it precisely.

6.1.3. De�nition. Let an axiomatization of a theory T be �xed, let R � INk and
let �(x1; : : : ; xk) be a formula. We say that � polynomially numerates R in T , if for
some polynomial p and every n1; : : : ; nk 2 IN, the following holds: R(n1; : : : ; nk) i�
T ` �(n; : : : ; nk) by a proof of length � p(jn1j; : : : ; jnkj).

It turns out that, for a su�ciently strong theory T , the polynomially numerable
relations are just the NP relations.



The Lengths of Proofs 579

6.1.4. Theorem. The following are equivalent

(1) R is NP ;

(2) R is polynomially numerable in Robinson arithmetic Q.

Since (2)) (1) is trivial for any �nitely axiomatized theory T , the same theorem
holds for any �nite consistent extension of Q.

Before we sketch the proof of the converse implication, we state a lemma whose
proof we defer to section 6.3.4.

6.1.5. Lemma. For every bounded formula '(x), with x the only free variable,

there exists a polynomial p such that

I�0 + Exp ` 8x'(x)

implies that for every n 2 IN;

Q ` '(n)
by a proof of length � p(logn).

This lemma allows us to replace Q by I�0 + Exp in the proof of the implication
(1)) (2). If we are proving some property of a concept formalized by a �0 formula
in I�0 + Exp, then this statement may not be provable in Q, but each numeric
instance has a polynomial proof. Thus for instance we are free to use commutative
and associative laws.

Proof-sketch of Theorem 6.1.4. Let an R 2 NP be given. We formalize
computations of a Turingmachine de�ning R. Thus R(n1; : : : ; nk) is equivalent to the
existence of a 0�1 string s whose length is bounded by a polynomial in jn1j; : : : ; jnkj
and which satis�es a certain property (namely, s codes an accepting computation).
This property states that each c particular bits of s have one of some particular forms,
where c is some constant. For a given s, there are polynomiallymany such conditions.
Denote by �(x1; : : : ; xk; y) such a formula, where x1; : : : ; xn stand for n1; : : : ; nk and
y for the string s. If R(n1; : : : ; nk) is true, then �(n1; : : : ; nk; m) holds for some
number m, whose length is bounded by a polynomial in jn1j; : : : ; jnkj. To prove
�(n1; : : : nk; m) by a polynomial proof inQ, transform it into statements about single
bits of the string encoded by m. Since the string really witnesses R(n1; : : : ; nk), these
elementary statements are true, hence provable. Finally derive 9y�(n1; : : : ; nk; y)
from �(n1; : : : ; nk; m). Thus 9y�(x1; : : : ; xn) polynomially numerates R. 2

Now we apply Theorem 6.1.4 to the provability predicate. Suppose a theory T is
given by an NP , resp. P , set of axioms. Let R(x; y) denote that x is a proof of y
in T . Then R is in NP , resp. P , also. By Theorem 6.1.4 there is a formalization
ProofT of this relation, such that every true numeric instance has a polynomial proof
in Q. Since the relation \jmj < n" can also be polynomially numerated, we get the
following corollary:
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6.1.6. Corollary. There exists formalization PrT (n; d'e) of the relation k'kT � n

such that whenever it is true that k'kT � n, then PrT (n; d'e) has a proof of polynomial

length in n in Q. 2

Recall that k'k � n is a convenient notation for the statement that there exists
a proof d of ' in T whose length is � n. Furthermore we shall denote by

ConT (x) �df :PrT (x; d0 = 1e);
the consistency of T up to the length x.

6.2. Now we are ready to prove the main lemma of the lower bound.

6.2.1. Lemma. Let T be a su�ciently strong fragment of arithmetic. Let f : IN!
IN be a polynomial time computable, increasing function. Suppose that

for every n and every sentence ' of length � logn, if k'kT � n then

kPrT (n; ')kT � f(n);

and moreover the formalization of this sentence is provable in T . Then

n = O (f (kConT (n)kT ))
Hence if f can be extended to an increasing function de�ned on positive real

numbers, then we can write the conclusion as

kConT (n)kT = 
(f�1(n)):

Proof. We shall denote by d'( _x)e a formalization of the function n 7! \the G�odel
number of '(n)". (E.g. the statement \for all n the formula '(n) has property P " is
formalized by 8x P (d'( _x)e).) Strictly speaking, in most cases this function cannot
be formalized by a term and one has to use a formula with two variables which de�nes
the graph of this function. This would however make the notation awkward.

Using the diagonalization lemma (see Chapter II) de�ne a formula � such that

T ` �(x) � :Pr(x; d�( _x)e): (34)

6.2.2. Claim. k�(n)kT � n! k0 = 1kT � g(n), where g(n) = O(f(n)).

To prove the claim assume
k�(n)kT � n: (35)

Substituting n in (34) we get

k�(n) � :Pr(n; d�(n)e)kT = (logn)O(1): (36)

Here we implicitly use the assumption that d'( _x)e has the polynomial numerability
property. The assumption of the lemma and k�(n)kT � n implies that

kPr(n; d�(n)e)kT � f(n): (37)
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Thus we get from (35), (36) and (37)

k0 = 1kT = O(n+ (logn)O(1) + f(n)) = O(f(n));

which proves the claim. 2

Since the assumption of the lemma is formalized in T , the claim can also be
proved in T , thus we get

T ` PrT (x; d�( _x)e)! :ConT (dg(x)e): (38)

Since T is consistent, the claim implies in particular that k�(n)kT > n. Thus it
su�ces to upper-bound k�(n)kT using kConT (n)kT : (Observe that the proof follows
very much the structure of the proof of the second G�odel Incompleteness Theorem.)
First substitute n in (38), thus we obtain

kConT (dg(n)e)! :Pr(n; d�(n)e)kT = (logn)O(1):

Combining it with (36) we get

kConT (dg(n)e)! �(n)kT = (logn)O(1);

hence
kConT (dg(n)e)kT � k�(n)kT � (logn)O(1) � n� (logn)O(1):

Since g(n) = O(f(n)) and kdg(n)e = g(n)kT = (logn)O(1) , the conclusion of the
lemma follows. 2

6.2.3. Theorem. (Friedman [1979], Pudl�ak [1986]) Let T be a su�ciently strong

fragment of arithmetic axiomatized by an NP set of axioms. Then there exists " > 0
such that for all n,

kConT (n)k > n":

Proof. by Corollary 6.1.6 and Lemma 6.2.1. 2

With a little more additional work one can reduce the assumption about the
strength to the condition T � Q. Also it is possible to give a more precise lower
bound by improving the bound in Corollary 6.1.6. The best lower bound has been
proved in Pudl�ak [1987]. In that paper we considered �rst order logic augmented
with Rosser's C -rule, which allows to introduce names for objects whose existence
has been proved. Formally it means that we can derive '(c) from 9x'(x) for a new
constant c. (This apparently enables to shorten some proofs, but we are not able to
prove a speed-up of this calculus versus the ordinary one.) For such a calculus we
obtained a lower bound 
(n=(logn)2).

6.3. Now we turn to the upper bound. Recall that in section 3 we proved that for a
sequential theory T , there exists a sequence of formulas 'n which de�ne satisfaction
for formulas of depth n = 1; 2; : : :. Moreover

'n(d�e; x) � �((x)1; : : : ; (x)n) (39)

and Tarski's conditions have polynomial size proofs. The following is an immediate
consequence.
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6.3.1. Lemma. (1) For every axiom � of T , dp(�) � n; T proves 8x'n(d�e; x)
using a polynomially long proof.

(2) For every n, T proves that any axiom of depth � n is true and the truth of

formulas of depth � n is preserved by every rule, furthermore these proof are bounded

by a polynomial in n.

Proof. The �rst part follows directly from (39). For part (2), let us consider only
modus ponens. Thus we need a proof of

8x; y (ddp(x! y) � ne ^ 8z'n(x; z) ^ 8z'n(x! y; z)! 8z'n(y; z)) : (40)

We know that Tarski's condition

ddp(x! y) � ne ! ('n(x! y; z) � ('n(x; z)! 'n(y; z)))

has a polynomial proof, thus also (40) has a polynomial proof. 2

6.3.2. Theorem. (Pudl�ak [1986]) Let T be a sequential theory axiomatized by a

�nite set of axioms. Then

ConT (n) = nO(1):

Proof. Let n be given. Let �(x) be the following formula

8y; z(\y is a proof of depth � n and size � x"^
^\z is a formula of y"! 8v'n(y; v)):

Lemma 6.3.1 implies that �(0) and 8x(�(x)! �(S(x)) have polynomial size proofs.
Thus by proving �(0); �(1); : : : ; �(n) one by one we get a polynomial proof of �(n).
On the other hand, by (39), we have 8v:'n(d0 = 1e; v), also by a polynomial proof.
Thus we have a polynomially long proof that a proof of length � n does not contain
the formula 0 = 1. 2

This theorem has been proved also for some theories which are not �nitely
axiomatized, namely for theories axiomatized by a certain kind of axiom schemas.
These results include the theories Peano Arithmetic and Zermelo-Fraenkel set theory.

Furthermore for �nitely axiomatized sequential theories it is possible to improve
the bound to O(n). This improvement is based on the following ideas.

Firstly, by counting more precisely, it is possible to prove that (39) and Tarski's
conditions for the truth de�nition for formulas of depth d have proofs of size O(d2).

Secondly, by Theorem 4.2.5, a proof of contradiction of length n can be
transformed into a proof of depth O(

p
n). Thus we need the truth de�nition only for

such a depth and hence the auxiliary formulas have linear size proofs.

Finally, one can use a shorter way to prove �(n). This is because of the following
lemma, which gives us a proof even much shorter than O(n).
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6.3.3. Lemma. Suppose T � Q and �(x) is a formula such that T proves

�(0) ^ 8x (�(x)! �(S(x))) :

Then

k�(n)kT = O
�
(logn)2

�
(thus �(n) have proofs polynomial in logn).

Proof. First de�ne a subcut �0 of � by

�0(x) �df 8y � x�(y):

Then take a subcut �00 of � which is closed under addition and multiplication. This
is easy, if the integers in T satisfy the laws of a ring; in 3.5 we have sketched a
possible de�nition of such an �00. This is more technical for Q alone, so we refer the
reader to Nelson [1986]. Then, in order to prove �00(n), prove �00(t) inductively for
the subterms of n. There are O(logn) such subterms and they have length O(logn).
Finally use the fact that T ` �00(x)! �(x). 2

6.3.4. Proof-sketch of Lemma 6.1.5. We shall use a similar idea in the proof
that we still owe to the reader.

First we consider the length of proof of '(n) in I�0. An easy model-theoretical
argument shows that the assumption of the lemma implies

I�0 ` 8x(9y = 2xk ! '(x))

for some k 2 IN. Take a cut  (x) in I�0 such that

I�0 ` 8x( (x)! 9y = 2xk):

Then we have

I�0 ` 8x( (x)! '(x)):

Thus we only need to construct a short proof of  (n) in I�0 , which is done as in the
lemma above.

To get the theorem for Q, use the well-known fact that I�0 has an interpretation
in Q (this is an unpublished result of Wilkie, for a proof see Nelson [1986]). 2

6.4. Some applications of the bounds. The lower bound can be used to
show some strengthenings of the second G�odel Incompleteness Theorem. While the
original theorem says only that T is consistent with its formal inconsistency (cf.
Chapter II), we shall show that T is consistent with a statement saying that there is
a short proof of contradiction. We have two such results.
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6.4.1. Corollary. (Pudl�ak [1985]) Let T � Q be consistent and axiomatized by an

NP set of axioms. Then the following hold:

(1) if I is a cut in T , then

T + 9x(I(x)&:ConT (x))

is consistent,

(2) if �(x) is a bounded arithmetical formula such that �(n) is true for every

n 2 IN, then there exists k 2 IN such that

T + 9x(�(x)&:Con(xk)):

is consistent, (xk is x � x � : : : � x| {z }
k�times

):

Proof. (1) Suppose that the statement is false. Then

T ` I(x)! ConT (x):

But, by Lemma 6.3.3, we have that kI(n)kT = O((logn)2), whence also
kConT (n)kT = O((logn)2) which is a contradiction with kConT (n)k � n"; " > 0.

(2) We need the following lemma.

6.4.2. Lemma.

s(n) = s(n); m + n = m+ n; m � n = m � n

have proofs of size polynomial in logn and logm.

The proof is easy, if we assume ring operations, otherwise we have to work in a
suitable cut. 2

One consequence is that the same holds for arbitrary arithmetical terms. This
can be used to show that, for a bounded formula �(x) in the language of Q, there
exists a polynomial p1 such that

k�(n)kT � p1(n); (41)

whenever �(n) is true.
The second consequence is that there is a polynomial p2 such that

knk = nkkT � p2(k; logn): (42)

(Hint: prove n � n = n2; n � n2 = n3; : : : ; n � nk�1 = nk:)

We continue with the proof of (2). Assume that �(n) is true for every n 2 IN.
Then we have (41) for all n. Clearly

kConT (nk)kT � O(k�(n)kT + k8x(�(x)! ConT (x
k)kT + knk = nkkT );
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thus for some polynomial p3

kConT (nk)kT � p3(n; k; k8x(�(x)! ConT (x
k)kT ): (43)

By Theorem 6.2.3 there exists an " > 0 be such that for every r

kConT (r)kT � r": (44)

Let d be the degree of n in p3(n; k;m). Take k so that k" > d. Now suppose (2) fails
for k, thus

T ` 8x(�(x)! ConT (x
k)):

Let m be the length of this proof. Take n so large that

p3(n; k;m) < nk":

Then, by (43),
kCon(nk)kT � p3(n; k;m) < nk";

which is a contradiction with (44). 2

6.5. Let us observe that also the upper bound on kConT (n)kT can be used to
obtain interesting corollaries. This is because the upper and the lower bounds are
quite close, especially in the case of the calculus with the C -rule, hence the results
that we used in the proof of the upper bound cannot be substantially improved.
There are two such results. One is Theorem 3.2.3, where more precise calculations
give a bound O(n2). The second one is the bound O(

p
n) on the depth of the shortest

proof of a �xed size formula. Due to our bounds, the �rst result cannot be proved
for a function which is o(n2=(logn)2), while the second for o(

p
n= logn). (The �rst

statement is true also for �rst order logic without the C -rule, see Pudl�ak [1987].)
However we feel that it should be possible to �nd direct arguments showing even the
sharp bounds 
(n2) and 
(

p
n).

Further applications of the lower bounds will be shown in the next section.

7. Speed-up theorems in �rst order logic

The speed-up phenomenon is a situation, where we have two systems (proof
systems, theories) such that some theorems have much shorter proofs in one of them.
After the problem of proving lower bounds on proofs of concrete statements, this
is the second most interesting problem. Note that in the intuitive relation between
complexity of computations and complexity of proofs, speed-up theorems should
correspond to separations of complexity classes.

We have already encountered a speed-up theorem in section 5, where we showed
that cut-free proofs can be much longer than the proofs with cuts or proofs in a
Hilbert style calculus. We shall consider such questions about propositional logic in
sections 8 and 9. In this section we shall talk about two most important speed-up
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phenomena in �rst order logic. The one is the speed-up caused by having a stronger
theory. The second one appears when we prove PrT (') in T instead of ' itself.
It turns out that a dramatic speed-up is obtained in the �rst case almost by any
extension of the theory. The second question, as we shall see, is related to the �rst.

From the point of view of the principal goal of proving concrete lower bounds
these results are rather disturbing. Suppose that with a lot of e�ort we succeeded in
proving that a statement, such as P 6= NP , does not have a feasible proof, say, in
ZF, (which is extremely unlikely to happen in the near future) which would explain
why we are not able to prove it. Then a simple and intuitively correct additional
axiom, say ConZF, could change the situation completely, because in ZF + ConZF
some proofs can be much shorter and we still would not know, why we cannot decide
P = NP in such a theory.

This suggests that a more reasonable goal is not to look for proofs of lower bounds
in as strong as possible theories, but rather to consider also weak theories and to try
to �nd out which ones are adequate for which problems.

Finally we shall consider an interesting situationwhere we can get a large speed-up
by a conservative extension of a theory. A typical case is extending ZF (Zermelo-
Fraenkel set theory with the axiom of choice) to GB (G�odel-Bernays set theory).
Such extensions are called predicative.

7.1. We shall start with a very strong result of Ehrenfeucht and Mycielski which
has a very simple proof.

7.1.1. Theorem. (Ehrenfeucht and Mycielski [1971]) If the theory T + :� is

undecidable, then there is no recursive function f such that

k'kT � f(k'kT+�);
for every sentence ' provable in T .

Proof. Suppose there is such an f . Suppose T + :� ` ', hence T ` � _ '. Then,
ignoring an additive constant, we have

k� _ 'kT � f(k� _ 'kT+�) � f(j�j+ j� _ 'j):
(To prove � _ ' from axioms T + �, we �rst derive �, then � _ '). Thus we can
decide whether T + :� proves ' by checking all proofs of length � f(j�j+ j� _ 'j)
{ a contradiction. 2

7.1.2. Corollary. Let T be a recursively axiomatized theory containing Robinson

ArithmeticQ. Then any proper extension of T has arbitrary recursive speed-up over

T .

Proof. This follows from the fact that Q is essentially undecidable. 2

The following result of Statman, improved by Buss, concerns the number of steps.
We state it without a proof.
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7.1.3. Theorem. (Statman [1981], Buss [1994]) Let T be a theory axiomatized by

a �nite number of axiom schemas. Suppose � is a sentence undecided by T and such

that T + :� is consistent. Then T + � has an in�nite speed-up with respect to the

number of steps over T , i.e., there exists an in�nite set � of sentences and a k such

that

8' 2 � T + � `ksteps ';
but there is no m such that

8' 2 � T `msteps ';

2

We shall give some intuition about this theorem by an example due to Baaz.
Suppose Kreisel's Conjecture holds for T . Let '(x) be a formula such that

1. T 6` 8x'(x);
2. 8n T ` '(n).

A typical example of such a formula is ConT (x). Then, clearly, for some constant c

T + 8x'(x) `csteps '(n);

for every n, since we only need to substitute the term n into '(x). If, however, for
some m

T `msteps '(n);
for every n, we would get T ` 8x'(x) by Kreisel's Conjecture. Thus T +8x'(x) has
in�nite speed-up over T .

7.2. Next we shall show that the lower bound on the length of proof of ConT (n) in
T (Theorem 6.2.3) can be used to obtain speed-up when T is extended to T +ConT
or when Pr(') is used instead of '.

Let T be a su�ciently strong fragment of arithmetic. We want to use sentences
ConT (f(n)) for fast-growing functions f . Such functions needn't be representable
by terms in T . So we take the sentence

9y ('(n; y) _ ConT (')) (45)

instead, where ' de�nes the graph of f . Then we need two conditions to be satis�ed

1. f is a provably total function in T , i.e., T ` 8x9!y'(x; y);
2. ' polynomially numerates the graph of f .

Let us make a simple observation.

7.2.1. Lemma. For every recursive function f , there exists a recursive function g

such that

1. 8n 2 IN f(n) � g(n),

2. the graph of g is a polynomial time computable relation.
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Proof. LetM be a Turing machine for f . Then one can construct a Turing machine
M 0 which on input n prints 2m in binary, where m is the number of steps of M on
n. We take g to be the function computed by M 0 . 2

If T is su�ciently strong, Lemma 7.2.1 can be formalized in T . Thus polynomial
numerability is not an essential restriction. We shall abbreviate (45) by ConT (f(n)).

7.2.2. Theorem. Let T be a su�ciently strong theory. Let f be a provably total

increasing recursive function in T whose graph has a polynomial numeration in T .

Then there exists a � > 0 such that

kConT (f(n))kT � f(n)�;

while

1. kConT (f(n))kT+ConT = O(logn);

2. kPrT (dConT (f(n))e)kT = O(logn).

Thus in both cases we get a speed-up by any provably total recursive function of T .

Proof. Lower bound. Let '(x; y) be the formula which polynomially numerates
f(x) = y. Thus we want to bound

k9y('(n; y) ^ ConT (y))kT :

Let m = f(n). Clearly

9!y'(n; y) ^ '(n;m)! ConT (m): (46)

Thus
kConT (m)kT �

k9y('(n; y) ^ ConT (y))kT + k9!y'(n; y)kT + k'(n;m)kT +K;

where K is the length of the proof of (46). The proof of (46) depends only linearly
on the lengths of n and m, thus K = O(logm). Similarly

k9!y'(n; y)kT = O(logn);

since we assume T ` 8x9!y'(x; y). Finally we have a bound (logm)O(1) on
k'(n;m)kT by polynomial numerability. Thus, using Theorem 6.2.3 we have

m" � kConT (m)kT � k9y('(n; y) ^ ConT (y))kT + (logm)O(1);

which gives the lower bound.

Upper bound (1). Recall that ConT denotes 8xConT (x) and that we assume T `
8x9!y'(x; y). Again, the proof of

8xConT (x) ^ 8x9!y'(x; y)! 9y('(n; y) ^ ConT (y))
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depends only linearly on the length of n, thus

k9y('(n; y) ^ ConT (y)kT+ConT = O(logn):

Upper bound (2). We want to bound

kPrT (d9y('(n; y) ^ ConT (y))e)kT (47)

The argument will be similar to the one above. We have

8y PrT (dConT ( _y)e) ^ PrT (d8x9y'(x; y)e)! PrT (d9y('(n; y) ^ ConT (y))e);
by a proof of linear size in logn. So it remains only to show that the conjunction in
the antecedent is provable in T .

The provability of the second term follows from the assumptions.
The proof of 8y PrT (dConT ( _y)e) can be constructed by formalizing the following

argument (we assume that T is su�ciently strong): \Either T is inconsistent, and
then it proves everything, or T is consistent, and then we can prove ConT (n) by
checking all proofs of length � n."

Hence (47) has a proof of length O(logn). 2

For further improvements of these theorems, see Buss [1994].

7.2.3. Theorem 7.2.2 gives a worse speed-up for the length of proofs in proper
extensions of T , moreover it requires that the extension proves ConT . On the other
hand it gives more explicit formulas on which the speed-up is attained. In particular
it enables us to study the trade-o� between the speed-up and the complexity of
formulas. For instance consider statements ConT (f(n)) for a primitive recursive f:
Then ConT (f(n)) are numeric instances of a (formalization of a) primitive recursive
predicate. Thus we get primitive recursive speed-up on primitive recursive formulas

etc.
We mention without a proof a related result where a speed-up is obtained for a

simple formula in the fragment T = I�0 + 
1 . We shall denote 21n by 2n (the stack
of n 2's).

7.2.4. Theorem. (H�ajek, Montagna and Pudl�ak [1993]) Let T = I�0 + 
. Then
we have

(1) kPrT (d9y(y = 22n)e)kT = nO(1) ;

(2) k9y(y = 22n)kT = 
(2n). 2

7.3. Speed-up of GB over ZF. It is well-known that GB proves the same
set of formulas as ZF. (We consider ZF with the axiom of choice.) Therefore it
is very interesting to �nd out if the set formulas have proofs of approximately the
same length in both theories. The answer is no; in fact there is a nonelementary
speed-up as for cut-elimination. This seems to be typical for results obtained from
cut-elimination or Herbrand theorem (and where a direct proof is not known).

This result is based on the following lemma due to Solovay (unpublished); a
similar construction was considered by Vop�enka (unpublished).
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7.3.1. Lemma. There is a cut I(x) in GB such that

GB ` 8x(I(x)! ConZF(x)):

It is outside of the scope of this chapter to give a proof of this lemma. Let us only
very brie
y describe the main idea. One can construct a sort of inner model of ZF in
GB where the universe of sets is some cut. This model is constructed along with a
satisfaction relation for it. Since the satisfaction relation is de�ned by a formula with
class quanti�ers, we cannot use induction to show the consistency of ZF. Instead
we only show that the segment of numbers x such that there is no contradiction of
length � x is closed under successor. But this is exactly what we need. 2

7.3.2. Theorem. (Pudl�ak [1986])
(1) kConZF(2n)kGB = nO(1) ;

(2) kConZF(2n)kZF = (2n)
", for some constant " > 0.

Proof. To prove (1) we need, by Lemma 7.3.1, only to have a short proof of I(2n)
in GB. The bound

kI(2n)kGB = nO(1)

follows from Theorem 3.4.1. The second part is contained in Theorem 7.2.2. 2

A more precise computation gives a bound kConZF(2n)kGB = O(n2), which
implies a lower bound on the speed-up of GB over ZF of the form 2
(pn) . An upper
bound 2O(pn) complementing the above result was proved by Solovay [1990]. Let
us observe that such bounds can be used to show that the estimate on the depth of
formulas in a proof, Theorem 4.2.5, is asymptotically optimal.

8. Propositional proof systems

In this section we consider some concrete propositional proof systems. There are
several reasons for studying these systems. Firstly they are natural systems which are
used for formalization of the concept of a proof, in fact, they are good approximations
of human reasoning. Some systems, especially resolution, are also used in automated
theorem proving. Therefore it is important to know how e�cient they are. Secondly
they are suitable benchmarks for testing our lower bound techniques. Presently we
are able to prove superpolynomial lower bounds only for the weakest systems; we
shall give an example of a lower bound in section 9. Thirdly there are important
connections between provability in some important theories of bounded arithmetic
and the lengths of proofs in these propositional proof systems. This will be the topic
of section 10.

8.1. Frege systems and its extensions. Frege systems are the most natural
calculi for propositional logic and they are also used to axiomatize the propositional
part of the �rst order logic in the Hilbert style formalizations. We have used a
particular special case of a Frege system for presenting results on the lengths of
proofs in �rst order logic.
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8.1.1. To de�ne a general Frege system, we need the concept of a Frege rule. A
Frege rule is a pair (f'1(p1; : : : ; pn); : : : ; 'k(p1; : : : ; pn)g; '(p1; : : : ; pn)), such that the
implication '1^: : :^'k ! ' is a tautology. We use p1; : : : ; pn to denote propositional
variables. Usually we write the rule as

'1; : : : ; 'k

'
:

When using the rule, we use actually its instances which are obtained by substituting
arbitrary formulas for the variables p1; : : : ; pn. A Frege rule can have zero assump-
tions, in which case it is an axiom schema. A Frege proof is a sequence of formulas
such that each formula follows from previous ones by an application of a Frege rule
from a given set.

8.1.2. De�nition. A Frege system F is determined by a �nite complete set of
connectives B and a �nite set of Frege rules. We require that F be implicationally
complete for the set of formulas in the basis B .

Recall that implicationally complete means that whenever an implication  1 ^
: : : ^  k !  is a tautology, then  is derivable from  1; : : : ;  k . Rules such as
modus ponens and cut ensure that the system is implicationally complete whenever
it is complete.

An example of a Frege system is the propositional part of the proof system
considered in section 2; it has 14 axiom schemas and one rule with two assumptions
(modus ponens).

8.1.3. Note that in an application of a Frege rule (in particular also in axioms)
we substitute arbitrary formulas for the variables in the rule, however we are not
allowed to substitute in an arbitrary derived formula. It is natural to add such a rule.
The rule is called the substitution rule and allows to derive from '(p1; : : : ; pk), with
propositional variables p1; : : : ; pk , any formula of the form '( 1; : : : ;  k).

1

8.1.4. De�nition. A substitution Frege system SF is a Frege system augmented
with the substitution rule.

8.1.5. The extension rule is the rule which allows to introduce the formula

p � ';

where p is a propositional variable and ' is any formula and the following conditions
hold:

1. when introducing p � ', p must not occur in the preceding part of the proof
or in ';

2. such a p must not be present in the proved formula.

1In fact Frege used this rule originally and the idea of axiom schemas was introduced by von
Neumann later.
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If � is not in the basis, we can use an equivalent formula instead, e.g. (p ! ') ^
('! p). This rule is not used to derive a new tautology quickly, as it is the case of
Frege and substitution rules, but its purpose is to abbreviate long formulas.

8.1.6. De�nition. An extension Frege system EF is a Frege system augmented
with the extension rule.2

8.1.7. The �rst question that we shall address is: how does the lengths of proofs
depend on a particular choice of the basis of connectives and the Frege rules. If the
basis is the same for two Frege systems F1 and F2 , it is fairly easy to prove that they
are polynomially equivalent. We have used this argument already in the previous
sections. Let for instance

'1; : : : ; 'k

'

be a rule in F1 . Since F2 is implicationally complete, there exists a proof � of '
from '1; : : : ; 'k in F2 . To simulate an instance of this rule obtained by substituting
some formulas into it, we simply substitute the same formulas in �. Thus we get
only linear increase of the size.

If the two bases are di�erent, the proof is not so easy, but the basic idea is simple.
One uses a well-known fact from boolean complexity theory that a formula in one
complete basis can be transformed into an equivalent formula in another complete
basis with at most polynomial increase in size, in fact, using a polynomial algorithm.
This, of course, does not produce a proof from a proof, but one can show that it
su�ces to add pieces of proofs of at most polynomial size between the formulas to
get one. Details are tedious, so we leave them out.

The same holds for substitution Frege and extension Frege systems. Thus we
have:

8.1.8. Theorem. (Cook and Reckhow [1979], Reckhow [1976]) Every two

Frege systems are polynomially equivalent, every two substitution Frege systems are

polynomially equivalent, and every two extension Frege systems are polynomially

equivalent. 2

8.1.9. This still leaves three classes, moreover each can be considered also in the
tree form and we can count the number of steps instead of the size, which gives
altogether twelve possibilities. We shall show that these cases reduce to only three,
if we identify polynomially equivalent ones (namely, Frege, extension Frege and the
number of steps in substitution Frege).

The question about a speed up of sequence versus tree proofs has been solved
in Theorem 4.1 for Frege systems which contain modus ponens. The same holds
for extensions of such Frege systems by extension and substitution rules. We shall
return to this question below. Now we shall consider the remaining ones. Let us �rst
consider the relation of substitution Frege systems and extension Frege systems.

2Here I deviate slightly from the literature where the name extended Frege system is used,
which, I think, is rather ambiguous.
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8.1.10. Theorem. (Dowd [1985], Kraj���cek and Pudl�ak [1989]) Every substitution
Frege system is polynomially equivalent to every extension Frege system.

Proof. By the theorem above, we can assume that both systems have the same
language.

1. First we show a polynomial simulation of an extension Frege system by a
substitution Frege system. Let an extension Frege proof of a tautology  be given,
let p1 � '1; : : : ; pm � 'm be all formulas introduced by the extension rule listed in
the order in which they were introduced. By Theorem 8.1.8 we can assume w.l.o.g.
that our systems contain suitable connectives and suitable Frege rules. Using an
e�ective version of the deduction theorem (whose easy proof we leave to the reader)
we get, by a polynomial transformation, a proof of

p1 � '1 ^ : : : ^ pm � 'm !  (48)

which does not use the extension rule (i.e., a Frege proof). Now apply the substitution
rule to (48) with the substitution pm 7! 'm . Thus we get

p1 � '1 ^ : : : ^ pm�1 � 'm�1 ^ 'm � 'm !  : (49)

From (49) we get by a polynomial size Frege proof

p1 � '1 ^ : : : ^ pm�1 � 'm�1 !  :

We repeat the same until we get a proof of  .

2. The polynomial simulation of substitution Frege systems by extension Frege
systems is not so simple. The idea of the proof is the following. Suppose we have
simulated a substitution Frege proof until 'j which is derived by a substitution from
'i , say 'j = 'i(�p=��). Then we can derive 'j by repeating the previous part of the
proof with variables �p replaced by ��. However, repeating this, the new Frege proof
would grow exponentially. The trick is to prove the formulas of the substitution
Frege proof not for a particular substitution, but for the substitution, where the
proof fails for the �rst time. In reality the proof does not fail (we start with a real
proof), but it enables us to argue: \if it failed, then we could go on, hence we can
go on in any case". Now the problem is for which propositional variables should the
proof fail. Therefore we introduce an extra set of variables for each formula of the
substitution Frege proof. The variables at some step will be de�ned using variables
at the following steps of the proof. As this nesting may result in an exponential
growth, we introduce them using the extension rule.

Now we shall argue formally. W.l.o.g. we can assume that the substitution Frege
system has only modus ponens and axiom schemas as Frege rules. Let ('1; : : : ; 'm)
be a substitution Frege proof. Let �p = (p1; : : : ; pn) be all propositional variables of
the proof. Take sequences �qi of length n consisting of new distinct variables, for
i = 1; : : : ; m � 1, and denote by �qm = �p. Let  i be 'i(�p=�qi), for i = 1; : : : ; m; thus
 m = 'm. Let ��j be a sequence of n formulas de�ned as follows:
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1. if 'j is an axiom or is derived by modus ponens then ��j = �qj ;

2. if 'j is derived by substitution from 'i, namely 'j = 'i(�p=��), then ��j =
��(�p= �qj).

The extension Frege proof will start by introducing

qi;l � (	i ^ : i+1 ^ �i+1;l) _ : : : _ (	m�1 ^ : m ^ �m;l);
where 	j is  1 ^ : : : ^  j . We have to introduce these formulas in the order
i = m� 1; : : : ; 1.

Then we add polynomial size proofs of

	j�1 ^ : j !  i �  i(�qi= ��j); (50)

for i < j . To prove (50) we �rst derive

	j�1 ^ : j ! qi;l � �j;l

from the axioms introducing qi;l and then successively construct proofs of the
corresponding statements for subformulas of  i .

Now we derive  1; : : : ;  m . Suppose we have proved  1; : : : ;  j�1. Consider three
cases.

1. 'j is an axiom. Then  j is also an axiom.
2. 'j was derived from 'u; 'v , u; v < j , 'u = 'v ! 'j by modus ponens. First

derive 	j�1. Then, using (50) with i = u; v, we get

: j !  u( ��j) ^  v( ��j):
Since

 u( ��j) =  v( ��j)!  j( ��j);

we get
: j !  j( ��j):

As we are considering the case of modus ponens, ��j = �qj , hence we have derived
: j !  j , whence we get  j immediately.

3. 'j was derived from 'i, i < j by substitution. Then  j is just  i(�qi= ��j), thus
(50) gives

	j�1 ^ : j !  i �  j

and we get  j easily from  1; : : : ;  j�1.

Finally recall that  m is the conclusion of the proof 'm , thus we have the
simulation. 2

The simulation of extension Frege systems by substitution Frege systems was
shown already in Cook and Reckhow [1979]. The other simulation has a simple
\higher order" proof based on a relation to bounded arithmetic. Namely by
Theorem 10.3.6 below, it su�ces to prove the re
ection principle for substitution
Frege system in S1

2 , which is easy. This was observed independently by Dowd [1985]
and Kraj���cek and Pudl�ak [1988].
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8.1.11. It is an open problem whether Frege systems can simulate extension and
substitution Frege systems. We conjecture that the answer is no. It seems, though
it is not supported by any mathematical result, that the relation of Frege systems to
extension Frege systems is the same as the relation of boolean formulas to boolean
circuits in complexity theory. It is generally accepted that it is unlikely that formulas
can simulate circuits with only polynomial increase in size; the uniform version of
this conjecture is NC1 6= P ; both conjectures are also open.

8.1.12. We shall now consider the number of steps in these systems. It turns out
that the number of steps in Frege and extension Frege systems is, up to a polynomial,
the size of extension Frege proofs.

8.1.13. Lemma. If ' can be proved by a proof with n steps in an extension Frege

system, then it can be proved by a proof with n steps in a Frege system; namely, we

can omit the extension rule from the given system.

Proof-sketch. Omit every instance of the extension rule p � ' and at the same
time replace all occurrences of the variable p by '. 2

8.1.14. Lemma. There exists a polynomial f(x) such that for every tautology '

and every extension Frege proof of ' with n steps, there exists an extension Frege

proof of ' whose size is � f(j'j+ n).

The idea of the proof is to introduce propositional variables for each relevant

subformula of the proof and work with these variables instead of formulas. A
subformula is relevant, if it is in constant depth from the root of some formula in the
proof, where the constant is determined by the Frege system. We leave out further
details. 2

From these two lemmas we get immediately:

8.1.15. Theorem. (Statman [1977], Cook and Reckhow [1979]) For every

tautology ', the minimal number of steps of a proof of ' in a Frege system, the

minimal number of steps of a proof of ' in an extension Frege system and the minimal

size of a proof of ' in an extension Frege system are polynomially related. 2

8.1.16. It can be shown that the minimal number of steps in a proof of a tautology
in an extension Frege system can be exponentially larger than in a substitution
Frege system Tsejtin and �Cubarjan [1975], Kraj���cek [1989b]. Consider the tautology
:2n(p _ :p), where :2n denotes 2n-times :. It is not very hard to show that the
number of steps needed to prove it in a Frege system is 
(2n) (it is also possible to
prove it by de�ning a winning strategy for Adversary in the game below). Thus the
minimal size of an extension Frege proof for :2n(p_:p) must be 2
(n) . On the other
hand it can be proved using only O(n) steps in a substitution Frege system. This is
based on the fact that it is possible to derive q ! :2k+1

q from q ! :2kq in constant
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number of steps: �rst derive :2kq ! :2k+1

q by substitution q 7! :2kq, and then use
the transitivity of implication.

8.2. A game. The following game was devised as an approach to proving lower
bounds on the lengths of propositional proofs. So far we were not able to get new
lower bounds result using it; in fact it is even not so easy to interpret the known lower
bounds using this game. However the game can be used at least to prove something
about the structure of propositional proofs.

8.2.1. We shall call the game Prover-Adversary game. The game is determined
by a complete set of propositional connectives B . There are two players Prover and
Adversary. The aim of Prover is to prove a proposition ' and the aim of Adversary
is to pretend that, for some assignment, the formula ' can have value 0 (=false).
The game starts with Prover's asking ' and Adversary answering 0, and then Prover
asks other propositions and Adversary assigns values to them. The game ends when
there is a simple contradiction in the statements of the Adversary which means the
following. Suppose we consider propositions in a basis of connectives B . Then
a simple contradiction means that for some connective � 2 B , and propositions
'1; : : : ; 'k , Adversary has assigned values to '1; : : : ; 'k; �('1; : : : ; 'k) and they do
not satisfy the truth table of �; e.g., he assigned 0 to ', 1 to  and 1 to ' ^  .

We de�ne that a proposition ' is provable in this game, if Prover has a winning
strategy. A natural measure of complexity of such proofs is the minimal number of

rounds needed to convict any Adversary.
It is easy to prove that the Prover-Adversary game as a proof system is sound and

complete, (however it does not satisfy the de�nition of a propositional proof system
2.5). To prove the soundness, suppose ' is not a tautology. Then Adversary can
simply evaluate the propositions on an input a for which '[a] = 0. To prove the
completeness, let Prover ask all subformulas of ', including the variables.

The most interesting fact about the Prover-Adversary game is the relation of the
number of rounds in the game to the number of steps in a Frege proof.

8.2.2. Proposition. The minimal number of rounds in the Prover-Adversary

game needed to prove ' is proportional to the logarithm of the minimal number of

steps in a Frege proof of '.

More precisely, for every basis B and every Frege system F , there are constants

c1; c2 such that for every tautology ',

(i) if it has a proof with k steps in F , then it can be proved in � c1 log k rounds

and

(ii) if it can be proved in r rounds, then it can be proved in F in k steps with

log k � c2r.

Proof. 1. Let a Frege proof of ' be given, say '1; : : : ; 'k , with 'k = '. Consider
conjunctions

 i = (� � � ('1 ^ '2) ^ � � �) ^ 'i:
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If Adversary tries to be consistent as long as possible, Prover needs only a constant
numbers of questions to force him to assign 1 to an axiom. Thus he can force
value 1 for  1 . Also he needs only a constant number of questions to get 0 for
 k , since 'k 7! 0. Then he uses binary search to �nd an i such that  i 7! 1 and
 i+1 7! 0. This takes O(log k) rounds. A constant number of rounds is needed to
get 'i+1 7! 0. Suppose 'i+1 was derived from 'i1; : : : ; 'il , i1; : : : ; il � i. For each
of these premises it takes only � log i rounds to force 1 (or to get an elementary
contradiction), since  i 7! 1, { use binary search again. Once the premises got 1's
and the conclusion 0, Prover needs only a constant number of questions to force an
elementary contradiction.

2. Let a winning strategy for Prover be given, suppose it has r rounds in the
worst case. We construct a sequent calculus proof of ' of size 2O(r), which, as we
know, can be transformed into a Frege proof with at most polynomial increase; we
shall consider this transformation in more details below.

Consider a particular play P , let �1; : : : ; �t , t � r be the questions asked by
Prover, where we have added (or removed) negations, if Adversary answered 0 (in
particular �1 is :'). Thus �1 ^ � � � ^ �t is false, hence ! :�1; : : : ;:�t is a true
sequent. Moreover, as easily seen, it has a proof with constant number of lines,
since there is a simple contradiction in the statements �1; : : : ; �t. The proof of '
is constructed by taking proofs of all such sequents and then using cuts eliminating
successively all formulas except of '. This is possible due to the structure of the
possible plays. Namely,

1. for each play P there is another play P 0 in which all the questions and answers
are the same except for the answer which corresponds to the last question of
P ; P 0 may be longer than P ;

2. for every two plays P; P 0, if they have the same questions up to the i-th one,
say �1; : : : ; �i, then they have the same answers up to the i � 1-st one and
di�erent i-th answer.

Finally observe that the number of such sequents is at most 2r , which gives the
bound. 2

Let us note that the proof constructed from the game has a very special structure.
Firstly it is in a tree form; secondly, it is like a dual to cut-free proofs, since it uses
everywhere only the cut rule, except for the leaves of the proof tree.

Let us note also that we can characterize the size of proofs in Frege systems in a
similar way, we have only to add the logarithm of the maximal size of a query to the
cost of the play.

8.2.3. We return to the problem about the relation of the lengths of proofs as
sequences and lengths of proofs as trees. We would like to use the proof obtained
by transforming a general proof into the Prover-Adversary game and then back to
a proof. The resulting proof has the number of steps polynomial in the original
number of steps k and it is in a tree form, but it is a sequent proof. We shall analyze
its transformation into a Frege proof in order to see that the tree structure can be
preserved also in the Frege form.
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First we shall assume that we have a Frege system F0 with suitable rules. Let
! :�1; : : : ;:�t be a sequent on the leaf of the sequent proof. We shall replace it by

(� � � (:�1 _ :�2) � � �) _ :�t: (51)

We shall start with proofs of such sequents. We know that some (� � � (:�i1 _
:�i2) � � �) _ :�ic , where c is a constant determined by the basis that we use, is a
tautology. Moreover this tautology has a constant size proof, as it comes from a
simple contradiction. Hence it also has a constant size tree proof. To get (51) we
have to add the remaining disjuncts using a tree proof. It is quite easy, if we use the
ideas shown in section 4.

Let us note that t = O(log k), thus also the proof of (51) is O(logk).

The rest of the proof is the same as in the sequent case, provided that we have a
cut rule in the form

A _B; C _ :B
A _ C :

If we have a general Frege system F , we have to simulate each application of a
rule of F0 by several, however a constant number, of rules of F . Structurally it means
that we replace each node with its in-going edges of the original tree by a constant
size tree. Thus in general we get a larger tree; but the point is that the new tree has
depth also O(log k), thus it has size also polynomial in k. Hence have proved:

8.2.4. Theorem. (Kraj���cek [1994a]) For every Frege system there exists a

polynomial p(x) such that for every tautology '

k'ktreesteps � p(k'ksequencesteps ):

2

8.3. Resolution. The most important propositional calculus for automated
theorem proving is the resolution system. It is fairly easy to implement and there is
a variety of heuristics there that one can try in the proof search.

The idea can be simply explained as follows. Suppose that we want to prove a
tautology which is a DNF. Thus it su�ces to derive a contradiction from its negation,
which is a CNF, say

V
i2I �i. This is the same as to derive a contradiction from the

set f�igi2I . If we think of disjunctions as obtained by applying the set operator of
disjunction to a set of variables and its negations, then we need only a single rule {
the cut. The contradiction then would be the disjunction of an empty set.

In the usual terminology we call variables and negated variables literals; the
disjunctions are represented simply as sets of literals and they are called clauses, the
cut rule is called resolution. As we are proving a contradiction from assumptions,
we rather talk about a refutation than a proof. Thus a resolution refutation of a set
of clauses C is a sequence starting with the clauses of C , the following clauses are
derived by resolution and the last clause should be ;.
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8.4. Extended resolution. Though a lot of interesting tautologies are DNF's,
we would like to be able to prove also others. There is a natural way, in which we can
extend the resolution system to be able to talk about arbitrary formulas; namely, we
introduce variables for formulas and add the de�ning clauses.

Formally extended resolution for the basis f^;_;:g and variables p1; : : : ; pn is
resolution augmented with the clauses obtained from the CNF's of

qpi � pi; q:' � :q'; q'1^'2 � q'1 ^ q'2 ; q'1_'2 � q'1 _ q'2 ;

for all formulas in the language fp1; : : : ; pn;^;_;:g, where q's are some new distinct
variables. E.g., q:' � :q' is replaced by the two clauses fq:'; q'g and f:q:';:q'g.
We de�ne it for other bases similarly.

While resolution is much weaker than Frege systems, the extended resolution
system is polynomially equivalent to extension Frege systems. The simulation of
extension Frege system by extended resolution is based on essentially the same idea
as Lemma 8.1.14.

8.5. Bounded depth Frege systems. Intermediate between the resolution
system and the Frege systems are bounded depth Frege systems. They are very
important for bounded arithmetic, see section 10. Also they are the strongest
systems for which we are able to prove exponential lower bounds.

Consider formulas in basis f^;_;:g. We de�ne inductively classes �i and �i

of such formulas. �0 and �0 are just literals. A formula ' is in �i+1 , if it is
the disjunction of formulas from �i+1 or the conjunction of formulas from �i or a
negation of a formula from �i . The classes �i+1 are de�ned dually. A formula has
depth d, if it is in �d [ �d.

A depth d Frege proof is a Frege proof, where all formulas are depth d. If a suitable
set of rules is chosen such a system is complete for depth d tautologies.

Kraj���cek [1994a] has shown that there are depth d tautologies which have
polynomial size tree-like proofs in a depth d+ 1 Frege system, but only exponential
size tree-like proofs in a depth d Frege system, and, conversely, there are depth d

tautologies which have polynomial size (general) proofs in a depth d Frege system, but
only exponential size tree-like proofs in a depth d Frege system. (More precisely, one
has to use refutations instead of proofs.) It is not known, if there is such a speed up
for sequence-like proofs. Also it is an open problem, if there is a d0 such that for every
d � d0, depth d and d+ 1 systems can be separated in such a way using tautologies
of depth � d0. On the other hand there is a sequence of tautologies of depth 3 which
have polynomial size (unbounded depth) Frege proofs, but only exponentially large
depth d Frege proofs for every constant d (see Buss [1987], Kraj���cek, Pudl�ak and
Woods [1995], Pitassi, Beame and Impagliazzo [1993] and Beame et al. [1992]). The
tautologies express a very simple theorem { the pigeonhole principle. We shall prove
a lower bound for resolution refutations of sets of clauses expressing the pigeonhole
principle in the next section.
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8.6. Propositional sequent calculus. We have already mentioned that sequent
proof systems are polynomially equivalent to the Frege system that we considered in
the �rst part of the chapter, hence to all Frege systems. Thus it remains to mention
the cut-free propositional sequent calculus. Since we know about nonelementary
speed-up in the case of �rst order logic, it is not surprising that there is a speed-up
also for propositional logic. The speed-up is exponential Takeuti [1990], and, trivially,
cannot be larger. An exponential speed-up (slightly worse) follows also from the
speed-up of unbounded depth Frege system versus bounded depth Frege system
(using the fact that a cut-free proof of a bounded depth tautology is also bounded
depth).

8.7. Propositional natural deduction. The natural deduction system is
essentially a Frege system with an additional rule which allows to prove an implication
'!  by taking ' as an assumption and deriving  . The fact that this rule can be
simulated in a Frege system is called the deduction theorem and the rule is called the

deduction rule. Mutual simulations of the sequent calculus and natural deduction
were shown by Gentzen [1935] and they are actually polynomial simulations, see
Eder [1992]. The power of the deduction rule has been investigated in more detail by
Bonet and Buss [1993].

8.8. Quanti�ed propositional proof systems. It seems unlikely that there
is a proof system for propositional logic which can polynomially simulate all other
proof systems (see Kraj���cek and Pudl�ak [1989] for the relation of this question to
problems in computational complexity). Thus it is interesting to look for stronger
and stronger proof systems. How can one construct a system stronger than extension
Frege systems? One possible way is to extend the expressive power of the language
used in the proofs and the most natural extension is to take quanti�ed propositional
formulas.3

The language of quanti�ed propositional logic consists of quanti�ed propositional
formulas which are usual propositional formulas with quanti�ers binding some
propositional variables. The semantics of such formulas is clear. E.g., the following
is a quanti�ed propositional tautology

8p; q9r((p! q)! (p! r) ^ (r! q)):

As a logical calculus we simply modify either a Hilbert style or Gentzen sequent �rst
order calculus. Again, we give only an example. Consider the axiom schema (5.1) of
section 2

�(t)! 9x�(x):
We use this schema in quanti�ed propositional logic as it stands, the only point is
that now there is no distinction between terms and subformulas. So precisely stated
it is as follows. Let '(p) be a quanti�ed propositional formula with a free variable p

3It is interesting that a quanti�ed propositional calculus was introduced by Russell [1906] as a
\theory of implication".



The Lengths of Proofs 601

and let  be any quanti�ed propositional formula, then the following formula is an
axiom

'(p= )! 9x'(x):
It is interesting to investigate the proof systems for all of quanti�ed propositional

logic, but we would also like to know, if such systems enable us to prove ordinary
propositions faster. This seems plausible, as quanti�ed propositional formulas
can de�ne functions in PSPACE , thus very likely they have stronger expressive
power than ordinary propositional formulas. But even if this were true, it would
not necessarily imply that, say, the quanti�ed propositional sequent calculus has
shorter proofs for some propositional tautologies. Also we cannot exclude that the
quanti�ed propositional sequent calculus is stronger, but at the same time quanti�ed
propositional formulas of polynomial size de�ne the same functions as ordinary
propositional formulas of polynomial size. The only relation that we know for sure
is that it polynomially simulates substitution (hence also extension) Frege systems,
see Kraj���cek and Pudl�ak [1990].

Important applications in bounded arithmetic were found by Dowd [1979] and
Kraj���cek and Takeuti [1990]; for further applications in bounded arithmetic, see
section 10 and Kraj���cek and Pudl�ak [1990].

A related question is, how strong is the propositional part of the �rst order
calculus. Let us consider the Hilbert style calculus of section 2. If we had
only propositional variables, then it is just a Frege system. However, if we
have some predicate, say P (x), then we can code the propositional variable pi
using the �rst order variable xi as P (xi). This enables us to code all quanti�ed
propositional formulas, thus we get at least the power of the quanti�ed propositional
calculus. However, using a suitable representation we can simulate arbitrarily strong
propositional proof system, see 10.4.1 below.

8.9. \Mathematical" proof systems. Let us have look at the problem about
the length of proofs in propositional logic from the point of view of complexity theory.
The set of propositional tautologies is a coNP -complete sets, say L. A proof system
is a relation R(x; y) computable in polynomial time such that

x 2 L � 9yR(x; y):

A proof of x is a y such that R(x; y). Thus we can take an arbitrary coNP -complete
set and an arbitrary R for it and ask what are the lengths of such proofs. We shall
consider three examples of such calculi.

8.9.1. The Haj�os calculus. In the �rst example the set L consists of graphs
which cannot be colored by three colors. Haj�os [1961] has proved that every such
graph can be obtained as follows.

1. Start with K4 , the complete graph on four vertices, and apply the following
operations:
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Figure 1: The hierarchy of propositional proof systems
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2. edge/vertex introduction: add any new vertices and any new edges to a
constructed graph;

3. join: if G1 and G2 has already been constructed, G1 and G2 with disjoint sets
of vertices, (a1; b1) an edge in G1, (a2; b2) an edge in G2, then construct a new
graph by contracting a1 with a2 , deleting the edges (a1; b1); (a2; b2) and adding
the edge (b1; b2);

4. contraction: contract any two non-adjacent vertices in a constructed graph.

On the other hand it is quite easy to prove that no graph obtained in this way is
3-colorable. A proof of the fact that G is not 3-colorable in the Haj�os calculus is a
sequence where K4 is used as an axiom, the three rules above are used to construct
new graphs and where the last graph is G. Haj�os' theorem asserts that this calculus
is complete for graphs which are not 3-colorable.

Surprisingly Pitassi and Urquhart [1992] have shown that the Haj�os calculus is
polynomially equivalent to extension Frege systems. This means that

1. there is a polynomial time computable function which to each tautology '

and its extension Frege proof d assigns a graph G and a proof h in the Haj�os
calculus that G is not 3-colorable;

2. and vice versa, there is a polynomial time computable function which to each
graph G and a proof h in the Haj�os calculus that G is not 3-colorable assigns
a tautology ' and its extension Frege proof d .

This shows that the concept of extension Frege systems is quite robust and that it
will be very hard to prove that there is no polynomial bound on shortest proofs in
the Haj�os calculus.

8.9.2. Nullstellensatz. The second example are systems of algebraic equations
over �nite �elds. Let

f1(x1; : : : ; xn) = 0
... (52)

fm(x1; : : : ; xn) = 0

be a system of algebraic equations over a �eld F . The famous Hilbert's Nullstellensatz
says that (52) does not have a solution in F (the algebraic closure of F ) i� there
exist polynomials g1(x1; : : : ; xn); : : : ; gm(x1; : : : ; xn) such that

mX
i=1

gi(x1; : : : ; xn)fi(x1; : : : ; xn) = 1 (53)

in the ring of polynomials over F .
We shall make some additional assumptions. We shall assume that F is �nite

and that equations (52) can have solutions only in F . The last condition can be
ensured by adding equations

Q
a2F (xi � a) = 0 for i = 1; : : : ; n. Then such sets of

unsolvable systems of equations are coNP -complete. Furthermore we shall assume
that polynomials are given as sums of monomials. Then (53) can be decided in
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polynomial time, since we can expand the sum of products into a sum of monomials
where the number of monomials is polynomial in the number of monomials of
polynomials gi and fi , i = 1; : : : ; n. Thus we can think of the system of polynomials
g1; : : : ; gm as a proof that (52) is unsolvable. (Let us remark that in this special case
the proof of the Nullstellensatz is easy, so this proof system is not based on a deep
result.)

This system is not known to be equivalent to another proof system, it is weaker
than Frege systems and there are superpolynomial lower bounds for a sequence of
unsolvable systems. The main application of this approach is in the works of Beame
et al. [1996] and Buss et al. [1996/1997], proving independence of counting principles
in bounded depth Frege systems and in bounded arithmetic (this was �rst proved by
Ajtai [1994b] using a di�erent, and very deep proof).

A related system, called the polynomial calculus,4 was introduced in Clegg,
Edmonds and Impagliazzo [1996]. In this system we derive equations sequentially
using additions and multiplications by arbitrary polynomials. Alternatively, it is
just equational calculus with no variables allowed. For a given bound d on degree of
polynomials occurring in the proof, the system is stronger than the Nullstellensatz
system. If d is a constant, it is still decidable in polynomial time, if there is a proof
of a given polynomial from a given set of polynomials.

Finally we consider a proof system which uses ideas of linear programming which
was introduced in W. Cook, Coullard and Tur�an [1987].

8.9.3. Cutting plane proof system. This system is, in a sense, an extension of
resolution; in particular it is also a refutation system for a set of clauses. However,
instead of clauses we use linear inequalities which adds power to the system.

A proof line is an expression

a1p1 + � � �+ anpn � B; (54)

where a1; : : : ; an; B are integers. We allow also expressions of the form 0 � B . For a
given clause C we represent literals pi identically and :pi by 1�pi . Let f1; : : : ; fk be
the linear terms expressing the literals of C . Then we represent C by the expression

f1 + � � �+ fk � 1:

(Of course, to get an expression of the form (54), we have to collect the constant
terms on the right hand side; also we collect constant and other terms after each
application of a rule.) The axioms and derivation rules are

1. axioms are all translations of the clauses in question and the expressions pi � 0,
�pi � �1;

2. addition: add two lines;

3. multiplication: multiply a line by a positive integer;

4Another name proposed for this calculus is the Groebner proof system.
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4. division: divide a line (54) by a positive integer c which divides evenly a1; : : : ; ak
and round-up the constant term on the right hand side, i.e., we get

a1

c
p1 + � � �+ an

c
pn �

�
B

c

�
:

(Note that on the left hand side we have integers, thus rounding up is sound.)

A contradiction is obtained, when we prove 0 � 1.
We suggest to the reader, as an easy exercise, to check that this system simulates

resolution. Goerdt [1991] proved that Frege systems polynomially simulate the
cutting plane proof system. Furthermore, Buss and Clote [1996] proved that the
cutting plane system with the division rule restricted to the division by 2 (or any
other constant > 1) polynomially simulates the general system. Recent success in
proving exponential lower bounds on the lengths of cutting plane proofs (see section
9.3) gives us also interesting separations. The cutting plane proof system cannot be
simulated by bounded depth Frege systems as it proves the pigeonhole principle (see
Cook, Coullard and Tur�an [1987]) using polynomial size proofs. The cutting plane
proof system does not polynomially simulate bounded depth Frege systems Bonet,
Pitassi and Raz [1997a], Kraj���cek [1997a], Pudl�ak [1997].

9. Lower bounds on propositional proofs

In this section we give an example of a lower bound proof in propositional logic.
Our lower bound will be an exponential lower bound on the size of resolution proofs
of the pigeonhole principle. The �rst such bound for unrestricted resolution was
proved by Haken [1985]. Unfortunately his proof cannot be generalized to stronger
systems, (at least nobody has succeeded in doing it). Therefore we shall apply a
technique of Ajtai [1994a], which he used for bounded depth Frege systems. The case
of resolution, which can be considered as a depth one Frege system, is simpler than
for larger depths and thus can serve as a good introduction to more advanced results.

9.1. A general method. Before we consider the concrete example, we shall
present a general framework for lower bound proofs, which can be applied to some
existing proofs and, maybe, can be also used for some new proofs. A general
description of what is going on in lower bound proofs is always useful, since, when
proving a lower bound, we are working with nonexisting things (the short proofs
whose existence we are disproving) and therefore it is di�cult to give any intuition
about them.

The basic idea of our approach is as follows. Suppose that we want to show that
(�1; �2; : : : ; �m) is not a proof of �. Let L be the set of subformulas of �1; �2; : : : ; �m
and �. L is a partial algebra with operations given by the connectives. Suppose that
we have a boolean algebra B and a homomorphism � : L! B such that �(�) 6= 1B .
Then � cannot be among �1; : : : ; �m , since �(') = 1B for every axiom and this is
preserved by Frege rules. In this form the method cannot work: if � is a tautology
(and we are interested only in tautologies), then �(�) = 1B . Therefore we have to
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modify it. We take only some subsets Li � L and �i : Li ! Bi for di�erent boolean
algebras Bi.

Now we shall describe this method in details. Let

'1(p1; : : : ; p`); : : : ; 'k(p1; : : : ; p`)

'(p1; : : : ; p`)

be a Frege rule R. We shall associate with it the set LR of all subformulas of
'1; : : : ; 'k and '. If

'1( 1; : : : ;  `); : : : ; 'k( 1; : : : ;  `)

'( 1; : : : ;  `)

is an instance of R, we associate with it the set

LR(~ ) = LR( 1;:::; `) = f�( 1; : : : ;  `);�(p1; : : : ; p`) 2 LRg:

Let B be a boolean algebra. A homomorphism � : LR(~ ) ! B is a mapping which
maps connectives onto corresponding operations in B , i.e.,

�(:') = :B�(')

�(' _  ) = �(') _B �( )
etc.

The following lemma formalizes our method.

9.1.1. Lemma. Let (�1; �2; : : : ; �m) be a Frege proof using a set of assumptions

S . Suppose the following conditions are satis�ed:

1. For every formula �i of the proof we have a boolean algebra Bi and an element

bi 2 Bi. Furthermore, if �i 2 S , then bi = 1Bi .

2. For every instance of a rule R(~ ) of the proof we have a boolean algebra BR(~ )

and a homomorphism �R(~ ) : LR(~ ) ! BR(~ ).

3. For every formula �i of the proof and and every instance of a rule R(~ ) where
�i 2 LR(~ ), we have an embedding �i;R(~ ) : Bi ! BR(~ ) so that �i;R(~ )(bi) =

�R(~ )(�i).

Then

b1 = 1B1
; : : : ; bm = 1Bm :

The proof of this lemma is based on the following observation:

9.1.2. Lemma. A Frege rule is sound in any boolean algebra.

Proof. Suppose for some assignment of values from B we get the value 1B for
the assumptions but a value b < 1B for the conclusion. Take a homomorphism
� : B ! f0; 1g such that �(b) = 0. Then we get a contradiction with the soundness
of the rule for the algebra f0; 1g. 2
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Proof of Lemma 9.1.1. We shall use induction. If �1 2 S , then b1 = 1B1
, otherwise

�1 is an instance of a logical axiom, say, R(~ ) (a rule without assumptions). Thus,
by Lemma 9.1.2, �R(~ )(�1) = 1B

R(~ )
. Hence

�1;R(~ )(b1) = �R(~ )(�1) = 1BR(~ ):

Since �1;R(~ ) is an embedding, b1 = 1B1
. The induction step is similar. 2

It may seem at the �rst glance that it does not make sense to talk about boolean
algebras Bi, since we can simply take all of them to be 4-element algebras, and thus
isomorphic. It turns out, however, that in applications nontrivial boolean algebras
Bi appear quite naturally. They have to re
ect the properties of the tautologies that
we consider.

Let us remark that this is only one possible interpretation of some lower bound
proofs and there are other interpretations. In particular other interpretations are
based on the idea of forcing, due to Ajtai [1994a], and partial boolean algebras, due to
Kraj���cek [1994b]; let us note that using partial boolean algebras one can characterize
(up to a polynomial) the length of proofs in Frege systems.

Another tool which we shall use are random restrictions. They have been
successfully applied for proving lower bounds on bounded depth boolean circuits
and later also for lower bounds on proofs in bounded depth Frege systems by
Ajtai [1994a,1990,1994b], Beame et al. [1992], Beame and Pitassi [1996], Bellantoni,
Pitassi and Urquhart [1992], Kraj���cek [1994a], Kraj���cek, Pudl�ak and Woods [1995]
and Pitassi, Beame and Impagliazzo [1993]. The idea is to assign more or less
randomly 0's and 1's to some variables. Then many conjunctions and disjunctions
became constant and thus the circuits, or the formulas, can be simpli�ed. For
the reduced formulas it is then much easier to construct boolean algebras with the
required properties.

9.2. An exponential lower bound on the pigeonhole principle in resolution.

Let D and R be disjoint sets with cardinalities jDj = n+ 1 and jRj = n. We shall
consider the proposition PHPn stating that there is no 1� 1 mapping from D onto
R. (This is a weaker proposition than just: \there is no 1 � 1 mapping of D into

R", thus the lower bound is a stronger statement.) We denote by pij; i 2 D; i 2 R

propositional variables (meaning that i maps onto j in the alleged mapping). We
shall consider clauses made of pij and :pij , furthermore we shall use the true clause
> and the false, or empty, clause ?. PHPn is the negation of the following set of
clauses W

j2R pij; for i 2 D;W
i2R pij; for j 2 R;

:pij _ :pik; for j 2 D; j; k 2 R; j 6= k;
:pji _ :pki; for j; k 2 D; j 6= k; i 2 R:

Let M be the set of partial one-to-one mappings D ! R. We shall consider
boolean algebras determined by subsets T � D [R; jT j < n, as follows. Let VT be a
subset of partial matchings g such that
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1. T � dom(g) [ rng(g);

2. 8(i; j) 2 g(i 2 T _ j 2 T ).
The boolean algebra associated with T is P (VT ), the boolean algebra of subsets of
VT .

In order to be able to assign a value to a clause � in P (VT ), a certain relation of
T to � must be satis�ed. We de�ne that � is covered by T if

1. pij 2 �) i 2 T _ j 2 T ;

2. :pij 2 �) i 2 T ^ j 2 T .
The clauses > and ? are covered by any set T . Suppose � is covered by T , then the
value of � in P (VT ) is the set

bT� = fg 2 VT ; g(i) = j for some pij 2 �; or g(i) 6= j for some :pij 2 �

or g�1(j) 6= i for some :pij 2 �g:
The following can be easily checked:

9.2.1. Lemma. If � is one of the clauses of PHPn and T covers �, jT j < n,

then bT� = 1P (VT ). 2

Suppose T � T 0; jT 0j < n, then there is a naturalmapping �T;T 0 : P (VT )! P (VT 0)
de�ned by

�T;T 0(b) = fg0 2 VT 0 : 9g 2 b(g � g0)g :

9.2.2. Lemma. Let T � T 0; jT 0j < n. Then �T;T 0 is an embedding of the boolean

algebra P (VT ) into P (VT 0).

Proof. All properties are trivial except for the following one: �T;T 0 is injective. This
property follows from the fact that each g 2 VT can be extended to a g0 2 VT , which
holds due to the fact that jT 0j < n. 2

Consider an instance of the cut rule

� _ pij � _ :pij
� _�

Suppose we have chosen P (VTi); i = 1; 2; 3 as the boolean algebra for �_pij , �_:pij
and � _� respectively. Then we choose P (VT ) with T = T1 [ T2 [ T3 for this rule.
We only have to ensure that jT j < n. Since T covers all subformulas involved, we
can de�ne their values in P (VT ). The condition that this is a homomorphism of :
and _ is easy to check. By Lemma 9.2.2 we have also the necessary embeddings.

The simplest way to ensure jT j < n for the rules is to choose the covering sets of
the formulas of size < n=3. This is not always possible (take e.g. p11 _ p22 _ : : : pnn),
therefore we apply random restrictions.

Suppose we assign 0's and 1's to some variables pij and leave the other as they
are. If we do it for all formulas in a proof, the resulting sequence will be a proof
again. However some initial clauses may reduce to ?, so we cannot argue that ?
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cannot be derived from them by a short proof. Therefore the restrictions must re
ect
the nature of the tautology in question.

Let g 2M be a partial one-to-one mapping. We shall associate with g the partial
assignment de�ned by

pij ! 1 if (i; j) 2 g;
pij ! 0 if i 2 dom(g) or j 2 rng(g); but (i; j) =2 g;
pij ! pij otherwise:

Given a clause �, we de�ne �g to be

1. > if some pij 2 � is mapped to 1 or some pij such that :pij 2 � is mapped
to 0,

2. otherwise it is the clause consisting of all literals which are not 0.

Let us denote by D0 = D � dom(g); R0 = R � rng(g); n0 = jR0j. Clearly �g is a
clause with variables pij; i 2 D0; j 2 R0. If � is a clause of PHPn then �g is either
> or becomes a clause of PHPn0 (on D0 and R0). Denote by Mn;n0 , the set of all
partial one-to-one mappings of size n � n0 . The following is the key combinatorial
lemma for the proof of the lower bound.

9.2.3. Lemma. Let n0 = bn1=3c, let � be an arbitrary clause. Then for a

g 2 Mn;n0 , chosen with uniform probability, the probability that �g can be covered by

a set of size < 1
3
n0 is at least

1� 2"n
1=3

;

where " > 0 is a constant.

We shall use the following simple estimate.

9.2.4. Lemma. Let a; b; l � n;A � f1; : : : ; ng; jAj = a. Take a random B �
f1; : : : ; ng; jBj = b, with uniform probability. Then

Prob(jA \Bj � l) �
 
eab

nl

!l
:

Proof.

Prob(jA \Bj � l) � X
fa1;:::;a`g�A

Prob(a1 2 B; : : : ; a` 2 B)

=

 
a

l

!
� b
n
� b� 1

n� 1
� � � � � b� l + 1

n� l + 1

�
�
ea

l

�l
�
 
b

n

!l
�
 
eab

nl

!l
:

2
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Proof of Lemma 9.2.3. Let us denote by l = b1
3
n0c. Let � be given. We shall

simplify the situation by replacing each :pij 2 � by_
i0 6=i

pi0j _
_
j0 6=j

pij0:

This operation commutes with the restriction and the new clause is covered by
T; jT j � l, i� the old one is, since ` < n0 � 2. Thus we can assume that � contains
only positive literals. Such a � is determined by the graph

E = f(i; j); pij 2 �g :
Let

a =
n2=3

40
:

From now on we shall omit the integer part function and assume that all numbers
are integers. This introduces only inessential errors. Furthermore denote by

A = fj 2 R; degE(j) � 2ag :
We shall consider two cases.

Case 1: jAj � 2a. We shall show that in this case �g = > with high probability.
First we estimate jA \ rng(g)j. Note that rng(g) is a random subset of R of size
n� n0 , thus also R0 = Rn rng(g) is a random subset of size n0 . Hence we can apply
Lemma 9.2.4.

Prob(jA \ rng(g)j < a) = Prob(jA \R0j � jAj � a) (55)

�
 
ejAjn1=3

n(jAj � a)

!jAj�a
�

�
2e

n2=3

�a
:

The probability that �g is not > is bounded by

Prob
�
8j 2 A \ rng(g)((g�1(j); j) =2 E)

�
�

Prob(jA \ rng(g)j < a) + (56)

Prob
�
8j 2 A \ rng(g)((g�1(j); j) =2 E) j jA \ rng(g)j � a

�
:

The second term can be estimated by

max
C�A; jCj�a

Prob
�
8j 2 A \ rng(g)((g�1(j); j) =2 E) j A \ rng(g) = C

�
;

thus it su�ces to consider a �xed such C and bound the probability. Let C =
fj1; j2; : : : ; jjCjg; think of the vertices g�1(j1); g�1(j2); : : : ; g�1(jjCj) as chosen one by
one independently, except that they must be di�erent.

Prob
�
(g�1(jt+1); jt+1) =2 E j g(i1) = j1; : : : ; g(it) = jt

�
=

= 1� jE�1(jt+1)� fi1; : : : ; itgj
n + 1� t

� 1� degE(jt+1)� t

n+ 1
� 1� 2a� t

n+ 1
:
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Thus the probability that (g�1(jt); jt) =2 E for all t = 1; : : : ; jCj is

�
�
1� 2a

n + 1

��
1� 2a� 1

n+ 1

�
: : :

 
1� 2a� jCj+ 1

n + 1

!
�
�
1� a

n + 1

�a
:

Since a
n+1

� 1
n1=3

and a � n2=3 , this expression is e�
(n
1=3) . The �rst term of (56) is

estimated in (55) and is even smaller. Thus in Case 1 the probability is 1� e�
(n
1=3)

as required.

Case 2: jAj < 2a. In this case we cover �g by the set

(A \ R0) [ (E�1(R0nA) \D0):

We need only to estimate the probability that the size of the two sets in the union is
small. We shall use Lemma 9.2.4 again.

Prob

 
jA \R0j > `

2

!
�
 
e2an1=3

n � n1=3=6

!n1=3=6
=
�

12e

40n1=3

�n1=3=6
= e�
(n

1=3): (57)

To estimate the second set, �rst observe that

jE�1(R0nA)j � jR0j � 2a = n1=3 � 2n
2=3

40
=

n

20
:

Thus

Prob(jE�1(R0nA) \D0j > `

2
) �

 
e � n

20
� (n1=3 + 1)

(n + 1)n1=3=6

!n1=3=6
(58)

=

 
3e

10
� n(n

1=3 + 1)

(n+ 1)n1=3

!n1=3=6
= e�
(n

1=3);

since the term in the parentheses converges to 3e
10
< 1. By (57) and (58) we get the

required bound in Case 2. 2

Now we are ready to prove the lower bound which was originally proved by
Haken [1985] with a better exponent than we give here.

9.2.5. Theorem. (Haken [1985]) Every resolution proof of PHPn has size at least

2"n
1=3

, where " > 0 is a constant.

Proof. Suppose a proof of size < 2"n
1=3

is given. Take a random g 2 Mn0 ; n0 =
bn1=3c. Then, by Lemma 9.2.2, for every formula � of the proof the probability that

�g is not covered by a set of size < n0

3
is at most 2"n

1=3

. Thus we have positive

probability that, for some g 2 Mn;n0 , all formulas are covered by sets < n0

3
. Hence

there is at least one such a g.
Consider the proof restricted using such a g; it is a derivation of ? from clauses

of PHPn0 . Choose a covering set of size < n0

3
for each clause in this proof. Then take
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boolean algebras P (VT ) for clauses and for each application of the rule as described
above. As we have observed, the clauses of PHPn0 get value 1 in their boolean
algebras. Now we can apply Lemma 9.1.1. The conclusion should be that ? gets
also 1. But ? gets the value 0 by the de�nition of the boolean algebras.

Hence the proof must have size � 2"n
1=3

. 2

9.3. Lower bounds based on e�ective interpolation theorems. We are going
to discuss an approach which is not based on such ad hoc proofs, but instead it uses
some general theorems interesting in their own right. These theorems are versions
of the interpolation theorem, a classical result of Craig [1957a,1957b], see Chapter I.
The interpolation theorem has a �rst order logic version and a propositional version.
Recently some strengthenings of the propositional interpolation theorem have been
successfully applied to prove lower bounds on the length of propositional proofs.

The propositional interpolation theorem states that for a given propositional
tautology �(�p; �q) ! 	(�p; �r), where �p; �q; �r are disjoint strings of propositional
variables, there exists a formula I(�p), which contains only the common variables
�p, such that both �(�p; �q) ! I(�p) and I(�p) ! 	(�p; �r) are also tautologies. Such a
formula I(�p) is called an interpolant of �(�p; �q)! 	(�p; �r). The proof of this statement
is trivial: Take the quanti�ed boolean formula 9�x �(�p; �x) (or 8�x 	(�p; �x)); clearly,
it interpolates �(�p; �q) ! 	(�p; �r). As any boolean function can be de�ned by an
ordinary propositional formula, there is a propositional formula I(�p) equivalent to
9�x �(�p; �x).

Craig gave constructive proofs of his theorems, i.e., he showed how to construct
an interpolant I(�p) from a proof d of �(�p; �q)! 	(�p; �r). Thus the complexity of I(�p)
depends on the complexity of the proof d. This led Kraj���cek [1994a] to propose a
method of lower bounds proofs whose idea can be stated as follows: suppose we can
show that �(�p; �q)! 	(�p; �r) does not have a simple interpolant, then it cannot have
a simple proof.

Another relationship of interpolation theorems to questions in complexity theory
had earlier been considered by Mundici [1984], but he did not consider the lengths of
proofs.

9.3.1. The original proof of Craig was based on cut-elimination, so the constructed
interpolant can be exponentially large. His proof can be used to get a good bound
on interpolants for cut-free sequent propositional proofs, but we have to consider a
di�erent measure of the complexity of interpolants. The new idea is that we can look
at an interpolant as a boolean function and then we can apply any of the measures
of complexity of boolean functions. Here the right measure is the size of the smallest
circuit computing the boolean function.

9.3.2. Theorem. (Kraj���cek [1997a]) Let d be a cut-free proof with k lines of a

sequent

�1(�p; �q); : : : ;�m(�p; �q) �! 	1(�p; �r); : : : ;	l(�p; �r)
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where �p; �q; �r are disjoint sets of propositional variables (i.e. no �q occurs in the

consequent and no �r occurs in the antecedent). Then it is possible to construct a an

interpolant I(�p) of
V
i�i(�p; �q)!

W
j 	j(�p; �r) which is a boolean circuit of size kO(1).

The proof is essentially the original one of Craig [1957a,1957b]. The idea is to
construct interpolants for each sequent in the proof successively starting with the
initial sequents and going down to the end sequent. As the proof is cut-free, each
sequent contains only formulas containing either only variables �p; �q, or only variables
�p; �r, so it makes sense to talk about an interpolant for it. 2

The reason for using circuit size is because we consider proofs in the sequence
form. For tree-like proofs we actually get a polynomial size formula as an interpolant.

9.3.3. Suppose we have an interpolant I(�p) for �(�p; �q) ! 	(�p; �r) i.e., the
implications �(�p; �q) ! I(�p) and I(�p) ! 	(�p; �r) are true. Let a truth assignment �a
to the variables �p be given. Then either :�(�p; �a) or 	(�a; �r) is true. The interpolant
can be used to decide which of the two possibilities holds, namely, if I(�a) is true,
then 	(�a; �r) is true, otherwise :�(�a; �r) is true. (It is possible that both :�(�p; �a)
and 	(�a; �r) are true, in which case I(�a) could be true or false.) Thus there is an
alternative way of looking at interpolant: Let �(�p; �q)_ �(�p; �r) be a valid disjunction;
an interpolant is a procedure which produces one of the two disjuncts which becomes
a tautology after assigning given truth values to �p.

We can look at the interpolation theorem even more abstractly (see Razborov
[1994]). Let A and B be disjoint NP sets. Then we can de�ne the set of input
strings �a of length n which are not in A, resp. not in B , by a polynomial size formula
�n(�p; �q), resp. �n(�p; �r) (�a is not in A if �n(�a; �q) is a tautology, similarly for B , see
next section). Since A and B are disjoint i.e., the complements cover all inputs, the
disjunction �n(�p; �q)_�n(�p; �r) is a tautology. If we have a polynomial time computable
set C which separates A from B i.e., A � C; C \B = ;, then we have a polynomial
time decision algorithm for �nding a true disjunct from �n(�a; �q) _ �n(�a; �r). Cook's
theorem implies that then there exists also a polynomial size circuit Cn(�p) for this
problem. Clearly, Cn(�p) is an interpolant for �n(�p; �q) _ �n(�p; �r).

9.3.4. The most interesting application of the e�ective interpolation is in the case
of resolution.

9.3.5. Theorem. (Kraj���cek [1997a]) Let d be a resolution proof of the empty

clause from clauses Ai(�p; �q); i 2 I , Bj(�p; �r); j 2 J where �p; �q; �r are disjoint sets of

propositional variables. Then it is possible to construct a circuit C(�p) such that for

every 0-1 assignment �a for �p

C(�a) = 0 ) Ai(�a; �q); i 2 I are unsatis�able, and

C(�a) = 1 ) Bj(�a; �r); j 2 J are unsatis�able;

the size of the circuit C is bounded by O(jdj).
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Moreover, one can construct a resolution proof of the empty clause from clauses

Ai(�a; �q); i 2 I if C(�a) = 0, respectively from Bj(�a; �r); j 2 J if C(�a) = 1, whose size
is at most the size of d.

We shall sketch two proofs of this theorem. The idea of the �rst one, due to
Kraj���cek [1997a], is to reduce it to Theorem 9.3.2. This looks strange, as resolution
proofs consist only of cuts and we know that cut-elimination does not work. The
trick is to eliminate cuts by replacing them by conjunctions.

For each initial clause s1 _ : : : _ sk , where si are literals, �rst prove the sequent
�! Vk

i=1 si; s1; : : : ; sk ; we denote by si the literal complementary to si. Our goal is
to derive a sequent consisting only of such conjunctions obtained from initial clauses
�! : : : ;

Vk
i=1 si; : : :. Thus we want to replace the refutation proof by a proof of the

corresponding tautology (DNF). We shall not quite succeed, we have to add also
conjunctions of the form si ^ si, which are, however, false, hence do not in
uence
interpolants at all.

In transforming the resolution proof into a cut-free sequent proof we follow the
given resolution proof, but instead of applying cut with some cut literal si, we
introduce si ^ si. Thus a general sequent in the proof will consist of conjunctions of
negated literals of Ai(�p; �q)'s and Bj(�p; �r)'s, conjunctions of complementary literals
si ^ si and single literals. The single literals of the sequent are just the literals of the
corresponding clause in the resolution proof. In the last sequent, as in the resolution
proof, the single literals will be eliminated and we are left only with conjunctions
of negated literals of the initial clauses Ai(�p; �q)'s and Bj(�p; �r)'s and conjunctions
of complementary literals. Since conjunctions of complementary literals are false,
an interpolant for this sequent is also an interpolant for the sequent without them.
So we can apply Theorem 9.3.2 to get an interpolant for this sequent which is an
interpolant for Ai(�p; �q); i 2 I , Bj(�p; �r); j 2 J in the sense of the theorem. 2

The idea of the second proof (Pudl�ak [1997]) is to construct a refutation proof
either from Ai(�a; �q); i 2 I , or from Bj(�a; �r); j 2 J for every given truth assignment.
If there is a polynomial time algorithm for constructing such a proof, then there is
one also for deciding which of the two sets is unsatis�able, hence also a polynomial
size circuit. Substitute the truth assignment �a into the initial clauses and discard
those which contain a literal which is true under the truth assignment �a and delete
the ? produced by the substitution from the others. Then we follow the proof. What
we want is to never mix variables �q with variables �r. So when we should resolve along
a variable qi or ri we do it, since this will not produce a mixed clause. However, if we
should resolve along some pi, we must do something else. Now we simply take the
clause which corresponds to an original clause where the literal pi, resp. pi, is false
under the truth assignment �a. This clause will be a subclause of the next original
clause, hence we can continue and eventually obtain an empty clause. Since variables
�q and �r are never mixed, the new proof will split into at least two disconnected parts.
We can backtrack which initial clauses are actually needed to get the empty clause
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(they must be of the same kind) and take only that component as the new proof. 2

A closer analysis of this proof shows that we can use the directed graph of the
proof as the graph for the circuit, provided we take suitable connectives. So the
relation between the proof and the circuit is very close.

One can also easily show that we have to use circuits instead of formulas, unless
formulas are as powerful as circuits (which most researcher doubt) Kraj���cek [1994a].
Namely, for every circuit we can write a tautology stating that the computation is
unique. We use variables �p for the input values of the circuit, variables �q for the
values at the gates in the �rst computation and variables �r for the values of at the
gates in the second computation. The tautology asserts that if the output value, say
qk , in the �rst computation is 1, then the output value rk in the second computation
is also 1. Clearly, any interpolant of this tautology computes the same function as
the circuit. On the other hand, the tautology has a resolution proof of linear size.

9.3.6. In order to apply Theorem 9.3.5 we need to have good lower bounds on the
size of circuits computing some explicitly de�ned boolean functions. Presently all
the known lower bounds for explicitly de�ned functions are only linear. Fortunately
there is a version of the theorem which can be combined with currently known lower
bounds. Quite surprisingly a very mild condition on the clauses implies that the
interpolating circuits can be constructed monotone. A monotone boolean circuit is
a circuit in the basis f^;_; 0; 1g, i.e., a circuit whose gates are monotone boolean
functions.

9.3.7. Theorem. (Kraj���cek [1997a]) Assume that clauses as in Theorem 9.3.5

are given. Suppose moreover that either all variables �p occur in Ai(�p; �q); i 2 I only

positively or all variables �p occur in Bj(�p; �r); j 2 J only negatively, then there exists

a circuit C satisfying the conclusion of Theorem 9.3.5 which is moreover monotone.

The proof of this theorem is obtained by inspection of either of the proofs of
Theorem 9.3.5. 2

There are well-known exponential lower bounds for the monotone circuit complex-
ity of explicit boolean functions. This alone would not su�ce to get an exponential
lower bound on resolution proofs. By another lucky coincidence the lower bounds on
monotone circuits give more: they actually show that some pairs of disjoint NP sets
cannot be separated by monotone circuits.

In particular such a lower bound can be derived for tautologies related to the
clique problem. Let Cliquen;k(�p; �q) denote a set of clauses expressing that the graph
with n vertices coded by �p has a clique of size at least k coded by �q. The variables �p
represent edges of the graph and the variables �q represent the graph of a one-to-one
function from a k-element set into the set of vertices of the graph. Formally, we take
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variables pi;j , 1 � i < j � n, qi;r , 1 � i � n, 1 � r � k and clauses

W
i qi;r for all 1 � r � k;

:qi;r _ :qi;r0 for all 1 � i � n; 1 � r < r0 � k;
:qi;r _ :qi0;r0 _ pi;i0 for all 1 � i < i0 � n; 1 � r < r0 � k:

Let Colorn;l(�p; �r) denote a set of clauses expressing that the graph with n vertices
coded by �p is l-colorable. The variables �r code a mapping from the set of vertices of
the graph into a set of size l such that no edge is mapped on a single point. This can
be expressed by a similar set of clauses as above.

If k > l, the set of graphs containing a k-clique is disjoint with the set of
l-colorable graphs (a clique needs at least k colors), hence the two sets of clauses
Cliquen;k(�p; �q) and Colorn;l(�p; �r) cannot be satis�ed simultaneously. For suitable
parameters it has been shown that these sets of graphs cannot be separated by small
monotone circuits.

9.3.8. Theorem. (Razborov [1985], Alon and Boppana [1987]) Let l < k andp
kl � n

8 log n
. Then every monotone circuit which outputs 1 on graphs with a k-clique

and 0 on l-colorable graphs has size 2
(
p
l) . 2

9.3.9. Corollary. (Kraj���cek [1997a])Any resolution refutation of the set of clauses

Cliquen;k(�p; �q) [ Colorn;l(�p; �r) has size 2

(
p
l). 2

Using this approach we do not avoid combinatorial technicalities, since the proof
of Theorem 9.3.8 is nontrivial. Its advantage is that an exponential lower bound on
the length of resolution proofs is easily accessible to those who already know lower
bounds on the size of monotone circuits.

9.3.10. Another advantage of this approach is that it can be applied to cutting
plane proofs, where the random restriction method does not seem to work.

The version of Theorem 9.3.5 for cutting plane proofs is almost identical. There
are two versions of the monotone case, Theorem 9.3.7, for cutting plane proofs.
The �rst one (Bonet, Pitassi and Raz [1997a], Kraj���cek [1997a]) gives monotone
boolean circuits, but requires that the coe�cients in the proof are polynomially
bounded by its size (put otherwise, the size of the monotone circuit is bounded
not only by the number of lines but also by the size of the coe�cients). The
second version (Pudl�ak [1997]) works without any restriction on the coe�cients,
but the interpolating circuit is not an ordinary monotone boolean circuit. We have
to consider circuits which are monotone and compute with arbitrary real numbers.
Again fortunately, the known proofs of the lower bounds for monotone boolean
circuits can be easily extended to the more general model (Pudl�ak [1997], Haken
and Cook [n.d.]). In particular, an exponential lower bound can be proved for the
clauses Cliquen;k(�p; �q) [ Colorn;l(�p; �r) presented as inequalities in the cutting plane
proof system.
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9.3.11. At �rst this approach to lower bounds looked very promising. Unfortu-
nately, it became clear very soon that it cannot be extended much further beyond
resolution. We do not know, if an e�ective interpolation theorem in the style of
Theorem 9.3.5 holds for bounded depth Frege systems and we rather think it does
not hold even for such weak proof systems (cf. Kraj���cek [1997a] for some arguments).
For Frege systems we have strong evidence that it does not hold. Namely one can
prove that such a theorem does not hold for Frege systems using the widely accepted
conjecture that factoring of integers is not in polynomial time.

9.3.12. Theorem. (Bonet, Pitassi and Raz [1997b]) There exists a sequence of

tautologies of the form �n(�p; �q)_�n(�p; �r) which have polynomial size Frege proofs, but

for which there is no sequence of polynomial size interpolation circuits, provided that

factoring of integers is not in polynomial time. 2

Instead of proving this theorem we shall explain in general terms the rather
surprising connection between propositional calculus and cryptography. The basic
concept of cryptography is the one-way function, which is, roughly speaking, a
function which can be easily computed (in polynomial time) but whose inverse
function is hard.5 It is not known if such functions exist; in fact, we even do not
know how to prove their existence assuming P 6= NP . We do know, however, that
a one-way function exists i� there exist disjoint NP sets which cannot be separated
by a set in P . We shall see in the next section (see 10.3) that arithmetical theorems
of certain logical complexity can be translated into a sequence of propositional
tautologies. Furthermore for each �rst order theory we can construct a propositional
proof system where the translations of such theorems have polynomial size proofs.
Now, if we have a pair of disjoint NP sets A;B which cannot be separated by a
set in P , we can take a theory T in which this fact is provable (just include this
statement as an axiom). Hence in the propositional proof system P derived from
T we can prove the tautologies derived from A;B . On the other hand, polynomial
time interpolation for P would give us a separating set for A;B as noted above.
(For sake of simplicity we are talking about polynomial time algorithms instead of
polynomial size circuits; the distinction between the two concepts is not essential for
our argument.)

A weaker version of Theorem 9.3.12, which gave the result only for extension
Frege systems, was originally proved by taking the conjectured one-way function
x 7! gx mod n and proving in S1

2 , which is a theory associated with extension Frege
proof systems, that the corresponding pair of NP sets is disjoint (see Kraj���cek and
Pudl�ak [1998] for a full proof).

9.4. Other lower bounds. The method of random restrictions (exempli�ed in
section 9.2) has been extended by Ajtai [1994a] to any �xed depth Frege system.
It gives, however, only slightly superpolynomial lower bounds. In order to get

5For practical cryptography one needs hard in the average; here we consider only the worst
case complexity.
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exponential lower bounds one needs a more substantial change in which the concept
of covering sets is replaced by certain decision trees and a Switching Lemma, of the
type used by Yao [1985] and H�astad [1986], is applied to reduce the depth of formulas;
see Beame et al. [1992], Kraj���cek, Pudl�ak and Woods [1995] and Pitassi, Beame and
Impagliazzo [1993].

Let us de�ne at least the concept of the decision tree which is used in these bounds
for PHPn. We use the same notation as above. Such a tree is a labelled rooted tree,
where the vertices are labelled by elements of D [R, except for the leaves, which are
labelled by 0 { reject, and 1 { accept; the edges are labelled by pairs (i; j), i 2 D,
j 2 R. We require that for a nonleaf vertex v with a label i 2 D, resp. i 2 R, the
outgoing edges are labelled by (i; j), resp (j; i), one edge for every j which does not
occur on the path leading to v. Consequently, the edge labels on every branch are
independent, i.e., they form a partial one-to-one mapping.

In the lower bound proof we assign to each formula the boolean algebra of all
subsets of leaves of such a tree and the value of the formula �(') is the subset of
leaves labelled by 1.

The intuitive meaning of this concept is the following. We think of truth values
of the propositional variables pi;j as given by some imaginary one-to-one mappings
from D onto R. In fact, in a nonstandard model with n in�nite, there are such
external mappings. The decision tree enables us to decide in a natural way if such
a mapping is accepted or not. Then all the boolean algebras de�ned by trees can
be embedded into a single one which is the boolean algebra of subsets of one-to-one
mappings from D onto R. Put otherwise our logic is a logic of one-to-one mappings
from D onto R.

PHPn is not the only sequence for which one can prove exponential lower bounds
on bounded depth Frege proofs. Another such sequence is PARn | the parity
principle | where PARn, n odd, expresses that a set of cardinality n cannot be
partitioned into pairs. Similarly, one can consider the counting principle COUNTp;n
which expresses that a set of size n, n not divisible by p, cannot be partitioned into
blocks of size p. Ajtai [1990] has shown that PARn does not have polynomial size
bounded depth proofs, even if we use instances of PHPm as premises, and similar
independence results have been proved for the counting principles by Ajtai [1994b],
Beame et al. [1996], Buss et al. [1996/1997].

Together with exponential lower bounds for cutting plane proof systems and
degree lower bounds for the polynomial calculus, these are the strongest results so
far. For unrestricted Frege system we have only an 
(n2) lower bound for tautologies
such as :2n(p _ :p). The proof is based on the claim that all subformulas of this
tautology must occur essentially (i.e., in a constant depth) in the proof. This is
essentially the same idea as in Claim 4.2.3, see also 8.1.16. Apart from this rather
simple proof we do not have anything for Frege and stronger systems.
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10. Bounded arithmetic and propositional logic

In this section we shall show an important relation between the lengths of
proofs of propositional tautologies and provability in fragments of arithmetic. By
this connection certain arithmetical formulas can be translated to a sequence of
propositions, and if the formula is provable in some theory, then the propositions have
small (e.g., polynomial size) proofs in some propositional proof system associated
with the theory. Surprisingly, there are pairs of such a theory T and a propositional
proof system P where both the theory T and the proof system T are quite natural.
In this situation we can think of T and P to be just two facets of a single concept,
where T is a uniform version of the nonuniform P . This is just another parallel to
boolean circuit complexity, where the uniform model is the Turing machine and the
nonuniform model is a sequence of boolean circuits.

The main application of this relation is in showing independence results. If we
could prove superpolynomial lower bounds on strong propositional proof systems,
then we could show interesting independence results in bounded arithmetic such as
unprovability of NP = coNP .

There is also practical use of this relation which is necessary to take into account
even if you are not interested in �rst order theories. It might be fairly di�cult to �nd
and describe short proofs of some tautologies directly, while in a bounded arithmetic
we can often see easily that the corresponding �rst order formula is provable. This was
used, e.g. in Pudl�ak [1991], to disprove a conjecture saying that formulas expressing
Ramsey's theorem in propositional logic do not have polynomial size proofs in Frege
systems. Similarly, it is possible to prove the existence of a polynomial simulation
of a proof system P by a proof system Q by proving the re
ection principle (see
below) for P in a theory associated with Q. In such a way the polynomial simulation
of substitution Frege by extension Frege system was discovered by Dowd [1985] and
Kraj���cek and Pudl�ak [1989].

This subject requires some familiarity with fragments of arithmetic considered
in bounded arithmetic. The reader, who does not know that subject should consult
Chapter II Buss [1986], H�ajek and Pudl�ak [1993] or Kraj���cek [1995].

10.1. There are basically two translations of bounded formulas into propositions.
They are determined by the particular way in which we represent truth assignments.
A truth assignment is a �nite sequence �a of 0's and 1's. We can code it either by a
subset of a �nite segment of integers or by a number whose binary representation is
1�a. We start with the simpler one.

10.2. First translation. Let L0(�) be the language of arithmetic with nonlogical
symbols 0; S;+; �;� augmented with a second order variable � for l-ary relations.
We consider the class �0(�) of bounded formulas in the language L0(�). Assume
that we use the same connectives in the �rst order language and the propositional
calculus and they include ^;_; moreover we shall assume that we have propositional
constants ?;> in propositional logic and that the propositional variables are indexed
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by l-tuples of nonnegative integers.
Let � 2 �0(�) be a formula with k free variables. Then for each sequence

n1; : : : ; nk of nonnegative integers we de�ne a propositional formula

h�in1;:::;nk
inductively as follows.

1. for terms s(n1; : : : ; nk); t(n1; : : : ; nk), we de�ne

hs(n1; : : : ; nk) = t(n1; : : : ; nk)in1;:::;nk =df? ( resp. = >);

if s(n1; : : : ; nk) = t(n1; : : : ; nk) is false, (resp. true); we use the same de�nition
for � in place of =;

2. for terms t1(x1; : : : ; xk); : : : ; tl(x1; : : : ; xk), we de�ne

h�(t1(x1; : : : ; xk); : : : ; tl(x1; : : : ; xk))in1;:::;nk =df pi1;:::;il;

where i1; : : : ; il are the values of t1(n1; : : : ; nk); : : : ; tl(n1; : : : ; nk) ;

3. propositional connectives are translated identically, e.g.,

h�1 ^ �2in1;:::;nk =df h�1in1;:::;nk ^ h�2in1;:::;nk;

4. bounded quanti�ers are translated to long disjunctions and conjunctions, thus

h9y � s(x1; : : : ; xk) �(x1; : : : ; xk; y)in1;:::;nk =df

h�(x1; : : : ; xk; y)in1;:::;nk;0 _ � � � _ h�(x1; : : : ; xk; y)in1;:::;nk;m;
wherem is the value of s(n1; : : : ; nk); in the case of bounded universal quanti�er
the propositional formula is de�ned dually.

10.2.1. Example. Let �(x) be the formula expressing the pigeonhole principle
for the binary relation � (for sake of simplicity we use a little stronger form than in
section 9):

9u � S(x)8v � x(:�(u; v)) _ 9u1; u2 � S(x)9v � x(u1 6= u2 ^ �(u1; v) ^ �(u2; v)):

For a given n, the translation h�(x)in has form:_
i�n+1

^
j�n

:pij _
_

i1;i2�n+1

_
j�n

��i1;i2 ^ pi1;j ^ pi2;j;

where ��i1;i2 denotes ? if i1 = i2 and denotes > otherwise. The constants > and ?
can be easily eliminated; namely, the formula is equivalent, using a polynomial size
bounded depth Frege proof, to

_
i�n+1

^
j�n

:pij _
_

i1;i2�n+1;i1 6=i2

_
j�n

pi1;j ^ pi2;j:
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We have obtained the usual form of the propositional formula expressing the
pigeonhole principle.

Let us observe, which is quite clear from the example, that the translation is
a formula of polynomial size in the indices n1; : : : ; nk and, moreover, the depth is
bounded by a constant, namely by the depth of the �rst order formula.

Let I�0(�) denote I�0 with the induction schema extended to all �0(�)
formulas.

10.2.2. Theorem. (implicit in Paris and Wilkie [1985]) If I�0(�) proves

8x1 : : :8xk�(x1; : : : ; xk), where �(x1; : : : ; xk) 2 �0(�), then there exists a polynomial

p and a constant d such that the propositions h�(x1; : : : ; xk)in1;:::;nk have Frege proofs
of size � p(n1; : : : ; nk) and depth � d.

Proof-sketch. Suppose 8x1 : : :8xk�(x1; : : : ; xk) is provable in I�0(�), let
n1; : : : ; nk be given. By cut elimination in the sequent calculus formalization of
I�0(�), we have a free-cut-free proof of this sentence. From this proof we get a proof
of the sequent ! �(a1; : : : ; ak) which contains only �0(�) formulas. Starting at the
bottom, i.e., with ! �(a1; : : : ; ak), we shall gradually translate the �rst order proof
into a propositional proof. The structural and propositional rules are, of course,
translated identically.

Consider an instance of the induction rule

A(b);�! �; A(S(b))

A(0);�! �; A(t)
;

where we have already translated the part of the proof from the lower sequent on.
Suppose that in the course of translation we have assigned numbers m1; : : : ; mr to the
free variables of the lower sequent. Observe that hA(b1; : : : ; br; t(b1; : : : ; br))im1;:::;mr

is equal to hA(b1; : : : ; br; br+1)im1;:::;mr;mr+1
, where mr+1 is the value of t(m1; : : : ; mr).

We take mr translations of the upper sequent with indices m1; : : : ; mr; m, m =
0; : : : ; mr� 1 (m stands for the free variable b). The translation of the lower sequent
follows from them by applying r � 1 cuts.

The quanti�er rules for bounded quanti�ers are treated similarly. Eventually we
reach initial sequents which are translated to initial sequents in propositional logic.
2

This theorem can be used, as mentioned above, to construct short bounded depth
Frege proofs, but, what is more interesting, also to prove, for instance that the
pigeonhole principle for a free second order variable � is not provable in I�0(�).
The �rst proof of this independence, by Ajtai [1994a], was based on model theory
and a lower bound on the length of proofs of the propositional pigeonhole principle
was derived as a corollary. Nowadays it is clear that the right and simpler way is to
prove the lower bound for propositional logic �rst, see Beame et al. [1992], Pitassi,
Beame and Impagliazzo [1993] and Kraj���cek, Pudl�ak and Woods [1995].

Let us mention by passing another parallel with computational complexity. The
results for theories augmented with an extra free second order variable are alike to
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the oracle results in complexity theory. The \absolute" results, e.g. unprovability of
the pigeonhole principle for �0-formulas in I�0 , are beyond present means, as well
as unrelativized separation results in computational complexity theory.

10.2.3. The same translation can be applied to second order theories where we
have also true second order axioms. For U1

1 we get a bound 2(log n)
O(1)

on the size of
Frege proofs (with a (logn)O(1) bound on the depth); for V 1

1 , Kraj���cek [1994b] gives
a polynomial bound on the size of extension Frege proofs.

10.3. Second translation. For the second translation we consider the language
L2 of the theories S2 and T2 introduced by Buss [1986], see Chapter II. This language
extends L0 by bx=2c; x#y; jxj. The interpretation of these function symbols is
jxj = dlog2(x + 1)e, x#y = 2jxj�jyj. The # function is used to obtain faster growth
rate of terms, namely 2p(log x) , p a polynomial. This means that the lengths of
the numbers increase polynomially, which renders formalization of polynomial time
computations possible. The jxj function is used to de�ne sharply bounded quanti�ers

8x � jtj; 9x � jtj;

where t is a term. The basic property is that there are only polynomially many
elements x less than or equal than jtj, since the outermost function in this term is,
essentially, the logarithm.

The class �b
1 consists of formulas of L2 which contain only sharply bounded

quanti�ers and strong bounded quanti�ers (positive occurrences of universal bounded
and negative occurrences of existential bounded); the other classes �b

i ;�
b
i are de�ned

similarly.
We want to de�ne propositional translations of a �b

1 formula '(x1; : : : ; xk). The
translation will be denoted by ['(x1; : : : ; xk)]n1;:::;nk . Now we index the translation
with strings of integers again, but the meaning is that we express propositionally
that the sentence '(x1; : : : ; xk) holds for all x1; : : : ; xk with jx1j � n1; : : : ; jxkj � nk .
The intuition behind the translation is the following. We identify truth assignments
with (binary representations of) numbers. Since the terms are polynomial time
computable functions, we can express atomic �rst order formulas by polynomial
size propositions. Sharply bounded quanti�ers are translated to polynomial size
disjunctions and conjunctions. The strong bounded quanti�ers are represented
by sequences of propositional variables; this is a correct interpretation, since, by
de�nition, a propositional tautology must be satis�ed for all truth assignments.

A formal de�nition is fairly involved, thus most authors do not give a full
de�nition, and we shall also only sketch how to resolve some technical problems
of the de�nition.

First consider an atomic formula, say, with only one free variable, s(x) = t(x).
Let n be given for which we want to express propositionally that the sentence
s(x) = t(x) holds for all x with jxj � n. Ideally we would take propositional variables
�p = (p1; : : : ; pn) representing such numbers and formulas �i(�p); �i(�p), i = 1; : : : ; m,



The Lengths of Proofs 623

(m = nO(1)), representing the bits of s(x) resp. t(x), and de�ne

[s(x) = t(x)]n =df

^
i=1;:::;m

�i(�p) � �i(�p):

There are such formulas of polynomial size for each of the basic functions, hence
by composing them we get polynomial size formulas for all terms. Probably one
can use these formulas, but it would require to �nd short extension Frege proofs
of basic properties of these functions, which is by no means obvious for such a
formalization. Therefore, instead of it, we take the natural circuits for the functions
and introduce propositional variables for the functions computed at the vertices of
the circuits. Then the translation will be an implication with the antecedent being
the conjunction of simple clauses relating the values of the vertices of the circuits and
consequent being ^

i=1;:::;n

qi � ri;

where qi and ri are the propositional variables for the outputs of the circuits for s(x)
and t(x) respectively. Thus the translation will have a polynomial number of extra
variables which do not code bits of the numbers representing the free variables of
the �rst order formula. For such a formalization it is much easier to prove the basic
properties of the translation

As explained above, the strong bounded quanti�ers are simply omitted, (except
that the bounds on the variables are left as a part of the formula) and the sharply
bounded quanti�ers are translated using disjunctions and conjunctions. Consider
for instance a formula � starting with a sharply bounded quanti�er followed by a
universal bounded quanti�er, say

9y � jt(x)j8z � s(x; y) '(x; y; z);

where ' is an open formula. We want to de�ne the translation [�]n. We �rst replace
the quanti�ed variable y by the numerical instances, and then translate_

i=0;:::;jt(n)j
(i � jt(x)j ! '(x; i; zi)) ;

where z0; : : : ; zjt(n)j are new distinct variables.
After this example it should not be di�cult for the reader to go on and handle

more complex cases.

10.3.1. S2 is a theory based on a �nite number of basic open axioms with induction
for bounded formulas of the form

'(0) ^ 8x('(bx=2c)! '(x)) ! 8x'(x):
The most important fragment of bounded arithmetic S2 is the theory S1

2 where
the induction schema is restricted to �b1 formulas. This theory is adequate for
formalization of polynomial time computations, see Buss [1986]. Furthermore it is
related to extension Frege proof systems:
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10.3.2. Theorem. (Cook [1975], Buss [1986]) If S1
2 proves 8x1 : : :8xk'(x1; : : : ; xk),

where '(x1; : : : ; xk) 2 �b
1, then there exists a polynomial p such that the propositions

['(x1; : : : ; xk)]n1;:::;nk have extension Frege proofs of size � p(n1; : : : ; nk). 2

The proof of this theorem is similar to the proof of Theorem 10.2.2, but much
more involved due to the di�culties with the basic axioms.

10.3.3. This theorem naturally rises the question: is extension Frege proof system
the weakest system for which we can prove this theorem? We do not know; it
is possible that one can construct some pathological counterexample, but there is
another reason for associating extension Frege systems with S1

2 , which we shall
consider next. Following Kraj���cek and Pudl�ak [1990], we shall de�ne a natural
relation between theories and propositional proof systems.

10.3.4. De�nition. (1) For a propositional proof system P we denote by RFN(P )
(the re
ection principle for P ) the 8�b

1 sentence

8d; u((d : P ` u)! Taut(u));

where Taut(x) is a �b
1 formula de�ning the set of propositional tautologies. Note

that d : P ` u (d is a P proof of a proposition u) can be written as a �b1 formula,
since it is a polynomial time computable predicate.

(2) A propositional proof system P simulates a theory T , if for every '(x) 2 �b
1

T ` 8x'(x) ) S1
2 ` 8y9d (d : P ` ['(x)]jyj):

(3) A propositional proof system P is associated to a theory T , if P simulates T
and T ` RFN(P ).

Probably in (2) you expected rather a statement like in Theorems 10.2.2 and
10.3.2. In fact the condition (2) is stronger: by Buss's Theorem II.3.2, the provability
of such a �2 statement in S

1
2 implies that it can be witnessed by a polynomial time

computable function. Thus, in particular, the P proofs of ['(x)]n's must be of
polynomial size. So (2) means that there is a polynomial bound on the lengths of P
proofs of ['(x)]n's provably in a weak theory.

Let us also note that RFN(P ) is equivalent to the consistency of P assuming
some \mild conditions" on P .

We shall denote by G the quanti�ed propositional proof system based on the
sequent calculus, see 8.8. Let Gi denote the subsystem of G obtained by imposing
the restriction of at most i alternations of quanti�ers in each formula of a proof. Let
G�i denote Gi where we allow only tree-like proofs.

The following theorem gives some known pairs of a proof system associated to a
theory (for de�nitions of the theories see Chapter II).
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10.3.5. Theorem. (Cook [1975], Kraj���cek and Takeuti [1990], Kraj���cek and
Pudl�ak [1990]) The following are pairs of a theory and a proof system associated to it:

(S1
2 ; extension Frege), (Si2; G

�
i ) for i � 1, (T i2; Gi) for i � 1, (U1

2 ; G). 2

Note that for U1
2 we have two related systems, depending on which translation

we take. Further results of this type were proved in Clote [1992].
Next theorem shows that under reasonable conditions the associated propositional

proof system is determined up to polynomial simulation.

10.3.6. Theorem. (Kraj���cek and Pudl�ak [1990]) Let P be a propositional proof

system associated to a theory T . Suppose T contains S1
2 and the following is provable

in S1
2 : P simulates extension Frege systems and it is closed under modus ponens.

Then P polynomially simulates any propositional proof system for which T proves the

re
ection principle.

Thus, e.g. by Theorem 10.3.5, extension Frege systems and G�1 are polynomially
equivalent.

Proof. Suppose T ` RFN(Q). Let �Q(x; y) be the �
b
1 formula which de�nes the

re
ection principle, i.e.,

�Q(d; u) � d : Q ` u! Taut(u):

By the assumptions S1
2 ` 8z(P ` [�Q(x; y)]z). We now we argue in the theory S1

2 .
Thus we have

P ` [x : Q ` y ! Taut(y)]z:

Since [x : Q ` y ! Taut(y)]z is [x : Q ` y]z ! [Taut(y)]z and P is closed under
modus ponens, we get

P ` [x : Q ` y]z ! P ` [Taut(y)]z:

We have also
P ` [Taut(y)]z ! P ` y;

since it is true already for extension Frege systems (we leave this claim without a
proof). Thus we have obtained in S1

2

P ` [x : Q ` y]z ! P ` y:
Back in the real world, by Buss's witnessing theorem it means that one can construct
in polynomial time a proof of ' in P from a proof of [d : Q ` ']n in P .

Now suppose that we are given a proof d of ' in Q. Substituting the numbers
which encode d and ' we get a true variable-free propositional formula [d : Q ` ']n.
Such formulas always have polynomial size proofs even in a Frege system. Thus we
get a P proof of ' in polynomial time. 2

The meaning of this theorem is that the proof system associated to a theory T is,
from the point of view of T , the strongest proof system, i.e., stronger systems may
be inconsistent. Let us state it formally:
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10.3.7. Corollary. Under the same assumptions as in Theorem 10.3.6, if T `
NP = coNP , then P is polynomially bounded.

Proof. Since the set of propositional tautologies is coNP -complete, the assumption
T ` NP = coNP means that

T ` 8x(�(x) � Taut(x)); (59)

for some �(x) 2 �b1 . So � de�nes a polynomially bounded propositional proof system
Q (proofs are the witnesses for the existential bounded quanti�ers). The sentence
(59) implies T ` RFN(Q). Hence, by Theorem 10.3.6, P polynomially simulates Q.
But if Q is polynomially bounded, then also P must be. 2

As we believe that NP 6= coNP , we expect that the corollary will be used in
the contrapositive form. Let us state the nicest special case of it (proved directly
by Wilkie in 1987, unpublished; as observed in Kraj���cek and Pudl�ak [1989] it also
follows from results of Cook [1975] and Buss [1986]).

10.3.8. Corollary. If extension Frege proofs are not polynomially bounded, then

S1
2 does not prove NP = coNP . 2

10.4. Optimal proof systems and consistency statements. The second
translation can be used to show a link between a fundamental problem about the
lengths of proofs of �nite consistency statements and the existence of an optimal
propositional proof system. Furthermore there is a statement from structural
complexity theory which is equivalent to these problems. A set Y � f0; 1g� is
called sparse, if for every n, the size of Y \ f0; 1gn is bounded by a polynomial.

10.4.1. Theorem. (Kraj���cek and Pudl�ak [1989]) The following are equivalent:

1. There exists a consistent �nitely axiomatized theory T � S1
2 such that for every

consistent �nitely axiomatized theory S

kConS(n)kT = nO(1):

2. There exists an optimal propositional proof system, i.e., a propositional proof

system P such that for every propositional proof system Q

k'kQ = k'kO(1)P ;

for every tautology '.

3. For every coNP -set X there exists a nondeterministic Turing machine which

acceptsX and uses only polynomial time on every sparse subset Y � X , Y 2 P .

The proof of the equivalence of 1. and 2. is based on the following two construc-
tions. If T is an optimal theory in the sense of 1., we take a propositional proof
system P de�ned by:

d : P ` ' �df d : T ` Taut('):
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If, on the other hand, P is an optimal propositional proof system, we take the theory
T de�ned by:

T =df S
1
2 +RFN(P ):

We omit the rest of the proof. 2

Given a propositional proof system P which is not polynomially bounded, we
can produce, using this theorem, a sequence of tautologies which surely do not have
polynomial size proofs in P . Unfortunately, the tautologies will be rather complex
arti�cial statements, thus not amenable to a combinatorial analysis. However, as
noted by Kraj���cek [1995], one can use the polynomial reductions, by which NP
completeness results are proved, to turn these tautologies into simple combinatorial
statements. For instance one can construct a sequence of nonhamiltonian graphs,
such that there are no polynomial size proofs in P of the tautologies expressing
that the graphs are nonhamiltonian. Thus the problem reduces to �nding a class
of nonhamiltonian graphs for which it is di�cult to prove in P that they are
nonhamiltonian.

11. Bibliographical remarks for further reading

In this section we shall give a few more references which have not been mentioned
in the main text. This should serve to the reader who is interested in the history of
the subject or who wants to learn more about it. Our aim is not to complete the
list of references about results on the lengths of proofs, rather we want to partially
complement the above presentation which concentrated on methods used in this
research area. Thus, in particular, we shall not repeat results described above.

Probably the oldest recorded paper on the subject is G�odel [1936]. In this
two-page abstract he stated the result that there is a speed-up between the lengths
of proofs of formulas provable in i-th order and i + 1-st order arithmetics. To quote
him: The transition to the logic of the next higher type not only results in certain

previously unprovable propositions becoming provable, but also in it becoming possible

to shorten extraordinarily in�nitely many of the proofs already available. The length
of proofs is considered to be the number of steps and the speed-up is �(n) for any
function � \computable" in the lower system. There was no proof given in the paper.
For a full proof of this statement see Buss [1994].

Another important writing of G�odel which was discovered only a few years ago,
is the letter by G�odel [1993]. In that letter he posed the question whether one can
decide in linear, quadratic, etc. time in n whether a given formula has a proof of
length (= number of symbols) n. Now we know that this problem is NP -complete.
See Buss [1995a] for a discussion and a proof of an unproven claim of G�odel.

Looking at the literature it seems that the subject lay dormant for several decades.
I think that many people thought about problems on the lengths of proofs, but the
things that they actually could prove did not look interesting enough, especially when
compared with other fancy topics like set theory. Furthermore some basic concepts
were missing (one of such crucial things was the distinction between polynomial size
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and exponential size). This can be documented by a remark of Kreisel [1967,page
241], who mentions a conversation with G�odel where G�odel asked the question of
what are the lengths of proofs of �nite consistency statements. No paper had been
written about it until Friedman [1979], but he did not consider it to be worth
publishing.

At the early stages, Georg Kreisel was one of the main proponents of this �eld.
His student Statman [1978] determined the increase of the lengths of proofs in
cut-elimination and Herbrand's Theorem. Another of his students, Baaz (see Baaz
and Pudl�ak [1993], Baaz and Zach [1995]), made signi�cant progress in Kreisel's
Conjecture. As seen on Kreisel's Conjecture, Kreisel was more interested in positive

results in the sense of deriving more information from the proofs than just the mere
fact that the statement is true. Logic should help mathematicians to get more or
better results, rather than only to show impossibilities of certain proofs, see e.g.
Kreisel [1990]. From this point of view, one of the greatest successes in proof theory
was the result of Luckhardt [1989], deriving explicit bounds on approximation of
algebraic numbers by rational numbers (Roth's theorem), using Herbrand's theorem.

Originally the interest in the lengths of proofs was based mainly on philosophical
and methodological considerations. With the advent of computers a new practical
reason appeared: automated theorem proving. The main tool in automated theorem
proving is the resolution system for �rst order logic, see e.g. Chang and Lee [1973].
For us, theoreticians, most of the papers are too much applied, however there
are several results which are important also for theory. Such a notable result is
the exponential lower bound for propositional regular resolution of Tsejtin [1968].
The question about the e�ciency of proof-search strategies are often nontrivial
mathematical problems, let us mention at least some results of this type Baaz and
Leitsch [1992,1994]. There are several books about the complexity of logical calculi,
e.g. Eder [1992]; they deal mainly with the �rst order logic.

The next important stimulus was the rise of complexity theory. The lengths of
proofs is just one of several research areas which combine logic and complexity theory.
Another one, which is closely related to it, is the complexity of logical theories. The
problem is how e�ciently can we decide if a sentence is provable in a given decidable
theory T (e.g., Presburger arithmetic). Note that an upper bound on the lengths of
proofs in T gives an upper bound on a nondeterministic procedure for decidability.
Often this bound is not very far from the best. We refer the reader to the surveys
Rabin [1977] and Compton and Henson [1990].

We can say that the research into complexity of proofs really started with the
seminal paper of Parikh [1971] which introduced several important concepts and
proved basic results about them: speed-up for �rst order theories, theories which are

inconsistent but are consistent for practical purposes, and bounded arithmetic. Soon
after it, he published a basic result on Kreisel's Conjecture in Parikh [1973]. He
proved that the conjecture is true, if we take Peano arithmetic with + and � as
ternary relations instead of function symbols. That proof has been a paradigm for
all subsequent proofs of instances of Kreisel's Conjecture.

After that several people started to work on these subjects. One of the most
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in
uential researchers in this �eld has been Orevkov. We shall mention only the
most important papers of the many that he published. Orevkov [1982] gave a
di�erent proof of the lower bounds on the lengthening of proofs in cut-elimination
and Orevkov [1986] gave more precise upper bounds. Orevkov [1987b] introduced
explicitly the concept of the skeleton and Orevkov [1987a] proved several results
related to Kreisel's Conjecture. All these results, and many more, are covered in
Orevkov [1993].

There are more results on the complexity of �rst order proofs. Of those that
we have not presented yet, let us mention the dissertation of Ignjatovi�c [1990]. He
proved a nonelementary speed up between Primitive Recursive Arithmetic and I�0 .

Currently the most active area is propositional logic and bounded arithmetic.
The fundamental paper is Cook [1975], where a relation of the lengths of proofs in
propositional logic and provability in arithmetic was considered for the �rst time.
The most in
uential papers in bounded arithmetic after Parikh [1971] were written
by Paris and Wilkie; let us mentioned at least the Paris and Wilkie [1985] paper
on counting problems which in
uenced very much research on the complexity of
propositional logic. The basic book on bounded arithmetic is due to Buss [1986].
Another fundamental paper is by Ajtai [1994a], where he introduced the method
of random restrictions into propositional logic, which had already been used in
complexity theory. This development has been partially described in this chapter
and also in Chapter II; much more can be found in the monograph by Kraj���cek
[1995], which covers the whole area in detail except for the most recent results. As
this manuscript is being �nalized, new exciting results are being obtained on the
polynomial calculus by Razborov [n.d.], Kraj���cek [1997b] and Riis and Sitharam
[1997].
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