
Logic in Computer Science

Overview

1. basic concepts

2. propositional Resolution system, feasible interpolation, SAT
solvers,. . .

3. 3 main formalizations of proofs: Hilbert/Frege style,
Gentzen’s sequent calculus, Natural Deduction

4. the Cut-elimination Theorem and its applications

5. Herbrand’s Theorem

6. bounds on the size of cut-free roofs and Herbrand’s disjunction

7. first-order Resolution and automated theorem proving

8. selfreference, Gödel’s theorems, Rosser’s theorem,. . .

9. Natural Deduction and lambda calculus

10. Peano Arithmetic and its fragments

11. Bounded Arithmetic and the Polynomial Hierarchy

[1]

References

1. S. Buss, An introduction to proof theory, in Handbook of Proof
Theory, edited by S. Buss, Elsevier North-Holland, 1998, pp 1-78.
http://math.ucsd.edu/ sbuss/ResearchWeb/handbookI/index.html

2. C.L. Chang and R. C.-T. Lee: Symbolic Logic and Mechanical
Theorem Proving, Academic Press, 1973

3. P. Pudlák: The lengths of proofs, in Handbook of Proof Theory,
pp.547-637 http://www.math.cas.cz/∼pudlak/length.pdf

4. P. Hájek, P. Pudlák: Metamathematics of first order arithmetic,
Springer-Verlag/ASL Perspectives in Logic, 1998 Kniha je ke stažeńı
p̌res Project Euclid http://www.aslonline.org/books-perspectives
cup Springer.html

5. C. Smorynski: The incompleteness theorems. Handbook of
Mathematical Logic, J. Barwise Editor, 1977.

6. A.S. Troelstra and H. Schwichtenberg: Basic Proof Theory,
Cambridge University Press

[2]

Of general interest:

I P. Pudlák, Logical Foundations of Mathematics and
Computational Complexity, Springer, 2017

[3]

Acknowledgment

This course is partly based on S. Buss’s chapter and in some slides
I copied parts of his work.

[4]

1st lesson
basic concepts

I syntax — proof theory — Gotlob Frege, David Hilbert

I semantics — model theory — Alfred Tarski

I soundness and completeness of proof systems w.r.t. semantics
(or vice versa)

computational aspects

I how big a proof of a given theorem must be

I how difficult it is to find it

I how strong a theory/proof system we need to prove the
theorem

[5]

1st lesson
basic concepts

I syntax — proof theory — Gotlob Frege, David Hilbert

I semantics — model theory — Alfred Tarski

I soundness and completeness of proof systems w.r.t. semantics
(or vice versa)

computational aspects

I how big a proof of a given theorem must be

I how difficult it is to find it

I how strong a theory/proof system we need to prove the
theorem

[5]

propositional logic

I variables, connectives, formulas, Boolean circuits

I satisfiability (=consistency)

I compactness of propositional logic

Exercise

1. prove compactness of propositional logic

2. prove:
Let G be an infinite graph. If for every finite H ⊆ G,
χ(H) ≤ n, then χ(G) ≤ n.

[6]

propositional logic

I variables, connectives, formulas, Boolean circuits

I satisfiability (=consistency)

I compactness of propositional logic

Exercise

1. prove compactness of propositional logic

2. prove:
Let G be an infinite graph. If for every finite H ⊆ G,
χ(H) ≤ n, then χ(G) ≤ n.

[6]

Resolution

Motivation — SAT solvers

“. . . on 3 May 2016, Marijn Heule, Oliver Kullmann of Swansea
University, UK, and Victor Marek of the University of Kentucky in
Lexington have now shown that there are many allowable ways to
colour the integers up to 7,824 — but when you reach 7,825, it is
impossible for every Pythagorean triple to be multicoloured. . .

Theorem
The Ramsey number of Pythagorean triples, the least n such that
for every 2-coloring there is a monochromatic triple, is 7,825.

[7]

Resolution

Motivation — SAT solvers

“. . . on 3 May 2016, Marijn Heule, Oliver Kullmann of Swansea
University, UK, and Victor Marek of the University of Kentucky in
Lexington have now shown that there are many allowable ways to
colour the integers up to 7,824 — but when you reach 7,825, it is
impossible for every Pythagorean triple to be multicoloured. . .

Theorem
The Ramsey number of Pythagorean triples, the least n such that
for every 2-coloring there is a monochromatic triple, is 7,825.

[7]

Three computer scientists have announced the largest-ever
mathematics proof: a file that comes in at a whopping 200
terabytes, roughly equivalent to all the digitized text held by the
US Library of Congress.

. . .

The researchers have created a 68-gigabyte compressed version of
their solution — which would allow anyone with about 30,000
hours of spare processor time to download, reconstruct and verify
it — but a human could never hope to read through it. . . ”

Exercise
Write a CNF formula such that a satsifying assignment of it is the
coloring they constructed.

[8]

Three computer scientists have announced the largest-ever
mathematics proof: a file that comes in at a whopping 200
terabytes, roughly equivalent to all the digitized text held by the
US Library of Congress.

. . .

The researchers have created a 68-gigabyte compressed version of
their solution — which would allow anyone with about 30,000
hours of spare processor time to download, reconstruct and verify
it — but a human could never hope to read through it. . . ”

Exercise
Write a CNF formula such that a satsifying assignment of it is the
coloring they constructed.

[8]

complexity of resolution proofs
I If NP 6= coNP, then (if and only if) for every proof system

there are sequences of tautologies without polynomial size
proof.

The Pigeon-Hole Principle tautology
¬PHPn+1

n says that n + 1 pigeons map 1-1 to n holes.

The CNF with the clauses

I
∨

j∈[n] pij for all i ∈ [n + 1]

I ¬pij ∨ ¬pkj for all k 6= i , j ∈ [n]

I ¬pij ∨ ¬pik for all k 6= j , i ∈ [n + 1]

I
∨

i∈[n] pij for all j ∈ [n]

Theorem (A. Haken, 1985)

Every resolution refutation of PHPn+1
n has exponential size.

Try your favorite SAT solver.

[9]

complexity of resolution proofs
I If NP 6= coNP, then (if and only if) for every proof system

there are sequences of tautologies without polynomial size
proof.

The Pigeon-Hole Principle tautology
¬PHPn+1

n says that n + 1 pigeons map 1-1 to n holes.

The CNF with the clauses

I
∨

j∈[n] pij for all i ∈ [n + 1]

I ¬pij ∨ ¬pkj for all k 6= i , j ∈ [n]

I ¬pij ∨ ¬pik for all k 6= j , i ∈ [n + 1]

I
∨

i∈[n] pij for all j ∈ [n]

Theorem (A. Haken, 1985)

Every resolution refutation of PHPn+1
n has exponential size.

Try your favorite SAT solver.

[9]

complexity of resolution proofs
I If NP 6= coNP, then (if and only if) for every proof system

there are sequences of tautologies without polynomial size
proof.

The Pigeon-Hole Principle tautology
¬PHPn+1

n says that n + 1 pigeons map 1-1 to n holes.

The CNF with the clauses

I
∨

j∈[n] pij for all i ∈ [n + 1]

I ¬pij ∨ ¬pkj for all k 6= i , j ∈ [n]

I ¬pij ∨ ¬pik for all k 6= j , i ∈ [n + 1]

I
∨

i∈[n] pij for all j ∈ [n]

Theorem (A. Haken, 1985)

Every resolution refutation of PHPn+1
n has exponential size.

Try your favorite SAT solver.

[9]

complexity of resolution proofs
I If NP 6= coNP, then (if and only if) for every proof system

there are sequences of tautologies without polynomial size
proof.

The Pigeon-Hole Principle tautology
¬PHPn+1

n says that n + 1 pigeons map 1-1 to n holes.

The CNF with the clauses

I
∨

j∈[n] pij for all i ∈ [n + 1]

I ¬pij ∨ ¬pkj for all k 6= i , j ∈ [n]

I ¬pij ∨ ¬pik for all k 6= j , i ∈ [n + 1]

I
∨

i∈[n] pij for all j ∈ [n]

Theorem (A. Haken, 1985)

Every resolution refutation of PHPn+1
n has exponential size.

Try your favorite SAT solver.

[9]

complexity of resolution proofs
I If NP 6= coNP, then (if and only if) for every proof system

there are sequences of tautologies without polynomial size
proof.

The Pigeon-Hole Principle tautology
¬PHPn+1

n says that n + 1 pigeons map 1-1 to n holes.

The CNF with the clauses

I
∨

j∈[n] pij for all i ∈ [n + 1]

I ¬pij ∨ ¬pkj for all k 6= i , j ∈ [n]

I ¬pij ∨ ¬pik for all k 6= j , i ∈ [n + 1]

I
∨

i∈[n] pij for all j ∈ [n]

Theorem (A. Haken, 1985)

Every resolution refutation of PHPn+1
n has exponential size.

Try your favorite SAT solver.
[9]

A lower bound on tree-like resolution

Theorem
If a resolution refutation of ¬PHPn+1

n has a form of a tree, then it
has size > (32)n−1.

Lemma
Let G be a binary tree. Then there is an edge that splits G into
two components K1,K2 such that

1

3
|G | ≤ |K1|, |K2| ≤

2

3
|G |.

Proof - exercise.

Proof-idea: Arguing by contradiction, we assume that we have a
tree-like refutation Π of size ≤ (32)n−1. With suitable partial truth
assignments to evaluate clauses in a refutation, we will apply
Lemma as “binary search” to find an application of the resolution
rule in which our assignment satisfies premises, but falsifies
conclusion.

[10]

A lower bound on tree-like resolution

Theorem
If a resolution refutation of ¬PHPn+1

n has a form of a tree, then it
has size > (32)n−1.

Lemma
Let G be a binary tree. Then there is an edge that splits G into
two components K1,K2 such that

1

3
|G | ≤ |K1|, |K2| ≤

2

3
|G |.

Proof - exercise.

Proof-idea: Arguing by contradiction, we assume that we have a
tree-like refutation Π of size ≤ (32)n−1. With suitable partial truth
assignments to evaluate clauses in a refutation, we will apply
Lemma as “binary search” to find an application of the resolution
rule in which our assignment satisfies premises, but falsifies
conclusion.

[10]

A lower bound on tree-like resolution

Theorem
If a resolution refutation of ¬PHPn+1

n has a form of a tree, then it
has size > (32)n−1.

Lemma
Let G be a binary tree. Then there is an edge that splits G into
two components K1,K2 such that

1

3
|G | ≤ |K1|, |K2| ≤

2

3
|G |.

Proof - exercise.

Proof-idea: Arguing by contradiction, we assume that we have a
tree-like refutation Π of size ≤ (32)n−1. With suitable partial truth
assignments to evaluate clauses in a refutation, we will apply
Lemma as “binary search” to find an application of the resolution
rule in which our assignment satisfies premises, but falsifies
conclusion.

[10]

Proof

Let D be the set of pigeons |D| = n + 1, and R the set of holes |R| = n.
Thus we have pij with i ∈ D, j ∈ R.

For a partial matching M ⊆ D × R, we define a partial assignment a(M)
such that

I if (i , j) ∈ M, then pij → 1,

I if (i , j) 6∈ M, and i ∈ D(M) or j ∈ R(M), then pij → 0,

I otherwise pij → ∗ (not defined).

Lemma

1. No a(M) falsifies any clause of ¬PHPn+1
n ;

2. If |M| < n and a(M) does not falsify a clause C, then there exists
an extension M ⊆ M ′, |M ′| = |M|+ 1 such that a(M ′) satisfies C.

[11]

Construct a sequence of tree-like resolution proofs, clauses and matchings
as long as possible

I Π0 = Π,Π1,Π2 . . .

I C0 = ⊥,C1,C2 . . .

I M0 = ∅,M1,M2 . . .

such that

I Πi is a proof of Ci from ¬PHPn+1
n and some clauses that are

satisfied by a(Mi),

I Ci is falsified by a(Mi),

I |Mi+1| ≤ |Mi | and |Πi+1| ≤ 2
3 |Πi |+ 1.

Construction. Given Πi ,Ci ,Mi , let e an edge that splits the proof into
two parts ≤ 2

3 |Πi | and let C be the clause above e. Then

1. if C is falsified by a(Mi), take the subproof above e as Πi+1 and set
Ci+1 := C , Mi+1 := Mi ;

2. otherwise let Πi+1 be the other part of Πi together with clause C ,
put Ci+1 := Ci , and extend Mi so that C is satisfied by a(Mi+1).

[12]

Construct a sequence of tree-like resolution proofs, clauses and matchings
as long as possible

I Π0 = Π,Π1,Π2 . . .

I C0 = ⊥,C1,C2 . . .

I M0 = ∅,M1,M2 . . .

such that

I Πi is a proof of Ci from ¬PHPn+1
n and some clauses that are

satisfied by a(Mi),

I Ci is falsified by a(Mi),

I |Mi+1| ≤ |Mi | and |Πi+1| ≤ 2
3 |Πi |+ 1.

Construction. Given Πi ,Ci ,Mi , let e an edge that splits the proof into
two parts ≤ 2

3 |Πi | and let C be the clause above e. Then

1. if C is falsified by a(Mi), take the subproof above e as Πi+1 and set
Ci+1 := C , Mi+1 := Mi ;

2. otherwise let Πi+1 be the other part of Πi together with clause C ,
put Ci+1 := Ci , and extend Mi so that C is satisfied by a(Mi+1).

[12]

After k steps, we have

|Πk | ≤ (. . . ((|Π|.2
3

+ 1)
2

3
+ 1) . . .)

2

3
+ 1 =

|Π|.(2

3
)k + (

2

3
)k + (

2

3
)k−1 + · · ·+ 2

3
+ 1 <

|Π|.(2

3
)k + 3

Since |Π0| ≤ (3
2)n−1, for some k < n − 1, |Πk | < 4. One can easily see

that this implies |Πk | = 3 (and then it cannot not decrease anymore).
Thus it is a single instance of the resolution rule:

D E

Ck

where Ck is falsified by a(Mk) and D,E are either satisfied by a(Mk), or
can be satisfied by an extension of it.

Contradiction.

[13]

2nd lesson

Algorithms for k-SAT
k-CNF is a CNF with all clauses of width at most k

The running time for all known algorithms (deterministic and
probabilistic) for k-SAT is 2ckn for some constants 0 < ck < 1.

Example. The (modification of) PPSZ algorithm: c3 = 0.386 . . . ,
c4 = 0.554 . . . , c5 = 0.650 . . . , ...

Exponential-Time Hypothesis (ETH)

∀k∃ck > 0 such that every algorithm for k-SAT has running time
≥ 2ckn.

[14]

2nd lesson

Algorithms for k-SAT
k-CNF is a CNF with all clauses of width at most k

The running time for all known algorithms (deterministic and
probabilistic) for k-SAT is 2ckn for some constants 0 < ck < 1.

Example. The (modification of) PPSZ algorithm: c3 = 0.386 . . . ,
c4 = 0.554 . . . , c5 = 0.650 . . . , ...

Exponential-Time Hypothesis (ETH)

∀k∃ck > 0 such that every algorithm for k-SAT has running time
≥ 2ckn.

[14]

2nd lesson

Algorithms for k-SAT
k-CNF is a CNF with all clauses of width at most k

The running time for all known algorithms (deterministic and
probabilistic) for k-SAT is 2ckn for some constants 0 < ck < 1.

Example. The (modification of) PPSZ algorithm: c3 = 0.386 . . . ,
c4 = 0.554 . . . , c5 = 0.650 . . . , ...

Exponential-Time Hypothesis (ETH)

∀k∃ck > 0 such that every algorithm for k-SAT has running time
≥ 2ckn.

[14]

What about 2-SAT?

Exercise
Find a polynomial time algorithm for 2-SAT!

Hint: use Resolution!

[15]

What about 2-SAT?

Exercise
Find a polynomial time algorithm for 2-SAT!

Hint: use Resolution!

[15]

Davis - Putnam algorithm

Let φ(p1, . . . , pn) be a CNF

1. assign gradually values to p1, p2, . . .

2. after each step, reduce clauses:

2.1 delete the clauses that are satisfied by the partial assignment
2.2 remove falsified literals from other clauses

3. if empty clause appears, backtrack if possible, otherwise stop

4. if a unit clause {pi}, or {¬pi} appears, assign pi so that it is
satisfied

5. continue with the next variable

The algorithm outputs a (partial) satisfying assignment or
“UNSATISFIABLE”.

Savings are achieved by unit clauses—no need to branch on pi .

[16]

Davis - Putnam algorithm

Let φ(p1, . . . , pn) be a CNF

1. assign gradually values to p1, p2, . . .

2. after each step, reduce clauses:

2.1 delete the clauses that are satisfied by the partial assignment
2.2 remove falsified literals from other clauses

3. if empty clause appears, backtrack if possible, otherwise stop

4. if a unit clause {pi}, or {¬pi} appears, assign pi so that it is
satisfied

5. continue with the next variable

The algorithm outputs a (partial) satisfying assignment or
“UNSATISFIABLE”.

Savings are achieved by unit clauses—no need to branch on pi .

[16]

Davis - Putnam algorithm

Let φ(p1, . . . , pn) be a CNF

1. assign gradually values to p1, p2, . . .

2. after each step, reduce clauses:

2.1 delete the clauses that are satisfied by the partial assignment
2.2 remove falsified literals from other clauses

3. if empty clause appears, backtrack if possible, otherwise stop

4. if a unit clause {pi}, or {¬pi} appears, assign pi so that it is
satisfied

5. continue with the next variable

The algorithm outputs a (partial) satisfying assignment or
“UNSATISFIABLE”.

Savings are achieved by unit clauses—no need to branch on pi .

[16]

algorithms ↔ proofs

Theorem
If Davis-Putnam algorithm ran on φ stops without producing a
satisfying assignment, then the transcript of it is essentially a
Resolution refutation of φ. Moreover, the graph of the proof is a
tree.

I.e., DP produces either a satisfying assignment, or a Resolution
proof of unsatisfiability.

[17]

Proof:

Let T be the transcript. It is

I binary tree (not full, in general)

I nodes labeled by variables pi

I branches – partial assignments

I at each leaf there is a clause falsified by the assignment of the
branch

We will inductively, starting from leaves,

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution

[18]

Proof:

Let T be the transcript. It is

I binary tree (not full, in general)

I nodes labeled by variables pi

I branches – partial assignments

I at each leaf there is a clause falsified by the assignment of the
branch

We will inductively, starting from leaves,

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution

[18]

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution
or copying a clause from above

v 7→ C u 7→ D

w 7→?
pi

We have
C [~a 0] = 0,D[~a 1] = 0,

where 0 and 1 are assignments to pi . Then

I if pi 6∈ C , then w 7→ C

I if ¬pi 6∈ D, then w 7→ D

I otherwise pi ∈ C and ¬pi ∈ D and w 7→ C ∨ D

Clearly root 7→ ⊥.

[19]

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution
or copying a clause from above

v 7→ C u 7→ D

w 7→?
pi

We have
C [~a 0] = 0,D[~a 1] = 0,

where 0 and 1 are assignments to pi .

Then

I if pi 6∈ C , then w 7→ C

I if ¬pi 6∈ D, then w 7→ D

I otherwise pi ∈ C and ¬pi ∈ D and w 7→ C ∨ D

Clearly root 7→ ⊥.

[19]

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution
or copying a clause from above

v 7→ C u 7→ D

w 7→?
pi

We have
C [~a 0] = 0,D[~a 1] = 0,

where 0 and 1 are assignments to pi . Then

I if pi 6∈ C , then w 7→ C

I if ¬pi 6∈ D, then w 7→ D

I otherwise pi ∈ C and ¬pi ∈ D and w 7→ C ∨ D

Clearly root 7→ ⊥.

[19]

1. assign clause to each node v so that they are falsified by the partial
assignment produced by the branch up to v

2. show that branching corresponds to the an application of resolution
or copying a clause from above

v 7→ C u 7→ D

w 7→?
pi

We have
C [~a 0] = 0,D[~a 1] = 0,

where 0 and 1 are assignments to pi . Then

I if pi 6∈ C , then w 7→ C

I if ¬pi 6∈ D, then w 7→ D

I otherwise pi ∈ C and ¬pi ∈ D and w 7→ C ∨ D

Clearly root 7→ ⊥.

[19]

PPSZ algorithm for k-SAT

1. for some l >> k , derive clauses of width ≤ l and add them to
the k-CNF

2. order variables randomly (!)

3. run Davis-Putnam

Analysis: show that unit clauses must occur often, or often
arbitrary values can be used when branching. (Difficult.)

Theoretically best, but not practical—SAT solvers aim at linear
time.

[20]

PPSZ algorithm for k-SAT

1. for some l >> k , derive clauses of width ≤ l and add them to
the k-CNF

2. order variables randomly (!)

3. run Davis-Putnam

Analysis: show that unit clauses must occur often, or often
arbitrary values can be used when branching. (Difficult.)

Theoretically best, but not practical—SAT solvers aim at linear
time.

[20]

PPSZ algorithm for k-SAT

1. for some l >> k , derive clauses of width ≤ l and add them to
the k-CNF

2. order variables randomly (!)

3. run Davis-Putnam

Analysis: show that unit clauses must occur often, or often
arbitrary values can be used when branching. (Difficult.)

Theoretically best, but not practical—SAT solvers aim at linear
time.

[20]

Complexity of the resolution proof system

I some tautologies require exponential proofs (refutations)

I but also it is difficult to find short proofs, unless P = NP

Theorem (Atserias-Müller, 2018)

I If P 6= NP, then there is no algorithm that decides if a given
CNF φ has a refutation of length m in time polynomial in |φ|
and m.

I Consequently, if P 6= NP, then there is no algorithm that
given a CNF φ and m constructs a refutation of length m in
time polynomial in |φ| and m.

[21]

Complexity of the resolution proof system

I some tautologies require exponential proofs (refutations)

I but also it is difficult to find short proofs, unless P = NP

Theorem (Atserias-Müller, 2018)

I If P 6= NP, then there is no algorithm that decides if a given
CNF φ has a refutation of length m in time polynomial in |φ|
and m.

I Consequently, if P 6= NP, then there is no algorithm that
given a CNF φ and m constructs a refutation of length m in
time polynomial in |φ| and m.

[21]

Proof idea

Given CNF φ and m, construct CNF ψ such that

1. φ ∈ SAT 7→ Rφ,m has a refutation of length ≤ m,

2. φ 6∈ SAT 7→ Rφ,m has no refutation of length ≤ m

[22]

Proof idea

Given CNF φ and m, construct CNF ψ such that

1. φ ∈ SAT 7→ Rφ,m has a refutation of length ≤ m,

2. φ 6∈ SAT 7→ Rφ,m has no refutation of length ≤ m

[22]

Proof idea

Given CNF φ and m, construct CNF ψ such that

1. φ ∈ SAT 7→ Rφ,m has a refutation of length ≤ m,

2. φ 6∈ SAT 7→ Rφ,m has no refutation of length ≤ m

[22]

Rφ,m := “φ has a resolution refutation of length ≤ m”

1. Formalize resolution proofs using CNFs.

2. I If φ ∈ SAT , then it is not refutable (using any sound proof); in
particular, there is no refutation of length ≤ m.

I Hence ¬Rφ,m is true.
I Moreover, we can prove this fact in Resolution using a

polynomial size proof. Proving ¬Rφ,m in Resolution means
constructing a refutation of Rφ,m.

3. I If φ 6∈ SAT then φ is refutable.
I If, moreover, φ has a refutation of length ≤ m, then Rφ,m is

satisfiable, hence there is no refutation of it.
I If φ does not have a refutation of length ≤ m, there is a

refutation of Rφ,m, but one can show that there is no
subexponential size refutation.

[23]

Rφ,m := “φ has a resolution refutation of length ≤ m”

1. Formalize resolution proofs using CNFs.

2. I If φ ∈ SAT , then it is not refutable (using any sound proof); in
particular, there is no refutation of length ≤ m.

I Hence ¬Rφ,m is true.
I Moreover, we can prove this fact in Resolution using a

polynomial size proof. Proving ¬Rφ,m in Resolution means
constructing a refutation of Rφ,m.

3. I If φ 6∈ SAT then φ is refutable.
I If, moreover, φ has a refutation of length ≤ m, then Rφ,m is

satisfiable, hence there is no refutation of it.
I If φ does not have a refutation of length ≤ m, there is a

refutation of Rφ,m, but one can show that there is no
subexponential size refutation.

[23]

Rφ,m := “φ has a resolution refutation of length ≤ m”

1. Formalize resolution proofs using CNFs.

2. I If φ ∈ SAT , then it is not refutable (using any sound proof); in
particular, there is no refutation of length ≤ m.

I Hence ¬Rφ,m is true.
I Moreover, we can prove this fact in Resolution using a

polynomial size proof. Proving ¬Rφ,m in Resolution means
constructing a refutation of Rφ,m.

3. I If φ 6∈ SAT then φ is refutable.
I If, moreover, φ has a refutation of length ≤ m, then Rφ,m is

satisfiable, hence there is no refutation of it.
I If φ does not have a refutation of length ≤ m, there is a

refutation of Rφ,m, but one can show that there is no
subexponential size refutation.

[23]

Rφ,m := “φ has a resolution refutation of length ≤ m”

1. Formalize resolution proofs using CNFs.

2. I If φ ∈ SAT , then it is not refutable (using any sound proof); in
particular, there is no refutation of length ≤ m.

I Hence ¬Rφ,m is true.
I Moreover, we can prove this fact in Resolution using a

polynomial size proof. Proving ¬Rφ,m in Resolution means
constructing a refutation of Rφ,m.

3. I If φ 6∈ SAT then φ is refutable.
I If, moreover, φ has a refutation of length ≤ m, then Rφ,m is

satisfiable, hence there is no refutation of it.
I If φ does not have a refutation of length ≤ m, there is a

refutation of Rφ,m, but one can show that there is no
subexponential size refutation.

[23]

Proof idea of 2.

I take a satisfying assignment a of φ

I gradually derive clauses expressing that the clauses in the
alleged refutation are satisfied

I contradiction cannot be satisfied, which is a contradiction

Proof idea of 3.

I take the canonical refutation of φ produced by the DP
procedure

I “squeeze” the exponential size tree into a polynomial size
proof assuming ¬PHP2k

k

I finding an “error” in the squeezed proof would mean finding a
collision in the PHP mapping

I but we know that ¬PHP2k
k can only be refuted by exponential

size refutations

[24]

Proof idea of 2.

I take a satisfying assignment a of φ

I gradually derive clauses expressing that the clauses in the
alleged refutation are satisfied

I contradiction cannot be satisfied, which is a contradiction

Proof idea of 3.

I take the canonical refutation of φ produced by the DP
procedure

I “squeeze” the exponential size tree into a polynomial size
proof assuming ¬PHP2k

k

I finding an “error” in the squeezed proof would mean finding a
collision in the PHP mapping

I but we know that ¬PHP2k
k can only be refuted by exponential

size refutations

[24]

Proving complexity lower bounds is hard.

Proving lower bounds on Resolution proofs is hard in Resolution.

[25]

Proving complexity lower bounds is hard.

Proving lower bounds on Resolution proofs is hard in Resolution.

[25]

Propositional Logic: 3 main types of proof systems

1. Frege systems

2. Sequent Calculus

3. Natural Deduction

We will consider now formulas in arbitrary basis.

[26]

Propositional Logic: 3 main types of proof systems

1. Frege systems

2. Sequent Calculus

3. Natural Deduction

We will consider now formulas in arbitrary basis.

[26]

Frege systems

I A Frege system is given by a finite number of deduction rules.

I We require that it is sound and complete.

I Furthermore, we usually also want it be implicationally
complete.

A deduction rule is

φ1(A1, . . . ,An), . . . , φk(A1, . . . ,An)

ψ(A1, . . . ,An)

where ψ1, . . . , ψ are formulas with meta-variables A1, . . . ,An.

An application of the rule is obtained by substituting specific
formulas for meta-variables.

If there are no assumptions (k = 0), we call the rule an axiom
schema, or simply an axiom.

[27]

Frege systems

I A Frege system is given by a finite number of deduction rules.

I We require that it is sound and complete.

I Furthermore, we usually also want it be implicationally
complete.

A deduction rule is

φ1(A1, . . . ,An), . . . , φk(A1, . . . ,An)

ψ(A1, . . . ,An)

where ψ1, . . . , ψ are formulas with meta-variables A1, . . . ,An.

An application of the rule is obtained by substituting specific
formulas for meta-variables.

If there are no assumptions (k = 0), we call the rule an axiom
schema, or simply an axiom.

[27]

Frege systems

I A Frege system is given by a finite number of deduction rules.

I We require that it is sound and complete.

I Furthermore, we usually also want it be implicationally
complete.

A deduction rule is

φ1(A1, . . . ,An), . . . , φk(A1, . . . ,An)

ψ(A1, . . . ,An)

where ψ1, . . . , ψ are formulas with meta-variables A1, . . . ,An.

An application of the rule is obtained by substituting specific
formulas for meta-variables.

If there are no assumptions (k = 0), we call the rule an axiom
schema, or simply an axiom.

[27]

Frege systems

I A Frege system is given by a finite number of deduction rules.

I We require that it is sound and complete.

I Furthermore, we usually also want it be implicationally
complete.

A deduction rule is

φ1(A1, . . . ,An), . . . , φk(A1, . . . ,An)

ψ(A1, . . . ,An)

where ψ1, . . . , ψ are formulas with meta-variables A1, . . . ,An.

An application of the rule is obtained by substituting specific
formulas for meta-variables.

If there are no assumptions (k = 0), we call the rule an axiom
schema, or simply an axiom.

[27]

Implicational completeness:

If φ1, . . . , φm |= ψ then φ1, . . . , φm ` ψ

Deduction theorem:

If φ1, . . . , φm ` ψ then ` φ1 ∧ · · · ∧ φm ⊃ ψ

⊃ stands for implication

[28]

Implicational completeness:

If φ1, . . . , φm |= ψ then φ1, . . . , φm ` ψ

Deduction theorem:

If φ1, . . . , φm ` ψ then ` φ1 ∧ · · · ∧ φm ⊃ ψ

⊃ stands for implication

[28]

example

Modus ponens
A,A ⊃ B

B

plus axioms (pi should be meta-variables):

[29]

the sequent calculus

[30]

Axiom A→ A

[31]

terminology

I sequent Γ→ ∆

I cedents: antecedent Γ, succedent ∆
I in a rule,

1. the new derived fromula is called principal or main,
2. the formulas from which it was derived are auxiliary,
3. the other formulas are side formulas.

E.g., in
Γ→ ∆,A Γ→ ∆,B

Γ→ ∆,A ∧ B

A is the main formula, Γ,∆ are sequences of auxiliary formulas
A,B are auxiliary, A ∧ B is principal, and formulas in Γ,∆ are side
formulas.

[32]

the natural deduction calculus

⊥
A

[A ⊃ ⊥]
⊥
A

[33]

the complexity of the three calculi

I they are polynomially equivalent

I stronger than Resolution (e.g., polynomial size proofs of PHP)

I if NP 6= coNP, then there are sequences of tautologies that
do not have poly-size proofs

I but no nontrival lower bounds have been proved

I the proof-search problem is hard under cryptographic
assumptions (such as hardness of factoring)

[34]

Tait’s calculus

I sequents with empty antecedent

I sequents are sets instead of sequences

[35]

3rd lesson
cut-free proofs

Cut
Γ→ Σ,A Γ,A→ Σ

Γ→ Σ

Theorem
The sequent calculus is complete without the cut rule.

Cut formulas ↔ lemmas, propositions that use concepts not
contained in the premises.

Theorem
There are tautologies that have only exponentially long cut-free
proofs, but have polynomial size proofs with cuts.

I.e., deep theorems cannot be proved without lemmas.

[36]

3rd lesson
cut-free proofs

Cut
Γ→ Σ,A Γ,A→ Σ

Γ→ Σ

Theorem
The sequent calculus is complete without the cut rule.

Cut formulas ↔ lemmas, propositions that use concepts not
contained in the premises.

Theorem
There are tautologies that have only exponentially long cut-free
proofs, but have polynomial size proofs with cuts.

I.e., deep theorems cannot be proved without lemmas.

[36]

3rd lesson
cut-free proofs

Cut
Γ→ Σ,A Γ,A→ Σ

Γ→ Σ

Theorem
The sequent calculus is complete without the cut rule.

Cut formulas ↔ lemmas, propositions that use concepts not
contained in the premises.

Theorem
There are tautologies that have only exponentially long cut-free
proofs, but have polynomial size proofs with cuts.

I.e., deep theorems cannot be proved without lemmas.

[36]

an application: the interpolation theorem

Theorem (Craig)

Consider formula in a language with ⊥,>. If

|= A→ B,

then there exists a formula C such that

1. Var(C) ⊆ Var(A) ∩ Var(B)

2. |= A→ C and |= C → B

Proof 1
Let A(~x , ~y), B(~x , ~z). Define

C (~x) :=
∨

~b∈{0,1}m
A(~x , ~b)

[37]

an application: the interpolation theorem

Theorem (Craig)

Consider formula in a language with ⊥,>. If

|= A→ B,

then there exists a formula C such that

1. Var(C) ⊆ Var(A) ∩ Var(B)

2. |= A→ C and |= C → B

Proof 1
Let A(~x , ~y), B(~x , ~z). Define

C (~x) :=
∨

~b∈{0,1}m
A(~x , ~b)

[37]

Proof 2
Prove a stronger theorem in the sequent calculus.

Theorem
Given a cut-free proof of a sequent Γ1, Γ2 → ∆1,∆2, one can construct
in polynomial time a formula C such that

1. Var(C) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

2. |= Γ1 → ∆1,C and |= C , Γ2 → ∆2.

We will use the subformula property of cut-free proofs:

Every formula in a cut-free proof is a subformula of a formula in the last
sequent.

Hence every sequent in the proof of Γ1, Γ2 → ∆1,∆2 has form
Γ′1, Γ

′
2 → ∆′1,∆

′
2 where

Var(Γ′1,∆
′
1) ⊆ Var(Γ1,∆1) and Var(Γ′2,∆

′
2) ⊆ Var(Γ2,∆2)

Therefore, if we gradually construct interpolants in the proof, then for
each interpolant we will have the condition
Var(C ′) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

[38]

Proof 2
Prove a stronger theorem in the sequent calculus.

Theorem
Given a cut-free proof of a sequent Γ1, Γ2 → ∆1,∆2, one can construct
in polynomial time a formula C such that

1. Var(C) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

2. |= Γ1 → ∆1,C and |= C , Γ2 → ∆2.

We will use the subformula property of cut-free proofs:

Every formula in a cut-free proof is a subformula of a formula in the last
sequent.

Hence every sequent in the proof of Γ1, Γ2 → ∆1,∆2 has form
Γ′1, Γ

′
2 → ∆′1,∆

′
2 where

Var(Γ′1,∆
′
1) ⊆ Var(Γ1,∆1) and Var(Γ′2,∆

′
2) ⊆ Var(Γ2,∆2)

Therefore, if we gradually construct interpolants in the proof, then for
each interpolant we will have the condition
Var(C ′) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

[38]

Proof 2
Prove a stronger theorem in the sequent calculus.

Theorem
Given a cut-free proof of a sequent Γ1, Γ2 → ∆1,∆2, one can construct
in polynomial time a formula C such that

1. Var(C) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

2. |= Γ1 → ∆1,C and |= C , Γ2 → ∆2.

We will use the subformula property of cut-free proofs:

Every formula in a cut-free proof is a subformula of a formula in the last
sequent.

Hence every sequent in the proof of Γ1, Γ2 → ∆1,∆2 has form
Γ′1, Γ

′
2 → ∆′1,∆

′
2 where

Var(Γ′1,∆
′
1) ⊆ Var(Γ1,∆1) and Var(Γ′2,∆

′
2) ⊆ Var(Γ2,∆2)

Therefore, if we gradually construct interpolants in the proof, then for
each interpolant we will have the condition
Var(C ′) ⊆ Var(Γ1,∆1) ∩ Var(Γ2,∆2)

[38]

If
Σ1 → Π1 Σ2 → Π2

Σ→ Π

and C1,C2 are interpolants for Σ1 → Π1, Σ2 → Π2,

then one can construct an interpolant C for Σ→ Π.

E.g., if the rule is ∧-introduction, the interpolant will be either C1 ∧C2 or
C1 ∨ C2 depending on which side ∧ is introduced.

Exercise. Prove at least a few cases. This will likely be a question on the
exam!

[39]

If
Σ1 → Π1 Σ2 → Π2

Σ→ Π

and C1,C2 are interpolants for Σ1 → Π1, Σ2 → Π2,

then one can construct an interpolant C for Σ→ Π.

E.g., if the rule is ∧-introduction, the interpolant will be either C1 ∧C2 or
C1 ∨ C2 depending on which side ∧ is introduced.

Exercise. Prove at least a few cases. This will likely be a question on the
exam!

[39]

If
Σ1 → Π1 Σ2 → Π2

Σ→ Π

and C1,C2 are interpolants for Σ1 → Π1, Σ2 → Π2,

then one can construct an interpolant C for Σ→ Π.

E.g., if the rule is ∧-introduction, the interpolant will be either C1 ∧C2 or
C1 ∨ C2 depending on which side ∧ is introduced.

Exercise. Prove at least a few cases. This will likely be a question on the
exam!

[39]

Theorem
The sequent calculus is complete without the cut rule.

Hint: use the fact that the rules, except of weakening and cut,
are invertible.

[40]

Theorem
The sequent calculus is complete without the cut rule.

Hint: use the fact that the rules, except of weakening and cut,
are invertible.

[40]

the cut-elimination procedure

Theorem
There exists a procedure (an algorithm) that gradually eliminates
cuts one-by-one until the proof is cut-free.

Remarks

I we already know that the procedure must sometimes run at
least for exponentially long time

I elimination of one cut may result in creation of multiple cuts,
but using good bookkeeping we can show that the procedure
terminates

[41]

example 1

cut with A ∧ B:

Γ→A Γ→B
Γ→A ∧ B

A,B→Σ

A ∧ B→Σcut
Γ→Σ

replaced with two cuts, one with A and one with B:

Γ→B
Γ→B,Σ

Γ→A A,B→Σ
cut

Γ,B→Σ
cut

Γ→Σ

[42]

example 1

cut with A ∧ B:

Γ→A Γ→B
Γ→A ∧ B

A,B→Σ

A ∧ B→Σcut
Γ→Σ

replaced with two cuts, one with A and one with B:

Γ→B
Γ→B,Σ

Γ→A A,B→Σ
cut

Γ,B→Σ
cut

Γ→Σ

[42]

example 2

Γ→A,A Γ→B

Γ→A ∧ B,A Γ→B

Γ→A ∧ B,A ∧ B
contraction→

Γ→A ∧ B

A,B→Σ

A ∧ B→Σ
Γ→Σ

To eliminate the cut with A ∧ B requires

I 1 cut with B

I 2 cuts with A

Exercise
Draw the the proof!

[43]

example 2

Γ→A,A Γ→B

Γ→A ∧ B,A Γ→B

Γ→A ∧ B,A ∧ B
contraction→

Γ→A ∧ B

A,B→Σ

A ∧ B→Σ
Γ→Σ

To eliminate the cut with A ∧ B requires

I 1 cut with B

I 2 cuts with A

Exercise
Draw the the proof!

[43]

bookkeeping
i.e., how to show that the procedure converges

Definition
I the rank of a formula = the number of connectives

I the rank of a cut = the rank of the cut formula

Lemma
Let C be a cut of rank r such that all cuts above it (if any) have
rank < r . Then the elimination of C results in having one less cut
of rank r .

Tait’s strategy:

I eliminate a cut of the highest rank such that there is no cut
above it with the same rank

Exercise
Find a different strategy for eliminating cuts that converges!

[44]

bookkeeping
i.e., how to show that the procedure converges

Definition
I the rank of a formula = the number of connectives

I the rank of a cut = the rank of the cut formula

Lemma
Let C be a cut of rank r such that all cuts above it (if any) have
rank < r . Then the elimination of C results in having one less cut
of rank r .

Tait’s strategy:

I eliminate a cut of the highest rank such that there is no cut
above it with the same rank

Exercise
Find a different strategy for eliminating cuts that converges!

[44]

bookkeeping
i.e., how to show that the procedure converges

Definition
I the rank of a formula = the number of connectives

I the rank of a cut = the rank of the cut formula

Lemma
Let C be a cut of rank r such that all cuts above it (if any) have
rank < r . Then the elimination of C results in having one less cut
of rank r .

Tait’s strategy:

I eliminate a cut of the highest rank such that there is no cut
above it with the same rank

Exercise
Find a different strategy for eliminating cuts that converges!

[44]

the complexity of interpolation
` φ(~p, ~q)→ I (~p)→ ψ(~p, ~r)

Denote by α(~p, ~q) := ¬φ(~p, ~q) and β(~p, ~r) := ψ(~p, ~r). Then

1. ` α(~p, ~q) ∨ β(~p, ~r)

2. ¬I (~p)→ α(~p, ~q)

3. I (~p)→ β(~p, ~r)

Suppose that αn, βn, In are constructible in polynomial time. Denote by

A := {ū|∃v̄ ¬αi (ū, v̄), i ∈ N},
B := {ū|∃w̄ ¬βi (ū, w̄), i ∈ N},
C := {ū| I (ū), i ∈ N}.

Then A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅

2. A ⊆ C

3. B ∩ C = ∅

[45]

the complexity of interpolation
` φ(~p, ~q)→ I (~p)→ ψ(~p, ~r)

Denote by α(~p, ~q) := ¬φ(~p, ~q) and β(~p, ~r) := ψ(~p, ~r). Then

1. ` α(~p, ~q) ∨ β(~p, ~r)

2. ¬I (~p)→ α(~p, ~q)

3. I (~p)→ β(~p, ~r)

Suppose that αn, βn, In are constructible in polynomial time. Denote by

A := {ū|∃v̄ ¬αi (ū, v̄), i ∈ N},
B := {ū|∃w̄ ¬βi (ū, w̄), i ∈ N},
C := {ū| I (ū), i ∈ N}.

Then A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅

2. A ⊆ C

3. B ∩ C = ∅

[45]

the complexity of interpolation
` φ(~p, ~q)→ I (~p)→ ψ(~p, ~r)

Denote by α(~p, ~q) := ¬φ(~p, ~q) and β(~p, ~r) := ψ(~p, ~r). Then

1. ` α(~p, ~q) ∨ β(~p, ~r)

2. ¬I (~p)→ α(~p, ~q)

3. I (~p)→ β(~p, ~r)

Suppose that αn, βn, In are constructible in polynomial time. Denote by

A := {ū|∃v̄ ¬αi (ū, v̄), i ∈ N},
B := {ū|∃w̄ ¬βi (ū, w̄), i ∈ N},
C := {ū| I (ū), i ∈ N}.

Then A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅

2. A ⊆ C

3. B ∩ C = ∅

[45]

the complexity of interpolation
` φ(~p, ~q)→ I (~p)→ ψ(~p, ~r)

Denote by α(~p, ~q) := ¬φ(~p, ~q) and β(~p, ~r) := ψ(~p, ~r). Then

1. ` α(~p, ~q) ∨ β(~p, ~r)

2. ¬I (~p)→ α(~p, ~q)

3. I (~p)→ β(~p, ~r)

Suppose that αn, βn, In are constructible in polynomial time. Denote by

A := {ū|∃v̄ ¬αi (ū, v̄), i ∈ N},
B := {ū|∃w̄ ¬βi (ū, w̄), i ∈ N},
C := {ū| I (ū), i ∈ N}.

Then A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅

2. A ⊆ C

3. B ∩ C = ∅
[45]

A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅
2. A ⊆ C

3. B ∩ C = ∅

Conjecture

There exist A,B ∈NP that cannot be separated by a set in P.

Conjecture (stronger)

P 6= NP ∩ coNP

Corollary

Assuming the conjecture, interpolants cannot be constructed in
polynomial time.

Proof.
From A,B ∈ NP, A ∩ B = ∅, construct tautologies

αn(~p, ~q) ∨ βn(~p, ~r)

[46]

A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅
2. A ⊆ C

3. B ∩ C = ∅

Conjecture

There exist A,B ∈NP that cannot be separated by a set in P.

Conjecture (stronger)

P 6= NP ∩ coNP

Corollary

Assuming the conjecture, interpolants cannot be constructed in
polynomial time.

Proof.
From A,B ∈ NP, A ∩ B = ∅, construct tautologies

αn(~p, ~q) ∨ βn(~p, ~r)

[46]

A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅
2. A ⊆ C

3. B ∩ C = ∅

Conjecture

There exist A,B ∈NP that cannot be separated by a set in P.

Conjecture (stronger)

P 6= NP ∩ coNP

Corollary

Assuming the conjecture, interpolants cannot be constructed in
polynomial time.

Proof.
From A,B ∈ NP, A ∩ B = ∅, construct tautologies

αn(~p, ~q) ∨ βn(~p, ~r)

[46]

A,B ∈ NP, C ∈ P and

1. A ∩ B = ∅
2. A ⊆ C

3. B ∩ C = ∅

Conjecture

There exist A,B ∈NP that cannot be separated by a set in P.

Conjecture (stronger)

P 6= NP ∩ coNP

Corollary

Assuming the conjecture, interpolants cannot be constructed in
polynomial time.

Proof.
From A,B ∈ NP, A ∩ B = ∅, construct tautologies

αn(~p, ~q) ∨ βn(~p, ~r)

[46]

4th lesson
the graphs of proofs

I directed acyclic graph (DAG)
I nodes = labeled by

1. formulas or sequents and
2. rules applied

I arrows = indicate which assumptions used

I sources = axioms

I sink = the formula/sequent proved

Example

A,A ⊃ B

B

[A; ...] [A ⊃ B; ...]
↘ ↙

[B; modus ponens]

[47]

4th lesson
the graphs of proofs

I directed acyclic graph (DAG)
I nodes = labeled by

1. formulas or sequents and
2. rules applied

I arrows = indicate which assumptions used

I sources = axioms

I sink = the formula/sequent proved

Example

A,A ⊃ B

B

[A; ...] [A ⊃ B; ...]
↘ ↙

[B; modus ponens]

[47]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[48]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[48]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[48]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[49]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology.

If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[49]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[49]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[49]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.
[49]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[50]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[50]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[50]

Theorem
Given a general cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[51]

Theorem
Given a general cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[51]

feasible interpolation for Resolution

Theorem
Given a Resolution proof P of contradiction from a set of clauses
{Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j , in symbols:

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

we can construct in polynomial time a circuit C s.t. for all
assignments ~a

C (~a) = 0→ {Ai (~p, ~q)}i is unsatatisfiable

C (~a) = 1→ {Bj(~p, ~r)}j is unsatatisfiable

[52]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.
Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[53]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.

Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[53]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.
Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[53]

