
Logic in Computer Science II

[1]

4th lesson
the graphs of proofs

I directed acyclic graph (DAG)

I nodes = labeled by

1. formulas or sequents and
2. rules applied

I arrows = indicate which assumptions used

I sources = axioms

I sink = the formula/sequent proved

Example

A,A ⊃ B

B

[A; ...] [A ⊃ B; ...]
↘ ↙

[B; modus ponens]

[2]

4th lesson
the graphs of proofs

I directed acyclic graph (DAG)

I nodes = labeled by

1. formulas or sequents and
2. rules applied

I arrows = indicate which assumptions used

I sources = axioms

I sink = the formula/sequent proved

Example

A,A ⊃ B

B

[A; ...] [A ⊃ B; ...]
↘ ↙

[B; modus ponens]

[2]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[3]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[3]

trees and DAGs

Two forms of proofs

1. general, DAG-like

2. tree-like, useful for analyzing proofs

The transformation from a DAG-like to tree-like may result in
exponential blowup

A similar distinction for Boolean circuits:

1. general Boolean circuits, DAG-like

2. tree-like, propositional formulas

[3]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[4]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology.

If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[4]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[4]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.

[4]

Kraj́ıček’s idea
From a given proof in a weak proof system we may be able to
construct an interpolant, or

From a given proof P and an assignment ~a to common variables
we may decide which formula is a tautology. If

P ` α(~p, ~q) ∨ β(~p, ~r)

and ~p 7→ ~a ∈ {0, 1}n, then

|= α(~a, ~q) or |= β(~a, ~r)

We want to decide which of the two is true.

In terms of disjoint NP-sets:

Given a proof P of
A ∩ B = ∅

and given a ∈ A ∪ B, we want to decide which of the two

a ∈ A or a ∈ B

is true.
[4]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[5]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[5]

feasible interpolation for cut-free proofs

Theorem
Given a tree-like cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a formula I (~p) s.t.

` ¬α(~p, ~q)→ I (~p)→ β(~p, ~r),

or equivalently
` I (~p)→ α(~p, ~q),

` ¬I (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[5]

Theorem
Given a general cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[6]

Theorem
Given a general cut-free proof

P ` ¬α(~p, ~q)→ β(~p, ~r)

we can construct in polynomial time a circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r)

Hence given ~p 7→ ~a, we can decide in polynomial time which of the
two is true

|= α(~a, ~q) or |= β(~a, ~r).

[6]

feasible interpolation for Resolution

Theorem
Given a Resolution proof P of contradiction from a set of clauses
{Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j , in symbols:

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

we can construct in polynomial time a circuit C s.t. for all
assignements ~a

C (~a) = 0→ {Ai (~p, ~q)}i is unsatatisfiable

C (~a) = 1→ {Bj(~p, ~r)}j is unsatatisfiable

[7]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.
Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[8]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.

Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[8]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I PA a proof from {Ai (~a, ~q)}i ,
I PB a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

Proof.
See my paper: Lower bounds for resolution and cutting planes
proofs and monotone computations.
Missing argument: We need to show that after the substitution
~p := ~a none of the chosen clauses disappears. This follows by
induction.

[8]

splitting Resolution proofs

Theorem
Given a Resolution proof P of contradiction

P : {Ai (~p, ~q)}i ∪ {Bj(~p, ~r)}j → ⊥,

and an assignment for ~p 7→ ~a, we can construct in polynomial time
two proofs

I Pq a proof from {Ai (~a, ~q)}i ,
I P r a proof from {Bj(~a, ~r)}j ,

such that one of them is a proof of contradiction.

[9]

proof

q-clause = clause with only variables ~p, ~q
r-clause = clause with only variables ~p, ~r
otherwise, mixed clause

Idea: We want to have only q-clauses and r-clauses.

I the initial clauses are OK

I a mixed clauses appears when we resolve a q-clause with an
r-clause

I in such a case the resolved variable must be from ~p

Let ~p 7→ ~a. We gradually transform the clause from the proof
C 7→ C ′ as follows:

I if we resolve w.r.t. some qi or ri in the given proof, we do the
same;

[10]

proof

q-clause = clause with only variables ~p, ~q
r-clause = clause with only variables ~p, ~r
otherwise, mixed clause

Idea: We want to have only q-clauses and r-clauses.

I the initial clauses are OK

I a mixed clauses appears when we resolve a q-clause with an
r-clause

I in such a case the resolved variable must be from ~p

Let ~p 7→ ~a. We gradually transform the clause from the proof
C 7→ C ′ as follows:

I if we resolve w.r.t. some qi or ri in the given proof, we do the
same;

[10]

proof

q-clause = clause with only variables ~p, ~q
r-clause = clause with only variables ~p, ~r
otherwise, mixed clause

Idea: We want to have only q-clauses and r-clauses.

I the initial clauses are OK

I a mixed clauses appears when we resolve a q-clause with an
r-clause

I in such a case the resolved variable must be from ~p

Let ~p 7→ ~a. We gradually transform the clause from the proof
C 7→ C ′ as follows:

I if we resolve w.r.t. some qi or ri in the given proof, we do the
same;

[10]

I if we resolve w.r.t. some pi then, if a : pi 7→ 0, then

Γ ∨ p, ∆ ∨ ¬p
Γ ∨∆

7→ Γ′ ∨ p, ∆′ ∨ ¬p
Γ′

otherwise

7→ Γ′ ∨ p, ∆′ ∨ ¬p
∆′

I this is not a logically valid derivation;

I if C 7→ C ′, then C ′ ⊆ C ;

I hence ⊥ 7→ ⊥.

Next substitute ~a and C ′ 7→ C ′′:

I if C ′ has a true literal, then C ′′ := >
I otherwise C ′′ := C ′-less literals from ~p.

[11]

I if we resolve w.r.t. some pi then, if a : pi 7→ 0, then

Γ ∨ p, ∆ ∨ ¬p
Γ ∨∆

7→ Γ′ ∨ p, ∆′ ∨ ¬p
Γ′

otherwise

7→ Γ′ ∨ p, ∆′ ∨ ¬p
∆′

I this is not a logically valid derivation;

I if C 7→ C ′, then C ′ ⊆ C ;

I hence ⊥ 7→ ⊥.

Next substitute ~a and C ′ 7→ C ′′:

I if C ′ has a true literal, then C ′′ := >
I otherwise C ′′ := C ′-less literals from ~p.

[11]

I if we resolve w.r.t. some pi then, if a : pi 7→ 0, then

Γ ∨ p, ∆ ∨ ¬p
Γ ∨∆

7→ Γ′ ∨ p, ∆′ ∨ ¬p
Γ′

otherwise

7→ Γ′ ∨ p, ∆′ ∨ ¬p
∆′

I this is not a logically valid derivation;

I if C 7→ C ′, then C ′ ⊆ C ;

I hence ⊥ 7→ ⊥.

Next substitute ~a and C ′ 7→ C ′′:

I if C ′ has a true literal, then C ′′ := >
I otherwise C ′′ := C ′-less literals from ~p.

[11]

Claim The resulting set of clauses is a valid Resolutions proof of
⊥.

I if a : pi 7→ 0, then

Γ′ ∨ p, ∆′ ∨ ¬p
Γ′

7→ Γ′′, >
Γ′′

I if we resolve with q or r and C ′1 7→ > then

C ′1, C ′2
C ′

7→ > C ′′2
>

I etc.

[12]

applications of feasible interpolation

1. program verification

2. lower bounds on the complexity of proofs

Theorem
Suppose that NP∩coNP6⊆P/poly. Then there are sequences of
tautologies that do not have polynomial size proofs in any
propositional proof system that has feasible interpolation.

It suffices to assume that there exist two disjoint NP sets that
cannot be separated by a set in P/poly.

P/poly = the nonuniform version of P = sets definable by
polynomial size Boolean circuits.

[13]

applications of feasible interpolation

1. program verification

2. lower bounds on the complexity of proofs

Theorem
Suppose that NP∩coNP6⊆P/poly. Then there are sequences of
tautologies that do not have polynomial size proofs in any
propositional proof system that has feasible interpolation.

It suffices to assume that there exist two disjoint NP sets that
cannot be separated by a set in P/poly.

P/poly = the nonuniform version of P = sets definable by
polynomial size Boolean circuits.

[13]

applications of feasible interpolation

1. program verification

2. lower bounds on the complexity of proofs

Theorem
Suppose that NP∩coNP6⊆P/poly. Then there are sequences of
tautologies that do not have polynomial size proofs in any
propositional proof system that has feasible interpolation.

It suffices to assume that there exist two disjoint NP sets that
cannot be separated by a set in P/poly.

P/poly = the nonuniform version of P = sets definable by
polynomial size Boolean circuits.

[13]

applications of feasible interpolation

1. program verification

2. lower bounds on the complexity of proofs

Theorem
Suppose that NP∩coNP6⊆P/poly. Then there are sequences of
tautologies that do not have polynomial size proofs in any
propositional proof system that has feasible interpolation.

It suffices to assume that there exist two disjoint NP sets that
cannot be separated by a set in P/poly.

P/poly = the nonuniform version of P = sets definable by
polynomial size Boolean circuits.

[13]

Proof.
Let A,B be disjoint NP sets that cannot be separated by a set
in P/poly. Let

A := {ū | ∃v̄ ¬αn(ū, v̄), n ∈ N},

B := {ū | ∃w̄ ¬βn(ū, w̄), n ∈ N}

Then the sequence of formulas

αn(ū, v̄) ∨ βn(ū, w̄)

expresses that A ∩ B = ∅. Hence they are tautologies.

Let P be a proof system with feasible interpolation and suppose
P has polynomial size proofs Pn of these tautologies. By
feasible interpolation, for every ā, we can decide in polynomial
time whether

αn(ā, v̄) or βn(ā, w̄)

is a tautology, i.e., whether ā 6∈ A or ā 6∈ B.

From polynomial time algorithm we can construct polynomial
size circuits (essentially, Cook’s Theorem).

[14]

Proof.
Let A,B be disjoint NP sets that cannot be separated by a set
in P/poly. Let

A := {ū | ∃v̄ ¬αn(ū, v̄), n ∈ N},

B := {ū | ∃w̄ ¬βn(ū, w̄), n ∈ N}

Then the sequence of formulas

αn(ū, v̄) ∨ βn(ū, w̄)

expresses that A ∩ B = ∅. Hence they are tautologies.

Let P be a proof system with feasible interpolation and suppose
P has polynomial size proofs Pn of these tautologies. By
feasible interpolation, for every ā, we can decide in polynomial
time whether

αn(ā, v̄) or βn(ā, w̄)

is a tautology, i.e., whether ā 6∈ A or ā 6∈ B.

From polynomial time algorithm we can construct polynomial
size circuits (essentially, Cook’s Theorem).

[14]

Proof.
Let A,B be disjoint NP sets that cannot be separated by a set
in P/poly. Let

A := {ū | ∃v̄ ¬αn(ū, v̄), n ∈ N},

B := {ū | ∃w̄ ¬βn(ū, w̄), n ∈ N}

Then the sequence of formulas

αn(ū, v̄) ∨ βn(ū, w̄)

expresses that A ∩ B = ∅. Hence they are tautologies.

Let P be a proof system with feasible interpolation and suppose
P has polynomial size proofs Pn of these tautologies. By
feasible interpolation, for every ā, we can decide in polynomial
time whether

αn(ā, v̄) or βn(ā, w̄)

is a tautology, i.e., whether ā 6∈ A or ā 6∈ B.

From polynomial time algorithm we can construct polynomial
size circuits (essentially, Cook’s Theorem).

[14]

we cannot prove NP∩coNP 6⊆P/poly, yet ...

Monotone Interpolation: if ū occurs

I only positively in α(~p, ~q) or

I only negatively in β(~p, ~r),

then there exists a monotone polynomial size circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r).

We do have exponential lower bounds on monotone circuits
separating disjoint NP sets, hence we can prove lower bounds in
this way.

[15]

we cannot prove NP∩coNP 6⊆P/poly, yet ...

Monotone Interpolation: if ū occurs

I only positively in α(~p, ~q) or

I only negatively in β(~p, ~r),

then there exists a monotone polynomial size circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r).

We do have exponential lower bounds on monotone circuits
separating disjoint NP sets, hence we can prove lower bounds in
this way.

[15]

we cannot prove NP∩coNP 6⊆P/poly, yet ...

Monotone Interpolation: if ū occurs

I only positively in α(~p, ~q) or

I only negatively in β(~p, ~r),

then there exists a monotone polynomial size circuit C (~p) s.t.

|= C (~p)→ α(~p, ~q),

|= ¬C (~p)→ β(~p, ~r).

We do have exponential lower bounds on monotone circuits
separating disjoint NP sets, hence we can prove lower bounds in
this way.

[15]

no feasible interpolation for strong proof systems

In strong proof systems we do have polynomial size proofs
A ∩ B = ∅ for sets that we believe cannot be separated by a set
in P. Hence we believe that these systems do not have feasible
interpolation.

Theorem
If the factoring problem is not solvable in polynomial time, then
Frege systems, sequent calculi with cut and natural deduction
system do not have feasible interpolation.

Factoring is the problem to find nontrivial factors of a given
composed integer.

[16]

no feasible interpolation for strong proof systems

In strong proof systems we do have polynomial size proofs
A ∩ B = ∅ for sets that we believe cannot be separated by a set
in P. Hence we believe that these systems do not have feasible
interpolation.

Theorem
If the factoring problem is not solvable in polynomial time, then
Frege systems, sequent calculi with cut and natural deduction
system do not have feasible interpolation.

Factoring is the problem to find nontrivial factors of a given
composed integer.

[16]

no feasible interpolation for strong proof systems

In strong proof systems we do have polynomial size proofs
A ∩ B = ∅ for sets that we believe cannot be separated by a set
in P. Hence we believe that these systems do not have feasible
interpolation.

Theorem
If the factoring problem is not solvable in polynomial time, then
Frege systems, sequent calculi with cut and natural deduction
system do not have feasible interpolation.

Factoring is the problem to find nontrivial factors of a given
composed integer.

[16]

no feasible interpolation for strong proof systems

In strong proof systems we do have polynomial size proofs
A ∩ B = ∅ for sets that we believe cannot be separated by a set
in P. Hence we believe that these systems do not have feasible
interpolation.

Theorem
If the factoring problem is not solvable in polynomial time, then
Frege systems, sequent calculi with cut and natural deduction
system do not have feasible interpolation.

Factoring is the problem to find nontrivial factors of a given
composed integer.

[16]

proof theory of 1st order logic
(See Buss’s chapter in Handbook)

Syntax

Primitive concepts
I relation and function symbols R,S , . . . , f , g , . . .
I the equality sign =
I variables x , y , . . . (for elements) and constants c , d , . . .
I propositional connectives ¬,∧, . . .
I quantifiers ∀,∃
I parentheses (,)

Terms and formulas
I terms t, s, . . . , e.g., f (c, g(d))
I atomic formulas R(t1, . . . , tn), t1 = t2, where ti are terms
I general formulas may have free variables
I sentences = formulas with no free variables
I prenex formulas/sentences = all quantifiers are in the prefix

I suppose that you know what a well-formed formula is, what the scope of a

quantifier is, which variables are bounded etc.

[17]

proof theory of 1st order logic
(See Buss’s chapter in Handbook)

Syntax

Primitive concepts
I relation and function symbols R,S , . . . , f , g , . . .
I the equality sign =
I variables x , y , . . . (for elements) and constants c , d , . . .
I propositional connectives ¬,∧, . . .
I quantifiers ∀,∃
I parentheses (,)

Terms and formulas
I terms t, s, . . . , e.g., f (c, g(d))
I atomic formulas R(t1, . . . , tn), t1 = t2, where ti are terms
I general formulas may have free variables
I sentences = formulas with no free variables
I prenex formulas/sentences = all quantifiers are in the prefix

I suppose that you know what a well-formed formula is, what the scope of a

quantifier is, which variables are bounded etc.

[17]

proof theory of 1st order logic
(See Buss’s chapter in Handbook)

Syntax

Primitive concepts
I relation and function symbols R, S , . . . , f , g , . . .
I the equality sign =
I variables x , y , . . . (for elements) and constants c , d , . . .
I propositional connectives ¬,∧, . . .
I quantifiers ∀,∃
I parentheses (,)

Terms and formulas
I terms t, s, . . . , e.g., f (c, g(d))
I atomic formulas R(t1, . . . , tn), t1 = t2, where ti are terms
I general formulas may have free variables
I sentences = formulas with no free variables
I prenex formulas/sentences = all quantifiers are in the prefix

I suppose that you know what a well-formed formula is, what the scope of a

quantifier is, which variables are bounded etc.

[17]

proof theory of 1st order logic
(See Buss’s chapter in Handbook)

Syntax

Primitive concepts
I relation and function symbols R, S , . . . , f , g , . . .
I the equality sign =
I variables x , y , . . . (for elements) and constants c , d , . . .
I propositional connectives ¬,∧, . . .
I quantifiers ∀,∃
I parentheses (,)

Terms and formulas
I terms t, s, . . . , e.g., f (c, g(d))
I atomic formulas R(t1, . . . , tn), t1 = t2, where ti are terms
I general formulas may have free variables
I sentences = formulas with no free variables
I prenex formulas/sentences = all quantifiers are in the prefix

I suppose that you know what a well-formed formula is, what the scope of a

quantifier is, which variables are bounded etc.

[17]

proof theory of 1st order logic
(See Buss’s chapter in Handbook)

Syntax

Primitive concepts
I relation and function symbols R, S , . . . , f , g , . . .
I the equality sign =
I variables x , y , . . . (for elements) and constants c , d , . . .
I propositional connectives ¬,∧, . . .
I quantifiers ∀,∃
I parentheses (,)

Terms and formulas
I terms t, s, . . . , e.g., f (c, g(d))
I atomic formulas R(t1, . . . , tn), t1 = t2, where ti are terms
I general formulas may have free variables
I sentences = formulas with no free variables
I prenex formulas/sentences = all quantifiers are in the prefix

I suppose that you know what a well-formed formula is, what the scope of a

quantifier is, which variables are bounded etc. [17]

Semantics

Fact [attributed to A. Tarski] There is a well defined relation of
satisfaction of a formula φ(x1, . . . , xn) by elements a1, . . . , an in a
model M, which is denoted by

M |= φ[a1, . . . , an].

Proof.
Define inductively on the complexity of terms and formulas.

Definition
A sentence φ is logically valid, if for every model M (of appropriate
signature) M |= φ.

[18]

Semantics

Fact [attributed to A. Tarski] There is a well defined relation of
satisfaction of a formula φ(x1, . . . , xn) by elements a1, . . . , an in a
model M, which is denoted by

M |= φ[a1, . . . , an].

Proof.
Define inductively on the complexity of terms and formulas.

Definition
A sentence φ is logically valid, if for every model M (of appropriate
signature) M |= φ.

[18]

Hilbert-style calculus

Frege system for propositional axioms and rules

+ quantifier axioms and rules:

Axioms (I am now using → for implication.)

φ(t)→ ∃x .φ(x) (∀x .φ(x))→ φ(t)

t is a term not containing any bound variables.

Rules
φ(x)→ ψ

(∃x .φ(x))→ ψ

ψ → φ(x)

ψ → ∀x .φ(x)

where x is not free in ψ.

Proofs are sequences of formulas.

Formalizations with MP only and sentences are known.

[19]

Hilbert-style calculus

Frege system for propositional axioms and rules

+ quantifier axioms and rules:

Axioms (I am now using → for implication.)

φ(t)→ ∃x .φ(x) (∀x .φ(x))→ φ(t)

t is a term not containing any bound variables.

Rules
φ(x)→ ψ

(∃x .φ(x))→ ψ

ψ → φ(x)

ψ → ∀x .φ(x)

where x is not free in ψ.

Proofs are sequences of formulas.

Formalizations with MP only and sentences are known.

[19]

Hilbert-style calculus

Frege system for propositional axioms and rules

+ quantifier axioms and rules:

Axioms (I am now using → for implication.)

φ(t)→ ∃x .φ(x) (∀x .φ(x))→ φ(t)

t is a term not containing any bound variables.

Rules
φ(x)→ ψ

(∃x .φ(x))→ ψ

ψ → φ(x)

ψ → ∀x .φ(x)

where x is not free in ψ.

Proofs are sequences of formulas.

Formalizations with MP only and sentences are known.

[19]

Hilbert-style calculus

Frege system for propositional axioms and rules

+ quantifier axioms and rules:

Axioms (I am now using → for implication.)

φ(t)→ ∃x .φ(x) (∀x .φ(x))→ φ(t)

t is a term not containing any bound variables.

Rules
φ(x)→ ψ

(∃x .φ(x))→ ψ

ψ → φ(x)

ψ → ∀x .φ(x)

where x is not free in ψ.

Proofs are sequences of formulas.

Formalizations with MP only and sentences are known.

[19]

Hilbert-style calculus

Frege system for propositional axioms and rules

+ quantifier axioms and rules:

Axioms (I am now using → for implication.)

φ(t)→ ∃x .φ(x) (∀x .φ(x))→ φ(t)

t is a term not containing any bound variables.

Rules
φ(x)→ ψ

(∃x .φ(x))→ ψ

ψ → φ(x)

ψ → ∀x .φ(x)

where x is not free in ψ.

Proofs are sequences of formulas.

Formalizations with MP only and sentences are known.

[19]

axioms of equality

See Buss’s chapter.

Exercise
1. Derive the axiom of the nonempty domain

∃x(x = x)

2. Can one prove that the domain is nonempty without using
equality? How can one state such an axiom?

[20]

axioms of equality

See Buss’s chapter.

Exercise
1. Derive the axiom of the nonempty domain

∃x(x = x)

2. Can one prove that the domain is nonempty without using
equality? How can one state such an axiom?

[20]

the sequent calculus
Useful convention: a, b, . . . free variables, x , y , . . . bounded
variables.

Notation: ⇒ for the arrow in sequents.

No axioms for quantifiers!

Quantifier rules

(weak)
Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃x .φ(x)

φ(t), Γ⇒ ∆

∀x .φ(x), Γ⇒ ∆

where t is a term not containing any bound variables.

(strong)
Γ⇒ ∆, φ(a)

Γ⇒ ∆,∀x .φ(x)

φ(a), Γ⇒ ∆

∃x .φ(x), Γ⇒ ∆

where a does not occur in ψ.

Axioms of equality: same, but stated as sequents (See Buss’s
chapter)

[21]

the sequent calculus
Useful convention: a, b, . . . free variables, x , y , . . . bounded
variables.

Notation: ⇒ for the arrow in sequents.

No axioms for quantifiers!

Quantifier rules

(weak)
Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃x .φ(x)

φ(t), Γ⇒ ∆

∀x .φ(x), Γ⇒ ∆

where t is a term not containing any bound variables.

(strong)
Γ⇒ ∆, φ(a)

Γ⇒ ∆,∀x .φ(x)

φ(a), Γ⇒ ∆

∃x .φ(x), Γ⇒ ∆

where a does not occur in ψ.

Axioms of equality: same, but stated as sequents (See Buss’s
chapter)

[21]

the sequent calculus
Useful convention: a, b, . . . free variables, x , y , . . . bounded
variables.

Notation: ⇒ for the arrow in sequents.

No axioms for quantifiers!

Quantifier rules

(weak)
Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃x .φ(x)

φ(t), Γ⇒ ∆

∀x .φ(x), Γ⇒ ∆

where t is a term not containing any bound variables.

(strong)
Γ⇒ ∆, φ(a)

Γ⇒ ∆,∀x .φ(x)

φ(a), Γ⇒ ∆

∃x .φ(x), Γ⇒ ∆

where a does not occur in ψ.

Axioms of equality: same, but stated as sequents (See Buss’s
chapter)

[21]

the sequent calculus
Useful convention: a, b, . . . free variables, x , y , . . . bounded
variables.

Notation: ⇒ for the arrow in sequents.

No axioms for quantifiers!

Quantifier rules

(weak)
Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃x .φ(x)

φ(t), Γ⇒ ∆

∀x .φ(x), Γ⇒ ∆

where t is a term not containing any bound variables.

(strong)
Γ⇒ ∆, φ(a)

Γ⇒ ∆,∀x .φ(x)

φ(a), Γ⇒ ∆

∃x .φ(x), Γ⇒ ∆

where a does not occur in ψ.

Axioms of equality: same, but stated as sequents (See Buss’s
chapter)

[21]

examples of wrong applications

⇒ ∀x (f (x) = f (x))

⇒ ∃y∀x (f (x) = y)

a = b ⇒ a = b

a = b ⇒ ∀x(x = b)

[22]

examples of wrong applications

⇒ ∀x (f (x) = f (x))

⇒ ∃y∀x (f (x) = y)

a = b ⇒ a = b

a = b ⇒ ∀x(x = b)

[22]

Natural Deduction

quantifier rules

[23]

Natural Deduction

quantifier rules

[23]

Lesson 5
cut-elimination in the sequent calculus

Preprocessing:

I put the proof into a tree-like form

I ensure the free variable normal form — use distinct free
variables whenever possible

Caveat:

I When transforming the proof watch for possible conflicts of
free variables in the strong q. rules!

I Also do not forget about contractions!

[24]

Lesson 5
cut-elimination in the sequent calculus

Preprocessing:

I put the proof into a tree-like form

I ensure the free variable normal form — use distinct free
variables whenever possible

Caveat:

I When transforming the proof watch for possible conflicts of
free variables in the strong q. rules!

I Also do not forget about contractions!

[24]

example

P1(a, b) P2(s, t)

· · ·
A(a),A(b), Γ→∆

∃xA(x),A(b), Γ→∆

∃xA(x),∃xA(x), Γ→∆
contraction ∃xA(x), Γ→∆

· · ·
Γ→A(s),A(t),∆

Γ→∃xA(x),A(t)∆

Γ→∃xA(x),∃xA(x)∆
contraction

Γ→∃xA(x),∆
cut

Γ→Σ

P1(a, b) 7→ P1(s, s),P1(t, t)

· · ·
A(s),A(s), Γ→∆

A(s), Γ→∆

· · ·
A(t),A(t), Γ→∆

A(t), Γ→∆
· · ·

Γ→A(s),A(t)∆
cut

A(s), Γ→Σ
cut

Γ→Σ

[25]

example

P1(a, b) P2(s, t)

· · ·
A(a),A(b), Γ→∆

∃xA(x),A(b), Γ→∆

∃xA(x),∃xA(x), Γ→∆
contraction ∃xA(x), Γ→∆

· · ·
Γ→A(s),A(t),∆

Γ→∃xA(x),A(t)∆

Γ→∃xA(x),∃xA(x)∆
contraction

Γ→∃xA(x),∆
cut

Γ→Σ

P1(a, b) 7→ P1(s, s),P1(t, t)

· · ·
A(s),A(s), Γ→∆

A(s), Γ→∆

· · ·
A(t),A(t), Γ→∆

A(t), Γ→∆
· · ·

Γ→A(s),A(t)∆
cut

A(s), Γ→Σ
cut

Γ→Σ

[25]

What is a direct ancestor?

Example

· · ·
A(a)→B(a)

A(a)→∃xB(x)

∃xA(x)→∃xB(x)

· · ·
A(t)→B(t)

A(t)→∃xB(x)

[26]

What is a direct ancestor?

Example

· · ·
A(a)→B(a)

A(a)→∃xB(x)

∃xA(x)→∃xB(x)

· · ·
A(t)→B(t)

A(t)→∃xB(x)

[26]

Definition
A is a generalized subformula of B if it is a substitution instance of
a subformula of B.

Proposition

Every formula in a cut-free proof is a generalized subformula of a
formula in the last sequent.

[27]

mid-sequent theorem

Theorem
Suppose φ is a provable sentence in a prenex form. Then there
exists a (cut-free) proof of → φ in which there a sequent → ∆
(the mid-sequent) such that

I there are no quantifier rules above → ∆ (thus the
mid-sequent does not contain quantifiers)

I there are only quantifier rules and structural rules below → ∆.

Proof.

1. Take a cut-free proof in the free-variable normal form.

2. Whenever a propositional rule is below a quantifier rule,
switch the rules.

Simple idea, tedious verification.

[28]

mid-sequent theorem

Theorem
Suppose φ is a provable sentence in a prenex form. Then there
exists a (cut-free) proof of → φ in which there a sequent → ∆
(the mid-sequent) such that

I there are no quantifier rules above → ∆ (thus the
mid-sequent does not contain quantifiers)

I there are only quantifier rules and structural rules below → ∆.

Proof.

1. Take a cut-free proof in the free-variable normal form.

2. Whenever a propositional rule is below a quantifier rule,
switch the rules.

Simple idea, tedious verification.

[28]

mid-sequent theorem

Theorem
Suppose φ is a provable sentence in a prenex form. Then there
exists a (cut-free) proof of → φ in which there a sequent → ∆
(the mid-sequent) such that

I there are no quantifier rules above → ∆ (thus the
mid-sequent does not contain quantifiers)

I there are only quantifier rules and structural rules below → ∆.

Proof.

1. Take a cut-free proof in the free-variable normal form.

2. Whenever a propositional rule is below a quantifier rule,
switch the rules.

Simple idea, tedious verification.

[28]

digression — some history

Gerhard Gentzen (1909-1945)

I calculus of natural deduction, sequent calculus

I cut-elimination theorem

I consistency of Peano Arithmetic assuming ε0 is a
well-ordering, the first result in ordinal analysis of theories

Jacques Herbrand (1908-1931)

I algebraic number fields

I logic – Herbrand’s theorem

I computability theory – the Gödel-Herbrand recursive
functions

[29]

digression — some history

Gerhard Gentzen (1909-1945)

I calculus of natural deduction, sequent calculus

I cut-elimination theorem

I consistency of Peano Arithmetic assuming ε0 is a
well-ordering, the first result in ordinal analysis of theories

Jacques Herbrand (1908-1931)

I algebraic number fields

I logic – Herbrand’s theorem

I computability theory – the Gödel-Herbrand recursive
functions

[29]

Herbrand’s Theorem

Theorem (basic version)

Let A be an existential sentence

∃x1 . . . ∃xnφ(x1, . . . , xn)

(φ an open, i.e., quantifier-free formula). Then TFAE

1. A is logically valid (≡ provable)

2. there exist terms tij , i = 1, . . . , n, j = 1, . . . ,m in the
language of A such that

m∨
j=1

φ(t1j , . . . , tnj)

is a propositional tautology.

[30]

Proof.
Let → Γ be the mid-sequent in a proof of → A, then → Γ is

→ φ(t11, . . . , tn1), . . . , φ(t1m, . . . , tnm)

[31]

exercise

Prove the following generalization:

Theorem (basic version)

Let A be a ∀∃ prenex sentence sentence

∀y1 . . . ∀yk∃x1 . . . ∃xnφ(x1, . . . , xn)

Then TFAE

1. A is logically valid

2. there exist terms tij , i = 1, . . . , n, j = 1, . . . ,m in the
language of A such that

m∨
j=1

φ(a1, . . . , ak , t1j , . . . , tnj)

is a propositional tautology.

[32]

example

Let P be predicate, 0 a constant, and S a unary function. We
will write Snx for S n-times iterated.

The following is a logically true sentence for every concrete n:

(P(0) ∧ ∀x(P(x)→ P(Sx)))→ P(Sn0)

We can prove it in O(log n) steps by deriving gradually

∀x(P(x)→ P(S2x)),∀x(P(x)→ P(S4x)),∀x(P(x)→ P(S8x)), . . .

from ∀x(P(x)→ P(Sx)).

Write it as an existential formula:

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

[33]

example

Let P be predicate, 0 a constant, and S a unary function. We
will write Snx for S n-times iterated.

The following is a logically true sentence for every concrete n:

(P(0) ∧ ∀x(P(x)→ P(Sx)))→ P(Sn0)

We can prove it in O(log n) steps by deriving gradually

∀x(P(x)→ P(S2x)),∀x(P(x)→ P(S4x)),∀x(P(x)→ P(S8x)), . . .

from ∀x(P(x)→ P(Sx)).

Write it as an existential formula:

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

[33]

example

Let P be predicate, 0 a constant, and S a unary function. We
will write Snx for S n-times iterated.

The following is a logically true sentence for every concrete n:

(P(0) ∧ ∀x(P(x)→ P(Sx)))→ P(Sn0)

We can prove it in O(log n) steps by deriving gradually

∀x(P(x)→ P(S2x)),∀x(P(x)→ P(S4x)),∀x(P(x)→ P(S8x)), . . .

from ∀x(P(x)→ P(Sx)).

Write it as an existential formula:

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

[33]

example, contd
The mid-sequent is → ∆ where ∆ contains all

¬P(0) ∨ (P(S i0) ∧ ¬P(S i+10)) ∨ P(Sn0), i = 0, . . . , , n − 1.

Applying ∃-right rule to terms t := S i0 we get

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

from each of the formulas from ∆. Then we contract to a single
formula.

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

The substituted terms are 0, S0,SS0,SSS0, . . . ,Sn−10.

Exponentially more formulas than in a proof with cuts.

[34]

example, contd
The mid-sequent is → ∆ where ∆ contains all

¬P(0) ∨ (P(S i0) ∧ ¬P(S i+10)) ∨ P(Sn0), i = 0, . . . , , n − 1.

Applying ∃-right rule to terms t := S i0 we get

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

from each of the formulas from ∆. Then we contract to a single
formula.

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

The substituted terms are 0, S0,SS0, SSS0, . . . ,Sn−10.

Exponentially more formulas than in a proof with cuts.

[34]

example, contd
The mid-sequent is → ∆ where ∆ contains all

¬P(0) ∨ (P(S i0) ∧ ¬P(S i+10)) ∨ P(Sn0), i = 0, . . . , , n − 1.

Applying ∃-right rule to terms t := S i0 we get

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

from each of the formulas from ∆. Then we contract to a single
formula.

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

The substituted terms are 0, S0,SS0, SSS0, . . . ,Sn−10.

Exponentially more formulas than in a proof with cuts.
[34]

∃∀ formulas

Theorem
TFAE:

1. ∃x∀y .φ(x , y) is logically valid,

2. there exist terms t1, . . . , tn such that

φ(t1, b1) ∨ φ(t2(b1), b2) ∨ · · · ∨ φ(tn(b1, . . . , bn−1), bn)

is a propositional tautology, where ti (b1, . . . , bi−1) may only
contain some b1, . . . , bi−1.

[35]

Interpretation: Teacher-Student Game

I Teacher asks student to find t such that ∀y .φ(t, y) holds
true.

I Student tries t1, Teacher gives a counterexample b1;
¬φ(t1, b1)

I knowing b1, Student tries t2, Teacher gives a
counterexample b2, ¬φ(t2, b2);

I etc.

I eventually, for some i ≤ n, there is no counterexample,
hence ti is a solution.

[36]

Proof.
1. → 2. Let

→ φ(t1, b1), φ(t2, b2), . . . , φ(tn, bn)

be the mid-sequent of a proof of ∃x∀y .φ(x , y).

I Let φ(tn, bn) be the formula to which the first ∀-rule is
applied. Then none of t1, . . . , tn contains bn. (We could
apply ∀-rule if bn were in tn, but then we would not be able
to apply ∃-rule to tn.)

I Let φ(tn−1, bn−1) be the formula to which the next ∀-rule is
applied. Then none of t1, . . . , tn−1 contains bn−1.

I ...

I Let φ(t1, b1) be the formula to which the last ∀-rule is
applied. Then t1 does not contain any b1, . . . , bn.

[37]

2. → 1. Write the disjunction as the sequent

→ φ(t1, b1), φ(t2(b1), b2), . . . , φ(tn(b1, . . . , bn−1), bn)

I Introduce ∀ for bn, then ∃ for tn,

I introduce ∀ for bn−1, then ∃ for tn−1,

I etc.

I contract.

[38]

the general Herbrand theorem

The previous theorem can be extended to ∀∃∀∃ prefixes. For
more complex prefixes, we do not have such a simple
description.

Exercise
Do it!

Therefore we use new function symbols, Herbrand functions, to
reduce a general prenex formula to an existential.

[39]

the general Herbrand theorem

The previous theorem can be extended to ∀∃∀∃ prefixes. For
more complex prefixes, we do not have such a simple
description.

Exercise
Do it!

Therefore we use new function symbols, Herbrand functions, to
reduce a general prenex formula to an existential.

[39]

the general Herbrand theorem

Example

Consider A := ∃x∀y∃z∀u.φ(x , y , z , u). We translate A to

He(A) := ∃x∃z .φ(x , f (x), z , g(x , z))

where f , g are new function symbols.

Think of f and g as
counterexamples in case A is not true.

If A is true, no counterexample is possible, hence He(A) is also
true.

[40]

the general Herbrand theorem

Example

Consider A := ∃x∀y∃z∀u.φ(x , y , z , u). We translate A to

He(A) := ∃x∃z .φ(x , f (x), z , g(x , z))

where f , g are new function symbols. Think of f and g as
counterexamples in case A is not true.

If A is true, no counterexample is possible, hence He(A) is also
true.

[40]

the general Herbrand theorem

Example

Consider A := ∃x∀y∃z∀u.φ(x , y , z , u). We translate A to

He(A) := ∃x∃z .φ(x , f (x), z , g(x , z))

where f , g are new function symbols. Think of f and g as
counterexamples in case A is not true.

If A is true, no counterexample is possible, hence He(A) is also
true.

[40]

In general, for a prenex formula A, He(A) is obtained by

1. omitting all ∀ and

2. substituting the term f (x1, . . . , xk) for every y universally
quantified, where f is a new function symbol and x1, . . . , xk
are the existentially quantified variables before the
universal quantifier ∀y .

N.B. if A starts with ∀, we use “nullary” function symbols, i.e.,
constants.

[41]

Theorem (Herbrand’s Theorem)

Let A be a prenex sentence, let

He(A) := ∃x1 . . . ∃xkψ(x1, . . . , xk).

(The Herbrand functions are implicit in ψ.) Then A is logically
valid iff there exist terms tij , i = 1, . . . , n, j = 1, . . . ,m, in the
language of He(A) such that

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology.

Proof.
We only need to show that ` A iff ` He(A).

1. One can easily show that in fact ` A→ He(A).

2. If ` He(A) then ` A — see below.

[42]

Theorem (Herbrand’s Theorem)

Let A be a prenex sentence, let

He(A) := ∃x1 . . . ∃xkψ(x1, . . . , xk).

(The Herbrand functions are implicit in ψ.) Then A is logically
valid iff there exist terms tij , i = 1, . . . , n, j = 1, . . . ,m, in the
language of He(A) such that

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology.

Proof.
We only need to show that ` A iff ` He(A).

1. One can easily show that in fact ` A→ He(A).

2. If ` He(A) then ` A — see below.

[42]

Skolem functions
Skolem functions and Sk(A) are dual to Herbrand functions
and He(A).

Example

Sk(∀x∃y∀z∃u.φ(x , y , z , u)) := ∀x∀z .φ(x , f (x), z , g(x , z)).

Lemma
Let M |= A. Then one can extend M with functions interpreting
the Skolem functions of Sk(A) so that in the extended model
M ′ |= Sk(A).

Proof.
Consider the sentence above.

I For c ∈ M, define f M(c) = d by choosing some d such that
M |= ∀z∃uφ(c , d , z , u).

I For c , d ∈ M, define gM(c , d) = e by choosing some e such
that φ(c, f (c), d , e).

[43]

Skolem functions
Skolem functions and Sk(A) are dual to Herbrand functions
and He(A).

Example

Sk(∀x∃y∀z∃u.φ(x , y , z , u)) := ∀x∀z .φ(x , f (x), z , g(x , z)).

Lemma
Let M |= A. Then one can extend M with functions interpreting
the Skolem functions of Sk(A) so that in the extended model
M ′ |= Sk(A).

Proof.
Consider the sentence above.

I For c ∈ M, define f M(c) = d by choosing some d such that
M |= ∀z∃uφ(c , d , z , u).

I For c , d ∈ M, define gM(c , d) = e by choosing some e such
that φ(c, f (c), d , e).

[43]

Skolem functions
Skolem functions and Sk(A) are dual to Herbrand functions
and He(A).

Example

Sk(∀x∃y∀z∃u.φ(x , y , z , u)) := ∀x∀z .φ(x , f (x), z , g(x , z)).

Lemma
Let M |= A. Then one can extend M with functions interpreting
the Skolem functions of Sk(A) so that in the extended model
M ′ |= Sk(A).

Proof.
Consider the sentence above.

I For c ∈ M, define f M(c) = d by choosing some d such that
M |= ∀z∃uφ(c , d , z , u).

I For c , d ∈ M, define gM(c , d) = e by choosing some e such
that φ(c, f (c), d , e).

[43]

We now prove that ` He(A) implies ` A by proving the
contrapositive implication.

Assume 6` A. Let M |= ¬A. Then M |= Sk(¬A). But
` Sk(¬A) ≡ ¬He(A). Hence M ′ |= ¬He(A).

[44]

We now prove that ` He(A) implies ` A by proving the
contrapositive implication.

Assume 6` A. Let M |= ¬A. Then M |= Sk(¬A). But
` Sk(¬A) ≡ ¬He(A). Hence M ′ |= ¬He(A).

[44]

