
Logic in Computer Science III

[1]

Lesson 6, automated theorem proving

Recall:

Theorem (Herbrand’s Theorem)

Let A be a prenex sentence, let

He(A) := ∃x1 . . . ∃xnψ(x1, . . . , xn).

Then A is logically valid iff there exist terms tij such that

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology.

This is reduces the task of proving a theorem to

1. finding suitable terms, and

2. proving a propositional tautology.

[2]

Lesson 6, automated theorem proving
Recall:

Theorem (Herbrand’s Theorem)

Let A be a prenex sentence, let

He(A) := ∃x1 . . . ∃xnψ(x1, . . . , xn).

Then A is logically valid iff there exist terms tij such that

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology.

This is reduces the task of proving a theorem to

1. finding suitable terms, and

2. proving a propositional tautology.

[2]

Lesson 6, automated theorem proving
Recall:

Theorem (Herbrand’s Theorem)

Let A be a prenex sentence, let

He(A) := ∃x1 . . . ∃xnψ(x1, . . . , xn).

Then A is logically valid iff there exist terms tij such that

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology.

This is reduces the task of proving a theorem to

1. finding suitable terms, and

2. proving a propositional tautology.

[2]

We want to use Resolution to prove the Herbrand disjunction.
But

I searching randomly, or systematically, for terms and then
trying to prove the disjunction in Resolution

is not a good strategy, because we will generate a lot of useless
terms.

There is a better approach:

I look for terms that enable us to do resolution steps.

[3]

Resolution in first order logic

Example

The pair of clauses

A ∨ P(f (x), y), B ∨ ¬P(z , g(u))

cannot be resolved.

But we can substitute y := g(u) and z := f (x) and get

A ∨ P(f (x), g(u)), B ∨ ¬P(f (x), g(u))

A ∨ B
.

Caveat: We must substitute y := g(u) also in A and z := f (x)
also in B!

By successive substitutions we eventually obtain the term
needed.

[4]

Resolution in first order logic

Example

The pair of clauses

A ∨ P(f (x), y), B ∨ ¬P(z , g(u))

cannot be resolved.

But we can substitute y := g(u) and z := f (x) and get

A ∨ P(f (x), g(u)), B ∨ ¬P(f (x), g(u))

A ∨ B
.

Caveat: We must substitute y := g(u) also in A and z := f (x)
also in B!

By successive substitutions we eventually obtain the term
needed.

[4]

Resolution in first order logic

Example

The pair of clauses

A ∨ P(f (x), y), B ∨ ¬P(z , g(u))

cannot be resolved.

But we can substitute y := g(u) and z := f (x) and get

A ∨ P(f (x), g(u)), B ∨ ¬P(f (x), g(u))

A ∨ B
.

Caveat: We must substitute y := g(u) also in A and z := f (x)
also in B!

By successive substitutions we eventually obtain the term
needed.

[4]

Resolution in first order logic

Example

The pair of clauses

A ∨ P(f (x), y), B ∨ ¬P(z , g(u))

cannot be resolved.

But we can substitute y := g(u) and z := f (x) and get

A ∨ P(f (x), g(u)), B ∨ ¬P(f (x), g(u))

A ∨ B
.

Caveat: We must substitute y := g(u) also in A and z := f (x)
also in B!

By successive substitutions we eventually obtain the term
needed.

[4]

unification of terms

I a substitution is a mapping σ :Variables → Terms

I for a term t, σ(t) denotes the term obtained by
substitution σ

I σ is a unifier of a pair of terms s, t if σ(s) = σ(t)

I σ is a most general unifier (MGU) of a pair of terms s, t if
σ(s) = σ(t) and for every unifier τ there exists ρ such that
τ = ρσ.

[5]

examples

I σ = {y 7→ g(u), z 7→ f (x)} is an MGU
of P(f (x), y) and P(z , g(u)).

I x and f (x) cannot be unified.

I f (s1, . . . , sn) and g(t1, . . . , tn) cannot be unified if f 6= g .

[6]

Theorem
If there exists a unifier, then there exists an MGU.

Theorem
There exists an algorithm that either finds an MGU, or outputs
“NO unifier”. The algorithm runs in polynomial time in the input
and output size. (The output may be exponentially larger than the
input.)

See Buss’s chapter.

[7]

Robinson’s first-order resolution

John Alan Robinson, 1965

We use two rules

1. given a clause C , derive σ(C) for some substitution σ,

2. propositional Resolution rule.

We use unification

1. to obtain complementary literals for applying Resolution,

2. to obtain same literals in a clause in order to make it
shorter; this is called factoring.

Strategy: use only MGUs as substitutions.
However, we may need to substitute different variables in order
to enable unification.

[8]

Robinson’s first-order resolution

John Alan Robinson, 1965

We use two rules

1. given a clause C , derive σ(C) for some substitution σ,

2. propositional Resolution rule.

We use unification

1. to obtain complementary literals for applying Resolution,

2. to obtain same literals in a clause in order to make it
shorter; this is called factoring.

Strategy: use only MGUs as substitutions.
However, we may need to substitute different variables in order
to enable unification.

[8]

Robinson’s first-order resolution

John Alan Robinson, 1965

We use two rules

1. given a clause C , derive σ(C) for some substitution σ,

2. propositional Resolution rule.

We use unification

1. to obtain complementary literals for applying Resolution,

2. to obtain same literals in a clause in order to make it
shorter; this is called factoring.

Strategy: use only MGUs as substitutions.
However, we may need to substitute different variables in order
to enable unification.

[8]

Robinson’s first-order resolution

John Alan Robinson, 1965

We use two rules

1. given a clause C , derive σ(C) for some substitution σ,

2. propositional Resolution rule.

We use unification

1. to obtain complementary literals for applying Resolution,

2. to obtain same literals in a clause in order to make it
shorter; this is called factoring.

Strategy: use only MGUs as substitutions.
However, we may need to substitute different variables in order
to enable unification.

[8]

Example (of substituting variables)
Consider clauses

Q(x , z) ∨ P(x), R(x) ∨ ¬P(f (x)).

We cannot unify x with f (x), but we can first apply substitution x → y to get

Q(x , z) ∨ P(x), R(y) ∨ ¬P(f (y)).

and then we can unify x and f (y) and get

Q(f (y), z) ∨ R(y).

Example (of factoring)

Q(z , x) ∨ P(x) ∨ P(f (z))
Q(z , f (z)) ∨ P(f (z)) ∨ P(f (z)) unification of x and f (z)
Q(z , f (z)) ∨ P(f (z)) contraction

Exercise
Define a general rule that would join factoring, unification, and
resolution into one step.

[9]

Example (of substituting variables)
Consider clauses

Q(x , z) ∨ P(x), R(x) ∨ ¬P(f (x)).

We cannot unify x with f (x), but we can first apply substitution x → y to get

Q(x , z) ∨ P(x), R(y) ∨ ¬P(f (y)).

and then we can unify x and f (y) and get

Q(f (y), z) ∨ R(y).

Example (of factoring)

Q(z , x) ∨ P(x) ∨ P(f (z))
Q(z , f (z)) ∨ P(f (z)) ∨ P(f (z)) unification of x and f (z)
Q(z , f (z)) ∨ P(f (z)) contraction

Exercise
Define a general rule that would join factoring, unification, and
resolution into one step.

[9]

Example (of substituting variables)
Consider clauses

Q(x , z) ∨ P(x), R(x) ∨ ¬P(f (x)).

We cannot unify x with f (x), but we can first apply substitution x → y to get

Q(x , z) ∨ P(x), R(y) ∨ ¬P(f (y)).

and then we can unify x and f (y) and get

Q(f (y), z) ∨ R(y).

Example (of factoring)

Q(z , x) ∨ P(x) ∨ P(f (z))
Q(z , f (z)) ∨ P(f (z)) ∨ P(f (z)) unification of x and f (z)
Q(z , f (z)) ∨ P(f (z)) contraction

Exercise
Define a general rule that would join factoring, unification, and
resolution into one step.

[9]

how to prove a sentence Φ

1. put Φ in to prenex form with the matrix1 in the DNF form,

2. construct He(Φ), and let ψ be the matrix of He(Φ),

3. transform ¬ψ into a CNF C1 ∧ · · · ∧ Cn,

4. use Robinson’s Resolution to derive the empty clause from
{C1, . . . ,Cn}.

Exercise
Prove that every sentence can be proved using this
(nondeterministic) procedure.

1=the formula without the quantifier prefix
[10]

how to prove a sentence Φ

1. put Φ in to prenex form with the matrix1 in the DNF form,

2. construct He(Φ), and let ψ be the matrix of He(Φ),

3. transform ¬ψ into a CNF C1 ∧ · · · ∧ Cn,

4. use Robinson’s Resolution to derive the empty clause from
{C1, . . . ,Cn}.

Exercise
Prove that every sentence can be proved using this
(nondeterministic) procedure.

1=the formula without the quantifier prefix
[10]

how to prove a sentence Φ

1. put Φ in to prenex form with the matrix1 in the DNF form,

2. construct He(Φ), and let ψ be the matrix of He(Φ),

3. transform ¬ψ into a CNF C1 ∧ · · · ∧ Cn,

4. use Robinson’s Resolution to derive the empty clause from
{C1, . . . ,Cn}.

Exercise
Prove that every sentence can be proved using this
(nondeterministic) procedure.

1=the formula without the quantifier prefix
[10]

how to prove a sentence Φ

1. put Φ in to prenex form with the matrix1 in the DNF form,

2. construct He(Φ), and let ψ be the matrix of He(Φ),

3. transform ¬ψ into a CNF C1 ∧ · · · ∧ Cn,

4. use Robinson’s Resolution to derive the empty clause from
{C1, . . . ,Cn}.

Exercise
Prove that every sentence can be proved using this
(nondeterministic) procedure.

1=the formula without the quantifier prefix
[10]

how to prove a sentence Φ

1. put Φ in to prenex form with the matrix1 in the DNF form,

2. construct He(Φ), and let ψ be the matrix of He(Φ),

3. transform ¬ψ into a CNF C1 ∧ · · · ∧ Cn,

4. use Robinson’s Resolution to derive the empty clause from
{C1, . . . ,Cn}.

Exercise
Prove that every sentence can be proved using this
(nondeterministic) procedure.

1=the formula without the quantifier prefix
[10]

example

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

Claim. Every Herbrand’s disjunction must contain all terms
0,S0,SS0, . . . ,Sn0.

Proof.
Suppose it does not contain S i0 for 0 < i < n. Define a truth
assignment by

I P(S j0) 7→ true, for j < i ,

I P(S j0) 7→ false, for j > i .

Then all disjuncts are falsified.

[11]

example

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

Claim. Every Herbrand’s disjunction must contain all terms
0,S0,SS0, . . . ,Sn0.

Proof.
Suppose it does not contain S i0 for 0 < i < n. Define a truth
assignment by

I P(S j0) 7→ true, for j < i ,

I P(S j0) 7→ false, for j > i .

Then all disjuncts are falsified.

[11]

example

∃x(¬P(0) ∨ (P(x) ∧ ¬P(Sx)) ∨ P(Sn0))

Herbrand’s theorem gives us:

¬P(0)∨
(P(0) ∧ ¬P(S0)) ∨ (P(S0) ∧ ¬P(SS0)) ∨ (P(SS0) ∧ ¬P(SSS0)) ∨ . . .

∨P(Sn(0))

Claim. Every Herbrand’s disjunction must contain all terms
0,S0,SS0, . . . ,Sn0.

Proof.
Suppose it does not contain S i0 for 0 < i < n. Define a truth
assignment by

I P(S j0) 7→ true, for j < i ,

I P(S j0) 7→ false, for j > i .

Then all disjuncts are falsified.
[11]

example, contd.
But first-order resolution is more efficient. Suppose n = 2k .

1. P(x)→ P(S(x)) (initial clause)2

2. P(Sx)→ P(SS(x)) (substitution x 7→ Sx)

3. P(x)→ P(SS(x)) (resolution of 1 and 2)

4. P(SSx)→ P(SSSS(x)) (substitution x 7→ SSx)

5. P(x)→ P(SSSS(x)) (resolution of 3 and 4)

...

2k+1. P(x)→ P(S2k (x))

2k+2. P(0)→ P(S2k (0)) (substitution x 7→ 0)

2k+3. P(0) (initial clause)

2k+4. P(S2k (0)) (resolution of 2k + 2 and 2k + 3)

2k+5. ¬P(S2k (0)) (initial clause)

2k+6. ⊥ (resolution of 2k + 4 and 2k + 5)

2we use · · · → . . . instead of ¬ · · · ∨ . . . , resolution becomes transitivity
of →

[12]

example, contd.
But first-order resolution is more efficient. Suppose n = 2k .

1. P(x)→ P(S(x)) (initial clause)2

2. P(Sx)→ P(SS(x)) (substitution x 7→ Sx)

3. P(x)→ P(SS(x)) (resolution of 1 and 2)

4. P(SSx)→ P(SSSS(x)) (substitution x 7→ SSx)

5. P(x)→ P(SSSS(x)) (resolution of 3 and 4)

...

2k+1. P(x)→ P(S2k (x))

2k+2. P(0)→ P(S2k (0)) (substitution x 7→ 0)

2k+3. P(0) (initial clause)

2k+4. P(S2k (0)) (resolution of 2k + 2 and 2k + 3)

2k+5. ¬P(S2k (0)) (initial clause)

2k+6. ⊥ (resolution of 2k + 4 and 2k + 5)
2we use · · · → . . . instead of ¬ · · · ∨ . . . , resolution becomes transitivity

of →
[12]

example, contd.

But where is unification?

An alternative view:

1. P(x)→ P(S(x)) (initial clause)

2. P(y)→ P(S(y)) (substitution x 7→ y)

3. P(Sx)→ P(SS(x)) (unification of S(x) and y)

4. P(x)→ P(SS(x)) (resolution of 1 and 3)

5. . . .

[13]

example, contd.

But where is unification?

An alternative view:

1. P(x)→ P(S(x)) (initial clause)

2. P(y)→ P(S(y)) (substitution x 7→ y)

3. P(Sx)→ P(SS(x)) (unification of S(x) and y)

4. P(x)→ P(SS(x)) (resolution of 1 and 3)

5. . . .

[13]

an important improvement of efficiency

Theorem
Let A1, . . . ,An be prenex sentences. Then

` A1 ∨ · · · ∨ An ⇔ ` He(A1) ∨ · · · ∨ He(An)

Proof.
- exercise

Corollary

Let A1, . . . ,An,B be prenex sentences. Then

A1, . . . ,An ` B ⇔ ` Sk(A1) ∧ · · · ∧ Sk(An)→ He(B).

[14]

an important improvement of efficiency

Theorem
Let A1, . . . ,An be prenex sentences. Then

` A1 ∨ · · · ∨ An ⇔ ` He(A1) ∨ · · · ∨ He(An)

Proof.
- exercise

Corollary

Let A1, . . . ,An,B be prenex sentences. Then

A1, . . . ,An ` B ⇔ ` Sk(A1) ∧ · · · ∧ Sk(An)→ He(B).

[14]

modification of the procedure

for derivations from axioms A1, . . . ,An ` B

1. Skolemize A1, . . . ,An

2. put the matrices of Sk(A1), . . . ,Sk(An) into CNF forms

3. Herbrandize B

4. put the negation of the matrix of He(B) into a CNF form

5. — the rest is the same

See examples in Symbolic Logic and Mechanical Theorem
Proving by C.-L. Chang, R. C.-T. Lee.3

3chang-lee-examples.pdf
[15]

modification of the procedure

for derivations from axioms A1, . . . ,An ` B

1. Skolemize A1, . . . ,An

2. put the matrices of Sk(A1), . . . ,Sk(An) into CNF forms

3. Herbrandize B

4. put the negation of the matrix of He(B) into a CNF form

5. — the rest is the same

See examples in Symbolic Logic and Mechanical Theorem
Proving by C.-L. Chang, R. C.-T. Lee.3

3chang-lee-examples.pdf
[15]

the completeness theorem from Herbrand’s theorem

I We had assumed that the sequent calculus was complete,
when we proved Herbrand’s theorem.

I Now we will prove it without this assumption.

I This gives us

1. model-theoretical proof of Herbrand’s theorem
2. and completeness of the sequent calculus w.r.t. prenex

sentences

I We can prove in the sequent calculus that every sentence is
equivalent to a prenex sentence, hence we get completeness
for the sequent calculus for all sentences.

[16]

Theorem
Let A be a prenex sentence and let ψ be the matrix of He(A).
Suppose that for no m and no terms tij ,

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology. Then there exists a model M such that

M |= ¬A.

We will actually prove

M |= Sk(prenex(¬A)).

We know that ` Sk(B)→ B for prenex formulas.

We will assume that the sequent calculus is complete for propositional

logic.

[17]

Theorem
Let A be a prenex sentence and let ψ be the matrix of He(A).
Suppose that for no m and no terms tij ,

m∨
j=1

ψ(t1j , . . . , tnj)

is a propositional tautology. Then there exists a model M such that

M |= ¬A.

We will actually prove

M |= Sk(prenex(¬A)).

We know that ` Sk(B)→ B for prenex formulas.

We will assume that the sequent calculus is complete for propositional

logic.
[17]

Proof.
Let A be given, and let ψ(x1, . . . , xn) be the matrix of He(A).

Then Sk(prenex(¬A)) = ∀x1 . . . ∀xn¬ψ(x1, . . . , xn).

If there is no Herbrand disjunction witnessing the validity of A, we
need a model M such that

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

Construction of the model

I the universe of M: all terms

I a constant c is interpreted as c

I a function symbol f is interpreted as the function

t1, . . . , tk 7→ f (t1, . . . , tk)

I interpretation of predicates and relations: we need to assign
truth values to atomic formulas R(t1, . . . , tl) so that all
propositions ψ(t1, . . . , tk) are evaluated false.

See next page:

[18]

Proof.
Let A be given, and let ψ(x1, . . . , xn) be the matrix of He(A).

Then Sk(prenex(¬A)) = ∀x1 . . . ∀xn¬ψ(x1, . . . , xn).

If there is no Herbrand disjunction witnessing the validity of A, we
need a model M such that

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

Construction of the model

I the universe of M: all terms

I a constant c is interpreted as c

I a function symbol f is interpreted as the function

t1, . . . , tk 7→ f (t1, . . . , tk)

I interpretation of predicates and relations: we need to assign
truth values to atomic formulas R(t1, . . . , tl) so that all
propositions ψ(t1, . . . , tk) are evaluated false.

See next page:

[18]

Proof.
Let A be given, and let ψ(x1, . . . , xn) be the matrix of He(A).

Then Sk(prenex(¬A)) = ∀x1 . . . ∀xn¬ψ(x1, . . . , xn).

If there is no Herbrand disjunction witnessing the validity of A, we
need a model M such that

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

Construction of the model

I the universe of M: all terms

I a constant c is interpreted as c

I a function symbol f is interpreted as the function

t1, . . . , tk 7→ f (t1, . . . , tk)

I interpretation of predicates and relations: we need to assign
truth values to atomic formulas R(t1, . . . , tl) so that all
propositions ψ(t1, . . . , tk) are evaluated false.

See next page:

[18]

Proof.
Let A be given, and let ψ(x1, . . . , xn) be the matrix of He(A).

Then Sk(prenex(¬A)) = ∀x1 . . . ∀xn¬ψ(x1, . . . , xn).

If there is no Herbrand disjunction witnessing the validity of A, we
need a model M such that

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

Construction of the model

I the universe of M: all terms

I a constant c is interpreted as c

I a function symbol f is interpreted as the function

t1, . . . , tk 7→ f (t1, . . . , tk)

I interpretation of predicates and relations: we need to assign
truth values to atomic formulas R(t1, . . . , tl) so that all
propositions ψ(t1, . . . , tk) are evaluated false.

See next page:

[18]

interpretation of predicates and relations

I Since no Herbrand disjunction is a tautology, we have for
every m and every finite set of terms ti ,j an assignment
that falsifies all ψ(t1,j , . . . , tn,j), j = 1, . . . ,m.

I By the compactness of the propositional calculus, we have
an assignment a to all atomic formulas such that a falsifies
all propositions ψ(t1, . . . , tn).

I So we define the relations using a as follows
M |= R(t1, . . . , tl) iff a : R(t1, . . . , tl) 7→ >.

Thus we get

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

[19]

interpretation of predicates and relations

I Since no Herbrand disjunction is a tautology, we have for
every m and every finite set of terms ti ,j an assignment
that falsifies all ψ(t1,j , . . . , tn,j), j = 1, . . . ,m.

I By the compactness of the propositional calculus, we have
an assignment a to all atomic formulas such that a falsifies
all propositions ψ(t1, . . . , tn).

I So we define the relations using a as follows
M |= R(t1, . . . , tl) iff a : R(t1, . . . , tl) 7→ >.

Thus we get

M |= ¬ψ[a1, . . . , an] for all a1, . . . , an ∈ M.

[19]

We proved

Theorem
A prenex sentence A is logically valid iff there exists a tautological
Herbrand disjunction for A.

It remains to prove:

Lemma
If there exists a tautological Herbrand disjunction for A, then A is
provable in the sequent calculus.

[20]

Proof.
Let the disjunction be given.

I for every term consider all maximal subterms that start with
some Herbrand function symbol and replace them by a free
variable; the same terms by the same variable, different by
different

I the substitution preserves provability in the propositional
calculus, so assuming that the propositional part of the sequent
calculus is complete, we get a proof of the sequent with the
substituted terms

I now we introduce quantifiers as follows

1. whenever it is possible to contract, we contract, otherwise
2. whenever it is possible to introduce ∃ we do it, otherwise
3. we introduce ∀

It remains to prove the following claim:

[21]

Claim The procedure only stops when the sequent becomes A.

Proof.
We need to show that we can introduce ∀ if no contraction or
∃-introduction is possible and the sequent is not A yet.

In such a situation, in each formula B, different from A, we can only
introduce ∀ provided that the free b variable does not occur
elsewhere. So we need to show that there exist at least one B whose b
does not occur elsewhere.

We take B whose b corresponds to the most complex term t. For
some Herbrand function h, B and t have the form

t := h(. . . si . . .) and B := �ψ(. . . si . . . b . . .),

where � is some prefix of quantifiers. Clearly

1. since t cannot occur as a proper subterm in any term at this
stage, so does b

2. t cannot be equal to a term in any other formula, because t
encodes terms si , hence the formula would have to be equal, but
we have contracted equal formulas.

[22]

Claim The procedure only stops when the sequent becomes A.

Proof.
We need to show that we can introduce ∀ if no contraction or
∃-introduction is possible and the sequent is not A yet.

In such a situation, in each formula B, different from A, we can only
introduce ∀ provided that the free b variable does not occur
elsewhere. So we need to show that there exist at least one B whose b
does not occur elsewhere.

We take B whose b corresponds to the most complex term t. For
some Herbrand function h, B and t have the form

t := h(. . . si . . .) and B := �ψ(. . . si . . . b . . .),

where � is some prefix of quantifiers. Clearly

1. since t cannot occur as a proper subterm in any term at this
stage, so does b

2. t cannot be equal to a term in any other formula, because t
encodes terms si , hence the formula would have to be equal, but
we have contracted equal formulas.

[22]

Claim The procedure only stops when the sequent becomes A.

Proof.
We need to show that we can introduce ∀ if no contraction or
∃-introduction is possible and the sequent is not A yet.

In such a situation, in each formula B, different from A, we can only
introduce ∀ provided that the free b variable does not occur
elsewhere. So we need to show that there exist at least one B whose b
does not occur elsewhere.

We take B whose b corresponds to the most complex term t. For
some Herbrand function h, B and t have the form

t := h(. . . si . . .) and B := �ψ(. . . si . . . b . . .),

where � is some prefix of quantifiers. Clearly

1. since t cannot occur as a proper subterm in any term at this
stage, so does b

2. t cannot be equal to a term in any other formula, because t
encodes terms si , hence the formula would have to be equal, but
we have contracted equal formulas.

[22]

We get the completeness of other proof system by simulating
the sequent calculus.

[23]

We get the completeness of other proof system by simulating
the sequent calculus.

[23]

complexity issues

We know that PHP requires exponential size Resolution proofs,
while it has polynomial size proofs in the standard proof
systems such as the sequent and Frege calculi.

The comparison of Herbrand’s theorem with the sequent
calculus with cuts, or Hilbert style calculi is much worse.

Theorem
There exists a sequence of logically valid sentences φn such that

1. φn have polynomial size proofs in the sequent calculus with
cuts, and Hilbert style calculi, but

2. every cut-free proof, or Herbrand disjunction for φn has size at
least

22
2...

2
}
n times.

This also applies to Robinson’s first-order resolution, maybe,
with one 2 in the stack less.

[24]

complexity issues

We know that PHP requires exponential size Resolution proofs,
while it has polynomial size proofs in the standard proof
systems such as the sequent and Frege calculi.

The comparison of Herbrand’s theorem with the sequent
calculus with cuts, or Hilbert style calculi is much worse.

Theorem
There exists a sequence of logically valid sentences φn such that

1. φn have polynomial size proofs in the sequent calculus with
cuts, and Hilbert style calculi, but

2. every cut-free proof, or Herbrand disjunction for φn has size at
least

22
2...

2
}
n times.

This also applies to Robinson’s first-order resolution, maybe,
with one 2 in the stack less.

[24]

complexity issues

We know that PHP requires exponential size Resolution proofs,
while it has polynomial size proofs in the standard proof
systems such as the sequent and Frege calculi.

The comparison of Herbrand’s theorem with the sequent
calculus with cuts, or Hilbert style calculi is much worse.

Theorem
There exists a sequence of logically valid sentences φn such that

1. φn have polynomial size proofs in the sequent calculus with
cuts, and Hilbert style calculi, but

2. every cut-free proof, or Herbrand disjunction for φn has size at
least

22
2...

2
}
n times.

This also applies to Robinson’s first-order resolution, maybe,
with one 2 in the stack less.

[24]

complexity issues

We know that PHP requires exponential size Resolution proofs,
while it has polynomial size proofs in the standard proof
systems such as the sequent and Frege calculi.

The comparison of Herbrand’s theorem with the sequent
calculus with cuts, or Hilbert style calculi is much worse.

Theorem
There exists a sequence of logically valid sentences φn such that

1. φn have polynomial size proofs in the sequent calculus with
cuts, and Hilbert style calculi, but

2. every cut-free proof, or Herbrand disjunction for φn has size at
least

22
2...

2
}
n times.

This also applies to Robinson’s first-order resolution, maybe,
with one 2 in the stack less.

[24]

