Logic in Computer Science IV

Lesson 7, the incompleteness theorem, 1. formalization of arithmetic

Richard Dedekind 1831-1916
Giuseppe Peano 1858-1932

Lesson 7, the incompleteness theorem, 1. formalization of arithmetic

Richard Dedekind 1831-1916
Giuseppe Peano 1858-1932
$(N ; 0, S)$

1. for every $x, S(x) \neq 0$,
2. if $x \neq y$, then $S(x) \neq S(y)$,
3. for every set $X \subseteq N$, if $0 \in N$ and $x \in N$ implies $S(x) \in N$, then $X=N$.

Lesson 7, the incompleteness theorem,

 1. formalization of arithmeticRichard Dedekind 1831-1916
Giuseppe Peano 1858-1932
$(N ; 0, S)$

1. for every $x, S(x) \neq 0$,
2. if $x \neq y$, then $S(x) \neq S(y)$,
3. for every set $X \subseteq N$, if $0 \in N$ and $x \in N$ implies $S(x) \in N$, then $X=N$.

This formalization of arithmetic uses a second order concept of a set of numbers.

Robinson's Arithmetic Q

(Raphael M. Robinson)

Robinson's Arithmetic Q

(Raphael M. Robinson)
Language $0, S,+, \times$ and \leq.
Axioms - universal closure of the following formulas:

1. successor function

- $S(x) \neq 0$
- $x \neq y \rightarrow S(x) \neq S(y)$
- $x \neq 0 \rightarrow \exists y(y=S(x))$

2. addition

- $x+0=x$
- $x+S(y)=S(x+y)$

3. multiplication

- $x \times 0=0$
- $x \times S(y)=x \times y+x$

4. inequality

- $x \leq y \equiv \exists z(z+x=y)$

Robinson's Arithmetic Q

(Raphael M. Robinson)
Language $0, S,+, \times$ and \leq.
Axioms - universal closure of the following formulas:

1. successor function

- $S(x) \neq 0$
- $x \neq y \rightarrow S(x) \neq S(y)$
- $x \neq 0 \rightarrow \exists y(y=S(x))$

2. addition

- $x+0=x$
- $x+S(y)=S(x+y)$

3. multiplication

- $x \times 0=0$
- $x \times S(y)=x \times y+x$

4. inequality

- $x \leq y \equiv \exists z(z+x=y)$
weak, but essentially undecidable-every consistent extension is undecidable

Σ-completeness

Q cannot even prove the commutativity of addition, but

\sum-completeness

Q cannot even prove the commutativity of addition, but

Theorem (and Definition)
Q is Σ-complete, which means that for every Σ_{1} sentence ϕ

$$
\mathbb{N} \models \phi \Rightarrow \mathrm{Q} \vdash \phi
$$

I.e. \mathbf{Q} proves all true Σ_{1} sentences.

A Σ_{1} sentence has a prefix of existential quantifiers followed by bounded quantifiers $\exists x \leq t$ and $\forall y \leq s$.

example

\mathbf{Q} proves $1 \leq 2$.

example

\mathbf{Q} proves $1 \leq 2$.
We will use axioms

1. $x+0=x$
2. $x+S(y)=S(x+y)$
3. $x \leq y \equiv \exists z(z+x=y)$

- $S 0+S 0=S(S 0+0)$
- $S 0+S 0=S(S 0)$
- $\exists z(S 0+z=S S 0)$
- $S 0 \leq S S 0$

example

\mathbf{Q} proves $1 \leq 2$.
We will use axioms

1. $x+0=x$
2. $x+S(y)=S(x+y)$
3. $x \leq y \equiv \exists z(z+x=y)$

- $S 0+S 0=S(S 0+0)$
- $S 0+S 0=S(S 0)$
- $\exists z(S 0+z=S S 0)$
- $S 0 \leq S S 0$

Exercise
Prove $2 \times 2=4$.

Proof idea (of Σ-completeness of \mathbf{Q})

Proof idea (of Σ-completeness of \mathbf{Q})

- Eliminate existential quantifiers by substituting numerals
- Elminate bounded universal quantifiers using Q $\vdash \quad x \leq S^{n} 0 \equiv\left(x=0 \vee x=S 0 \vee \cdots \vee x=S^{n} 0\right)$ (Exercise)
- Show that every closed term equals to a numeral provably in \mathbf{Q}.
- Show that every true quantifier-free sentence is provable.

Peano Arithmetic PA

$=$ Robinson's Arithmetic + induction formulas for all formulas in the language $0, S,+, \times$ and \leq.

$$
\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(S(x))) \rightarrow \forall y . \phi(y)
$$

Peano Arithmetic PA

$=$ Robinson's Arithmetic + induction formulas for all formulas in the language $0, S,+, \times$ and \leq.

$$
\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(S(x))) \rightarrow \forall y \cdot \phi(y)
$$

Remarks

1. $\phi(x)$ may have other free variables,
2. $x \neq 0 \rightarrow \exists y(y=S(x))$ is redundant if we have induction,
3. $x \leq y \equiv \exists z(z+x=y)$ is a definition of \leq, so it can be omitted.
4. Peano Arithmetic is incomplete, because it only has induction for arithmetical formulas.

Finite Set Theory

Zermelo-Fraenkel Set Theory

- without the axiom of infinity
- plus the axiom "every set is finite"

Theorem

Peano Arithmetic and Finite Set Theory are mutually interpretable, i.e.,

1. there are arithmetical formulas $V(x)$ for the universe of sets and $E(x, y)$ for the relation of being an element such that translations of all axioms of Finite Set Theory are provable in Peano Arithmetic,
2. there are set theoretical formulas ... such that all axioms of Peano Arithmetic are provable in Finite Set Theory.

Finite Set Theory

Zermelo-Fraenkel Set Theory

- without the axiom of infinity
- plus the axiom "every set is finite"

Theorem

Peano Arithmetic and Finite Set Theory are mutually interpretable, i.e.,

1. there are arithmetical formulas $V(x)$ for the universe of sets and $E(x, y)$ for the relation of being an element such that translations of all axioms of Finite Set Theory are provable in Peano Arithmetic,
2. there are set theoretical formulas ... such that all axioms of Peano Arithmetic are provable in Finite Set Theory.
3. Moreover, the interpretations are faithful, i.e., Finite Set Theory proves exactly the same sentences about numbers as Peano Arithmetic and vice versa Peano Arithmetic ...

Proof.

The essence is coding pairs and sequences in PA.

Proof.

The essence is coding pairs and sequences in PA.

- coding pairs, Cantor's pairing function

$$
\langle x, y\rangle:=\frac{(x+y)^{2}+x+1}{2}
$$

Proof.

The essence is coding pairs and sequences in PA.

- coding pairs, Cantor's pairing function

$$
\langle x, y\rangle:=\frac{(x+y)^{2}+x+1}{2}
$$

- Gödel's function

$$
\beta(a, i):=\min \{x<a ; \exists y<a \exists z<a(a=\langle y, z\rangle \wedge 1+(\langle x, i\rangle+1) \mid y\}
$$

Given a_{1}, \ldots, a_{n}, there exists a such that $\beta(a, i)=a_{i}$, for $i=1, \ldots, n$.

Proof.

The essence is coding pairs and sequences in PA.

- coding pairs, Cantor's pairing function

$$
\langle x, y\rangle:=\frac{(x+y)^{2}+x+1}{2}
$$

- Gödel's function
$\beta(a, i):=\min \{x<a ; \exists y<a \exists z<a(a=\langle y, z\rangle \wedge 1+(\langle x, i\rangle+1) \mid y\}$.
Given a_{1}, \ldots, a_{n}, there exists a such that $\beta(a, i)=a_{i}$, for $i=1, \ldots, n$. This fact cannot be expressed in PA. We have to prove some properties of β. In particular:
- the empty sequence has a code,
- given a and b, one can extend the sequence a by adding b at the end.
- Alternatively, one can define bits of the numbers. One can define "x is a power of 2 " by

$$
\forall y(y \mid x \rightarrow(y=1 \wedge 2 \mid y)
$$

etc.
Exercise
Define $x \mid y$ (x divides y).

Corollary

It is possible to formalize all standard syntactical concepts in PA.

Corollary

It is possible to formalize all standard syntactical concepts in PA.

So why do we use Peano Arithmetic?

Corollary

It is possible to formalize all standard syntactical concepts in PA.

So why do we use Peano Arithmetic?

- tradition
- linearly ordered models
- numerals for denoting elements
- hierarchies of arithmetical formulas
- fragments of PA defined by restricting the induction schema

yet, it is not so simple!

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)
2. formalized concepts (in the theory)
3. names representing formalized concepts (in the theory)

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)
2. formalized concepts (in the theory)
3. names representing formalized concepts (in the theory)

Example
Consider PA and numbers.

1. in metatheory, 0 is $\emptyset, 1$ is $\{0\}, 2$ is $\{0,1\}$ etc.
2. in PA, every element is a number
3. terms $0, S(0), S S(0), \ldots$ are names for $0,1,2, \ldots$

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)
2. formalized concepts (in the theory)
3. names representing formalized concepts (in the theory)

Example
Consider PA and numbers.

1. in metatheory, 0 is $\emptyset, 1$ is $\{0\}, 2$ is $\{0,1\}$ etc.
2. in $P A$, every element is a number
3. terms $0, S(0), S S(0), \ldots$ are names for $0,1,2, \ldots$

We call terms $0, S(0), S S(0), \ldots$ numerals.

Formulas in PA.

1. in metatheory ϕ is a string of symbols
2. we assign numbers to symbols

Formulas in PA.

1. in metatheory ϕ is a string of symbols
2. we assign numbers to symbols
3. in PA, ϕ is a number that codes the string of numbers of the symbols, this is the Gödel number of ϕ

Formulas in PA.

1. in metatheory ϕ is a string of symbols
2. we assign numbers to symbols
3. in PA, ϕ is a number that codes the string of numbers of the symbols, this is the Gödel number of ϕ
4. if we need to talk about a concrete ϕ in PA, we use the numeral representing the Gödel number of ϕ

Formulas in PA.

1. in metatheory ϕ is a string of symbols
2. we assign numbers to symbols
3. in PA, ϕ is a number that codes the string of numbers of the symbols, this is the Gödel number of ϕ
4. if we need to talk about a concrete ϕ in PA, we use the numeral representing the Gödel number of ϕ

Notation The the numeral representing the Gödel number of ϕ will be denoted by

$$
\lceil\phi\rceil
$$

Example

1. let ϕ be $x+0=x$
2. $x \mapsto 1,+\mapsto 2,=\mapsto 3$
3. the Gödel number of ϕ is the number that encodes the sequence $(1,2,3,1)$, say 2500
4. $\lceil\phi\rceil$ is $S S \ldots S 0$ with 2500 symbols S.

Example

1. let ϕ be $x+0=x$
2. $x \mapsto 1,+\mapsto 2,=\mapsto 3$
3. the Gödel number of ϕ is the number that encodes the sequence $(1,2,3,1)$, say 2500
4. $\lceil\phi\rceil$ is $S S \ldots S 0$ with 2500 symbols S.

Let ϕ and $\psi(x)$ be formulas. Then

- $\psi(\phi)$ is not a well-formed formula, but
- $\psi(\lceil\phi\rceil)$ is, because $\lceil\phi\rceil$ is a term.

self-reference

Lemma (diagonal, or fixed-point)
Let $\psi(x)$ be an arithmetical formula with one free variable. Then there exists a sentence ϕ such that

$$
\mathrm{Q} \vdash \phi \equiv \psi(\lceil\phi\rceil)
$$

self-reference

Lemma (diagonal, or fixed-point)
Let $\psi(x)$ be an arithmetical formula with one free variable. Then there exists a sentence ϕ such that

$$
Q \vdash \phi \equiv \psi(\lceil\phi\rceil)
$$

ϕ says: "I have property ψ "

proof-idea

First attempt:

- The following formula has property ψ : The following formula has property ψ.

proof-idea

First attempt:

- The following formula has property ψ : The following formula has property ψ.
Not good, it only refers to its part.

proof-idea

First attempt:

- The following formula has property ψ : The following formula has property ψ.
Not good, it only refers to its part.
Second attempt:
- The following formula written twice has property ψ : The following formula written twice has property ψ.

proof-idea

First attempt:

- The following formula has property ψ : The following formula has property ψ.
Not good, it only refers to its part.
Second attempt:
- The following formula written twice has property ψ : The following formula written twice has property ψ.
Good! (except for : and .)

Proof

Consider the numerical function:
G. number of $\alpha(x) \mapsto$ G. number of $\alpha(\lceil\alpha(x)\rceil)$
which is

$$
\lceil\alpha(x)\rceil \mapsto\lceil\alpha(\lceil\alpha(x)\rceil)\rceil
$$

Proof

Consider the numerical function:

$$
\text { G. number of } \alpha(x) \mapsto \text { G. number of } \alpha(\lceil\alpha(x)\rceil)
$$

which is

$$
\lceil\alpha(x)\rceil \mapsto\lceil\alpha(\lceil\alpha(x)\rceil)\rceil
$$

Suppose we have a term $t(y)$ that represents this function.

Proof

Consider the numerical function:

$$
\text { G. number of } \alpha(x) \mapsto \text { G. number of } \alpha(\lceil\alpha(x)\rceil)
$$

which is

$$
\lceil\alpha(x)\rceil \mapsto\lceil\alpha(\lceil\alpha(x)\rceil)\rceil
$$

Suppose we have a term $t(y)$ that represents this function.
Define the fixed-point of $\psi(x)$ by

$$
\phi:=\psi(t(\lceil\psi(t(x))\rceil))
$$

Proof

Consider the numerical function:

G. number of $\alpha(x) \mapsto$ G. number of $\alpha(\lceil\alpha(x)\rceil)$

which is

$$
\lceil\alpha(x)\rceil \mapsto\lceil\alpha(\lceil\alpha(x)\rceil)\rceil
$$

Suppose we have a term $t(y)$ that represents this function.
Define the fixed-point of $\psi(x)$ by

$$
\phi:=\psi(t(\lceil\psi(t(x))\rceil))
$$

Note that

$$
t(\lceil\psi(t(x))\rceil)=\lceil\psi(t(\lceil\psi(t(x))\rceil))\rceil=\lceil\phi\rceil
$$

Thus

$$
\phi \equiv \psi(\lceil\phi\rceil)
$$

$$
\psi(t(\lceil\psi(t(x))\rceil))
$$

"The following formula..."

- ψ - "has property ψ..."
- t - "if written twice:"
- $\lceil\psi(t(x))\rceil$ - " $\psi(t(x))$."

1st incompleteness theorem

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),
2. T extends \mathbf{Q},
3. T is consistent.

Then there exists a true sentence γ_{T} which is not provable in T.

1st incompleteness theorem

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),
2. T extends \mathbf{Q},
3. T is consistent.

Then there exists a true sentence γ_{T} which is not provable in T.

Corollary

If moreover
4. $N \models T$, i.e., T only proves true arithmetical sentences, then T is incomplete.

Proof

1. As T is r.e., there is a Σ_{1} formula $\operatorname{Pr}_{T}(x)$ that formalizes " x is provable in T ".

Proof

1. As T is r.e., there is a Σ_{1} formula $\operatorname{Pr}_{T}(x)$ that formalizes " x is provable in $T^{\prime \prime}$.
2. Since $Q \subseteq T$, we can apply the diagonal lemma and get a formula γ_{T} such that

$$
T \vdash \gamma_{T} \equiv \neg \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

Proof

1. As T is r.e., there is a Σ_{1} formula $\operatorname{Pr}_{T}(x)$ that formalizes " x is provable in $T^{\prime \prime}$.
2. Since $Q \subseteq T$, we can apply the diagonal lemma and get a formula γ_{T} such that

$$
T \vdash \gamma_{T} \equiv \neg \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

3. Suppose that $T \vdash \gamma_{T}$. This means

$$
\mathbb{N} \models \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

Since this is a Σ_{1} formula and T is Σ_{1} complete, we have

$$
T \vdash \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

Proof

1. As T is r.e., there is a Σ_{1} formula $\operatorname{Pr}_{T}(x)$ that formalizes " x is provable in $T^{\prime \prime}$.
2. Since $Q \subseteq T$, we can apply the diagonal lemma and get a formula γ_{T} such that

$$
T \vdash \gamma_{T} \equiv \neg \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

3. Suppose that $T \vdash \gamma_{T}$. This means

$$
\mathbb{N} \equiv \operatorname{Pr}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

Since this is a Σ_{1} formula and T is Σ_{1} complete, we have

$$
T \vdash \operatorname{Pr} r_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)
$$

But $T \vdash \gamma_{T}$ also means

$$
T \vdash \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

So T would be inconsistent. Hence $T \nvdash \gamma_{T}$.
4. We prove that $\mathbb{N} \models \gamma_{T}$ (i.e., γ_{T} is true).
4. We prove that $\mathbb{N} \models \gamma_{T}$ (i.e., γ_{T} is true).

We know that $T \nvdash \gamma_{T}$, which means

$$
\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right) .
$$

But this is, by the definition of γ_{T},

$$
\mathbb{N} \models \gamma_{T} .
$$

Lesson 8 - the 2nd incompleteness theorem and more

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),
2. T extends \mathbf{Q},
3. T is consistent, and moreover
4. $\operatorname{Pr}_{T}(x)$ is "properly formalized".

Then

$$
T \nvdash \neg \operatorname{Pr}(\lceil 0=1\rceil),
$$

i.e., T does not prove its own consistency.

proof-idea: formalize the 1st incompleteness theorem in T

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.
We proved

- If T is consistent,
- then $T \nvdash \gamma_{T}$, which is $\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)$, which is also $\mathbb{N} \models \gamma_{T}$.

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.
We proved

- If T is consistent,
- then $T \nvdash \gamma_{T}$, which is $\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)$, which is also $\mathbb{N} \models \gamma_{T}$. In other words

$$
T \text { consistent } \Rightarrow \gamma_{T} \text { is true. }
$$

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.
We proved

- If T is consistent,
- then $T \nvdash \gamma_{T}$, which is $\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)$, which is also $\mathbb{N} \models \gamma_{T}$.

In other words

$$
T \text { consistent } \Rightarrow \gamma_{T} \text { is true. }
$$

We will formalize this proof in T and get

$$
T \vdash \text { Con }_{T} \rightarrow \gamma_{T} .
$$

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.
We proved

- If T is consistent,
- then $T \nvdash \gamma_{T}$, which is $\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)$, which is also $\mathbb{N} \models \gamma_{T}$.

In other words

$$
T \text { consistent } \Rightarrow \gamma_{T} \text { is true. }
$$

We will formalize this proof in T and get

$$
T \vdash \text { Con }_{T} \rightarrow \gamma_{T} .
$$

Since $T \nvdash \gamma_{T}$, we also have $T \nvdash$ Con $_{T}$.

proof-idea: formalize the 1st incompleteness theorem in T

Let's denote by $\operatorname{Con}_{T}:=\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.
We proved

- If T is consistent,
- then $T \nvdash \gamma_{T}$, which is $\mathbb{N} \models \neg \operatorname{Pr}_{T}\left(\left\lceil\gamma_{T}\right\rceil\right)$, which is also $\mathbb{N} \models \gamma_{T}$.

In other words

$$
T \text { consistent } \Rightarrow \gamma_{T} \text { is true. }
$$

We will formalize this proof in T and get

$$
T \vdash \text { Con }_{T} \rightarrow \gamma_{T} .
$$

Since $T \nvdash \gamma_{T}$, we also have $T \nvdash \operatorname{Con}_{T}$.

In fact $T \vdash \gamma_{T} \equiv \operatorname{Con}_{T}$.

proper formalizations of provability in T

$$
\text { 1. } T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)
$$

$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}

proper formalizations of provability in T

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$

- satisfied if $\operatorname{Pr}_{T}(x)$ is a Σ_{1} formula and T is Σ complete, the latter is satified if T contains Robinson's Q

proper formalizations of provability in T

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$

- satisfied if $\operatorname{Pr}_{T}(x)$ is a Σ_{1} formula and T is Σ complete, the latter is satified if T contains Robinson's Q

3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$

- means that T is able to prove that it is Σ-complete

proper formalizations of provability in T

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$

- satisfied if $\operatorname{Pr}_{T}(x)$ is a Σ_{1} formula and T is Σ complete, the latter is satified if T contains Robinson's Q

3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$

- means that T is able to prove that it is Σ-complete

4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$

- means that provable formulas are closed under modus ponens

proper formalizations of provability in T

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$

- satisfied if $\operatorname{Pr}_{T}(x)$ is a Σ_{1} formula and T is Σ complete, the latter is satified if T contains Robinson's Q

3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$

- means that T is able to prove that it is Σ-complete

4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$

- means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T does not prove the cut-elimination theorem, then formalizations based on cut-free proofs do not satisfy 4 .

proper formalizations of provability in T

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
$-\operatorname{Pr}_{T}(x)$ defines correctly provability in \mathbb{N}
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$

- satisfied if $\operatorname{Pr}_{T}(x)$ is a Σ_{1} formula and T is Σ complete, the latter is satified if T contains Robinson's Q

3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$

- means that T is able to prove that it is Σ-complete

4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$

- means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T does not prove the cut-elimination theorem, then formalizations based on cut-free proofs do not satisfy 4 .

For 1 st inco. thm. we only needed 1 . and 2.

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

Then

$$
T \vdash \neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) .
$$

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

Then

$$
T \vdash \neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) .
$$

Indeed,
$\neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) \equiv\left(\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \neg \operatorname{Con}_{T}\right) \equiv \neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

Then

$$
T \vdash \neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) .
$$

Indeed,
$\neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) \equiv\left(\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \neg \operatorname{Con}_{T}\right) \equiv \neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.

Note that if T is consistent, then we do have 1.:

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}^{\prime}(\lceil\phi\rceil)$ i.e., $\operatorname{Pr}^{\prime}(x)$ defines correctly provability in \mathbb{N}
because $\mathbb{N} \models \operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x)$.

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

Then

$$
T \vdash \neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) .
$$

Indeed,
$\neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) \equiv\left(\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \neg \operatorname{Con}_{T}\right) \equiv \neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.

Note that if T is consistent, then we do have 1.:

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}^{\prime}(\lceil\phi\rceil)$ i.e., $\operatorname{Pr}^{\prime}(x)$ defines correctly provability in \mathbb{N}
because $\mathbb{N} \models \operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x)$.
What is wrong?

a wrong formalization

Let $\operatorname{Pr}_{T}(x)$ be a natural formalization and define

$$
\operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x) \wedge \operatorname{Con}_{T}
$$

Then

$$
T \vdash \neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) .
$$

Indeed,
$\neg \operatorname{Pr}^{\prime}(\lceil 0=1\rceil) \equiv\left(\neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \neg \operatorname{Con}_{T}\right) \equiv \neg \operatorname{Pr}_{T}(\lceil 0=1\rceil) \vee \operatorname{Pr}_{T}(\lceil 0=1\rceil)$.

Note that if T is consistent, then we do have 1.:

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}^{\prime}(\lceil\phi\rceil)$ i.e., $\operatorname{Pr}^{\prime}(x)$ defines correctly provability in \mathbb{N}
because $\mathbb{N} \models \operatorname{Pr}^{\prime}(x) \equiv \operatorname{Pr}_{T}(x)$.
What is wrong? $\operatorname{Pr}^{\prime}(x)$ is not Σ_{1} and does not satisfy 2; in fact T does not prove $\operatorname{Pr}_{T}^{\prime}(\lceil\phi\rceil)$ for any formula ϕ.

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr} r_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ
ii. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil)\right\rceil\right)-$ by 3 .

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ
ii. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil)\right\rceil\right)-$ by 3 .
iii. $\operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \neg \gamma\right\rceil\right)-$ by definition and 2 .

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr} r_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ
ii. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil)\right\rceil\right)-$ by 3 .
iii. $\operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \neg \gamma\right\rceil\right)$ - by definition and 2 .
iv. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\neg \gamma\rceil)-$ by 4 .

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ
ii. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil)\right\rceil\right)-$ by 3 .
iii. $\operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \neg \gamma\right\rceil\right)$ - by definition and 2 .
iv. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\neg \gamma\rceil)-$ by 4 .
v. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil) \wedge \operatorname{Pr}_{T}(\lceil\neg \gamma\rceil)-$ from i. and iv.

Proof of 2nd incompleteness theorem

If we assume that

1. $T \vdash \phi \Leftrightarrow \mathbb{N} \models \operatorname{Pr}_{T}(\lceil\phi\rceil)$
2. $T \vdash \phi \Rightarrow T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil)$
3. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\phi\rceil)\right\rceil\right)$
4. $T \vdash \operatorname{Pr}_{T}(\lceil\phi\rceil) \wedge \operatorname{Pr}_{T}(\lceil\phi \rightarrow \psi\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\psi\rceil)$
then T proves:
i. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil)-$ by definition of γ
ii. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil)\right\rceil\right)-$ by 3 .
iii. $\operatorname{Pr}_{T}\left(\left\lceil\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \neg \gamma\right\rceil\right)$ - by definition and 2 .
iv. $\operatorname{Pr}_{T}(\lceil\gamma\rceil) \rightarrow \operatorname{Pr}_{T}(\lceil\neg \gamma\rceil)-$ by 4 .
v. $\neg \gamma \rightarrow \operatorname{Pr}_{T}(\lceil\gamma\rceil) \wedge \operatorname{Pr}_{T}(\lceil\neg \gamma\rceil)-$ from i. and iv.
vi. Con $_{T} \rightarrow \gamma-$ from v.

Exercise

1. Check that this is a formalization of the proof of the 1st inco. thm.
2. Explain why vi. follows from v.
3. Prove that $\gamma \rightarrow$ Con $_{T}$.

Rossers's theorem

Let $\mathrm{Q} \subseteq T$ and T be consistent, e.g., $T:=P A$.
Define $S:=T+\neg$ Con $_{T}$. Then

- $S \vdash \neg$ Cons $_{S}$.

Rossers's theorem

Let $\mathrm{Q} \subseteq T$ and T be consistent, e.g., $T:=P A$.
Define $S:=T+\neg$ Con $_{T}$. Then

- $S \vdash \neg$ Cons $_{S}$.

By the 1st inco. thm.

- $S \nvdash$ Cons $_{s}$,
but we cannot conclude that S is incomplete!

Rossers's theorem

Let $\mathrm{Q} \subseteq T$ and T be consistent, e.g., $T:=P A$.
Define $S:=T+\neg$ Con $_{T}$. Then

- $S \vdash \neg$ Cons.

By the 1st inco. thm.

- $S \nvdash$ Cons $_{s}$,
but we cannot conclude that S is incomplete!
Can we weaken the condition of soundness to consistency?

yes, we can

Theorem (Rosser)
Suppose

1. $\mathrm{Q} \subseteq T$,
2. T is consistent,
3. T computably axiomatized (the axioms of T are a computably enumerable set)
Then T is incomplete.

yes, we can

Theorem (Rosser)

Suppose

1. $Q \subseteq T$,
2. T is consistent,
3. T computably axiomatized (the axioms of T are a computably enumerable set)
Then T is incomplete.

Example
PA is incomplete, because PA \vdash Con $_{P A}$, but PA $+\neg$ Con $_{P A}$ is still incomplete.

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.
3. $T \vdash \exists y(y<\bar{n} \wedge \operatorname{Prf}(\bar{y},\lceil\neg \rho\rceil)$

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.
3. $T \vdash \exists y(y<\bar{n} \wedge \operatorname{Prf}(\bar{y},\lceil\neg \rho\rceil)$
4. but $T \vdash \neg \operatorname{Prf}(\bar{m},\lceil\neg \rho\rceil)$ for all $m<n$, because T is consistent.

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.
3. $T \vdash \exists y(y<\bar{n} \wedge \operatorname{Prf}(\bar{y},\lceil\neg \rho\rceil)$
4. but $T \vdash \neg \operatorname{Prf}(\bar{m},\lceil\neg \rho\rceil)$ for all $m<n$, because T is consistent.
5. using $T \vdash y<\bar{n} \equiv y=\overline{0} \vee \cdots \vee \overline{n-1}$, we get

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv{ }_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.
3. $T \vdash \exists y(y<\bar{n} \wedge \operatorname{Prf}(\bar{y},\lceil\neg \rho\rceil)$
4. but $T \vdash \neg \operatorname{Prf}(\bar{m},\lceil\neg \rho\rceil)$ for all $m<n$, because T is consistent.
5. using $T \vdash y<\bar{n} \equiv y=\overline{0} \vee \cdots \vee \overline{n-1}$, we get
6. $T \vdash \neg \exists y(y<\bar{n} \wedge \operatorname{Prf}(y,\lceil\neg \rho\rceil)$

Proof

Define a sentence ρ that says:
"For every proof of myself, there exists a shorter proof of my negation."

Notation

Let $\operatorname{Prf}(x, y)$ formalize " x is a T-proof of y ".
Let \bar{n} denote $S^{n}(0)$, the n-th numeral.
Define

$$
\rho \equiv_{d f} \forall x(\operatorname{Prf}(x,\lceil\rho\rceil) \rightarrow \exists y(y<x \wedge(\operatorname{Prf}(y,\lceil\neg \rho\rceil))
$$

1. Suppose $T \vdash \rho$. Then
2. $T \vdash \operatorname{Prf}(\bar{n},\lceil\rho\rceil)$, where n is the G. number of the proof.
3. $T \vdash \exists y(y<\bar{n} \wedge \operatorname{Prf}(\bar{y},\lceil\neg \rho\rceil)$
4. but $T \vdash \neg \operatorname{Prf}(\bar{m},\lceil\neg \rho\rceil)$ for all $m<n$, because T is consistent.
5. using $T \vdash y<\bar{n} \equiv y=\overline{0} \vee \cdots \vee \overline{n-1}$, we get
6. $T \vdash \neg \exists y(y<\bar{n} \wedge \operatorname{Prf}(y,\lceil\neg \rho\rceil)$
7. T is consistent is in contradiction with 2 . and 5 .

Thus $T \nvdash \rho$.
2. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then
2. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then

1. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
2. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then
3. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
4. $T \vdash \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from $\neg \rho$ and 1 .
5. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then
6. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
7. $T \vdash \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from $\neg \rho$ and 1 .
8. $\mathbb{N} \models \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from consistency of T and $T \vdash \neg \rho$.
9. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then
10. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
11. $T \vdash \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from $\neg \rho$ and 1 .
12. $\mathbb{N} \models \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from consistency of T and $T \vdash \neg \rho$.
13. $T \vdash \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from 3. by \sum-completeness.
14. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then
15. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
16. $T \vdash \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from $\neg \rho$ and 1 .
17. $\mathbb{N} \models \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from consistency of T and $T \vdash \neg \rho$.
18. $T \vdash \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from 3. by \sum-completeness.
19. T is consistent is in contradiction with 2 . and 4 .

Thus $T \nvdash \neg \rho$.
2. Suppose $T \vdash \neg \rho \quad(\equiv \exists x(\operatorname{Prf}(x,\lceil\rho\rceil) \wedge \forall y(y<x \wedge(\neg \operatorname{Prf}(y,\lceil\neg \rho\rceil))$ Then

1. $T \vdash \operatorname{Prf}(\bar{n},\lceil\neg \rho\rceil)$, where n is the G. number of the proof.
2. $T \vdash \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from $\neg \rho$ and 1 .
3. $\mathbb{N} \models \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from consistency of T and $T \vdash \neg \rho$.
4. $T \vdash \neg \exists x \leq \bar{n} \operatorname{Prf}(x,\lceil\rho\rceil)$, from 3. by Σ-completeness.
5. T is consistent is in contradiction with 2 . and 4.

Thus $T \nvdash \neg \rho$.

We know that $T \vdash \gamma_{T} \equiv \operatorname{Con}_{T}$. What about ρ_{T} ?
Exercise

1. Prove $T \vdash \operatorname{Con}_{T} \rightarrow \rho_{T}$.
2. Prove $T \nvdash \rho_{T} \rightarrow \operatorname{Con}_{T}$.

unpredictable algorithms

Theorem
Let $T \supseteq \mathrm{Q}$ be consistent and computably axiomatizable. Then one can write a program P_{T} such that for every $n \in \mathbb{N}$,

$$
T+P_{T} \text { outputs } \bar{n}
$$

is consistent.
T is not able to predict the output of P_{T}.
Proof.
Define P_{T} using the fixpoint lemma so that P_{T} systematically searches all T-proofs until it finds a T-proof of $\neg\left(P_{T}:=\bar{n}\right)$; then it prints n.

unpredictable algorithms

Theorem
Let $T \supseteq \mathrm{Q}$ be consistent and computably axiomatizable. Then one can write a program P_{T} such that for every $n \in \mathbb{N}$,

$$
T+P_{T} \text { outputs } \bar{n}
$$

is consistent.
T is not able to predict the output of P_{T}.
Proof.
Define P_{T} using the fixpoint lemma so that P_{T} systematically searches all T-proofs until it finds a T-proof of $\neg\left(P_{T}:=\bar{n}\right)$; then it prints n.
$T+P_{T}:=\bar{n}$ is consistent, because if $T \vdash \neg\left(P_{T}:=\bar{n}\right)$, then $P_{T}:=n$ and, by Σ-completeness, $T \vdash P_{T}:=\bar{n}$; so T would be inconsistent.

unpredictable algorithms

Theorem
Let $T \supseteq \mathrm{Q}$ be consistent and computably axiomatizable. Then one can write a program P_{T} such that for every $n \in \mathbb{N}$,

$$
T+P_{T} \text { outputs } \bar{n}
$$

is consistent.
T is not able to predict the output of P_{T}.

Proof.

Define P_{T} using the fixpoint lemma so that P_{T} systematically searches all T-proofs until it finds a T-proof of $\neg\left(P_{T}:=\bar{n}\right)$; then it prints n.
$T+P_{T}:=\bar{n}$ is consistent, because if $T \vdash \neg\left(P_{T}:=\bar{n}\right)$, then $P_{T}:=n$ and, by Σ-completeness, $T \vdash P_{T}:=\bar{n}$; so T would be inconsistent. \square

Exercise

What does the program output?

flexible formula

Theorem (A. Mostowski)
Let $T \supseteq Q$ be consistent and computably axiomatizable. Then there exists a formula $\phi(x)$ such that for every set $S \subseteq \mathbb{N}$

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in \mathbb{N} \backslash S\}
$$

is consistent.

flexible formula

Theorem (A. Mostowski)
Let $T \supseteq Q$ be consistent and computably axiomatizable. Then there exists a formula $\phi(x)$ such that for every set $S \subseteq \mathbb{N}$

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in \mathbb{N} \backslash S\}
$$

is consistent.
Proof.
By compactness, it suffices to prove for every $m \in \mathbb{N}$ and every $S \subseteq[0, m]$,

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in[0, m] \backslash S\}
$$

is consistent.

flexible formula

Theorem (A. Mostowski)
Let $T \supseteq \mathrm{Q}$ be consistent and computably axiomatizable. Then there exists a formula $\phi(x)$ such that for every set $S \subseteq \mathbb{N}$

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in \mathbb{N} \backslash S\}
$$

is consistent.
Proof.
By compactness, it suffices to prove for every $m \in \mathbb{N}$ and every $S \subseteq[0, m]$,

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in[0, m] \backslash S\}
$$

is consistent.
Let P_{T} be an unpredictable algorithm in T. Define $\phi(x)$:

- $\exists y\left(P_{T}:=y \wedge(y)_{x}=1\right) \quad\left(\right.$ think of y as a code of $\left.\left(y_{0}, \ldots, y_{m}\right)\right)$

flexible formula

Theorem (A. Mostowski)
Let $T \supseteq \mathrm{Q}$ be consistent and computably axiomatizable. Then there exists a formula $\phi(x)$ such that for every set $S \subseteq \mathbb{N}$

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in \mathbb{N} \backslash S\}
$$

is consistent.
Proof.
By compactness, it suffices to prove for every $m \in \mathbb{N}$ and every $S \subseteq[0, m]$,

$$
T \cup\{\phi(\bar{n}) \mid n \in S\} \cup\{\neg \phi(\bar{n}) \mid n \in[0, m] \backslash S\}
$$

is consistent.
Let P_{T} be an unpredictable algorithm in T. Define $\phi(x)$:

- $\exists y\left(P_{T}:=y \wedge(y)_{x}=1\right) \quad\left(\right.$ think of y as a code of $\left.\left(y_{0}, \ldots, y_{m}\right)\right)$

By the previous theorem, it is consistent that P_{T} prints an arbitrary string of 0 s and 1 s .

Exercise

1. Generalize the fixpoint lemma to formulas with one free variable:

$$
\mathrm{Q} \vdash \phi(x) \equiv \psi(\lceil\phi(\bar{x})\rceil, x),
$$

where $\lceil\phi(\bar{x})\rceil$ denotes a formalization of the function that given a number n, constructs a godel number of $\phi(\bar{n})$.
2. Construct a formula $\psi(x)$ such that for every n,

$$
T+\psi(\bar{n}) \wedge \forall x<\bar{n} \neg \psi(x)
$$

is consistent.
3. construct a flexible formula from ψ.

Kolmogorov complexity and incompleteness

Definition
U is a universal Turing machine if for every Turing machine M there exists a string p (program) such that for all x, $M(x)=U(p x)$.

All strings are binary.
$p x$ is the concatenation of p and x.
$M(x)=U(p x)$ means that M stops iff U stops and if they stop, they print the same string.

Kolmogorov complexity and incompleteness

Definition

U is a universal Turing machine if for every Turing machine M there exists a string p (program) such that for all x, $M(x)=U(p x)$.

All strings are binary.
$p x$ is the concatenation of p and x.
$M(x)=U(p x)$ means that M stops iff U stops and if they stop, they print the same string.

Definition
The Kolmogorov complexity of a string x (w.r.t. to U), $K_{U}(x)$, is the length of the shortest string p such that $U(p)=x$.

basic facts

- $\exists c \forall x K_{U}(x) \leq|x|+c$
- For U, U^{\prime} universal Turing machines, there exists c such that for all x

$$
K_{U}(x) \leq K_{U^{\prime}}(x)+c \text { and } K_{U^{\prime}}(x) \leq K_{U}(x)+c
$$

- $K_{U}(x)$ is not computable.

basic facts

- $\exists c \forall x K_{U}(x) \leq|x|+c$
- For U, U^{\prime} universal Turing machines, there exists c such that for all x

$$
K_{U}(x) \leq K_{U^{\prime}}(x)+c \text { and } K_{U^{\prime}}(x) \leq K_{U}(x)+c
$$

- $K_{U}(x)$ is not computable.

Proposition (and Definition)

For every n there exists a string $x,|x|=n$ such that $K_{U}(x) \geq n$. Such a string is called Kolmogorov random or incompressible.

Proof.
The number of Kolmogorov non-random strings of length n is

$$
\leq 1+2+4+\cdots+2^{n-1}<2^{n}
$$

Theorem (Chaitin)

For every theory $T, T \supseteq Q$, sound, ${ }^{1}$ and computably axiomatizable, there exists a number k_{T} such that for no string a, T proves $K_{U}(\bar{a})>\bar{k}_{T} .{ }^{2}$

[^0]
Theorem (Chaitin)

For every theory $T, T \supseteq Q$, sound, ${ }^{1}$ and computably axiomatizable, there exists a number k_{T} such that for no string a, T proves $K_{U}(\bar{a})>\bar{k}_{T} .{ }^{2}$
Proof.
Let M be a Turing machine that on input k, a number in binary, systematically checks all strings and

- if it finds a T-proof of $K_{U}(\bar{a})>\bar{k}$ for some a, it prints a,
- otherwise it does not stop.

[^1]
Theorem (Chaitin)

For every theory $T, T \supseteq \mathrm{Q}$, sound, ${ }^{1}$ and computably axiomatizable, there exists a number k_{T} such that for no string a, T proves $K_{U}(\bar{a})>\bar{k}_{T} .{ }^{2}$
Proof.
Let M be a Turing machine that on input k, a number in binary, systematically checks all strings and

- if it finds a T-proof of $K_{U}(\bar{a})>\bar{k}$ for some a, it prints a,
- otherwise it does not stop.

Let Π be the first T-proof of a sentence of the form $K_{U}(\bar{a})>\bar{k}$. Hence

$$
K_{U}(a) \leq C+\log _{2} k
$$

for some constant C. Since T is sound, such a proof does not exist if

$$
C+\log _{2} k \leq k .
$$

Take (any/least) k_{T} that satisfies this inequality.
${ }^{1}$ Proves only true arithmetical sentences.
${ }^{2}$ Bars are used to represent strings and numbers by numerals in theory T.

Corollary

The first incompleteness theorem.
with a proof that does not use self-reference.

Corollary

The first incompleteness theorem.
with a proof that does not use self-reference.
But are such independent sentences interesting?

Corollary

The first incompleteness theorem.
with a proof that does not use self-reference.
But are such independent sentences interesting?
If we take k_{T} the least number that satisfies Chaitin's Theorem, we get a measure of the strength of theory T.

Corollary

The first incompleteness theorem.
with a proof that does not use self-reference.
But are such independent sentences interesting?
If we take k_{T} the least number that satisfies Chaitin's Theorem, we get a measure of the strength of theory T.

Clearly, if $\operatorname{Thm}(S) \subseteq \operatorname{Thm}(T)$ then $k_{S} \leq k_{T}$, regardless the complexity of the axiomatizations of S and T.

Corollary

The first incompleteness theorem.
with a proof that does not use self-reference.
But are such independent sentences interesting?
If we take k_{T} the least number that satisfies Chaitin's Theorem, we get a measure of the strength of theory T.

Clearly, if $\operatorname{Thm}(S) \subseteq \operatorname{Thm}(T)$ then $k_{S} \leq k_{T}$, regardless the complexity of the axiomatizations of S and T.

But it is almost impossible to determine k_{T}. Moreover, it depends on U.

Corollary

The first incompleteness theorem. with a proof that does not use self-reference.

But are such independent sentences interesting?
If we take k_{T} the least number that satisfies Chaitin's Theorem, we get a measure of the strength of theory T.

Clearly, if $\operatorname{Thm}(S) \subseteq \operatorname{Thm}(T)$ then $k_{S} \leq k_{T}$, regardless the complexity of the axiomatizations of S and T.

But it is almost impossible to determine k_{T}. Moreover, it depends on U.

Paradox A sufficiently strong T can prove that there exist Kolmogorov random strings for every n, but for large enough n, it is unable to prove it for any concrete string.

2nd incompleteness theorem using Kolmogorov complexity

Proposition
Let $T \supseteq \mathrm{Q}$ be sound and computably axiomatizable. Then for every $n>k_{T}$, if
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n},
then, in fact, there are $>M$ Kolmogorov random strings of length n.
Proof.
Let M be given and let N be the actual number of Kolmogorov random strings of length n.

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let $T \supseteq \mathrm{Q}$ be sound and computably axiomatizable. Then for every $n>k_{T}$, if
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n},
then, in fact, there are $>M$ Kolmogorov random strings of length n.
Proof.
Let M be given and let N be the actual number of Kolmogorov random strings of length n.

1. $M>N$ is impossible: if $K(w)<n$, then $T \vdash K(\bar{w}) \leq \bar{n}$ (by Σ-completeness), whence T proves that $M \leq N$.

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let $T \supseteq$ Q be sound and computably axiomatizable. Then for every $n>k_{T}$, if
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n},
then, in fact, there are $>M$ Kolmogorov random strings of length n.
Proof.
Let M be given and let N be the actual number of Kolmogorov random strings of length n.

1. $M>N$ is impossible: if $K(w)<n$, then $T \vdash K(\bar{w}) \leq \bar{n}$ (by \sum-completeness), whence T proves that $M \leq N$.
2. $M=N$ is impossible: For all w such that $K(w)<n, T$ can prove that they are not K. random, so T knows that any of the remaining M must be K. random - contradiction with $k_{T}<n$.

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let $T \supseteq \mathrm{Q}$ be sound and computably axiomatizable. Then for every $n>k_{T}$, if
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n},
then, in fact, there are $>M$ Kolmogorov random strings of length n.

Proof.

Let M be given and let N be the actual number of Kolmogorov random strings of length n.

1. $M>N$ is impossible: if $K(w)<n$, then $T \vdash K(\bar{w}) \leq \bar{n}$ (by \sum-completeness), whence T proves that $M \leq N$.
2. $M=N$ is impossible: For all w such that $K(w)<n, T$ can prove that they are not K. random, so T knows that any of the remaining M must be K. random - contradiction with $k_{T}<n$.
3. $M<N$ is the only remaining possibility.

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own consistency. Then

- T proves that for every n there exists at least one K. random string and not all strings are K. random.

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own consistency. Then

- T proves that for every n there exists at least one K. random string and not all strings are K. random.
- T can formalize the argument of the Proposition and we get: If
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n}, then
$T \vdash \exists \geq \overline{M+1}$ Kolmogorov random strings of length \bar{n}.

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own consistency. Then

- T proves that for every n there exists at least one K. random string and not all strings are K. random.
- T can formalize the argument of the Proposition and we get: If
$T \vdash \exists \geq \bar{M}$ Kolmogorov random strings of length \bar{n}, then
$T \vdash \exists \geq \overline{M+1}$ Kolmogorov random strings of length \bar{n}.
- Thus T would prove that all strings of length n are K. random $\Rightarrow T$ is not consistent.

Exercise

Where did we use the assumption that T proves its own consistency?

Lesson 9, Peano Arithmetic and Bounded Arithmetic

see Chapter 2, by Buss

[^0]: ${ }^{1}$ Proves only true arithmetical sentences.
 ${ }^{2}$ Bars are used to represent strings and numbers by numerals in theory T.

[^1]: ${ }^{1}$ Proves only true arithmetical sentences.
 ${ }^{2}$ Bars are used to represent strings and numbers by numerals in theory T.

