
Logic in Computer Science IV

[1]

Lesson 7, the incompleteness theorem,
1. formalization of arithmetic

Richard Dedekind 1831–1916
Giuseppe Peano 1858–1932

(N; 0,S)

1. for every x , S(x) 6= 0,

2. if x 6= y , then S(x) 6= S(y),

3. for every set X ⊆ N, if 0 ∈ N and x ∈ N implies S(x) ∈ N,
then X = N.

This formalization of arithmetic uses a second order concept of
a set of numbers.

[2]

Lesson 7, the incompleteness theorem,
1. formalization of arithmetic

Richard Dedekind 1831–1916
Giuseppe Peano 1858–1932

(N; 0, S)

1. for every x , S(x) 6= 0,

2. if x 6= y , then S(x) 6= S(y),

3. for every set X ⊆ N, if 0 ∈ N and x ∈ N implies S(x) ∈ N,
then X = N.

This formalization of arithmetic uses a second order concept of
a set of numbers.

[2]

Lesson 7, the incompleteness theorem,
1. formalization of arithmetic

Richard Dedekind 1831–1916
Giuseppe Peano 1858–1932

(N; 0, S)

1. for every x , S(x) 6= 0,

2. if x 6= y , then S(x) 6= S(y),

3. for every set X ⊆ N, if 0 ∈ N and x ∈ N implies S(x) ∈ N,
then X = N.

This formalization of arithmetic uses a second order concept of
a set of numbers.

[2]

Robinson’s Arithmetic Q
(Raphael M. Robinson)

Language 0, S , +, × and ≤.
Axioms – universal closure of the following formulas:

1. successor function
I S(x) 6= 0
I x 6= y → S(x) 6= S(y)
I x 6= 0→ ∃y(y = S(x))

2. addition
I x + 0 = x
I x + S(y) = S(x + y)

3. multiplication
I x × 0 = 0
I x × S(y) = x × y + x

4. inequality
I x ≤ y ≡ ∃z(z + x = y)

weak, but essentially undecidable–every consistent extension is
undecidable

[3]

Robinson’s Arithmetic Q
(Raphael M. Robinson)

Language 0, S , +, × and ≤.
Axioms – universal closure of the following formulas:

1. successor function
I S(x) 6= 0
I x 6= y → S(x) 6= S(y)
I x 6= 0→ ∃y(y = S(x))

2. addition
I x + 0 = x
I x + S(y) = S(x + y)

3. multiplication
I x × 0 = 0
I x × S(y) = x × y + x

4. inequality
I x ≤ y ≡ ∃z(z + x = y)

weak, but essentially undecidable–every consistent extension is
undecidable

[3]

Robinson’s Arithmetic Q
(Raphael M. Robinson)

Language 0, S , +, × and ≤.
Axioms – universal closure of the following formulas:

1. successor function
I S(x) 6= 0
I x 6= y → S(x) 6= S(y)
I x 6= 0→ ∃y(y = S(x))

2. addition
I x + 0 = x
I x + S(y) = S(x + y)

3. multiplication
I x × 0 = 0
I x × S(y) = x × y + x

4. inequality
I x ≤ y ≡ ∃z(z + x = y)

weak, but essentially undecidable–every consistent extension is
undecidable

[3]

Σ-completeness

Q cannot even prove the commutativity of addition, but

Theorem (and Definition)

Q is Σ-complete, which means that for every Σ1 sentence φ

N |= φ ⇒ Q ` φ.

I.e. Q proves all true Σ1 sentences.

A Σ1 sentence has a prefix of existential quantifiers followed by
bounded quantifiers ∃x ≤ t and ∀y ≤ s.

[4]

Σ-completeness

Q cannot even prove the commutativity of addition, but

Theorem (and Definition)

Q is Σ-complete, which means that for every Σ1 sentence φ

N |= φ ⇒ Q ` φ.

I.e. Q proves all true Σ1 sentences.

A Σ1 sentence has a prefix of existential quantifiers followed by
bounded quantifiers ∃x ≤ t and ∀y ≤ s.

[4]

example

Q proves 1 ≤ 2.

We will use axioms

1. x + 0 = x

2. x + S(y) = S(x + y)

3. x ≤ y ≡ ∃z(z + x = y)

I S0 + S0 = S(S0 + 0)

I S0 + S0 = S(S0)

I ∃z(S0 + z = SS0)

I S0 ≤ SS0

Exercise
Prove 2× 2 = 4.

[5]

example

Q proves 1 ≤ 2.

We will use axioms

1. x + 0 = x

2. x + S(y) = S(x + y)

3. x ≤ y ≡ ∃z(z + x = y)

I S0 + S0 = S(S0 + 0)

I S0 + S0 = S(S0)

I ∃z(S0 + z = SS0)

I S0 ≤ SS0

Exercise
Prove 2× 2 = 4.

[5]

example

Q proves 1 ≤ 2.

We will use axioms

1. x + 0 = x

2. x + S(y) = S(x + y)

3. x ≤ y ≡ ∃z(z + x = y)

I S0 + S0 = S(S0 + 0)

I S0 + S0 = S(S0)

I ∃z(S0 + z = SS0)

I S0 ≤ SS0

Exercise
Prove 2× 2 = 4.

[5]

Proof idea (of Σ-completeness of Q)

I Eliminate existential quantifiers by substituting numerals

I Elminate bounded universal quantifiers using
Q ` x ≤ Sn0 ≡ (x = 0 ∨ x = S0 ∨ · · · ∨ x = Sn0)
—(Exercise)

I Show that every closed term equals to a numeral provably
in Q.

I Show that every true quantifier-free sentence is provable.

[6]

Proof idea (of Σ-completeness of Q)

I Eliminate existential quantifiers by substituting numerals

I Elminate bounded universal quantifiers using
Q ` x ≤ Sn0 ≡ (x = 0 ∨ x = S0 ∨ · · · ∨ x = Sn0)
—(Exercise)

I Show that every closed term equals to a numeral provably
in Q.

I Show that every true quantifier-free sentence is provable.

[6]

Peano Arithmetic PA

= Robinson’s Arithmetic + induction formulas for all formulas
in the language 0, S , +, × and ≤.

φ(0) ∧ ∀x(φ(x)→ φ(S(x)))→ ∀y .φ(y)

Remarks

1. φ(x) may have other free variables,

2. x 6= 0→ ∃y(y = S(x)) is redundant if we have induction,

3. x ≤ y ≡ ∃z(z + x = y) is a definition of ≤, so it can be
omitted.

4. Peano Arithmetic is incomplete, because it only has
induction for arithmetical formulas.

[7]

Peano Arithmetic PA

= Robinson’s Arithmetic + induction formulas for all formulas
in the language 0, S , +, × and ≤.

φ(0) ∧ ∀x(φ(x)→ φ(S(x)))→ ∀y .φ(y)

Remarks

1. φ(x) may have other free variables,

2. x 6= 0→ ∃y(y = S(x)) is redundant if we have induction,

3. x ≤ y ≡ ∃z(z + x = y) is a definition of ≤, so it can be
omitted.

4. Peano Arithmetic is incomplete, because it only has
induction for arithmetical formulas.

[7]

Finite Set Theory
Zermelo-Fraenkel Set Theory

I without the axiom of infinity

I plus the axiom “every set is finite”

Theorem
Peano Arithmetic and Finite Set Theory are mutually interpretable,
i.e.,

1. there are arithmetical formulas V (x) for the universe of sets
and E (x , y) for the relation of being an element such that
translations of all axioms of Finite Set Theory are provable in
Peano Arithmetic,

2. there are set theoretical formulas ... such that all axioms of
Peano Arithmetic are provable in Finite Set Theory.

3. Moreover, the interpretations are faithful, i.e., Finite Set
Theory proves exactly the same sentences about numbers as
Peano Arithmetic and vice versa Peano Arithmetic ...

[8]

Finite Set Theory
Zermelo-Fraenkel Set Theory

I without the axiom of infinity

I plus the axiom “every set is finite”

Theorem
Peano Arithmetic and Finite Set Theory are mutually interpretable,
i.e.,

1. there are arithmetical formulas V (x) for the universe of sets
and E (x , y) for the relation of being an element such that
translations of all axioms of Finite Set Theory are provable in
Peano Arithmetic,

2. there are set theoretical formulas ... such that all axioms of
Peano Arithmetic are provable in Finite Set Theory.

3. Moreover, the interpretations are faithful, i.e., Finite Set
Theory proves exactly the same sentences about numbers as
Peano Arithmetic and vice versa Peano Arithmetic ...

[8]

Proof.
The essence is coding pairs and sequences in PA.

I coding pairs, Cantor’s pairing function

〈x , y〉 :=
(x + y)2 + x + 1

2

I Gödel’s function

β(a, i) := min{x < a ; ∃y < a∃z < a(a = 〈y , z〉∧1+(〈x , i〉+1)|y}.

Given a1, . . . , an, there exists a such that β(a, i) = ai , for
i = 1, . . . , n. This fact cannot be expressed in PA. We have to
prove some properties of β. In particular:

I the empty sequence has a code,
I given a and b, one can extend the sequence a by adding b at

the end.

[9]

Proof.
The essence is coding pairs and sequences in PA.

I coding pairs, Cantor’s pairing function

〈x , y〉 :=
(x + y)2 + x + 1

2

I Gödel’s function

β(a, i) := min{x < a ; ∃y < a∃z < a(a = 〈y , z〉∧1+(〈x , i〉+1)|y}.

Given a1, . . . , an, there exists a such that β(a, i) = ai , for
i = 1, . . . , n. This fact cannot be expressed in PA. We have to
prove some properties of β. In particular:

I the empty sequence has a code,
I given a and b, one can extend the sequence a by adding b at

the end.

[9]

Proof.
The essence is coding pairs and sequences in PA.

I coding pairs, Cantor’s pairing function

〈x , y〉 :=
(x + y)2 + x + 1

2

I Gödel’s function

β(a, i) := min{x < a ; ∃y < a∃z < a(a = 〈y , z〉∧1+(〈x , i〉+1)|y}.

Given a1, . . . , an, there exists a such that β(a, i) = ai , for
i = 1, . . . , n.

This fact cannot be expressed in PA. We have to
prove some properties of β. In particular:

I the empty sequence has a code,
I given a and b, one can extend the sequence a by adding b at

the end.

[9]

Proof.
The essence is coding pairs and sequences in PA.

I coding pairs, Cantor’s pairing function

〈x , y〉 :=
(x + y)2 + x + 1

2

I Gödel’s function

β(a, i) := min{x < a ; ∃y < a∃z < a(a = 〈y , z〉∧1+(〈x , i〉+1)|y}.

Given a1, . . . , an, there exists a such that β(a, i) = ai , for
i = 1, . . . , n. This fact cannot be expressed in PA. We have to
prove some properties of β. In particular:

I the empty sequence has a code,
I given a and b, one can extend the sequence a by adding b at

the end.

[9]

I Alternatively, one can define bits of the numbers.
One can define “x is a power of 2” by

∀y(y |x → (y = 1 ∧ 2|y)

etc.

Exercise
Define x |y (x divides y).

[10]

Corollary

It is possible to formalize all standard syntactical concepts in PA.

So why do we use Peano Arithmetic?

I tradition

I linearly ordered models

I numerals for denoting elements

I hierarchies of arithmetical formulas

I fragments of PA defined by restricting the induction schema

[11]

Corollary

It is possible to formalize all standard syntactical concepts in PA.

So why do we use Peano Arithmetic?

I tradition

I linearly ordered models

I numerals for denoting elements

I hierarchies of arithmetical formulas

I fragments of PA defined by restricting the induction schema

[11]

Corollary

It is possible to formalize all standard syntactical concepts in PA.

So why do we use Peano Arithmetic?

I tradition

I linearly ordered models

I numerals for denoting elements

I hierarchies of arithmetical formulas

I fragments of PA defined by restricting the induction schema

[11]

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)

2. formalized concepts (in the theory)

3. names representing formalized concepts (in the theory)

Example

Consider PA and numbers.

1. in metatheory, 0 is ∅, 1 is {0}, 2 is {0, 1} etc.

2. in PA, every element is a number

3. terms 0, S(0), SS(0),... are names for 0,1,2,...

We call terms 0, S(0), SS(0),... numerals.

[12]

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)

2. formalized concepts (in the theory)

3. names representing formalized concepts (in the theory)

Example

Consider PA and numbers.

1. in metatheory, 0 is ∅, 1 is {0}, 2 is {0, 1} etc.

2. in PA, every element is a number

3. terms 0, S(0), SS(0),... are names for 0,1,2,...

We call terms 0, S(0), SS(0),... numerals.

[12]

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)

2. formalized concepts (in the theory)

3. names representing formalized concepts (in the theory)

Example

Consider PA and numbers.

1. in metatheory, 0 is ∅, 1 is {0}, 2 is {0, 1} etc.

2. in PA, every element is a number

3. terms 0, S(0), SS(0),... are names for 0,1,2,...

We call terms 0, S(0), SS(0),... numerals.

[12]

yet, it is not so simple!

We have to distinguish

1. concepts (in the metatheory)

2. formalized concepts (in the theory)

3. names representing formalized concepts (in the theory)

Example

Consider PA and numbers.

1. in metatheory, 0 is ∅, 1 is {0}, 2 is {0, 1} etc.

2. in PA, every element is a number

3. terms 0, S(0), SS(0),... are names for 0,1,2,...

We call terms 0, S(0), SS(0),... numerals.

[12]

Formulas in PA.

1. in metatheory φ is a string of symbols

2. we assign numbers to symbols

3. in PA, φ is a number that codes the string of numbers of
the symbols, this is the Gödel number of φ

4. if we need to talk about a concrete φ in PA, we use the
numeral representing the Gödel number of φ

Notation The the numeral representing the Gödel number of φ
will be denoted by

dφe

.

[13]

Formulas in PA.

1. in metatheory φ is a string of symbols

2. we assign numbers to symbols

3. in PA, φ is a number that codes the string of numbers of
the symbols, this is the Gödel number of φ

4. if we need to talk about a concrete φ in PA, we use the
numeral representing the Gödel number of φ

Notation The the numeral representing the Gödel number of φ
will be denoted by

dφe

.

[13]

Formulas in PA.

1. in metatheory φ is a string of symbols

2. we assign numbers to symbols

3. in PA, φ is a number that codes the string of numbers of
the symbols, this is the Gödel number of φ

4. if we need to talk about a concrete φ in PA, we use the
numeral representing the Gödel number of φ

Notation The the numeral representing the Gödel number of φ
will be denoted by

dφe

.

[13]

Formulas in PA.

1. in metatheory φ is a string of symbols

2. we assign numbers to symbols

3. in PA, φ is a number that codes the string of numbers of
the symbols, this is the Gödel number of φ

4. if we need to talk about a concrete φ in PA, we use the
numeral representing the Gödel number of φ

Notation The the numeral representing the Gödel number of φ
will be denoted by

dφe

.

[13]

Example

1. let φ be x + 0 = x

2. x 7→ 1,+ 7→ 2,=7→ 3

3. the Gödel number of φ is the number that encodes the
sequence (1, 2, 3, 1), say 2500

4. dφe is SS . . . S0 with 2500 symbols S .

Let φ and ψ(x) be formulas. Then

I ψ(φ) is not a well-formed formula, but

I ψ(dφe) is, because dφe is a term.

[14]

Example

1. let φ be x + 0 = x

2. x 7→ 1,+ 7→ 2,=7→ 3

3. the Gödel number of φ is the number that encodes the
sequence (1, 2, 3, 1), say 2500

4. dφe is SS . . . S0 with 2500 symbols S .

Let φ and ψ(x) be formulas. Then

I ψ(φ) is not a well-formed formula, but

I ψ(dφe) is, because dφe is a term.

[14]

self-reference

Lemma (diagonal, or fixed-point)

Let ψ(x) be an arithmetical formula with one free variable. Then
there exists a sentence φ such that

Q ` φ ≡ ψ(dφe)

φ says: “I have property ψ”

[15]

self-reference

Lemma (diagonal, or fixed-point)

Let ψ(x) be an arithmetical formula with one free variable. Then
there exists a sentence φ such that

Q ` φ ≡ ψ(dφe)

φ says: “I have property ψ”

[15]

proof-idea

First attempt:

I The following formula has property ψ: The following
formula has property ψ.

Not good, it only refers to its part.

Second attempt:

I The following formula written twice has property ψ: The
following formula written twice has property ψ.

Good! (except for : and .)

[16]

proof-idea

First attempt:

I The following formula has property ψ: The following
formula has property ψ.

Not good, it only refers to its part.

Second attempt:

I The following formula written twice has property ψ: The
following formula written twice has property ψ.

Good! (except for : and .)

[16]

proof-idea

First attempt:

I The following formula has property ψ: The following
formula has property ψ.

Not good, it only refers to its part.

Second attempt:

I The following formula written twice has property ψ: The
following formula written twice has property ψ.

Good! (except for : and .)

[16]

proof-idea

First attempt:

I The following formula has property ψ: The following
formula has property ψ.

Not good, it only refers to its part.

Second attempt:

I The following formula written twice has property ψ: The
following formula written twice has property ψ.

Good! (except for : and .)

[16]

Proof

Consider the numerical function:

G. number of α(x) 7→ G. number of α(dα(x)e)

which is

dα(x)e 7→ dα(dα(x)e)e

Suppose we have a term t(y) that represents this function.

Define the fixed-point of ψ(x) by

φ := ψ(t(dψ(t(x))e))

Note that
t(dψ(t(x))e) = dψ(t(dψ(t(x))e))e = dφe

Thus
φ ≡ ψ(dφe)

[17]

Proof

Consider the numerical function:

G. number of α(x) 7→ G. number of α(dα(x)e)

which is

dα(x)e 7→ dα(dα(x)e)e

Suppose we have a term t(y) that represents this function.

Define the fixed-point of ψ(x) by

φ := ψ(t(dψ(t(x))e))

Note that
t(dψ(t(x))e) = dψ(t(dψ(t(x))e))e = dφe

Thus
φ ≡ ψ(dφe)

[17]

Proof

Consider the numerical function:

G. number of α(x) 7→ G. number of α(dα(x)e)

which is

dα(x)e 7→ dα(dα(x)e)e

Suppose we have a term t(y) that represents this function.

Define the fixed-point of ψ(x) by

φ := ψ(t(dψ(t(x))e))

Note that
t(dψ(t(x))e) = dψ(t(dψ(t(x))e))e = dφe

Thus
φ ≡ ψ(dφe)

[17]

Proof

Consider the numerical function:

G. number of α(x) 7→ G. number of α(dα(x)e)

which is

dα(x)e 7→ dα(dα(x)e)e

Suppose we have a term t(y) that represents this function.

Define the fixed-point of ψ(x) by

φ := ψ(t(dψ(t(x))e))

Note that
t(dψ(t(x))e) = dψ(t(dψ(t(x))e))e = dφe

Thus
φ ≡ ψ(dφe)

[17]

ψ(t(dψ(t(x))e))

“The following formula...”

I ψ — “has property ψ...”

I t — “if written twice:”

I dψ(t(x))e — “ψ(t(x)).”

[18]

1st incompleteness theorem

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),

2. T extends Q,

3. T is consistent.

Then there exists a true sentence γT which is not provable in T .

Corollary

If moreover

4. N |= T , i.e., T only proves true arithmetical sentences,

then T is incomplete.

[19]

1st incompleteness theorem

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),

2. T extends Q,

3. T is consistent.

Then there exists a true sentence γT which is not provable in T .

Corollary

If moreover

4. N |= T , i.e., T only proves true arithmetical sentences,

then T is incomplete.

[19]

Proof

1. As T is r.e., there is a Σ1 formula PrT (x) that formalizes “x is
provable in T”.

2. Since Q ⊆ T , we can apply the diagonal lemma and get a formula
γT such that

T ` γT ≡ ¬PrT (dγT e).

3. Suppose that T ` γT . This means

N |= PrT (dγT e).

Since this is a Σ1 formula and T is Σ1 complete, we have

T ` PrT (dγT e).

But T ` γT also means

T ` ¬PrT (dγT e).

So T would be inconsistent. Hence T 6` γT .

[20]

Proof

1. As T is r.e., there is a Σ1 formula PrT (x) that formalizes “x is
provable in T”.

2. Since Q ⊆ T , we can apply the diagonal lemma and get a formula
γT such that

T ` γT ≡ ¬PrT (dγT e).

3. Suppose that T ` γT . This means

N |= PrT (dγT e).

Since this is a Σ1 formula and T is Σ1 complete, we have

T ` PrT (dγT e).

But T ` γT also means

T ` ¬PrT (dγT e).

So T would be inconsistent. Hence T 6` γT .

[20]

Proof

1. As T is r.e., there is a Σ1 formula PrT (x) that formalizes “x is
provable in T”.

2. Since Q ⊆ T , we can apply the diagonal lemma and get a formula
γT such that

T ` γT ≡ ¬PrT (dγT e).

3. Suppose that T ` γT . This means

N |= PrT (dγT e).

Since this is a Σ1 formula and T is Σ1 complete, we have

T ` PrT (dγT e).

But T ` γT also means

T ` ¬PrT (dγT e).

So T would be inconsistent. Hence T 6` γT .

[20]

Proof

1. As T is r.e., there is a Σ1 formula PrT (x) that formalizes “x is
provable in T”.

2. Since Q ⊆ T , we can apply the diagonal lemma and get a formula
γT such that

T ` γT ≡ ¬PrT (dγT e).

3. Suppose that T ` γT . This means

N |= PrT (dγT e).

Since this is a Σ1 formula and T is Σ1 complete, we have

T ` PrT (dγT e).

But T ` γT also means

T ` ¬PrT (dγT e).

So T would be inconsistent. Hence T 6` γT .

[20]

4. We prove that N |= γT (i.e., γT is true).

We know that T 6` γT , which means

N |= ¬PrT (dγT e).

But this is, by the definition of γT ,

N |= γT .

[21]

4. We prove that N |= γT (i.e., γT is true).

We know that T 6` γT , which means

N |= ¬PrT (dγT e).

But this is, by the definition of γT ,

N |= γT .

[21]

Lesson 8 — the 2nd incompleteness theorem and more

Theorem
Let T be a theory such that

1. the set of axioms is r.e. (computably enumerable),

2. T extends Q,

3. T is consistent, and moreover

4. PrT (x) is “properly formalized”.

Then
T 6` ¬PrT (d0 = 1e),

i.e., T does not prove its own consistency.

[22]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proof–idea: formalize the 1st incompleteness theorem in T

Let’s denote by ConT := ¬PrT (d0 = 1e).

We proved

I If T is consistent,

I then T 6` γT , which is N |= ¬PrT (dγT e), which is also N |= γT .

In other words
T consistent ⇒ γT is true.

We will formalize this proof in T and get

T ` ConT → γT .

Since T 6` γT , we also have T 6` ConT .

In fact T ` γT ≡ ConT .

[23]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

proper formalizations of provability in T

1. T ` φ ⇔ N |= PrT (dφe)
— PrT (x) defines correctly provability in N

2. T ` φ ⇒ T ` PrT (dφe)
— satisfied if PrT (x) is a Σ1 formula and T is Σ complete, the

latter is satified if T contains Robinson’s Q

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)
— means that T is able to prove that it is Σ-complete

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)
— means that provable formulas are closed under modus ponens

Natural formalizations satisfy 1.-4. Exception: cut-free proofs. If T
does not prove the cut-elimination theorem, then formalizations based
on cut-free proofs do not satisfy 4.

For 1st inco. thm. we only needed 1. and 2.

[24]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong? Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong? Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong? Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong? Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong?

Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

a wrong formalization

Let PrT (x) be a natural formalization and define

Pr ′(x) ≡ PrT (x) ∧ ConT .

Then
T ` ¬Pr ′(d0 = 1e).

Indeed,

¬Pr ′(d0 = 1e) ≡ (¬PrT (d0 = 1e)∨¬ConT) ≡ ¬PrT (d0 = 1e)∨PrT (d0 = 1e).

Note that if T is consistent, then we do have 1.:

1. T ` φ ⇔ N |= Pr ′(dφe) i.e., Pr ′(x) defines correctly provability
in N

because N |= Pr ′(x) ≡ PrT (x).

What is wrong? Pr ′(x) is not Σ1 and does not satisfy 2; in fact
T does not prove Pr ′T (dφe) for any formula φ.

[25]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Proof of 2nd incompleteness theorem
If we assume that

1. T ` φ ⇔ N |= PrT (dφe)

2. T ` φ ⇒ T ` PrT (dφe)

3. T ` PrT (dφe)→ PrT (dPrT (dφe)e)

4. T ` PrT (dφe) ∧ PrT (dφ→ ψe)→ PrT (dψe)

then T proves:

i. ¬γ → PrT (dγe) – by definition of γ

ii. PrT (dγe)→ PrT (dPrT (dγe)e) – by 3.

iii. PrT (dPrT (dγe)→ ¬γe) – by definition and 2.

iv. PrT (dγe)→ PrT (d¬γe) – by 4.

v. ¬γ → PrT (dγe) ∧ PrT (d¬γe) – from i. and iv.

vi. ConT → γ – from v.

[26]

Exercise

1. Check that this is a formalization of the proof of the 1st inco.
thm.

2. Explain why vi. follows from v.

3. Prove that γ → ConT .

[27]

Rossers’s theorem

Let Q ⊆ T and T be consistent, e.g., T := PA.
Define S := T + ¬ConT . Then

I S ` ¬ConS .

By the 1st inco. thm.

I S 6` ConS ,

but we cannot conclude that S is incomplete!

Can we weaken the condition of soundness to consistency?

[28]

Rossers’s theorem

Let Q ⊆ T and T be consistent, e.g., T := PA.
Define S := T + ¬ConT . Then

I S ` ¬ConS .

By the 1st inco. thm.

I S 6` ConS ,

but we cannot conclude that S is incomplete!

Can we weaken the condition of soundness to consistency?

[28]

Rossers’s theorem

Let Q ⊆ T and T be consistent, e.g., T := PA.
Define S := T + ¬ConT . Then

I S ` ¬ConS .

By the 1st inco. thm.

I S 6` ConS ,

but we cannot conclude that S is incomplete!

Can we weaken the condition of soundness to consistency?

[28]

yes, we can

Theorem (Rosser)

Suppose

1. Q ⊆ T ,

2. T is consistent,

3. T computably axiomatized (the axioms of T are a
computably enumerable set)

Then T is incomplete.

Example

PA is incomplete, because PA 6` ConPA, but PA + ¬ConPA is still
incomplete.

[29]

yes, we can

Theorem (Rosser)

Suppose

1. Q ⊆ T ,

2. T is consistent,

3. T computably axiomatized (the axioms of T are a
computably enumerable set)

Then T is incomplete.

Example

PA is incomplete, because PA 6` ConPA, but PA + ¬ConPA is still
incomplete.

[29]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.

Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)

3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)

6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.

[30]

Proof
Define a sentence ρ that says:

“For every proof of myself, there exists a shorter proof of my negation.”

Notation
Let Prf (x , y) formalize “x is a T -proof of y”.
Let n̄ denote Sn(0), the n-th numeral.
Define

ρ ≡df ∀x(Prf (x , dρe)→ ∃y(y < x ∧ (Prf (y , d¬ρe))

1. Suppose T ` ρ. Then

1. T ` Prf (n̄, dρe), where n is the G. number of the proof.

2. T ` ∃y(y < n̄ ∧ Prf (ȳ , d¬ρe)
3. but T ` ¬Prf (m̄, d¬ρe) for all m < n, because T is consistent.

4. using T ` y < n̄ ≡ y = 0̄ ∨ · · · ∨ n − 1, we get

5. T ` ¬∃y(y < n̄ ∧ Prf (y , d¬ρe)
6. T is consistent is in contradiction with 2. and 5.

Thus T 6` ρ.
[30]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

2. Suppose T ` ¬ρ (≡ ∃x(Prf (x , dρe) ∧ ∀y(y < x ∧ (¬Prf (y , d¬ρe))
Then

1. T ` Prf (n̄, d¬ρe), where n is the G. number of the proof.

2. T ` ∃x ≤ n̄ Prf (x , dρe), from ¬ρ and 1.

3. N |= ¬∃x ≤ n̄ Prf (x , dρe), from consistency of T and T ` ¬ρ.

4. T ` ¬∃x ≤ n̄ Prf (x , dρe), from 3. by Σ-completeness.

5. T is consistent is in contradiction with 2. and 4.

Thus T 6` ¬ρ.

We know that T ` γT ≡ ConT . What about ρT ?

Exercise

1. Prove T ` ConT → ρT .

2. Prove T 6` ρT → ConT .

[31]

unpredictable algorithms

Theorem
Let T ⊇ Q be consistent and computably axiomatizable. Then one
can write a program PT such that for every n ∈ N,

T + PT outputs n̄

is consistent.

T is not able to predict the output of PT .

Proof.
Define PT using the fixpoint lemma so that PT systematically searches
all T -proofs until it finds a T -proof of ¬(PT := n̄); then it prints n.

T + PT := n̄ is consistent, because if T ` ¬(PT := n̄), then PT := n
and, by Σ-completeness, T ` PT := n̄; so T would be inconsistent.

Exercise
What does the program output?

[32]

unpredictable algorithms

Theorem
Let T ⊇ Q be consistent and computably axiomatizable. Then one
can write a program PT such that for every n ∈ N,

T + PT outputs n̄

is consistent.

T is not able to predict the output of PT .

Proof.
Define PT using the fixpoint lemma so that PT systematically searches
all T -proofs until it finds a T -proof of ¬(PT := n̄); then it prints n.

T + PT := n̄ is consistent, because if T ` ¬(PT := n̄), then PT := n
and, by Σ-completeness, T ` PT := n̄; so T would be inconsistent.

Exercise
What does the program output?

[32]

unpredictable algorithms

Theorem
Let T ⊇ Q be consistent and computably axiomatizable. Then one
can write a program PT such that for every n ∈ N,

T + PT outputs n̄

is consistent.

T is not able to predict the output of PT .

Proof.
Define PT using the fixpoint lemma so that PT systematically searches
all T -proofs until it finds a T -proof of ¬(PT := n̄); then it prints n.

T + PT := n̄ is consistent, because if T ` ¬(PT := n̄), then PT := n
and, by Σ-completeness, T ` PT := n̄; so T would be inconsistent.

Exercise
What does the program output?

[32]

flexible formula

Theorem (A. Mostowski)
Let T ⊇ Q be consistent and computably axiomatizable. Then there
exists a formula φ(x) such that for every set S ⊆ N

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ N \ S}

is consistent.

Proof.
By compactness, it suffices to prove for every m ∈ N and every
S ⊆ [0,m],

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ [0,m] \ S}

is consistent.

Let PT be an unpredictable algorithm in T . Define φ(x):

I ∃y(PT := y ∧ (y)x = 1) (think of y as a code of (y0, . . . , ym))

By the previous theorem, it is consistent that PT prints an arbitrary
string of 0s and 1s.

[33]

flexible formula

Theorem (A. Mostowski)
Let T ⊇ Q be consistent and computably axiomatizable. Then there
exists a formula φ(x) such that for every set S ⊆ N

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ N \ S}

is consistent.

Proof.
By compactness, it suffices to prove for every m ∈ N and every
S ⊆ [0,m],

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ [0,m] \ S}

is consistent.

Let PT be an unpredictable algorithm in T . Define φ(x):

I ∃y(PT := y ∧ (y)x = 1) (think of y as a code of (y0, . . . , ym))

By the previous theorem, it is consistent that PT prints an arbitrary
string of 0s and 1s.

[33]

flexible formula

Theorem (A. Mostowski)
Let T ⊇ Q be consistent and computably axiomatizable. Then there
exists a formula φ(x) such that for every set S ⊆ N

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ N \ S}

is consistent.

Proof.
By compactness, it suffices to prove for every m ∈ N and every
S ⊆ [0,m],

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ [0,m] \ S}

is consistent.

Let PT be an unpredictable algorithm in T . Define φ(x):

I ∃y(PT := y ∧ (y)x = 1) (think of y as a code of (y0, . . . , ym))

By the previous theorem, it is consistent that PT prints an arbitrary
string of 0s and 1s.

[33]

flexible formula

Theorem (A. Mostowski)
Let T ⊇ Q be consistent and computably axiomatizable. Then there
exists a formula φ(x) such that for every set S ⊆ N

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ N \ S}

is consistent.

Proof.
By compactness, it suffices to prove for every m ∈ N and every
S ⊆ [0,m],

T ∪ {φ(n̄) | n ∈ S} ∪ {¬φ(n̄) | n ∈ [0,m] \ S}

is consistent.

Let PT be an unpredictable algorithm in T . Define φ(x):

I ∃y(PT := y ∧ (y)x = 1) (think of y as a code of (y0, . . . , ym))

By the previous theorem, it is consistent that PT prints an arbitrary
string of 0s and 1s.

[33]

Exercise

1. Generalize the fixpoint lemma to formulas with one free
variable:

Q ` φ(x) ≡ ψ(dφ(x̄)e, x),

where dφ(x̄)e denotes a formalization of the function that given a

number n, constructs a godel number of φ(n̄).

2. Construct a formula ψ(x) such that for every n,

T + ψ(n̄) ∧ ∀x < n̄ ¬ψ(x)

is consistent.

3. construct a flexible formula from ψ.

[34]

Kolmogorov complexity and incompleteness

Definition
U is a universal Turing machine if for every Turing machine M
there exists a string p (program) such that for all x ,
M(x) = U(px).

All strings are binary.

px is the concatenation of p and x .

M(x) = U(px) means that M stops iff U stops and if they stop, they

print the same string.

Definition
The Kolmogorov complexity of a string x (w.r.t. to U), KU(x), is
the length of the shortest string p such that U(p) = x .

[35]

Kolmogorov complexity and incompleteness

Definition
U is a universal Turing machine if for every Turing machine M
there exists a string p (program) such that for all x ,
M(x) = U(px).

All strings are binary.

px is the concatenation of p and x .

M(x) = U(px) means that M stops iff U stops and if they stop, they

print the same string.

Definition
The Kolmogorov complexity of a string x (w.r.t. to U), KU(x), is
the length of the shortest string p such that U(p) = x .

[35]

basic facts
I ∃c∀x KU(x) ≤ |x |+ c

I For U,U ′ universal Turing machines, there exists c such
that for all x

KU(x) ≤ KU′(x) + c and KU′(x) ≤ KU(x) + c

I KU(x) is not computable.

Proposition (and Definition)

For every n there exists a string x , |x | = n such that KU(x) ≥ n.
Such a string is called Kolmogorov random or incompressible.

Proof.
The number of Kolmogorov non-random strings of length n is

≤ 1 + 2 + 4 + · · ·+ 2n−1 < 2n.

[36]

basic facts
I ∃c∀x KU(x) ≤ |x |+ c

I For U,U ′ universal Turing machines, there exists c such
that for all x

KU(x) ≤ KU′(x) + c and KU′(x) ≤ KU(x) + c

I KU(x) is not computable.

Proposition (and Definition)

For every n there exists a string x , |x | = n such that KU(x) ≥ n.
Such a string is called Kolmogorov random or incompressible.

Proof.
The number of Kolmogorov non-random strings of length n is

≤ 1 + 2 + 4 + · · ·+ 2n−1 < 2n.

[36]

Theorem (Chaitin)

For every theory T , T ⊇ Q, sound,1 and computably
axiomatizable, there exists a number kT such that for no string a,
T proves KU(ā) > k̄T .2

Proof.
Let M be a Turing machine that on input k, a number in binary,
systematically checks all strings and

I if it finds a T -proof of KU(ā) > k̄ for some a, it prints a,

I otherwise it does not stop.

Let Π be the first T -proof of a sentence of the form KU(ā) > k̄. Hence

KU(a) ≤ C + log2 k

for some constant C . Since T is sound, such a proof does not exist if

C + log2 k ≤ k.

Take (any/least) kT that satisfies this inequality.

1
Proves only true arithmetical sentences.

2
Bars are used to represent strings and numbers by numerals in theory T .

[37]

Theorem (Chaitin)

For every theory T , T ⊇ Q, sound,1 and computably
axiomatizable, there exists a number kT such that for no string a,
T proves KU(ā) > k̄T .2

Proof.
Let M be a Turing machine that on input k , a number in binary,
systematically checks all strings and

I if it finds a T -proof of KU(ā) > k̄ for some a, it prints a,

I otherwise it does not stop.

Let Π be the first T -proof of a sentence of the form KU(ā) > k̄. Hence

KU(a) ≤ C + log2 k

for some constant C . Since T is sound, such a proof does not exist if

C + log2 k ≤ k.

Take (any/least) kT that satisfies this inequality.

1
Proves only true arithmetical sentences.

2
Bars are used to represent strings and numbers by numerals in theory T .

[37]

Theorem (Chaitin)

For every theory T , T ⊇ Q, sound,1 and computably
axiomatizable, there exists a number kT such that for no string a,
T proves KU(ā) > k̄T .2

Proof.
Let M be a Turing machine that on input k , a number in binary,
systematically checks all strings and

I if it finds a T -proof of KU(ā) > k̄ for some a, it prints a,

I otherwise it does not stop.

Let Π be the first T -proof of a sentence of the form KU(ā) > k̄. Hence

KU(a) ≤ C + log2 k

for some constant C . Since T is sound, such a proof does not exist if

C + log2 k ≤ k .

Take (any/least) kT that satisfies this inequality.
1
Proves only true arithmetical sentences.

2
Bars are used to represent strings and numbers by numerals in theory T .

[37]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

Corollary

The first incompleteness theorem.

with a proof that does not use self-reference.

But are such independent sentences interesting?

If we take kT the least number that satisfies Chaitin’s Theorem,
we get a measure of the strength of theory T .

Clearly, if Thm(S) ⊆ Thm(T) then kS ≤ kT , regardless the
complexity of the axiomatizations of S and T .

But it is almost impossible to determine kT . Moreover, it
depends on U.

Paradox A sufficiently strong T can prove that there exist
Kolmogorov random strings for every n, but for large enough n,
it is unable to prove it for any concrete string.

[38]

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let T ⊇ Q be sound and computably axiomatizable. Then for
every n > kT , if

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then, in fact, there are > M Kolmogorov random strings of
length n.

Proof.
Let M be given and let N be the actual number of Kolmogorov
random strings of length n.

1. M > N is impossible: if K (w) < n, then T ` K (w̄) ≤ n̄ (by
Σ-completeness), whence T proves that M ≤ N.

2. M = N is impossible: For all w such that K (w) < n, T can prove
that they are not K. random, so T knows that any of the
remaining M must be K. random—contradiction with kT < n.

3. M < N is the only remaining possibility.

[39]

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let T ⊇ Q be sound and computably axiomatizable. Then for
every n > kT , if

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then, in fact, there are > M Kolmogorov random strings of
length n.

Proof.
Let M be given and let N be the actual number of Kolmogorov
random strings of length n.

1. M > N is impossible: if K (w) < n, then T ` K (w̄) ≤ n̄ (by
Σ-completeness), whence T proves that M ≤ N.

2. M = N is impossible: For all w such that K (w) < n, T can prove
that they are not K. random, so T knows that any of the
remaining M must be K. random—contradiction with kT < n.

3. M < N is the only remaining possibility.

[39]

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let T ⊇ Q be sound and computably axiomatizable. Then for
every n > kT , if

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then, in fact, there are > M Kolmogorov random strings of
length n.

Proof.
Let M be given and let N be the actual number of Kolmogorov
random strings of length n.

1. M > N is impossible: if K (w) < n, then T ` K (w̄) ≤ n̄ (by
Σ-completeness), whence T proves that M ≤ N.

2. M = N is impossible: For all w such that K (w) < n, T can prove
that they are not K. random, so T knows that any of the
remaining M must be K. random—contradiction with kT < n.

3. M < N is the only remaining possibility.

[39]

2nd incompleteness theorem using Kolmogorov complexity

Proposition

Let T ⊇ Q be sound and computably axiomatizable. Then for
every n > kT , if

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then, in fact, there are > M Kolmogorov random strings of
length n.

Proof.
Let M be given and let N be the actual number of Kolmogorov
random strings of length n.

1. M > N is impossible: if K (w) < n, then T ` K (w̄) ≤ n̄ (by
Σ-completeness), whence T proves that M ≤ N.

2. M = N is impossible: For all w such that K (w) < n, T can prove
that they are not K. random, so T knows that any of the
remaining M must be K. random—contradiction with kT < n.

3. M < N is the only remaining possibility.
[39]

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own
consistency. Then

I T proves that for every n there exists at least one K.
random string and not all strings are K. random.

I T can formalize the argument of the Proposition and we
get: If

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then

T ` ∃ ≥ M + 1 Kolmogorov random strings of length n̄.

I Thus T would prove that all strings of length n are K.
random ⇒ T is not consistent.

[40]

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own
consistency. Then

I T proves that for every n there exists at least one K.
random string and not all strings are K. random.

I T can formalize the argument of the Proposition and we
get: If

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then

T ` ∃ ≥ M + 1 Kolmogorov random strings of length n̄.

I Thus T would prove that all strings of length n are K.
random ⇒ T is not consistent.

[40]

Proof of 2nd inco. thm.

Suppose that T is sufficiently strong and proves its own
consistency. Then

I T proves that for every n there exists at least one K.
random string and not all strings are K. random.

I T can formalize the argument of the Proposition and we
get: If

T ` ∃ ≥ M̄ Kolmogorov random strings of length n̄,

then

T ` ∃ ≥ M + 1 Kolmogorov random strings of length n̄.

I Thus T would prove that all strings of length n are K.
random ⇒ T is not consistent.

[40]

Exercise
Where did we use the assumption that T proves its own
consistency?

[41]

Lesson 9, Peano Arithmetic and Bounded Arithmetic

see Chapter 2, by Buss

[42]

