
Logic in Computer Science V

Recommended reading

I Zlatuška, Lambda-kalkul

I Barendregt, Chapter D.7. in Handbook of Logic.

I Sørensen and Urzyczyn, Lectures on the Curry-Howard
Isomorphism

[1]

Logic in Computer Science V

Recommended reading

I Zlatuška, Lambda-kalkul

I Barendregt, Chapter D.7. in Handbook of Logic.

I Sørensen and Urzyczyn, Lectures on the Curry-Howard
Isomorphism

[1]

Logic in Computer Science V

Recommended reading

I Zlatuška, Lambda-kalkul

I Barendregt, Chapter D.7. in Handbook of Logic.

I Sørensen and Urzyczyn, Lectures on the Curry-Howard
Isomorphism

[1]

Lesson 10, λ-calculus and intuitionistic logic

λ-calculus is an important calculus that can be used (mainly)
for

I formalizing computations

I programming languages

I formalizing logic

It is connected with intuitionistic logic. Extensions that are
connected with classical logic are also known, but they are not
so natural.

We will see that the formalizations based on the λ-calculus are
similar to those we have seen.

[2]

Lesson 10, λ-calculus and intuitionistic logic

λ-calculus is an important calculus that can be used (mainly)
for

I formalizing computations

I programming languages

I formalizing logic

It is connected with intuitionistic logic. Extensions that are
connected with classical logic are also known, but they are not
so natural.

We will see that the formalizations based on the λ-calculus are
similar to those we have seen.

[2]

main types of λ calculus

1. type-free λ-calculus
I combinatory algebra, a.k.a. combinatory logic
I term rewriting system

2. typed λ-calculus, a.k.a. type theory;

this is connected with
intuitionistic propositional logic.

For a connection with first order logic, one needs dependent
types.

[3]

main types of λ calculus

1. type-free λ-calculus
I combinatory algebra, a.k.a. combinatory logic
I term rewriting system

2. typed λ-calculus, a.k.a. type theory; this is connected with
intuitionistic propositional logic.

For a connection with first order logic, one needs dependent
types.

[3]

main types of λ calculus

1. type-free λ-calculus
I combinatory algebra, a.k.a. combinatory logic
I term rewriting system

2. typed λ-calculus, a.k.a. type theory; this is connected with
intuitionistic propositional logic.

For a connection with first order logic, one needs dependent
types.

[3]

combinatory algebra

Idea: every object is a function and an argument at the same
time.

I one binary operation, application, xy (“x applied to y”)
we will use association to the left

I axioms:

1. combinatory completeness: for every term A,

∃f ∀x1 . . . ∀xn(fx1 . . . xn = A),

2. extensionality:
∀x(fx = gx)→ f = g .

3. nontriviality:
∃x , y(x 6= y).

[4]

combinatory algebra

Idea: every object is a function and an argument at the same
time.

I one binary operation, application, xy (“x applied to y”)
we will use association to the left

I axioms:

1. combinatory completeness: for every term A,

∃f ∀x1 . . . ∀xn(fx1 . . . xn = A),

2. extensionality:
∀x(fx = gx)→ f = g .

3. nontriviality:
∃x , y(x 6= y).

[4]

combinatory algebra

Idea: every object is a function and an argument at the same
time.

I one binary operation, application, xy (“x applied to y”)
we will use association to the left

I axioms:

1. combinatory completeness: for every term A,

∃f ∀x1 . . . ∀xn(fx1 . . . xn = A),

2. extensionality:
∀x(fx = gx)→ f = g .

3. nontriviality:
∃x , y(x 6= y).

[4]

To get the combinatorial completeness one can use

1. either λ-terms, λx .A1 with axioms

(λx .A)B = A[x/B],

called β-conversion,2

2. or constants K , S , called combinators, and axioms
I Kxy = x ,
I Sxyz = xz(yz).

Note: Two special instances suffice for combinatorial completeness!

Example

I K = λxλy .x

I S = λxλyλz .xz(yz)

1Applying λx to a term is called λ-abstraction; x is not free in λx .A.
2in less precise, but more intuitive notation: (λx .A[x])B = A[B]

[5]

To get the combinatorial completeness one can use

1. either λ-terms, λx .A1 with axioms

(λx .A)B = A[x/B],

called β-conversion,2

2. or constants K , S , called combinators, and axioms
I Kxy = x ,
I Sxyz = xz(yz).

Note: Two special instances suffice for combinatorial completeness!

Example

I K = λxλy .x

I S = λxλyλz .xz(yz)

1Applying λx to a term is called λ-abstraction; x is not free in λx .A.
2in less precise, but more intuitive notation: (λx .A[x])B = A[B]

[5]

To get the combinatorial completeness one can use

1. either λ-terms, λx .A1 with axioms

(λx .A)B = A[x/B],

called β-conversion,2

2. or constants K , S , called combinators, and axioms
I Kxy = x ,
I Sxyz = xz(yz).

Note: Two special instances suffice for combinatorial completeness!

Example

I K = λxλy .x

I S = λxλyλz .xz(yz)

1Applying λx to a term is called λ-abstraction; x is not free in λx .A.
2in less precise, but more intuitive notation: (λx .A[x])B = A[B]

[5]

Proof.
ad 1. by iterating (λx .A)y = A[x/y] we get

(λx1 . . . λxn.A)y1 . . . yn = A[x1/y1, . . . , xn/yn].

Recall that we needed an f such that

fy1 . . . yn = A[x1/y1, . . . , xn/yn].

[6]

Proof.
ad 2. we construct the λ-terms from the combinators K , S .

I define the combinator I := SKK and show Ix = x
(Exercise!)

I prove combinatorial completeness by induction
I base cases:

λx .x 7→ I ,
λx .y 7→ Ky .

I induction step: λx .AB 7→ S(λx .A)(λx .B); then

(S(λx .A)(λx .B))z =

((λx .A)z)(λx .B)z = (by definition of S)

A[x/z]B[x/z] = AB[x/z] (by induction assumption)

[7]

Proof.
ad 2. we construct the λ-terms from the combinators K , S .

I define the combinator I := SKK and show Ix = x
(Exercise!)

I prove combinatorial completeness by induction
I base cases:

λx .x 7→ I ,
λx .y 7→ Ky .

I induction step: λx .AB 7→ S(λx .A)(λx .B); then

(S(λx .A)(λx .B))z =

((λx .A)z)(λx .B)z = (by definition of S)

A[x/z]B[x/z] = AB[x/z] (by induction assumption)

[7]

Proof.
ad 2. we construct the λ-terms from the combinators K , S .

I define the combinator I := SKK and show Ix = x
(Exercise!)

I prove combinatorial completeness by induction
I base cases:

λx .x 7→ I ,
λx .y 7→ Ky .

I induction step: λx .AB 7→ S(λx .A)(λx .B); then

(S(λx .A)(λx .B))z =

((λx .A)z)(λx .B)z = (by definition of S)

A[x/z]B[x/z] = AB[x/z] (by induction assumption)

[7]

Fixed Point Theorem

Theorem
1. For every λ-term A there exists a λ-term B such that

B = AB.

2. Moreover, there exists a λ-term F that produces fixed-points for
every term A

FA = A(FA)

Proof.
1. Define C := λx .A(xx) and B := CC . Then

B = CC = (λx .A(xx))C = A(CC) = AB.

2. (Exercise)

Intuition: C ↔ “x written twice has property A”

[8]

Fixed Point Theorem

Theorem
1. For every λ-term A there exists a λ-term B such that

B = AB.

2. Moreover, there exists a λ-term F that produces fixed-points for
every term A

FA = A(FA)

Proof.
1. Define C := λx .A(xx) and B := CC . Then

B = CC = (λx .A(xx))C = A(CC) = AB.

2. (Exercise)

Intuition: C ↔ “x written twice has property A”

[8]

Fixed Point Theorem

Theorem
1. For every λ-term A there exists a λ-term B such that

B = AB.

2. Moreover, there exists a λ-term F that produces fixed-points for
every term A

FA = A(FA)

Proof.
1. Define C := λx .A(xx) and B := CC . Then

B = CC = (λx .A(xx))C = A(CC) = AB.

2. (Exercise)

Intuition: C ↔ “x written twice has property A”

[8]

Fixed Point Theorem

Theorem
1. For every λ-term A there exists a λ-term B such that

B = AB.

2. Moreover, there exists a λ-term F that produces fixed-points for
every term A

FA = A(FA)

Proof.
1. Define C := λx .A(xx) and B := CC . Then

B = CC = (λx .A(xx))C = A(CC) = AB.

2. (Exercise)

Intuition: C ↔ “x written twice has property A”

[8]

Fixed Point Theorem

Theorem
1. For every λ-term A there exists a λ-term B such that

B = AB.

2. Moreover, there exists a λ-term F that produces fixed-points for
every term A

FA = A(FA)

Proof.
1. Define C := λx .A(xx) and B := CC . Then

B = CC = (λx .A(xx))C = A(CC) = AB.

2. (Exercise)

Intuition: C ↔ “x written twice has property A”

[8]

Exercise
I Prove 2.

I Write the fixed-point using combinators I ,K , S.

[9]

term rewriting

Often we can simplify λ-terms by rewriting:

I (λx .A)B → A[x/B] (β-reduction)3

I λx .Ax → A (η-reduction) if x 6∈ Var(A),4

but not always.

Example

Ω := (λx .xx)(λx .xx) remains the same after β-reduction.

β-reduction can increase the size.

Example

Suppose B is a long term, then

I (λx .xx)B → BB

produces almost a twice long term.

3terminology: “conversion” for =, “reduction” for →
4we will not use η-reduction in the sequel

[10]

term rewriting

Often we can simplify λ-terms by rewriting:

I (λx .A)B → A[x/B] (β-reduction)3

I λx .Ax → A (η-reduction) if x 6∈ Var(A),4

but not always.

Example

Ω := (λx .xx)(λx .xx) remains the same after β-reduction.

β-reduction can increase the size.

Example

Suppose B is a long term, then

I (λx .xx)B → BB

produces almost a twice long term.

3terminology: “conversion” for =, “reduction” for →
4we will not use η-reduction in the sequel

[10]

term rewriting

Often we can simplify λ-terms by rewriting:

I (λx .A)B → A[x/B] (β-reduction)3

I λx .Ax → A (η-reduction) if x 6∈ Var(A),4

but not always.

Example

Ω := (λx .xx)(λx .xx) remains the same after β-reduction.

β-reduction can increase the size.

Example

Suppose B is a long term, then

I (λx .xx)B → BB

produces almost a twice long term.

3terminology: “conversion” for =, “reduction” for →
4we will not use η-reduction in the sequel

[10]

term rewriting

Often we can simplify λ-terms by rewriting:

I (λx .A)B → A[x/B] (β-reduction)3

I λx .Ax → A (η-reduction) if x 6∈ Var(A),4

but not always.

Example

Ω := (λx .xx)(λx .xx) remains the same after β-reduction.

β-reduction can increase the size.

Example

Suppose B is a long term, then

I (λx .xx)B → BB

produces almost a twice long term.

3terminology: “conversion” for =, “reduction” for →
4we will not use η-reduction in the sequel

[10]

Definition
1. A λ-term is in a normal form if it does not contain a subterm
(λx .A)B (called redex).

2. Normalization is a sequence of β-reductions that produces a
term in the normal form.

We will see that

I redex ↔ cut

I normailzation ↔ cut-elimination

Also very important (but we will not deal with it)

I normailzation ↔ computation

[11]

Definition
1. A λ-term is in a normal form if it does not contain a subterm
(λx .A)B (called redex).

2. Normalization is a sequence of β-reductions that produces a
term in the normal form.

We will see that

I redex ↔ cut

I normailzation ↔ cut-elimination

Also very important (but we will not deal with it)

I normailzation ↔ computation

[11]

Definition
1. A λ-term is in a normal form if it does not contain a subterm
(λx .A)B (called redex).

2. Normalization is a sequence of β-reductions that produces a
term in the normal form.

We will see that

I redex ↔ cut

I normailzation ↔ cut-elimination

Also very important (but we will not deal with it)

I normailzation ↔ computation

[11]

Definition
1. A λ-term is in a normal form if it does not contain a subterm
(λx .A)B (called redex).

2. Normalization is a sequence of β-reductions that produces a
term in the normal form.

We will see that

I redex ↔ cut

I normailzation ↔ cut-elimination

Also very important (but we will not deal with it)

I normailzation ↔ computation

[11]

Theorem
If a λ-term can be reduced to a normal form, then the normal form
is unique.

Proof.
is based on the Chruch-Rosser property:

I if A→ B1 and A→ B2, then there exists C such that
B1 → C and B2 → C .

[12]

Theorem
If a λ-term can be reduced to a normal form, then the normal form
is unique.

Proof.
is based on the Chruch-Rosser property:

I if A→ B1 and A→ B2, then there exists C such that
B1 → C and B2 → C .

[12]

typed λ-calculus

Idea: one can only apply x to y if they have appropriate types.

Simple types:

I type variables u, v , ...,

I if σ and τ are types, σ → τ is a type.

Notation:

I “A has type σ” is abbreviated by A : σ (sometimes also Aσ).

Rule:

I AB is well-formed if A : σ → τ and B : σ,

I then AB : τ .

[13]

typed λ-calculus

Idea: one can only apply x to y if they have appropriate types.

Simple types:

I type variables u, v , ...,

I if σ and τ are types, σ → τ is a type.

Notation:

I “A has type σ” is abbreviated by A : σ (sometimes also Aσ).

Rule:

I AB is well-formed if A : σ → τ and B : σ,

I then AB : τ .

[13]

typed λ-calculus

Idea: one can only apply x to y if they have appropriate types.

Simple types:

I type variables u, v , ...,

I if σ and τ are types, σ → τ is a type.

Notation:

I “A has type σ” is abbreviated by A : σ (sometimes also Aσ).

Rule:

I AB is well-formed if A : σ → τ and B : σ,

I then AB : τ .

[13]

Given an untyped λ-term it may not be possible to assign types
to variables and combinators so that it is a well-formed typed
term.

If it it possible, we say that the term is typable.

According to “typing a là Church”, one should always declare
the types of variables and combinators to prevent untypability.

[14]

Given an untyped λ-term it may not be possible to assign types
to variables and combinators so that it is a well-formed typed
term.

If it it possible, we say that the term is typable.

According to “typing a là Church”, one should always declare
the types of variables and combinators to prevent untypability.

[14]

Given an untyped λ-term it may not be possible to assign types
to variables and combinators so that it is a well-formed typed
term.

If it it possible, we say that the term is typable.

According to “typing a là Church”, one should always declare
the types of variables and combinators to prevent untypability.

[14]

examples

1. For every types ρ, σ, τ we have combinators

I Iρ = λx .x : ρ→ ρ

where x : ρ,

I Kρ,σ = λxλy .x : ρ→ (σ → ρ)

where x : ρ, y : σ,

I Sρ,σ,τ = λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

where x : ρ→ (σ → τ), y : ρ→ σ, z : ρ.

2. II := (λx .x)(λy .y) is typable:

I let the first I : (τ → τ)→ (τ → τ)

I the second I : τ → τ

I then II : τ → τ

3. Ω := (λx .xx)(λx .xx) is not typable, for it remains the same
after β-reduction.

[15]

examples

1. For every types ρ, σ, τ we have combinators

I Iρ = λx .x : ρ→ ρ

where x : ρ,

I Kρ,σ = λxλy .x : ρ→ (σ → ρ)

where x : ρ, y : σ,

I Sρ,σ,τ = λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

where x : ρ→ (σ → τ), y : ρ→ σ, z : ρ.

2. II := (λx .x)(λy .y) is typable:

I let the first I : (τ → τ)→ (τ → τ)

I the second I : τ → τ

I then II : τ → τ

3. Ω := (λx .xx)(λx .xx) is not typable, for it remains the same
after β-reduction.

[15]

examples

1. For every types ρ, σ, τ we have combinators

I Iρ = λx .x : ρ→ ρ

where x : ρ,

I Kρ,σ = λxλy .x : ρ→ (σ → ρ)

where x : ρ, y : σ,

I Sρ,σ,τ = λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

where x : ρ→ (σ → τ), y : ρ→ σ, z : ρ.

2. II := (λx .x)(λy .y) is typable:

I let the first I : (τ → τ)→ (τ → τ)

I the second I : τ → τ

I then II : τ → τ

3. Ω := (λx .xx)(λx .xx) is not typable, for it remains the same
after β-reduction.

[15]

Algorithms for typing λ-terms are based on unification (of
types).

[16]

I λx .x : ρ→ ρ

I λxλy .x : ρ→ (σ → ρ)

I λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

Note: The types are propositional tautologies.

Furthermore, the rule about application

I if A : σ → τ and B : σ, then AB : τ .

is modus ponens.

Hence, λ-calculus defines some propositional logic.

[17]

I λx .x : ρ→ ρ

I λxλy .x : ρ→ (σ → ρ)

I λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

Note: The types are propositional tautologies.

Furthermore, the rule about application

I if A : σ → τ and B : σ, then AB : τ .

is modus ponens.

Hence, λ-calculus defines some propositional logic.

[17]

I λx .x : ρ→ ρ

I λxλy .x : ρ→ (σ → ρ)

I λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

Note: The types are propositional tautologies.

Furthermore, the rule about application

I if A : σ → τ and B : σ, then AB : τ .

is modus ponens.

Hence, λ-calculus defines some propositional logic.

[17]

I λx .x : ρ→ ρ

I λxλy .x : ρ→ (σ → ρ)

I λxλyλz .xz(yz) : (ρ→ (σ → τ))→ ((ρ→ σ)→ (ρ→ τ))

Note: The types are propositional tautologies.

Furthermore, the rule about application

I if A : σ → τ and B : σ, then AB : τ .

is modus ponens.

Hence, λ-calculus defines some propositional logic.

[17]

the Curry-Howard correspondence/isomorphism

λ-terms proofs

types formulas

combinators axioms

application modus ponens

and more ...

Example

Recall that SKK = I and I : τ → τ . Hence SKK is a proof of
τ → τ , if it can be properly typed.

Exercise
Find the types for SKK!

[18]

the Curry-Howard correspondence/isomorphism

λ-terms proofs

types formulas

combinators axioms

application modus ponens

and more ...

Example

Recall that SKK = I and I : τ → τ . Hence SKK is a proof of
τ → τ , if it can be properly typed.

Exercise
Find the types for SKK!

[18]

Theorem
The λ-calculus defines intuitionistic logic of implication.

Proof-idea

1. Completeness: Show that the formulas corresponding to
the types of K and S and modus ponens axiomatize
intuitionistic logic of implication.

2. Soundness: Since every λ-term can be constructed from K
and S , only intuitionistic tautologies are provable.

[19]

Theorem
The λ-calculus defines intuitionistic logic of implication.

Proof-idea

1. Completeness: Show that the formulas corresponding to
the types of K and S and modus ponens axiomatize
intuitionistic logic of implication.

2. Soundness: Since every λ-term can be constructed from K
and S , only intuitionistic tautologies are provable.

[19]

Theorem
The λ-calculus defines intuitionistic logic of implication.

Proof-idea

1. Completeness: Show that the formulas corresponding to
the types of K and S and modus ponens axiomatize
intuitionistic logic of implication.

2. Soundness: Since every λ-term can be constructed from K
and S , only intuitionistic tautologies are provable.

[19]

Theorem
The λ-calculus defines intuitionistic logic of implication.

Proof-idea

1. Completeness: Show that the formulas corresponding to
the types of K and S and modus ponens axiomatize
intuitionistic logic of implication.

2. Soundness: Since every λ-term can be constructed from K
and S , only intuitionistic tautologies are provable.

[19]

intuitionistic logic

The standard logic is called classical logic to be distinguished
from intuitionistic logic which is a.k.a. constructive logic.

I language: →,∧,∨,¬ and ∀,∃;
(often ⊥ instead of ¬ and ¬A is expressed by A→ ⊥)

I weaker than classical logic, e.g. t.f.a. not provable in int.
logic:
I A ∨ ¬A
I ¬¬A→ A
I ¬∀x .A→ ∃x .¬A

I the connectives →,∧,∨,¬ and quantifiers ∀,∃ are
independent (one cannot be defined from the others)

[20]

intuitionistic logic

The standard logic is called classical logic to be distinguished
from intuitionistic logic which is a.k.a. constructive logic.

I language: →,∧,∨,¬ and ∀,∃;
(often ⊥ instead of ¬ and ¬A is expressed by A→ ⊥)

I weaker than classical logic, e.g. t.f.a. not provable in int.
logic:
I A ∨ ¬A
I ¬¬A→ A
I ¬∀x .A→ ∃x .¬A

I the connectives →,∧,∨,¬ and quantifiers ∀, ∃ are
independent (one cannot be defined from the others)

[20]

some constructive properties of intuitionistic logic

I if ` A ∨ B, then either ` A or ` B

I if ` ∃xA(x), then ` A(t) for some term t

I one cannot use proofs by contradiction to prove
non-negated sentences
I if we assume ¬A and get ⊥, we only can deduce ¬¬A;
I however, to prove ¬B, we can assume B a and prove ⊥.

[21]

some constructive properties of intuitionistic logic

I if ` A ∨ B, then either ` A or ` B

I if ` ∃xA(x), then ` A(t) for some term t
I one cannot use proofs by contradiction to prove

non-negated sentences
I if we assume ¬A and get ⊥, we only can deduce ¬¬A;
I however, to prove ¬B, we can assume B a and prove ⊥.

[21]

Propositional intuitionistic logic of implication is also weaker:

((p → q)→ p)→ p

(Peirce Law) is a classical tautology, but not intuitionistic.

[22]

proof systems for intuitionistic logic

1. Hilbert style with carefully chosen axioms and rules.

I this corresponds to the λ-calculus formalized using
combinators

2. Sequent calculus with the restriction: at most one formula in
the consequent, i.e.,

A1, . . . ,An → B or A1, . . . ,An →

3. Natural deduction system with the negation elimination rule
(=“proof by contradiction”) omitted.

I this corresponds to the λ-calculus formalized using λ-terms.

[23]

proof systems for intuitionistic logic

1. Hilbert style with carefully chosen axioms and rules.

I this corresponds to the λ-calculus formalized using
combinators

2. Sequent calculus with the restriction: at most one formula in
the consequent, i.e.,

A1, . . . ,An → B or A1, . . . ,An →

3. Natural deduction system with the negation elimination rule
(=“proof by contradiction”) omitted.

I this corresponds to the λ-calculus formalized using λ-terms.

[23]

proof systems for intuitionistic logic

1. Hilbert style with carefully chosen axioms and rules.

I this corresponds to the λ-calculus formalized using
combinators

2. Sequent calculus with the restriction: at most one formula in
the consequent, i.e.,

A1, . . . ,An → B or A1, . . . ,An →

3. Natural deduction system with the negation elimination rule
(=“proof by contradiction”) omitted.

I this corresponds to the λ-calculus formalized using λ-terms.

[23]

natural deduction and λ-calculus

Again we restrict ourselves to the implicational fragment of
propositional logic.

Recall the nat. ded. rules for →.

→ introduction → elimination

[A]
...
B

A→B
A A→B

B

[24]

natural deduction and λ-calculus

Again we restrict ourselves to the implicational fragment of
propositional logic.

Recall the nat. ded. rules for →.

→ introduction → elimination

[A]
...
B

A→B
A A→B

B

[24]

[A]
...
B

A→B
A A→B

B

Suppose we have a term M : β with a free variable x : α. Then

λx .M : α→ β

So λ-abstraction corresponds to → introduction. The object
variable x is the assumption.

We already know: application corresponds to → elimination (=
modus ponens).

[25]

[A]
...
B

A→B
A A→B

B

Suppose we have a term M : β with a free variable x : α. Then

λx .M : α→ β

So λ-abstraction corresponds to → introduction. The object
variable x is the assumption.

We already know: application corresponds to → elimination (=
modus ponens).

[25]

In the system of natural deduction we have normailzation
instead of cut-elimination. Normal proofs are, essentially, proofs
without elimination rules.

Thus we can extend ...

[26]

In the system of natural deduction we have normailzation
instead of cut-elimination. Normal proofs are, essentially, proofs
without elimination rules.

Thus we can extend ...

[26]

the Curry-Howard correspondence/isomorphism

λ-terms proofs

types formulas

combinators axioms

application → elimination

object variable assumption

λ-abstraction → introduction

normalization of terms normalization of proofs

and more ...

[27]

Lesson 11, theories and complexity classes

For missing definitions and proofs see:

I S. Buss, Chapter 2, Handbook of Proof Theory

I P. Hájek and P. Pudlák, Metamathematics of First Order
Arithmetic, Chapter V.

[28]

fragments of Peano Arithmetic

I PA := Q plus induction axioms for all arithmetical formulas

I IΣn := Q plus induction axioms for all Σn formulas

Theorem
The hierarchy

IΣ1, IΣ2, IΣ3 . . .

is strictly increasing.

This means

Thm(IΣ1) Thm(IΣ2) Thm(IΣ3) . . .

where Thm(T) is the set of all sentences provable in T .

[29]

fragments of Peano Arithmetic

I PA := Q plus induction axioms for all arithmetical formulas

I IΣn := Q plus induction axioms for all Σn formulas

Theorem
The hierarchy

IΣ1, IΣ2, IΣ3 . . .

is strictly increasing.

This means

Thm(IΣ1) Thm(IΣ2) Thm(IΣ3) . . .

where Thm(T) is the set of all sentences provable in T .

[29]

fragments of Peano Arithmetic

I PA := Q plus induction axioms for all arithmetical formulas

I IΣn := Q plus induction axioms for all Σn formulas

Theorem
The hierarchy

IΣ1, IΣ2, IΣ3 . . .

is strictly increasing.

This means

Thm(IΣ1) Thm(IΣ2) Thm(IΣ3) . . .

where Thm(T) is the set of all sentences provable in T .

[29]

Proof

The inclusions are trivially true, so we only need to show

IΣ1 6= IΣ2 6= IΣ3 6= . . .

To this end, we show for n = 1, 2, 3 . . .

1. IΣn 6` Con(IΣn),

2. IΣn+1 ` Con(IΣn).

1. by the 2nd inco. thm.

2. Idea:

I use cut-elimination to show in IΣn+1: “if a contradiction is
derivable in IΣn, then it is derivable only using Σn

formulas;

I prove in IΣn+1 that the universal closure of every formula
in such a proof is true, hence IΣn 6` ⊥.

[30]

Proof

The inclusions are trivially true, so we only need to show

IΣ1 6= IΣ2 6= IΣ3 6= . . .

To this end, we show for n = 1, 2, 3 . . .

1. IΣn 6` Con(IΣn),

2. IΣn+1 ` Con(IΣn).

1. by the 2nd inco. thm.

2. Idea:

I use cut-elimination to show in IΣn+1: “if a contradiction is
derivable in IΣn, then it is derivable only using Σn

formulas;

I prove in IΣn+1 that the universal closure of every formula
in such a proof is true, hence IΣn 6` ⊥.

[30]

Proof

The inclusions are trivially true, so we only need to show

IΣ1 6= IΣ2 6= IΣ3 6= . . .

To this end, we show for n = 1, 2, 3 . . .

1. IΣn 6` Con(IΣn),

2. IΣn+1 ` Con(IΣn).

1. by the 2nd inco. thm.

2. Idea:

I use cut-elimination to show in IΣn+1: “if a contradiction is
derivable in IΣn, then it is derivable only using Σn

formulas;

I prove in IΣn+1 that the universal closure of every formula
in such a proof is true, hence IΣn 6` ⊥.

[30]

Problem: if φ ∈ Σn, then

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀yφ(y)

is a ∆n+2 formula. So we would need Πn+2 induction, i.e.,
IΣn+2.

In order to get proofs with sequents of Σn formulas, we need

1. replace induction axioms by a rule,

2. use free-cut elimination.

The induction rule in the sequent calculus

Γ, φ(a) → ∆, φ(S(a))

Γ, φ(0) → ∆, φ(t)

where a is an eigenvariable and t is an arbitrary term.

IΣn can be axiomatized by Q and the induction rule for φ ∈ Σn.

[31]

Problem: if φ ∈ Σn, then

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀yφ(y)

is a ∆n+2 formula. So we would need Πn+2 induction, i.e.,
IΣn+2.

In order to get proofs with sequents of Σn formulas, we need

1. replace induction axioms by a rule,

2. use free-cut elimination.

The induction rule in the sequent calculus

Γ, φ(a) → ∆, φ(S(a))

Γ, φ(0) → ∆, φ(t)

where a is an eigenvariable and t is an arbitrary term.

IΣn can be axiomatized by Q and the induction rule for φ ∈ Σn.

[31]

Problem: if φ ∈ Σn, then

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀yφ(y)

is a ∆n+2 formula. So we would need Πn+2 induction, i.e.,
IΣn+2.

In order to get proofs with sequents of Σn formulas, we need

1. replace induction axioms by a rule,

2. use free-cut elimination.

The induction rule in the sequent calculus

Γ, φ(a) → ∆, φ(S(a))

Γ, φ(0) → ∆, φ(t)

where a is an eigenvariable and t is an arbitrary term.

IΣn can be axiomatized by Q and the induction rule for φ ∈ Σn.

[31]

Problem: if φ ∈ Σn, then

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀yφ(y)

is a ∆n+2 formula. So we would need Πn+2 induction, i.e.,
IΣn+2.

In order to get proofs with sequents of Σn formulas, we need

1. replace induction axioms by a rule,

2. use free-cut elimination.

The induction rule in the sequent calculus

Γ, φ(a) → ∆, φ(S(a))

Γ, φ(0) → ∆, φ(t)

where a is an eigenvariable and t is an arbitrary term.

IΣn can be axiomatized by Q and the induction rule for φ ∈ Σn.

[31]

I A free-cut is a cut with a formula that is not a subformula
of an axiom nor of a formula in an instance of the
induction rule.

I A free-cut free proof is a proof without free cuts.

I One can show, already in IΣ1, that free-cuts can be
eliminated.

If all formulas in
Γ → ∆

are Σn or Πn, then the universal closure

∀ . . .
∧

Γ→
∨

∆ ∈ Πn+1.

Hence Πn+1 induction, which is derivable from Σn+1 induction,
suffices.

[32]

I A free-cut is a cut with a formula that is not a subformula
of an axiom nor of a formula in an instance of the
induction rule.

I A free-cut free proof is a proof without free cuts.

I One can show, already in IΣ1, that free-cuts can be
eliminated.

If all formulas in
Γ → ∆

are Σn or Πn, then the universal closure

∀ . . .
∧

Γ→
∨

∆ ∈ Πn+1.

Hence Πn+1 induction, which is derivable from Σn+1 induction,
suffices.

[32]

weak fragments

I I∆0 (also denoted by IΣ0)

Theorem (R. Parikh)

Let φ(x , y) be a bounded formula. If

I∆0 ` ∀x∃y .φ(x , y),

then there exists a polynomial p(x) such that

I∆0 ` ∀x∃y ≤ p(x).φ(x , y).

If x encodes (in binary) a string of length ` ≈ log x , then y ≤ xk

encodes a string of length ≤ k` ≈ k log x .

As we can only extend strings linearly, we cannot formalize
polynomial time computations.

[33]

weak fragments

I I∆0 (also denoted by IΣ0)

Theorem (R. Parikh)

Let φ(x , y) be a bounded formula. If

I∆0 ` ∀x∃y .φ(x , y),

then there exists a polynomial p(x) such that

I∆0 ` ∀x∃y ≤ p(x).φ(x , y).

If x encodes (in binary) a string of length ` ≈ log x , then y ≤ xk

encodes a string of length ≤ k` ≈ k log x .

As we can only extend strings linearly, we cannot formalize
polynomial time computations.

[33]

J. Paris and A. Wilkie

I I∆0 + Ω1

where Ω1 is an axiom saying ∀x∃y .y = xblog(x+1)c.

(the relation y = xblog(x+1)c is definable in I∆0)

log(xblog(x+1)c) ≈ (log x)2

Hence we can increase the length of encoded sequences
quadratically, consequently by any polynomial.

This enables one to formalize polynomial time computations.

[34]

J. Paris and A. Wilkie

I I∆0 + Ω1

where Ω1 is an axiom saying ∀x∃y .y = xblog(x+1)c.

(the relation y = xblog(x+1)c is definable in I∆0)

log(xblog(x+1)c) ≈ (log x)2

Hence we can increase the length of encoded sequences
quadratically, consequently by any polynomial.

This enables one to formalize polynomial time computations.

[34]

J. Paris and A. Wilkie

I I∆0 + Ω1

where Ω1 is an axiom saying ∀x∃y .y = xblog(x+1)c.

(the relation y = xblog(x+1)c is definable in I∆0)

log(xblog(x+1)c) ≈ (log x)2

Hence we can increase the length of encoded sequences
quadratically, consequently by any polynomial.

This enables one to formalize polynomial time computations.

[34]

the hierarchy of weak fragments (Bounded Arithmetic)

S. Buss, 1986

We will focus on fragments T 0
2 ,T

1
2 ,

I T i
2 := BASIC + Σb

i -IND.

BASIC is a finite set that determines the meaning of function symbols.

For i = 0 it is more natural to extend the original Buss’s BASIC with

a new function symbol and defining relations so that polynomial time

computations are formalizable in it.

All function symbols define in N polynomial time computable
functions.

[35]

the hierarchy of weak fragments (Bounded Arithmetic)

S. Buss, 1986

We will focus on fragments T 0
2 ,T

1
2 ,

I T i
2 := BASIC + Σb

i -IND.

BASIC is a finite set that determines the meaning of function symbols.

For i = 0 it is more natural to extend the original Buss’s BASIC with

a new function symbol and defining relations so that polynomial time

computations are formalizable in it.

All function symbols define in N polynomial time computable
functions.

[35]

the hierarchy of weak fragments (Bounded Arithmetic)

S. Buss, 1986

We will focus on fragments T 0
2 ,T

1
2 ,

I T i
2 := BASIC + Σb

i -IND.

BASIC is a finite set that determines the meaning of function symbols.

For i = 0 it is more natural to extend the original Buss’s BASIC with

a new function symbol and defining relations so that polynomial time

computations are formalizable in it.

All function symbols define in N polynomial time computable
functions.

[35]

the Polynomial Hierarchy

P:= Σp
0 , NP:= Σp

1 , coNP:= Πb
1, Σp

2 , Πp
2 ,...

Hypothesis The Polynomial hierarchy is strictly increasing; in
symbols:

Σp
0 Σp

1 Σp
2 . . .

Theorem
If the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic hierarchy. More precisely, for all i = 0, 1, . . . ,

Σp
i+2 6= Πp

i+2 ⇒ Thm(T i
2) 6= Thm(T i+1

2).

We do not know how to prove that the Bounded Arithmetic
Hierarchy is strictly increasing without the hypothesis. More
about it later.

[36]

the Polynomial Hierarchy

P:= Σp
0 , NP:= Σp

1 , coNP:= Πb
1, Σp

2 , Πp
2 ,...

Hypothesis The Polynomial hierarchy is strictly increasing; in
symbols:

Σp
0 Σp

1 Σp
2 . . .

Theorem
If the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic hierarchy. More precisely, for all i = 0, 1, . . . ,

Σp
i+2 6= Πp

i+2 ⇒ Thm(T i
2) 6= Thm(T i+1

2).

We do not know how to prove that the Bounded Arithmetic
Hierarchy is strictly increasing without the hypothesis. More
about it later.

[36]

the Polynomial Hierarchy

P:= Σp
0 , NP:= Σp

1 , coNP:= Πb
1, Σp

2 , Πp
2 ,...

Hypothesis The Polynomial hierarchy is strictly increasing; in
symbols:

Σp
0 Σp

1 Σp
2 . . .

Theorem
If the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic hierarchy.

More precisely, for all i = 0, 1, . . . ,

Σp
i+2 6= Πp

i+2 ⇒ Thm(T i
2) 6= Thm(T i+1

2).

We do not know how to prove that the Bounded Arithmetic
Hierarchy is strictly increasing without the hypothesis. More
about it later.

[36]

the Polynomial Hierarchy

P:= Σp
0 , NP:= Σp

1 , coNP:= Πb
1, Σp

2 , Πp
2 ,...

Hypothesis The Polynomial hierarchy is strictly increasing; in
symbols:

Σp
0 Σp

1 Σp
2 . . .

Theorem
If the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic hierarchy. More precisely, for all i = 0, 1, . . . ,

Σp
i+2 6= Πp

i+2 ⇒ Thm(T i
2) 6= Thm(T i+1

2).

We do not know how to prove that the Bounded Arithmetic
Hierarchy is strictly increasing without the hypothesis. More
about it later.

[36]

the Polynomial Hierarchy

P:= Σp
0 , NP:= Σp

1 , coNP:= Πb
1, Σp

2 , Πp
2 ,...

Hypothesis The Polynomial hierarchy is strictly increasing; in
symbols:

Σp
0 Σp

1 Σp
2 . . .

Theorem
If the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic hierarchy. More precisely, for all i = 0, 1, . . . ,

Σp
i+2 6= Πp

i+2 ⇒ Thm(T i
2) 6= Thm(T i+1

2).

We do not know how to prove that the Bounded Arithmetic
Hierarchy is strictly increasing without the hypothesis. More
about it later.

[36]

We will prove the theorem only for i = 0. A generalization for
all i is easy. Our main tool will be Herbrnad’s Theorem.

Overview of the proof:

1. Skolemize T 0
2 using polynomial time computable functions

to get a universal theory.

2. Apply Herbrand’s Theorem.

3. Interpret the Herbrand disjunction as a program for
interactive computation.

4. Interpret Σb
1 − Ind as a computational problem Max .

5. Show that Max cannot be solved by the interactive
computation unless Σp

2 = Πp
2 .

Idea of the proof: Suppose that T 0
2 = T 1

2 . Then Max can be
solved by interactive computation. But this is not possible if
Σp
2 6= Πp

2 .

[37]

We will prove the theorem only for i = 0. A generalization for
all i is easy. Our main tool will be Herbrnad’s Theorem.

Overview of the proof:

1. Skolemize T 0
2 using polynomial time computable functions

to get a universal theory.

2. Apply Herbrand’s Theorem.

3. Interpret the Herbrand disjunction as a program for
interactive computation.

4. Interpret Σb
1 − Ind as a computational problem Max .

5. Show that Max cannot be solved by the interactive
computation unless Σp

2 = Πp
2 .

Idea of the proof: Suppose that T 0
2 = T 1

2 . Then Max can be
solved by interactive computation. But this is not possible if
Σp
2 6= Πp

2 .

[37]

We will prove the theorem only for i = 0. A generalization for
all i is easy. Our main tool will be Herbrnad’s Theorem.

Overview of the proof:

1. Skolemize T 0
2 using polynomial time computable functions

to get a universal theory.

2. Apply Herbrand’s Theorem.

3. Interpret the Herbrand disjunction as a program for
interactive computation.

4. Interpret Σb
1 − Ind as a computational problem Max .

5. Show that Max cannot be solved by the interactive
computation unless Σp

2 = Πp
2 .

Idea of the proof: Suppose that T 0
2 = T 1

2 . Then Max can be
solved by interactive computation. But this is not possible if
Σp
2 6= Πp

2 .

[37]

Skolemization of T 0
2

I All axioms of BASIC are already universal.

I It remains to Skolemize Σb
0 induction axioms.

Write the induction axiom for φ(x) ∈ Σb
0 as

∀x(¬φ(0) ∨ ∃y(φ(y) ∧ ¬φ(y + 1)) ∨ φ(x))

So we need a poly. time function f such that for a given a,

I if φ(0) ∧ ¬φ(a),

I then φ(f (a)) ∧ ¬φ(f (a) + 1).

Since φ(x) is decidable in polynomial time, we can compute
f (a) using binary search in polynomial time.

[38]

Skolemization of T 0
2

I All axioms of BASIC are already universal.

I It remains to Skolemize Σb
0 induction axioms.

Write the induction axiom for φ(x) ∈ Σb
0 as

∀x(¬φ(0) ∨ ∃y(φ(y) ∧ ¬φ(y + 1)) ∨ φ(x))

So we need a poly. time function f such that for a given a,

I if φ(0) ∧ ¬φ(a),

I then φ(f (a)) ∧ ¬φ(f (a) + 1).

Since φ(x) is decidable in polynomial time, we can compute
f (a) using binary search in polynomial time.

[38]

Skolemization of T 0
2

I All axioms of BASIC are already universal.

I It remains to Skolemize Σb
0 induction axioms.

Write the induction axiom for φ(x) ∈ Σb
0 as

∀x(¬φ(0) ∨ ∃y(φ(y) ∧ ¬φ(y + 1)) ∨ φ(x))

So we need a poly. time function f such that for a given a,

I if φ(0) ∧ ¬φ(a),

I then φ(f (a)) ∧ ¬φ(f (a) + 1).

Since φ(x) is decidable in polynomial time, we can compute
f (a) using binary search in polynomial time.

[38]

Skolemization of T 0
2

I All axioms of BASIC are already universal.

I It remains to Skolemize Σb
0 induction axioms.

Write the induction axiom for φ(x) ∈ Σb
0 as

∀x(¬φ(0) ∨ ∃y(φ(y) ∧ ¬φ(y + 1)) ∨ φ(x))

So we need a poly. time function f such that for a given a,

I if φ(0) ∧ ¬φ(a),

I then φ(f (a)) ∧ ¬φ(f (a) + 1).

Since φ(x) is decidable in polynomial time, we can compute
f (a) using binary search in polynomial time.

[38]

Herbrand’s Theorem for ∀∃∀ formulas
Recall (we only mentioned ∃∀, but it is easy to generalize it):

Theorem

1. ∀x∃y∀z .φ(x , y , z) is logically valid, iff

2. there exist terms t1, . . . , tn such that

φ(a, t1(a), b1)∨φ(a, t2(a, b1), b2)∨· · ·∨φ(a, tn(a, b1, . . . , bn−1), bn)

is a propositional tautology.

A generalization (Proof – Exercise!):

Theorem
Let T be a universal theory. Then

1. T proves ∀x∃y∀z .φ(x , y , z) iff

2. there exist terms t1, . . . , tn such that T proves

φ(a, t1(a), b1)∨φ(a, t2(a, b1), b2)∨· · ·∨φ(a, tn(a, b1, . . . , bn−1), bn).

[39]

Herbrand’s Theorem for ∀∃∀ formulas
Recall (we only mentioned ∃∀, but it is easy to generalize it):

Theorem

1. ∀x∃y∀z .φ(x , y , z) is logically valid, iff

2. there exist terms t1, . . . , tn such that

φ(a, t1(a), b1)∨φ(a, t2(a, b1), b2)∨· · ·∨φ(a, tn(a, b1, . . . , bn−1), bn)

is a propositional tautology.

A generalization (Proof – Exercise!):

Theorem
Let T be a universal theory. Then

1. T proves ∀x∃y∀z .φ(x , y , z) iff

2. there exist terms t1, . . . , tn such that T proves

φ(a, t1(a), b1)∨φ(a, t2(a, b1), b2)∨· · ·∨φ(a, tn(a, b1, . . . , bn−1), bn).

[39]

Recall the Teacher-Student Game

I given a formula φ(x , y , z) and a number a,

I Teacher asks student to find t such that ∀y .φ(a, t, y) holds true.

I Student tries t1, Teacher gives a counterexample b1; ¬φ(a, t1, b1)

I knowing b1, Student tries t2, Teacher gives a counterexample b2,
¬φ(a, t2, b2);

I etc.

I eventually, for some i ≤ n, there is no counterexample, hence ti is
a solution.

In our case

I the relation φ(x , y , z) defines a set in P and terms define
polynomial time computable functions,

I so Student is polynomial time computable and Teacher
represents an oracle,

I also note that the number of counterexamples is bounded
by a constant.

[40]

a computational problem
Let R(x , y) be a relation in P such that

1. R(x , 0) for all x ,

2. R(x , y)→ y ≤ x for all x , y ,

and let f be a function computable in poly. time.

Problem Max :

I given a, find b such that R(a, b) and f (b) is maximal.

Lemma
T 1
2 proves that problem Max always has a solution.

Proof.
The existence of a solution to Max is essentially the maximization
principle and we (should) know that

Σb
1 − IND ≡ Πb

0 −MAX

Formulas in Πb
0 = Σb

0 define sets in P.

[41]

a computational problem
Let R(x , y) be a relation in P such that

1. R(x , 0) for all x ,

2. R(x , y)→ y ≤ x for all x , y ,

and let f be a function computable in poly. time.

Problem Max :

I given a, find b such that R(a, b) and f (b) is maximal.

Lemma
T 1
2 proves that problem Max always has a solution.

Proof.
The existence of a solution to Max is essentially the maximization
principle and we (should) know that

Σb
1 − IND ≡ Πb

0 −MAX

Formulas in Πb
0 = Σb

0 define sets in P.

[41]

Lemma
If T 0

2 ≡ T 1
2 , then Max can be solved using the Student-Teacher

interactive computation.

Proof.
The condition that b is a solution for a is

R(a, b) ∧ ∀z(R(a, z)→ f (z) ≤ f (b))

The fact that Max always has a solution is expressed by

∀x∃y∀z(R(x , y) ∧ (R(x , z)→ f (z) ≤ f (y)))

which has the form required in the previous lemma.

[42]

Lemma
If T 0

2 ≡ T 1
2 , then Max can be solved using the Student-Teacher

interactive computation.

Proof.
The condition that b is a solution for a is

R(a, b) ∧ ∀z(R(a, z)→ f (z) ≤ f (b))

The fact that Max always has a solution is expressed by

∀x∃y∀z(R(x , y) ∧ (R(x , z)→ f (z) ≤ f (y)))

which has the form required in the previous lemma.

[42]

how do we get a piece of relevant information?

Student is asked to find b such that

R(a, b) ∧ ∀z(R(a, z)→ f (z) ≤ f (b))

Consider a stupid strategy5 for Student:

I Student starts with b1 = 0;

I in round i + 1, if Teacher gave a counterexample ci in the
previous round, Student answers with bi+1 = ci .

If the range of f is not bounded by a constant, Student cannot
find a solution in a constant number of rounds. Should he find
one, he must do something nontrivial.

5a.k.a. copycat strategy
[43]

how do we get a piece of relevant information?

Student is asked to find b such that

R(a, b) ∧ ∀z(R(a, z)→ f (z) ≤ f (b))

Consider a stupid strategy5 for Student:

I Student starts with b1 = 0;

I in round i + 1, if Teacher gave a counterexample ci in the
previous round, Student answers with bi+1 = ci .

If the range of f is not bounded by a constant, Student cannot
find a solution in a constant number of rounds. Should he find
one, he must do something nontrivial.

5a.k.a. copycat strategy
[43]

how do we get a piece of relevant information?

Student is asked to find b such that

R(a, b) ∧ ∀z(R(a, z)→ f (z) ≤ f (b))

Consider a stupid strategy5 for Student:

I Student starts with b1 = 0;

I in round i + 1, if Teacher gave a counterexample ci in the
previous round, Student answers with bi+1 = ci .

If the range of f is not bounded by a constant, Student cannot
find a solution in a constant number of rounds. Should he find
one, he must do something nontrivial.

5a.k.a. copycat strategy
[43]

a special instance of Max

Define MaxSatSeq by

R(a, b) holds true if

1. a is a sequence of Boolean formulas (a1, . . . , am),

2. b is a sequence of satisfying assignments (b1, . . . , bm′) for
formulas a1, . . . , am′ , m′ ≤ m;

3. we allow the pair of empty sequences.

f (b) := m′.

We know that if the number of counterexamples k < m′, then
the polynomial time computation of Student must produce:

I a satisfying assignment for some formula, from satisfying
assignments of ≤ k other formulas.

[44]

a special instance of Max

Define MaxSatSeq by

R(a, b) holds true if

1. a is a sequence of Boolean formulas (a1, . . . , am),

2. b is a sequence of satisfying assignments (b1, . . . , bm′) for
formulas a1, . . . , am′ , m′ ≤ m;

3. we allow the pair of empty sequences.

f (b) := m′.

We know that if the number of counterexamples k < m′, then
the polynomial time computation of Student must produce:

I a satisfying assignment for some formula, from satisfying
assignments of ≤ k other formulas.

[44]

Lemma
Suppose MaxSatSeq can be solved with k counterexamples.Then
for every n, there is a set Sn of ≤ k2n formulas of length n and
their satisfying assignments such that a satisfying assignment for
any satisfiable formula of length n can be computed in polynomial
time from Sn.

[45]

Proof.
We know that for every k-tuple of satisfiable formulas (a1, . . . , ak)
there exists 1 ≤ i ≤ k such that a satisfying assignment for ai can be
computed from satisfying assignments for aj , j < i .

Let N1 be the number of satisfiable formulas of length n. By a simple
counting argument (Exercise), there exists a k-tuple D1 of formulas
and their satisfying assignments from which one can compute
satisfying assignments for at least

N1 − k + 1

k

formulas of length n. Repeat the argument for the remaining

N2 :=

(
1− 1

k

)
N1 +

k − 1

k

satisfiable formulas to get a k-tuple D2 and so on. After

t ≤ logN1/ log(k/(k − 1)) ≤ n/ log(k/(k − 1)) ≈ nk

steps we have Nt ≤ k.

[46]

Proof.
We know that for every k-tuple of satisfiable formulas (a1, . . . , ak)
there exists 1 ≤ i ≤ k such that a satisfying assignment for ai can be
computed from satisfying assignments for aj , j < i .

Let N1 be the number of satisfiable formulas of length n. By a simple
counting argument (Exercise), there exists a k-tuple D1 of formulas
and their satisfying assignments from which one can compute
satisfying assignments for at least

N1 − k + 1

k

formulas of length n.

Repeat the argument for the remaining

N2 :=

(
1− 1

k

)
N1 +

k − 1

k

satisfiable formulas to get a k-tuple D2 and so on. After

t ≤ logN1/ log(k/(k − 1)) ≤ n/ log(k/(k − 1)) ≈ nk

steps we have Nt ≤ k.

[46]

Proof.
We know that for every k-tuple of satisfiable formulas (a1, . . . , ak)
there exists 1 ≤ i ≤ k such that a satisfying assignment for ai can be
computed from satisfying assignments for aj , j < i .

Let N1 be the number of satisfiable formulas of length n. By a simple
counting argument (Exercise), there exists a k-tuple D1 of formulas
and their satisfying assignments from which one can compute
satisfying assignments for at least

N1 − k + 1

k

formulas of length n. Repeat the argument for the remaining

N2 :=

(
1− 1

k

)
N1 +

k − 1

k

satisfiable formulas to get a k-tuple D2 and so on.

After

t ≤ logN1/ log(k/(k − 1)) ≤ n/ log(k/(k − 1)) ≈ nk

steps we have Nt ≤ k.

[46]

Proof.
We know that for every k-tuple of satisfiable formulas (a1, . . . , ak)
there exists 1 ≤ i ≤ k such that a satisfying assignment for ai can be
computed from satisfying assignments for aj , j < i .

Let N1 be the number of satisfiable formulas of length n. By a simple
counting argument (Exercise), there exists a k-tuple D1 of formulas
and their satisfying assignments from which one can compute
satisfying assignments for at least

N1 − k + 1

k

formulas of length n. Repeat the argument for the remaining

N2 :=

(
1− 1

k

)
N1 +

k − 1

k

satisfiable formulas to get a k-tuple D2 and so on. After

t ≤ logN1/ log(k/(k − 1)) ≤ n/ log(k/(k − 1)) ≈ nk

steps we have Nt ≤ k .

[46]

Let Dt+1 be the remaining ≤ k formulas and their satisfying
assignments. Set

Sn := D1 ∪ · · · ∪ Dt ∪ Dt+1

How do we compute a satisfying assignment of φ from Sn?

Try all Di and for each of them take the formulas ψ1, . . . , ψk−1 from
Di . Try to insert φ to all possible positions into this string and play
the Student-Teacher. At least for one i and one position of φ, Student
must produce a satisfying assignment for φ.

[47]

Let Dt+1 be the remaining ≤ k formulas and their satisfying
assignments. Set

Sn := D1 ∪ · · · ∪ Dt ∪ Dt+1

How do we compute a satisfying assignment of φ from Sn?

Try all Di and for each of them take the formulas ψ1, . . . , ψk−1 from
Di . Try to insert φ to all possible positions into this string and play
the Student-Teacher. At least for one i and one position of φ, Student
must produce a satisfying assignment for φ.

[47]

Let Dt+1 be the remaining ≤ k formulas and their satisfying
assignments. Set

Sn := D1 ∪ · · · ∪ Dt ∪ Dt+1

How do we compute a satisfying assignment of φ from Sn?

Try all Di and for each of them take the formulas ψ1, . . . , ψk−1 from
Di . Try to insert φ to all possible positions into this string and play
the Student-Teacher. At least for one i and one position of φ, Student
must produce a satisfying assignment for φ.

[47]

The previous lemma implies:

Lemma
If MaxSatSeq can be solved with a constant number of
counterexamples then

NP ⊆ P/poly

Proof.
Sn is the advice and the Student-Teacher game provides a
poly-time algorithm.

Theorem (well-known)

NP ⊆ P/poly ⇒ Πp
2 = Σp

2

Theorem

Πp
2 6= Σp

2 ⇒ NP 6⊆ P/poly ⇒ Thm(T 0
2) 6= Thm(T 1

2)

[48]

The previous lemma implies:

Lemma
If MaxSatSeq can be solved with a constant number of
counterexamples then

NP ⊆ P/poly

Proof.
Sn is the advice and the Student-Teacher game provides a
poly-time algorithm.

Theorem (well-known)

NP ⊆ P/poly ⇒ Πp
2 = Σp

2

Theorem

Πp
2 6= Σp

2 ⇒ NP 6⊆ P/poly ⇒ Thm(T 0
2) 6= Thm(T 1

2)

[48]

The previous lemma implies:

Lemma
If MaxSatSeq can be solved with a constant number of
counterexamples then

NP ⊆ P/poly

Proof.
Sn is the advice and the Student-Teacher game provides a
poly-time algorithm.

Theorem (well-known)

NP ⊆ P/poly ⇒ Πp
2 = Σp

2

Theorem

Πp
2 6= Σp

2 ⇒ NP 6⊆ P/poly ⇒ Thm(T 0
2) 6= Thm(T 1

2)

[48]

Why can’t we use the Gödel Theorem
to separate T i

2 from T i+1
2 ?

By Gödel’s theorem we have for all i

T i
2 6` Con(T i

2).

But in fact, for all i
T i
2 6` Con(Q)

(Q is Robinson’s Arithmetic). Hence T j
2 6` Con(T i

2) for any i , j .

This follows from

1. If T is interpretable in S , then T 6` Con(S),

2. every T i
2 is interpretable in Q.

[49]

Why can’t we use the Gödel Theorem
to separate T i

2 from T i+1
2 ?

By Gödel’s theorem we have for all i

T i
2 6` Con(T i

2).

But in fact, for all i
T i
2 6` Con(Q)

(Q is Robinson’s Arithmetic). Hence T j
2 6` Con(T i

2) for any i , j .

This follows from

1. If T is interpretable in S , then T 6` Con(S),

2. every T i
2 is interpretable in Q.

[49]

Why can’t we use the Gödel Theorem
to separate T i

2 from T i+1
2 ?

By Gödel’s theorem we have for all i

T i
2 6` Con(T i

2).

But in fact, for all i
T i
2 6` Con(Q)

(Q is Robinson’s Arithmetic). Hence T j
2 6` Con(T i

2) for any i , j .

This follows from

1. If T is interpretable in S , then T 6` Con(S),

2. every T i
2 is interpretable in Q.

[49]

Definition
Let S ,T be theories. An interpretation of T in S is a set of
S-formulas

I a formula “defining” the universe of T ,

I for every relation symbol of T , a formula “defining” the
relation in S ,

I for every function symbol of T , a formula “defining” the
function in S .

“Defining in S” means

I if we translate the axioms of T using these formulas, the
translations are provable in S .

Proposition
If there is an interpretation of T in S, then

S1
2 ` Con(S)→ Con(T)

Exercise. Prove the proposition.

[50]

Definition
Let S ,T be theories. An interpretation of T in S is a set of
S-formulas

I a formula “defining” the universe of T ,

I for every relation symbol of T , a formula “defining” the
relation in S ,

I for every function symbol of T , a formula “defining” the
function in S .

“Defining in S” means

I if we translate the axioms of T using these formulas, the
translations are provable in S .

Proposition
If there is an interpretation of T in S, then

S1
2 ` Con(S)→ Con(T)

Exercise. Prove the proposition.
[50]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×. Define

χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .

[51]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×. Define

χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .

[51]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×. Define

χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .

[51]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×.

Define
χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .

[51]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×. Define

χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .

[51]

interpretation of I∆0 in Q (idea)
Let φ(x) be a ∆0 formula. We want to interpret induction

φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀xφ(x) (∗)

Define
θ(y) := φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ φ(y)

The universe defined by θ(x) is closed under S (Exercise):

Q ` θ(0) ∧ θ(x)→ θ(Sx)

To interpret (∗) we furthermore need a universe closed under + and
×. Define

χ(x) := ∀y(θ(y)→ θ(x + y))

Then the universe defined by θ(x) is closed under +:

Q ` χ(x) ∧ χ(y)→ χ(x + y)

In a similar way we define a universe τ that is closed also under ×.

Since φ(x) is bounded, for an x in τ , φ(x) holds true iff it holds true

with quantifiers restricted to τ .
[51]

Exp is the axiom ∀x∃y(y = 2x)

(the relation y = 2x is definable in I∆0)

Theorem
Con(Q) is not provable in I∆0 + Exp.

Theorem
I∆0 + Exp is not interpretable in I∆0.

Theorem
I∆0 + Exp + Con(I∆0) does not prove Con(I∆0 + Exp).

[52]

Exp is the axiom ∀x∃y(y = 2x)

(the relation y = 2x is definable in I∆0)

Theorem
Con(Q) is not provable in I∆0 + Exp.

Theorem
I∆0 + Exp is not interpretable in I∆0.

Theorem
I∆0 + Exp + Con(I∆0) does not prove Con(I∆0 + Exp).

[52]

Thank you!

[53]

