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Proofs, computational complexity, and games

Pavel Pudlák

Abstract.
This paper discusses the interplay between proof complexity, computational complexity,

and combinatorial games. Classical proof theory typically concerns itself with the provability
of sentences without considering the lengths of proofs. One of the basic results is that, for suf-
ficiently rich theories, it is impossible to distinguish provable sentences from false sentences
using an algorithm. In proof complexity, the lengths of proofs play a central role, hence, the
question is how difficult it is to distinguish propositions with polynomial-size proofs from false;
in particular, whether this is possible using an algorithm running in polynomial time. This
problem is represented using the concept of canonical pairs of proof systems, which is closely
connected with the concept of interpolation pairs of proof systems. Interpolation pairs allow us
to connect proof systems to computational complexity problems and, for some proof systems,
even to prove exponential lower bounds on the lengths of proofs. Our goal is to extend this
approach to lower bounds to stronger systems, in particular, to constant depth Frege proof sys-
tems. To this end, we have characterized the interpolation pairs of constant-depth Frege systems
using certain combinatorial games. In this paper, we will define these games and explain their
connection to some other concepts studied in proof complexity, specifically, the communica-
tion complexity versions of TFNP classes. Our aim is to show that the three concepts studied
in logic and computational complexity theory, playing combinatorial games, computing, and
solving problems using communication of two players, are different facets of the same thing.
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1. Introduction

Classical computability theory studies questions asking which functions are com-
putable, which problems are decidable, etc. Here, computability means that some
algorithm produces an answer in a finite amount of time. Knowing that a problem
can be solved in a finite time certainly provides an essential piece of information, but
more precise information is needed in practice. Computational complexity therefore
considers resources required to perform computations. These are mostly time and
space (by which we mean memory), but also others, such as randomness, nondeter-
minism, etc. While this may look like a part of applied science, many mathematicians
are attracted to this field by deep theoretical problems, such as the P vs. NP question,
which is considered by many as one of the most difficult mathematical problems.

Similarly, classical proof theory studies the provability of sentences in principle,
i.e., disregarding the lengths of proofs, while proof complexity is concerned with the
lengths of proofs. There are many parallels between these research areas; one is that
several fundamental problems in proof complexity resist all attempts to be solved, like
the fundamental problems in computational complexity.

There are problems that belong both to proof theory and computability theory.
The most important of these is: for a given formal system, say a theory with a com-
putable set of axioms, how difficult is it to distinguish provable sentences from false
sentences? In this paper, I will deal with a similar problem in proof and computational
complexity: for a given propositional proof system, how difficult is it to distinguish
propositions with polynomial-length proofs from false propositions? This question is
formalized by the concept of the canonical pair of a proof system. Canonical pairs
are specific pairs of disjointNP sets, and the question is how complex a set we need to
separate such a pair.1 The related concept of the interpolation pair of a proof system
is connected with the method of feasible interpolation by which exponential lower
bounds were proved for some proof systems. By studying these pairs, we want to
determine limits of this method.

In [4], we characterized the canonical pair of Resolution, which is the depth-
0 Frege system. This also characterizes the interpolation pair of the depth-1 Frege
system. In [25], I gave a combinatorial characterization of interpolation pairs for
all levels of the bounded depth Frege hierarchy, which is also a characterization of
canonical pairs because the canonical pair of depth 3 Frege system is equivalent
to the interpolation pair of depth (3 + 1)-Frege system. These characterizations are
based on certain combinatorial games2 introduced in that paper. This paper will intro-
duce these games and, for depth 0 and 1, show how they naturally emerge from the

1Even if both sets are NP-complete, it may be possible to separate them using a set in P.
2One can also say one game with the parameter 3.
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communication complexity TFNP classes associated with the proof systems. More-
over, I will briefly mention games with more than two players and their connection
to multiparty-communication complexity and a couple of combinatorial games that
have been studied in connection with constant depth Frege systems.

2. Propositional proof systems

When I started with logic, I considered propositional logic absolutely uninteresting.
I wondered why some logicians pay so much attention to the laws and rules of propo-
sitional logic when there is a simple procedure to test whether a propositional formula
is a tautology. This view conformed with the widespread opinion that mathematics
starts with infinity because finite problems are trivial. We can indeed check a tau-
tology simply by testing all truth assignments to its variables, but when we consider
the complexity of testing, things become interesting (or if we consider non-classical
logics, which I will not do in this paper). Many tautologies have simple proofs, while
others, for example, random formulas in a suitable probability distribution, seem hard.

But why should a mathematician study such problems? Isn’t it just a problem
for practical computations? The answer is yes and no. Yes, because propositional
proofs are used in automated reasoning (including the now popular AI systems). No,
because the lengths of propositional proofs are connected with provability in first-
order theories. Lower bounds on the lengths of propositional proofs can, in principle,
be used to show the unprovability of Π1-sentences in first-order theories axiomatizing
fragments of arithmetic, a fact discovered by S. A. Cook [10]. We are able to prove
superpolynomial lower bounds on propositional proofs only in very special instances,
yet there are several interesting applications of this method.

Another reason for studying propositional proof complexity is that in this area,
there are deep problems similar to the fundamental problems in computational com-
plexity. For instance, the problem, whether it is possible to prove every tautology in
a Frege proof system using a polynomial number of formulas, seems as hard as the
problem of proving superpolynomial lower bounds on circuits computing explicitly
defined Boolean functions. (The latter is still a widely open problem after 75 years of
research.)

When discussing the lengths of propositional proofs, we have to specify what
we mean by proofs. This is done by defining the important concept of propositional
proof systems. In the rest of the paper, I will only say “proof system” because I will
not consider proof systems for other logics.

The general concept of a proof system % only requires three properties:
(1) % is sound (proves only tautologies),
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(2) % is complete (proves all tautologies), and
(3) it is decidable in polynomial time whether a given string is a proof of a given

formula.
Here, I will only consider proof systems that are fragments of a standard proof system
based on axiom schemas and deduction rules. There are many such formalizations
that differ in the choice of the language, axioms, and rules, but they are all equivalent
in a well-defined sense. The official name for this class of proof system is Frege
Systems. In order to define bounded depth fragments of Frege Systems, we restrict the
language to the connectives ∧, ∨, ¬ and allow negations only at variables. Then we
say that a formula q has depth 3 if the number of alternations of ANDs and ORs is 3.
The Depth-3 Frege System, F3 , is the subsystem in which only depth 3 formulas are
allowed.

I will define more precisely the two systems at the bottom of this hierarchy, F0
and F1. The first one is usually presented as a refutation system and is called Resolu-
tion. In a refutation system one starts with the negation of the assumptions and tries
to derive a contradiction. Resolution is used to refute CNF formulas, which are con-
junctions of disjunctions. The disjunctions are presented as sets of literals and called
clauses, where literals are variables and negated variables. The CNF to be refuted
is presented as set of clauses. A refutation is a sequence of clauses derived from the
clauses of the CNF formula and previously derived clauses. There is only one deriva-
tion rule, which is called the resolution rule, which is usually stated as follows

� ∪ {G} � ∪ {¬G}
� ∪ � ,

which means that from the two assumptions � ∪ {G}, � ∪ {¬G}, conclusion � ∪ �
follows. The aim is to derive the empty clause ∅ that represents a contradiction.

The system F1 is an extension in which clauses may contain not only literals, but
also conjunctions of literals. It has an axiom {G,¬G} for every variable G, and rules

� ∪ {U ∧ I} � ∪ {¬I}
� ∪ � ,

� ∪ {U} � ∪ {I}
� ∪ � ∪ {U ∧ I} ,

�

� ∪ � ,

where U is a, possibly empty, conjunction of literals.

3. Canonical and interpolation pairs of proof systems

Definition 1 (Razborov, [27]). The canonical pair of a proof system % is the pair of
two disjoint NP sets
• ��

%
= {(q, 1=) ; there a %-refutation of q of length ≤ =}
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• ��
%
= {(q, 1=) ; q is satisfiable}

where q is a propositional formula (a CNF w.l.o.g.) and 1=, a string of 1s of length
=, is a limit on the lengths of proofs given in unary.

I will denote by �% := (��
%
, ��

%
).

Informally, think of ��? as the set of formulas with short %-refutations and ��?
as the set of satisfiable formulas. The “padding” 1= is a convenient way to avoid
saying what short means. It must also be in ��

%
because otherwise, it would be easy

to distinguish elements of ��
%
from elements of ��

%
.

The concept of canonical pairs is a way to connect a proof system with a compu-
tational problem—instead of asking about the lengths of proofs, we can ask what is
the computational complexity of separating these disjoint NP-pairs. The stronger the
proof system is, the more difficult it is to separate the pairs. The intuition is that it is
easier to separate two things that are far apart than those that are close to each other.
In the canonical pairs, the second set is always the same, while the size of the first
increases with the increasing strength of the proof system because more tautologies
have short proofs.

We do not know whether the canonical pairs of F3 can be separated by a set in P.
Building on our previous result [21], Bonet et al [5] showed that for large depth 3, the
canonical pairs of F3 cannot be separated by a set in P if one assumes some strong
conjecture from cryptography. There are no results of this kind based on standard
conjectures about complexity classes such as P≠NP.3 The most interesting problem
is the complexity of the canonical pair of F0 (Resolution). Essentially, it is a win-
win question: a polynomial separation of this pair would have application in SAT-
solving and automated theorem proving, where Resolution is used; on the other hand,
a superpolynomial lower bound may lead to new lower bounds in proof complexity.

Since it is unclear whether cryptographic hypotheses could help prove insepara-
bility for low levels of Frege hierarchy, we can try the opposite: to find applications of
the hypotheses that some canonical pairs are not polynomially separable in cryptog-
raphy. The problem is, however, that cryptography needs sets in NP∩coNP, not just a
pair of disjoint NP sets.

The connection of canonical pairs with lower bounds on proofs is more general.
To this end, I will introduce another concept.

Definition 2 ([24]). The interpolation pair of a proof system % is the pair of two
disjoint NP sets

3The famous result about nonautomatibility of Resolution [2] implies that ��
'4B

is NP-
complete. The fact that both sets in a disjoint NP-pair are NP-complete, however, does not
imply that they cannot be separated by a set in P.
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• ��
%
= {(q1, q2,Π) ; +0A (q1) ∩+0A (q2) = ∅,

Π is a %-refutation of q1 ∧ q2, and q1 is satisfiable},

• ��
%
= {(q1, q2,Π) ; +0A (q1) ∩+0A (q2) = ∅,

Π is a %-refutation of q1 ∧ q2, and q2 is satisfiable},

where +0A (q) denotes the set of variables present in q.
I will denote by �% := (��

%
, ��
%
).

Informally, this concept captures the complexity of the problem of deciding which of
the formulas q1 or q2 is satisfiable with the promise that one of them is. It is intended
to formalize the question of whether the method of feasible interpolation applies to a
given proof system. This method works as follows. Let -1 and -2 be two disjoint NP
sets. We can formalize the sets by a sequences of propositional formulas q=1 and q=2 ,
= = 1, 2, . . .. Then their disjointness means that q=1 ∧ q

=
2 is unsatisfiable. If ��

%
and ��

%

can be separated by a set in P, but -1 and -2 cannot, then there cannot be polynomial
size %-refutations of q=1 ∧ q

=
2 .

Of course, we do not know how to prove that some disjoint NP pair is not poly-
nomially separable, but often one show that refutations of suitable formulas imply
separation by monotone Boolean circuits and then use known lower bounds on mono-
tone Boolean circuits [26]. Furthermore, there are stronger monotone computation
models which can be used to prove lower bounds using this method, one of which is
monotone circuits that compute with real numbers [13, 18, 23]. My ultimate goal is
to use combinatorial games, by which some interpolation pairs are characterized, as
a sort of generalized monotone Boolean circuits to prove lower bounds for slightly
stronger systems.

The two concepts defined above are closely related. For the Frege system, for
example, the pairs are equivalent with respect to polynomial-time reductions. For
bounded depth Frege systems, we have: �F3+1 is equivalent to �F3

for 3 ≥ 0, see [4].

4. Games and circuits

The interpolation pairs, hence also canonical pairs, of F3 have been characterized
using certain combinatorial games. To show how games can be used to characterize
interpolation pairs, I will start with the simplest case, which is F0 formalized as the
Resolution refutation system.

A basic game is defined by
(1) directed acyclic graph with a single source,
(2) the non-leaf nodes are labeled by A and B,
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(3) leaves are labeled by 0 and 1.4
The game starts at the root and, at a node labeled A, Alice decides which arrow they
will follow, and, at a node labeled B, it is Bob who makes the decision. We define
that the leaves labeled by 0 are winning positions for Alice and those labeled by 1 are
winning position for Bob.

The interpolation pair of F1 is characterized by basic games in the following sense.
Let �� (resp. ��) be the games in which Alice (Bob) has a winning strategy. Then
the pair �F1 is polynomially equivalent to the pair (��, ��).5.

In basic games, always one of the players has a winning strategy according to what
is usually referred to as Zermelo’s Theorem. This simple fact is proved by showing
by induction that at each node { one of the players has a winning strategy when the
games starts at {. The induction starts at the leaves and goes in the reverse order of
the arrows. Note that this gives us a polynomial time algorithm to compute which
player has a winning strategy. In fact, this algorithm can be presented as a circuit that
computes with values 0 and 1. To connect it with Boolean circuits, let 0 := 0 and
1 := 1. Then the circuit becomes a monotone Boolean circuit in which Alice’s nodes
are conjunctions and Bob’s nodes are disjunctions. Clearly, the converse is also true:
given a monotone circuit (with gates AND and OR) and an assignment to its inputs,
we can interpret it as a basic game.

Game schemas. In order to identify basic games with monotone Boolean circuits, we
should consider games in which leaves are left without labels and use strings of leaf
labels as inputs. Let’s call such structures game schemas. One can use this paradigm
also for other games in which the winner is determined by a label on the terminal
node. Thus we can view game schemas as generalized circuits. In all these cases,
the monotonicity of the computed functions is an intrinsic property—if Alice has a
winning strategy and we enlarge the set of leaves labeled with 0, then Alice obviously
still has a winning strategy.

Positional strategies. Let’s furthermore observe that if a player has a winning strat-
egy, then they also have a positional winning strategy, which means that the instruc-
tion how to play at a node { only depends on {, i.e., it is independent on the history
of the play so far. The concept of a positional strategy is needed in characterizing the
interpolation pairs of proof systems higher in the bounded depth Frege system hierar-

4I call the nodes with no outgoing arrows leaves, although the graphs are not trees in gen-
eral.

5This is essentially the main result in [17], where it is stated for Boolean circuits instead of
games; see also [23] for a simpler proof; furthermore it is a special case of the main theorem in
[25].



8 P. Pudlák

chy. These characterizations use more complex games, in which the above fact is not
true—there are games in which no player has a positional winning strategy.

5. Circuits and PLS

The class TFNP is a class of relations '(G, H) that satisfy the condition that for some
polynomial ?, for every G, there exists H such that |H | ≤ ?( |G |) and '(G, H) holds true.
The best way to imagine a TFNP problem is as a search problem where a solution
is guaranteed and can be checked in polynomial time. Unlike the typical complexity
classes such as NP, it seems that there are no complete problems in TFNP. In the
seminal paper [15] several natural subclasses have been identified, which do have
complete problems, and more classes have been defined later.

One of the classes introduced in [15] is PLS, Polynomial Local Search, which
is connected with Boolean circuits. A problem in PLS is given by a directed acyclic
graph with bounded outdegree and a single source node. The nodes of the graph
are numbers and if there is an arrow from 8 to 9 , then 8 < 9 . Furthermore, there is
a feasibility predicate, a property of the nodes. The source is feasible and for every
feasible node which is not a leaf one of the successors is feasible. A solution is a
feasible leaf. If the graph is given explicitly and the feasibility condition is computable
in polynomial time, then the solution can be found in polynomial time. Therefore, to
make the problem nontrivial, we assume that the graph is given succinctly. This means
that the graph is of exponential size, but the successors and the feasibility condition
of nodes are computable in polynomial time.

There are two more ways to make the problem nontrivial: using communication
complexity or using query complexity, a.k.a. black box model. These two compu-
tational models are connected (see, e.g., [12]), but here, I will focus only on the
communication complexity versions of the TFNP classes.

In the communication complexity version, instead of assuming that the graph
is defined succinctly, we restrict the complexity of computing the primitives using
bounds on communication complexity. So we will assume that there are two players,
Alice and Bob, such that they are able to compute the feasibility of a node and the
successors of the node by exchanging only a logarithmic number of bits. Thus, we get
the class communication-complexity-PLS, which I will abbreviate by ccPLS. Another
name for this kind of communication complexity is DAG-like communication com-
plexity, which is used to differentiate it from the standard communication complexity
model in which the possible communication paths form a tree.6

6DAG is an abbreviation for directed acyclic graph.
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6. From ccPLS to games

In communication complexity we have two players like in basic games, but otherwise
the setup seems to be very different from basic games. In particular
• in games the players compete, while in communication complexity they cooperate

to find a feasible leaf;
• in communication complexity the players have their own strings that they use,

while there is nothing like that in games;
• and what should the criterion for winning be in a game corresponding to the

communication protocol?
The key is to focus on one player, say, Alice. Alice has an input string G and this
completely determines her actions. Let (G be the protocol that she follows and let us
view it as a strategy. So G is a code of a strategy.

Concerning the winning positions, note that we can always make (G a winning
strategy. The trivial way is to label all leaves with 0. More interestingly, there is a
minimum assignment of 0’s that makes (G a winning strategy. Such an assignment
DG is defined by putting 0 on those leaves that can be reached when Alice plays her
strategy (G and Bob tries all possible ways to play the game.

We can, certainly, do the same for Bob. Thus for each input H for Bob, we get his
strategy )H and the minimum assignment {H to leaves that makes )H winning. When
Alice and Bob both play according to the communication protocol on the inputs G and
H, they end up on a leaf that is labeled 0 in DG and 1 in {H .

Thus we naturally arrived at the problem that was used to characterize monotone
circuit depth by Karchmer and Wigderson in [16], and circuit size by Razborov in
[27]. In the setup of these papers, a monotone Boolean function 5 and two inputs G
and H such that 5 (G) = 0 and 5 (H) = 1 are given. The goal of the players is to find an
index such that G8 = 0 and H8 = 1. Let’s call the problem they are solving Karchmer-
Wigderson problem. In the theory of Boolean functions, the minimal weight strings
for which a monotone function is zero are called minterms; the dual concept is called
maxterms. Our DG correspond to the minterms and {H to the maxterms.

To get games (or circuits), we need to extend the communication graph. In the
DAG-like communication protocol, the players decide collectively to which node to
proceed from the current one by communicating $ (log =) bits. From a node *, they
can get to polynomially many nodes +8 . The problem is not that this is more than two,
but the fact that the decision is not made by one player. We represent this communica-
tion protocol by a labeled tree )#

*
(# stands for “neighborhood”). The tree represents

communication of the players in which always one player sends one bit, hence decides
to which successor in )#

*
the computation proceeds. If the feasibility of nodes were

computed by exchanging a single bit it would suffice to insert such a tree for every
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node of the communication graph to get a basic game. In general the players need
$ (log =) bits to compute the feasibility predicate. Therefore the transformation of the
graphs is more complex.

For each node*, there is also a log =-depth communication protocol for the play-
ers to check the feasibility of*. Let )�

*
be the labeled tree representing this protocol

and let !* be its leaves. In the new DAG, node* will be replaced by elements of !* ,
i.e., it will be split into |!* | nodes. The graph will be constructed as follows. The root
+0 is always feasible, so the players do not need to communicate, which means that
the tree )�

+0
is a single point and it is also the unique leaf ;0. We attach )#

+0
to ;0. Let

; be a leaf in )#
+0

and let * be the node on which the players have agreed when they
reached ;. Then we take )�

*
and attache it to ;. In this way we connect ; to the nodes

that represent *. In general, if + is not a root and is represented by several nodes,
i.e., |!+ | > 1, we do the same for each node in !+ . In this way, we get a communica-
tion protocol in which the decision to which node to continue is always made by one
player and the feasibility predicate can be checked by exchanging a single bit. The
latter fact requires an argument, which I leave to the reader with the following hint.
The feasibility predicate at node : ∈ !D is∧

4∈� (G)
%4 (G) ∧

∧
ℎ∈� (H)

%ℎ (H),

where � (G) are the edges decided by Alice on the branch in )�
*

leading to : , � (H)
are the edges decided by Bob on the same branch, and %4 (G) is the predicate saying
that Alice will use 4, while % 5 (H) is the predicate saying that Bob will use 5 .

Since we have obtained a DAG with nodes assigned to players, we can interpret it
as a game schema�, but this game schema may not relate to the problem the commu-
nication protocol solved. Suppose the protocol solved the Karchmer-Wigderson prob-
lem for a monotone function 5 . Let - := {G | 5 (G) = 1} and. := {H | 5 (H) = 0}. Assume
- are inputs given to Alice, and . are inputs to Bob. Let UG , for G ∈ - , be Alice’s
strategies for playing with given G, and VH , for H ∈ . , be Bob’s strategies for playing
with H. The fact that the communication game solved the Karchmer-Wigderson prob-
lem ensures that for G ∈ - , Alice’s strategy UG beats all Bob’s strategies VH , H ∈ . ,
in game (�, G) (� with the winning positions determined by 1s in the vector G). But
this does not imply that UG is a winning strategy in game (�, G) because Bob may
play a strategy that is not among the strategies VH . Nevertheless, it suffices to omit
some arrows and nodes from � to get a game schema � ′ such that UG is a winning
strategy in (� ′, G). This may look surprising because in � ′, Bob is not forced to
play one of the strategies VH . The reason why it works is a property of the feasibility
predicates. When we extend the communication protocol by trees, the players only
need to send one bit to each other in order to check the feasibility predicate �{ (G, H)
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at a given node {. This implies that the predicate is a conjunction of two predicates
��{ (G) ∧ ��{ (H), which can be computed separately by Alice and Bob. Consequently,
if G, G ′ are two inputs for Alice and H, H′ for Bob, we have

�{ (G, H) ∧ �{ (G ′, H′) ⇒ �{ (G, H′) ∧ �{ (G ′, H). (6.1)

In terms of strategies, �{ (G, H) is equivalent to the condition that the path determined
by strategies UG and VH leads to a leaf D that is labeled 0 in G and 1 in H.

Lemma 1. Let � ′ be the game schema that results from � by omitting all arrows
that do not occur on any path defined by a pair of strategies UG , VH for G ∈ -, H ∈ . .7
Then UG is a winning strategy in (� ′, G) for every G ∈ - , and VH is a winning strategy
in (�, H) for every H ∈ . .

Proof. Because of symmetry, it suffices to consider G ∈ - . I will show that every node
D in � ′ satisfies the following condition.
★ If D is feasible for (G, H), then D is a winning position for Alice in (�, G) with UG

being a winning strategy.
The proof is by induction, starting from the leaves and going towards the root.

Let D be a (G, H)-feasible leaf for some H ∈ . . Since the communication protocol
solves the Karchmer-Wigderson problem for 5 , the value of G on D must be 0. Hence
D is a winning position in (�, G).

Let D be a non-leaf. Suppose D belongs to Alice and let { be the node to which
Alice will go playing UG . If D is (G, H)-feasible, then so is {. By the induction assump-
tion, { is a winning position for Alice with the winning strategy UG , so the same holds
for D.

Let D belong to Bob and {, | be its successors in � ′. Suppose D is (G, H)-feasible.
Then either { or | is (G, H)-feasible; let it be {. Since the arrow D → | has not been
deleted, there is a path defined by some pair UG′ , VH′ that has the arrow D → |. By
property (6.1), D is also (G, H′)-feasible. Since strategy VH′ points to |, | is (G, H′)-
feasible. Hence, by the induction assumption, both { and | are winning positions for
Alice, and, consequently, { is also a winning position.

I leave the case when D belongs to Bob and has only one successor to the reader.

What I have done is a proof of Razborov’s result, mentioned before, presented in
terms of games.

7To formally satisfy the definition of a basic game, we should also delete all nodes that
become not reachable from the root.
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Theorem 1 (Razborov, [27]). The minimum size of a monotone circuit computing a
monotone Boolean function 5 is equal, up to a polynomial factor, to a minimum size
of graph in a DAG-like communication protocol solving the Karchmer Wigderson
problem for 5 .

7. More players

I will now digress to show a potential application of a generalization of basic games
to more players. In communication complexity, protocols with more players are con-
sidered, called multiparty communication complexity. There are two main versions
called number in hand and number on the forehead. In both versions, the input is split
into : parts, where : is the number of players. In the number-in-hand model each
player sees only one part that is assigned to them. In the number-on-the-forehead
each player sees all parts except theirs.

We can study both versions using games. For the sake of simplicity I will consider
the number-in-hand model with three players, Alice, Bob, and Cindy. The generaliza-
tion of the basic game to three players is straightforward. The inner nodes are now
labeled by A, B and C, the leaves by 0, 1 and 2. The corresponding game schema is
without labels on the leaves.

With more than two players, Zermelo’s theorem does not hold true. Nevertheless,
we can still compute who has a winning strategy, if there is a player who has such a
strategy. To this end, we will need four values 0, 1, 2, and 0, where 0 denotes that at
the node nobody has a winning strategy. Thus we can define circuits corresponding to
these game schemas. The following proposition characterizes the problems that can
be studied using this concept.

Proposition 1. Let ,�, ,�, ,� ⊆ {0, 1, 2}=. Then there exists a game schema �
such that Alice has a winning strategy when we label the leaves with ,�, Bob has a
winning strategy when we label the leaves with,�, and Cindy has a winning strategy
when we label the leaves with,� , if and only if the following condition holds true:
(Δ) for all U ∈ ,�, V ∈ ,�, W ∈ ,� , there exists 8 ∈ [=] such that

U(8) = 0 ∧ V(8) = 1 ∧ W(8) = 2. (7.1)

Clearly, if U ∈ ,� (similarly if V ∈ ,� or W ∈ ,�), then only the values on indices 8
such that U(8) = 0 matter. Therefore it is more natural to use sets of indices instead of
vectors in {0, 1, 2}=.

A natural generalization of the Karchmer-Wigderson problem is, for given strings
U ∈ ,�, V ∈ ,�, W ∈ ,� , find an index 8 such that (7.1) holds. Then we can also
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generalize the Karchmer-Wigderson-Razborov theorem as follows (not only for three
players).

Theorem 2. If a number-in-hand DAG-like communication protocol % solves the
Karchmer-Wigderson problem for sets ,�, ,�, ,� ⊆ {0, 1, 2}= satisfying (Δ), then
one can construct in polynomial time a game schema � for three players �, �, �
such that A, resp. B, resp. C, has a winning strategy in (�,, �), resp. (�,,�), resp.
(�,,�).

To get Boolean circuits, we can represent the game schema � by a triple of cir-
cuits ��, ��, �� , where in �� the nodes of � are labeled by ∨ and the nodes of �
and � are labeled by ∧, and the circuits �� and �� are defined accordingly. Pavel
Hrubeš discovered this connection of communication protocols and triples (in general
:-tuples) of circuits many years ago, but he did not write it up.

Intuitively, one should get larger lower bounds when there are more players, because
the players know less about the input and hence must communicate more. So far this
idea has been used only in some special cases.

Problem 1. Prove, for explicitly given sets,�,,�,,� , a larger lower bound on the
size of these circuits than we have for monotone Boolean circuits!

Example. In this example we will have : players. Let = := 2: + 1. The input vec-
tors will be edge colorings by : colors of the complete graph on = vertices. For
9 = 1, . . . , : , the winning set of the 9 th player , 9 is the set of colorings such that
the graph defined by the edges with color 9 contains two cliques that cover all ver-
tices. One can easily see that these sets satisfy the condition from Proposition 1
above, namely, for any string of colorings (^1, . . . , ^: ), ^1 ∈ ,1, . . . , ^: ∈ ,: , there
exists an edge 4 such that ^1(4) = 1, . . . , ^: (4) = : . By the generalization of Propo-
sition 1, there exists a game in which sets ,8 are winning set of players 8 for all 8.
Proving a lower bound on the size of such games maybe a way to get better lower
bounds for the well-known tautology called BitPHP. And indeed, a few days before
the deadline for this paper, I received a draft by P. Beame and M. Whitmeyer that
uses multiparty-communication complexity to prove better bounds on �8C%�% for
tree-like cutting-planes proofs [3].8 To prove such a bound for DAG-like Resolution
proofs is still an open problem.

Lower bounds on the number-on-forehead multiparty communication complex-
ity are notoriously hard, but could resolve important open problems both in circuit

8The cutting-planes proof system is stronger than Resolution, but incomparable with higher
fragments of constant depth Frege systems. Tree-like versions of these systems are weaker than
the DAG-like ones.
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complexity and proof complexity. Therefore it would be more interesting to prove
lower bounds on the size of the corresponding games. In game theory, the number on
forehead model corresponds to the same games except that instead of asking about
winning strategies of single players, we ask about winning strategies of coalitions of
all players except of one.9

8. The interpolation pair of F1

Recall that F1 is a generalization of Resolution in which we allow conjunctions in the
clauses. Furthermore, the interpolation pair of F1 is equivalent to the canonical pair
of Resolution. The first combinatorial characterization of this pair appeared in [4] and
was based on the point-line game introduced in that paper.

The setup of a point line game consists of
• the board, which is a directed acyclic graph with one source, and all nodes of outdegree 2,

except for leaves;
• the nodes of the graph are containers with slots – the points;
• the source node is empty, each leaf node has one point;
• if* → + are nodes connected by an arrow, then there is a partial mapping from the points

in + to the points in* – the lines;
• there are two players, Red and Blue, and each node is owned by one player and marked by

the color of the owner.
The game is played as follows:
• starting at the source, the players follow the arrows and the color of the node decides who

will choose the arrow;
• they move red and blue pebbles along the lines;
• when they move from a red node * to some node + and there are points in + that are not

connected to points in *, they will be covered by blue pebbles; similarly for a blue node
*, the free points in + will be covered by red pebbles; thus all points in the currently used
nodes are filled with pebbles;

• the player whose pebble appears in the leaf wins.

A positional strategy of the Red player is a set of arrows, one for each red node.
Similarly for the Blue player.

9Note that a player 8 does not have a winning strategy if and only if the coalition of all
players 9 , 9 ≠ 8, has a winning strategy. So these problems are, in a sense, dual to each other.
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Figure 1. Red decided to move to the blue node. The first three pebbles are moved along the
lines, the rest of the bottom node is covered by blue pebbles.

Lemma 2. Given a set of arrows (, it is decidable in polynomial time whether ( is
a winning positional strategy of the Red player. Hence the set of games with winning
positional strategies for the Red player is in NP. The same for the Blue player.

Theorem 3 (Beckmann, P., Thapen, [4]). Let (' (respectively, (�) be the set of
games in which the Red (Blue) player has positional winning strategies. Then the
interpolation pair of F1 and ((', (�) are polynomially reducible to each other.

The condition that the strategies must be positional seems to be ad hoc in order to
get NP pairs, however it naturally appears in the proof of the theorem and we will see
another reason for it in a moment.

The point-line game without pebbles. It is important to realize that the point-line
game can be played without pebbles. The difference is that such a game does not end
at a leaf that the players reach, because they still have to determine the winner. To this
end the players go back along the path by which they arrived at the leaf and follow the
predecessors of the unique point on the leaf. Eventually they reach a node such that
the point does not have a predecessor in the preceding node. This is the place where
the color of the pebble would be decided if they played with pebbles. If the preceding
node is red the color of the pebble would be blue, and vice versa. This pebble would
go all the way to the leaf.

Note that in such a game the players have to record the path by which they arrived
to a leaf. If they use pebbles, they do not have to do that because the information that
they need is encoded by the color of pebbles.

The point-line game schema. To use colors of certain nodes as inputs in order to
compute a partial Boolean function is rather awkward and it would be difficult to
analyze such a computational model. A more natural way is to allow points in the
source node, and use them to put different strings of colored pebbles. The simulation



16 P. Pudlák

of the original games by this modification is easy and I leave it to the reader. So the
point-line game schema is like the point-line game except that we allow points in the
source node and these points are used as placeholders for input bits represented by
pebbles of two colors.

9. The point-line game and the class CPLS

The class Colored Polynomial Local Search, CPLS, is an extension of PLS intro-
duced by Krajíček, Skelley and Thapen in [22]. This class is connected with the point
line game in the same way as PLS is connected the basic game. To describe this
connection I will present CPLS as a point-line game played by one player on an
exponentially large board and without pebbles. The goal of the game is to find a point
without a predecessor in a predecessor node. In more detail:

The setup is
• the nodes and the points are given by numbers ≤ 2= (= is the input size parameter); arrows

go from a smaller number to a larger ones; node 0 has no point; each leaf has a unique
point;

• the arrows, lines and points are given by polynomial time algorithms as follows:
(1) for a node*, an algorithm computes the successors of*, or outputs* is a leaf,
(2) for two nodes* → + and a point 0 ∈ + , an algorithm computes the predecessor

of 0 in*, if there is any, otherwise outputs “no predecessor in*”,
(3) for a leaf of the graph (, an algorithm computes the unique point in (.

The goal is:
• to find a triple* → + , 0 ∈ + such that 0 has no predecessor in*.

These triples are, moreover, associated with some elements, which are outputs. The
outputs are not relevant for what I want to do because I want only to transform the
problem to a game schema.

To transform CPLS into a communication complexity class, we proceed in the
same way as in the case of PLS; i.e., we use a polynomial domain instead of the
exponential one, and let the two players compute the arrows, lines, and points using
small communication protocols.

The basic idea of the transformation of ccCPLS into a game is the same as for
ccPLS; i.e., we interpret the protocols for players as their winning strategies. The
transformation of the graphs of the communication protocol into a graph of the game
is, however, more complicated because we have, in fact, two graphs: one whose ver-
tices are, what we call, nodes and another whose vertices are points and edges are
lines.
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The graph of nodes can be treated the same way as we did with ccPLS. Thus for
every node *, we replace the outgoing arrows with a tree )* that represents possible
communication paths to determine the successor.

Concerning the points and lines, it is more difficult to simulate communication
by playing a point-line game. The problem is that, for two nodes * → + and a point
0 ∈ + , we need to compute a neighbor of 0 in*, and this is in the opposite direction.
In the point-line game without pebbles, players also go in the opposite direction, but
they just follow the line and do not make any decisions. Therefore, I will consider a
generalization of the game in which, for every 0 ∈ + , there is a basic game �0 with
the root at 0 and leaves being some points of *. Then the simulation is easy: use the
the communication trees as these basic games.

Such a generalization differs from point-line games considerably. We can interpret
the nodes of �0 as points in + , but then we will have lines inside of + . To make it
more alike the original game, we can do the following. Let us call the nodes of the
basic games �0 points and arrows lines. Insert a chain of nodes between * and + ,
+0 = *,+1, . . . , +:−1, +: = + , where : is the maximal depth of the trees that are the
graphs of �0, and let the arrows only be * → +1 → · · · → +:−1 → + . Then put
the points of all �0 into the nodes of the chain so that the lines are only between
the consecutive nodes. One may need to add additional points and lines when the
branches are shorter than : . Then, it remains to deal with the markings that associate
players with points in �0. We can assume, w.l.o.g, that in all �0 the same player
starts and they alternate regularly. So, we can assign colors to nodes +8 so that they
correspond to the colors of the points in these games. As a result, we can remove the
markings of the points.

To complete the full circle from point-line games, to CPLS, to communication
complexity CPLS, and back to point-line games, one would need to go on and prove
a result similar to Razborov’s Theorem 1. I believe it is possible, but for now, I leave
it for future research.

Remark 1. One can check that such games are essentially the same as the Turing
machine games of depth 2 that I will define in the next section. Since Turing machine
games of depth 2 characterize the same interpolation pair as point-line Games, they
are polynomially reducible to each other. Thus we get point-line games from ccCPLS.

Remark 2. One thing to note is that in this way we necessarily get positional strate-
gies, which justifies the condition that we imposed on strategies when defining the
point-line game. Being positional in general means that the strategy only uses “local”
information. The locality is an intrinsic property of the communication complex-
ity versions of TFNP problems. Therefore, we always get positional strategies from
TFNP problems.
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Figure 2. Turing machine " , controlled by players R and B, in the middle of the 3rd round
moves to the right.

10. Games for all levels of Bounded Depth Frege Hierarchy

I will present a characterization of the interpolation pairs of F3 for all 3 from [25]. It
is based on games, which I called simply depth-3 games. Here I will call them Turing
machine games of depth 3.

Definition 3. A Turing machine game of depth 3 is given by (", =, �, ', �), where
• " is a nondeterministic Turing machine,
• = is the length of a finite tape,
• � is a finite, but possibly large, alphabet used by the machine,
• (', �) is a partition of � into winning positions for Red and Blue players respectively.
The game is played as follows:
• initially the tape is blank,
• starting at the leftmost square the machine moves forth and back from one end to the other

3 times while reading and rewriting the symbols on the tape;10
• two players, Red and Blue, alternate in deciding which action the nondeterministic machine

takes (i.e., what it prints on the tape and which state the automaton takes on),
• the last printed symbol decides who is the winner.

Admittedly, the machine in the definition is not what we usually call a Turing
machine because in the standard definition the size of the alphabet and the number
of states of the automaton are bounded by a constant. It is possible to slightly change
the definition to achieve the constant bound, but the resulting concept would not be
natural.

10A machine which moves its head independently of the content of the tape and its state is
called oblivious, so the machine in the definition is oblivious.
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Definition 4. The size of a TM-game is the number of states of " + |�| + =. A posi-
tional strategy for a TM game is a strategy that only uses the number of the round, the
state of " , and the symbol on the tape read by " .

Lemma 3 ([25]). For every 3 ≥ 1, there exists a polynomial time algorithm (polyno-
mial in the size of ") to decide if a given positional strategy is a winning strategy.

Hence the existence of a positional strategy for given player is an NP predicate.
Unfortunately, my proof of this lemma only gives algorithms in which the exponent
of the polynomial bound grows with increasing 3. Thus I am not able to use these
games to characterize the interpolation pair of the unbounded depth Frege system.

Let,'
3
(,�

3
) denote the set of depth-3 TM-games with winning positional strate-

gies for the Red (respectively, Blue) player. The characterization of the interpolation
pairs is given by the following theorem.

Theorem 4 ([25]). For all 3 ≥ 1, the interpolation pairs of F3 (depth-3 Frege System)
and (,'

3
,,�

3
) are polynomially reducible to each other.

It is not difficult to see that depth-1 TM-game is the basic game: given the machine,
the nodes of the basic game are triples (G, B, 8), where 8 is the position of the head, G
is the symbol on the 8th square, and B is the state. To reduce the point-line game to
the depth 2 TM game is also easy if we take the version with all pebbles black. The
machine going in one direction follows the arrows of the graph; going in the opposite
direction follows the lines. The converse reduction can be done using the generalized
version of Section 9.

The paradigm used in the proof of Theorem 4 is the search of a falsified clause
in a Resolution refutation when the variables are split between two players. In such
a situation, always one of the players can control the step in the search procedure
because the assumptions of the resolution rule contain only one variable which is not
in the conclusion. So the player who knows the value of this variable can decide which
of the assumptions is false assuming the conclusion is false. For proofs of depth 3 > 0,
I use the key idea of Skelley and Thapen [28] that one can define a calculus which
is equivalent to F3 , and in which the only essential rule is the resolution rule. Such a
calculus cannot be the standard sequent calculus with cuts restricted to propositional
variables because this restriction would make it very weak. What they actually did
was to use deep inference rules. These rules allow one to derive a new formula by
changing a given formula inside; in other words, the rules can be applied inside of
formulas.

In my proof I use a different calculus with two deep inference rules that I call
resolution, which is the usual resolution rule applied inside of formulas, and dual
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resolution. Both rules can be applied inside of formulas:

(� ∨ ?) ∧ (� ∨ ¬?)
� ∨ � ,

� ∧ �
(� ∧ ?) ∨ (� ∧ ¬?) .

The Turing machine, roughly speaking, searches for unsatisfied formulas of the high-
est depth 3, which is the depth of the proof. Then it reverses the order of search
and searches their unsatisfied subformulas of depth 3 − 1 and so on until it finds an
unsatisfied initial clause. When the TM goes in one direction, it uses instances of the
resolution rule to search for an unsatisfied formula, the same way as it is done when
we use interpolation for Resolution; when it goes in the opposite direction, it uses
dual resolution.

11. Some related combinatorial games

Various games have been studied in game theory. Here I want to mention only two
that are related to the games presented in this article. In contrast to our games, these
games are played on directed graphs that are in general not acyclic; thus the number
of rounds is infinite.

Parity Games. A parity game is given by a directed graph whose set of nodes is
{0,1,2, . . . , =}, and for each node, there is at least one outgoing edge. The set of nodes
is divided into two parts,+0 and+1, which we associate with two players, Player 0 and
Player 1. W.l.o.g., we can assume that +0 are even numbers and +1 are odd. A play
starts with a pebble on 0 and then players move the pebble along the arrows of the
graph. When the pebble is on a node in +8 , then Player 8 moves the pebble. After they
play infinitely many rounds, the winner is decided by the least node { that was visited
infinitely many times: if { ∈ +8 , then Player 8 wins.

E. A. Emerson showed that in a parity game, always one of the players has a posi-
tional winning strategy [11]. In such a strategy, for every node, the player always uses
the same arrow. This can be used to define the games in which Player 8 has a winning
strategy by an NP condition. In 2017, C. S. Calude, S. Jain, B. Khoussainov, W. Li,
and F. Stephan found a quasi-polynomial algorithm to decide who has a winning
strategy in parity games [7].

Simple Stochastic Games. These games were introduced by A. Condon [9] as a
special case of stochastic games studied before. The game is given by a directed graph
whose nodes are divided into three sets +<8=,+<0G ,+0{4 and with three distinguished
nodes B, {0, {1. Starting at node B, players Min and Max move the pebble if it is at a
node assigned to them. If the pebble is on a node { ∈ +0{4, the pebble is moved to a
child of { randomly. We assume that the outdegree of every node is at least 1, except
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for the sinks {0, {1. The aim of Min (resp. Max) is to reach {0 (resp. {1). Given a pair
of positional strategies f for Min and g for Max, we can compute the probability
that they reach {1. The value of the game is inf sup of this probabilities over all f, g.
The decision problem for simple stochastic games is to determine whether the value
is > 1/2.

Condon [9] proved that the decision problem for simple stochastic games is in
NP∩coNP. In 2011, K. Chatterjee and N. Fijalkow strengthened this result toUP∩coUP [8].
No truly subexponential algorithms are known.

In [4], we showed that the decision problem for parity games can be reduced to the
interpolation pair of F1, hence also to point-line games and Turing machine games of
depth 2. Strengthening the results of A. Atserias and E. Maneva [1] for mean-payoff
games,11 L. Huang and T. Pitassi [14] proved that the decision problem for simple
stochastic games is reducible to the interpolation pair of F2. In [4], we gave a more
direct proof of this result. We observed that our proof does not use the full power of
F2, but we were not able to improve it to F1. Below, we restate these reductions in
terms of Turing machine games.

Theorem 5. The decision problem for parity games is polynomially reducible to
deciding who has a positional winning strategy in depth 2 Turing machine games.
The decision problem for simple stochastic games is polynomially reducible to decid-
ing who has a positional winning strategy in depth 3 Turing machine games.

12. Conclusions and open problems

In this paper, I have focused on the relation of games and communication complexity
versions of two TFNP classes. These games characterize the interpolation pairs of F0
and F1 and the TFNP classes that correspond to theories )1

2 and )2
2 . It seems that this

connection can be extended to the interpolation pairs of all F8 and the game-induction
principles GI8 introduced in [28] that are associated with theories ) 82 . This raises the
natural question of whether one can get in such a way a game from any TFNP class,
for which the communication complexity version makes good sense. The answer is
that one always gets some game, but it may not be what we will expect. In the two
examples above, ccPLS and ccCPLS, we were able to incorporate the small trees
representing the communications at nodes into the original graph. Adding these trees
may essentially distort the principle for TFNP classes that are not based on DAGs.

There are more connections between proof systems and various computational
models. In particular, the black-box (a.k.a. query complexity) versions of TFNP have

11I will not define these games here.
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been associated with all important proof systems studied in proof complexity, and
for several proof systems also classes of generalized monotone circuits have been
found [6, 12, 20]. An approach to feasible interpolation for bounded depth Frege
system, different from the one here, was proposed in [19]. This suggests a lot of
questions, but I confine myself to a few relevant to this paper’s topic.

(1) What is the computational complexity of deciding who has a positional win-
ning strategy in a given depth 3 TM-game, assuming that one player has a
positional winning strategy?

(2) For 3 > 1, prove a lower bound on the complexity of depth 3 TM-games
computing an explicitly given partial monotone Boolean function.

(3) In particular, for some 3 > 1 (ideally for all), prove that (,'
3+1,,

�
3+1) cannot

be polynomially reduced to (,'
3
,,�

3
) by a monotone projection.

(4) Characterize the canonical pair of the unbounded depth Frege system.

Furthermore, I presented connections between games and communication com-
plexity rather informally. My goal was to show that games offer an alternative view
of open problems in proof complexity, but more precise definitions and proofs are
needed, which I will do in subsequent publications.
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