Zeitschr. f. math. Logik und Grundlagen d. Math,
Bd. 36, S.29—46 (1990)
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§ 0. Introduction

The motivation for this paper comes from a well-known and probably very difficult
problem whether Bounded Arithmetic is finitely axiomatizable. Attempts to solve this
problem using the machinery of mathematical logic have failed so far. It is possible
that, the problem can be solved by combining logic with combinatorics. This would
require a transformation onto a more combinatorial problem The finite axiomatizability
of Bounded Arithmetic seems to be tightly connected with the problem whether Poly-
nomial Hierarchy collapses to some level ZP, but no implication relating these two
problems has been proved.!) Here we present a different problem of a combinatorial
character and prove a relation between this problem and the problem of the finite
axiomatizability of Bounded Arithmetic.

Cooxk [4] introduced an equational theory PV of polynomial time computable func-
tions and showed an interesting relation between PV and propositional proof system
ER (Extended Resolution). He showed that (1) PV proves soundness of ER and (2) the
translation of the equalities provable in PV into propositional calculus have poly-
nomially long proofs in ER. Buss [1] showed that 83 (a fragment of the bounded
arithmetic S,) is conservative over PV; thus this relation is transferred to S3.

The finite axiomatizability of S, is equivalent to the question whether the hierarchy

L, 4=1,2, ..., is increasing. We shall construct propositional proof systems G,
which ha.ve similar relation to 8! for 4 = 1 as ER has to S3. Then we show that
the problem about the hierarchy 8, 4=1,2,..., can be reduced to a problem about
the length of proofs in proof systems G,, + = 1,2, .... The systems G; are natural
extensions of a Gentzen system for the propositional logic to quantified propositional
formulas with at most ¢ quantifier alternations.

The problem about G,’s would require proving superpolynomial lower bounds to
the length of proofs in these systems. This seems too difficult at present, as exponen-
tial lower bounds have been proved only for quite a weak system Resolution System
(not extended) so far, cf. HakEN [8]. However we shall show that nontrivial state-
ments about S, and its fragments can be derived from this relation, in particular:

(1) For 1 >j = 2 the VXb.consequences if S are fmltely amomatlzable (Corol-
lary 7.1),

(2) for 4 = 1, if 841 F “NP ='co-NP”, then G, proves all tautologies by proofs of
polynomial length (Corollary 7.3). ,
(WmkiEe [11] proved statement (2) for Si and a Frege system with the substitution
rule instead of G,.)

1) Added in proof: Recently Krasféex, PuprLikx and TAKEUTI proved that T, = S
implies 2%, = IIf,, for ¢ = 1.



30 J. KRAJfGEK AND P. PUDLAK

After writing the first draft of this paper (January 1988) we learned about the work
of MarTIN Dowp [6], [7]. In [7] he gave a full proof of Coox’s theorem mentioned
above and showed the same relation between the quantified propositional ecalculus
(in our notation G) and Polynomial Space Arithmetic (PSA, an equational theory
extending PV). In [6] he stated without proof a theorem which relates the fragments
of 8, to fragments of the quantified propositional calculus. He did not derive any
corollaries of this theorem such as (1) and (2) above.

Throughout the paper we assume knowledge of Buss [1], nevertheless we recall
briefly some basic definitions.

§ 1. Preliminaries

The class of quantified propositional formulas (shortly propositions) is the least class
of formulas containing the atoms py, p;, ..., constants 0 (falsity) and 1 (truth),
closed under the connectives A, v, -1 and > and with any proposition A(p) contain-
ing also propositions 3xA(x) and VzA(x), where x substitutes for some occurrence
of p in A(p). The semantical meaning of JxA(x) is 4(0)v A(1) and of VzA(z) is
A(0) A A(1).

We shall use the usual distinction between bounded and free atoms as is the dis-
tinction between bounded and free variables in first order logic (cf. TaxrvuTI [10]).

As usual we assume that the indices ¢ in p, and z; are written in the binary nota-
tion. Hence the lengths |p,| and |z,] of p, and x; are proportional to log,(3).

We do not include = among the basic connectives but we shall occasionally use
A = B as the abbreviation for (4 o B) A (B o A4).

2311} (1 = 0) is a hierarchy of propositions defined similarly as is the arithmetical
hierarchy:

2§ =113 is the class of quantifier free propositions. Both XZ{ and I7T{ are closed
under A, v and the negation of a XZ3-proposition is JIf and vice versa. 27, contains
both 2 and II} and propositions of the form JxA(x), for A e II}. Similarly 11§, con-
tains both 27 and II{ and propositions of the form VzA(z), for A € 2f. For 4 in X}
respectively B in /I the propositions 3z4 and VzB are in 27 and II respectively, too.

Thus a proposition in a prenex form with ¢ blocks of the like quantifiers and with
the prefix beginning with the block of I’s is in J7.

We shall consider systems of bounded arithmetic introduced by Buss {1]. Theory S,
is equivalent to (more precisely conservative over) I4, + Vady(y = aMos:(x+D1y,
The formulas in the hierarchy of formulas X7, II? define sets which are in the cor-

responding levels of the polynomial hierarchy XP, IT?. The fragments S are obtained
from S, by restricting the PIND-schema to P formulas. The schema PIND is

P(0) A V2(g(1%[2]) = @(x)) > Vrg(z).
Thus the S} is the finite set of open formulas BASIC plus XP-PIND. The fragments
%, are defined similarly but with the ordinary schema of induction. The system S, is
the union of 85, ¢ =1,2,..., and is equivalent to the union of T,i=12,... For
the details see [1]. :
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It is well known that the syntax can be easily formalized in S,. In particular, for-
mulas Sat,(A4,7) and Taut,(4) can be constructed in S,, formalizing “27\w II}-pro-
position A is satisfied by the truth valuation 7*’ and ““Z#u IT{-proposition 4 is sat-
isfied by all truth valuations”, respectively. As such constructions are quite
standard (using recursion on notation) we shall only state the properties of such a
formalization.

Lemma 1.1 ‘
(i) Saty 15 AL with respect to S§.
(i) Sat, is B(ZP) for i = 1.
(iii) Taut; is ITY,, and for i = 1 also YEP.
(#(X) denotes the class of Boolean combinations of formulas from X.)

Lemma 1.2. For i = 0, S proves that for all propositions A, B of appropriate com-
plexity and for all k it holds that

(i) Sat,(4 o B, 1) = Sat,(4, 7) o Saty(B, 1), for o = A, Vv, > and

Sat,(—14, 1) = "18at,(4, 1);

(i) Sat,(JzAd(z), v) = Sat,(A(0) v A(1), T) = (e £ 1) Saty(A(p), TP, &)
and analogically for ¥, where 1°({p, &) is the truth valuation 1’ extending v by putting
7'(p) = &, and p does not occur in JxA(z);

(iii) Sat,, (4, 7) = Sat;(4,7), for Ae 2RV IIY;

(iv) Sat,(Jzy ... Iz A(zy, ..., %), T)

=@ = (KP1s &) - P &) A /_\8j < 1A Baty(A(py, . - -, ), T°T),

where py, . . ., P, do not occur in Iz, . .. E!x,:A(xl, ..., ), and analogically for V;

(v) Sat,( VEH)GSA(pj/GJ), 7) = (Aey, - - -, &) € S) Saty(A(p,/e;), 7)

(15 es

and analogically for N\, where S is a subset of {0, 1}*.

Definition. A polynomial time computable binary relation P(z, y) is a quantified
propositional proof system (shortly: proof system) iff 3dP(d, A) implies 4 € |J TAUT;,
izo0
where TAUT, is the set of tautological Z%-propositions. We shall write d: P} 4 in-
stead of P(d, 4) and we shall call d a P-proof of A.

The length of a formula or a proof will be denoted by |4/, |d|, respectively. We think
of formulas and proofs as 0-1 sequences, thus we can use the same symbol as it is used
for llog,(x + 1)1 in [1].

We shall often use statements about proof systems in fragments of arithmetic. In
such cases we shall tacitly assume that we have a fixed arithmetical definition of P,
which is A% in S3.

Definition. For P a proof system and ¢ = 0, i-RFN(P) is the formula

(Vé, 4,7) (d: PF A A 4e2l > Saty(4,1)).

Lemma 1.3. For i > 1, i-RFN(P) is an VEP-sentence, and 0-RFN(P) is an VII}-
sentence.
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Definition. For P, @ proof systems and ¢ = 0, P i-polynomially simulates Q iff
there is a polynomial time computable function f(z, ) such that for any X3.proposi-
tion 4, if d: Q@+ A then f(d, A): P+ A. P 2'Q will denote ““P i-polynomially simu-
lates @ and P ~'@ will denote the conjunction of P 2!Q and Q =' P.

This notion generalizes the notion of polynomial simulation introduced by Coox-
RecknOW [5].

Finally let us recall some standard proof systems: Frege system F, extended Frege
system EF, Frege system with substitution SF and extended resolution ER (cf. [5]).

§ 2. Quantified propositional calculi

Proof systems for quantified propositional calculus have been considered several
times; for the history see CEURCH [3]. We shall define a system G and its fragments G,,
for ¢ 2 0. Our system is similar to that considered by Dowp [6, 7], which in turn is
based on some earlier ones.

The calculus G is defined in a sequential manner analogically to the definition of
LK in Taxgvurt [10]. The important difference is that a sequent may be a premisse
of more than one inferences. Thus proof figures of G-proofs are not trees but directed

graphs.
The calculus G works with sequents of propositions. The rules of the calculus G are
(a) “the rule of initial sequent,
(b) structural rules,
(¢) cut rule,
(d) propositional rules,
(e) quantifier rules.
Now we shall describe the rules explicitely.

(a) The initial sequents are the sequents of the form p — p, 0—, —1, for p a
free atom.

The rules (b), (¢), (d) are identical with those of TakrvTI [10].

(e) Quantifier rules are

(V: left) AM (V: right) I_ﬂ
Vzd(z), I - A I' > A, VzA(z) ’

4imd T s A . ' A AR
(3: left) m, (3: right) m,

with the proviso that p does not oceur in the lower sequents of (V: right) and (3: left).
The G-proofs are sequences of sequents satisfying obvious conditions. ‘
For ¢ 2 0 define G, by d: G+ "> A iff d: G+ I — A and all propositions oc-

curring in d are in 27w II}. In particular, G; F 4 (ie. G, »4) implies 4 € 23U IT9.

This completes the definition of the calculi that we shall need.
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Now we shall show that the substitution rule can be polynomially simulated in G
and each fragment G,, for ¢ > 1. We assume that only quantifier free propositions
may be substituted. (This is needed for the proof of Lemma 2.1.) Clearly it is sufficient
to consider only the following special case of the substitution rule

I'(p) —» A(p)
) I'(4) > 4(4)

where 4 is a quantifier free proposition which does not contain p and is substituted
for all occurrences of p in I'(p) — A(p).

Lemma 2.1. Let SG and SG, be the systems G and G, augmented with the substitution
rule. Then for i 2 0, G ~'8G, and for i = 1, G, ~' SG,. Moreover, these facts are
provable in S} .

Proof. Clearly we need only to show the simulation of the substitution rule in G,.
Consider a substitution of the form (). Thus we have a proof of

Z,: I'(p) - A(p) -
in G, and we want to derive
Z,: I'(4) - A(4)
in G;. Using the induction on the 1ength of I" and A one can show that
Zy:p=A,4(p), I'(4) > A(4),
Zs:p=A,I'(4) > A4), Ip),
Zs: »3x(x = A)

are derivable in G by proofs whose size is polynomlal in the length of I, A A. Ap-
plying the cut-rule to Z,, Z, we obtain

Zs: p = 4, I'(4) > A(4), A(p),
and applying it again to Z, and Z; we obtain
Z,:p=ATI4) > A4).
Using (3: left) we get
Zig: Jx(x = A), ['(4) - 4(4).
Thus Z, follows from Zs and Zg by cut. In this way the proof is increased only by an
additive factor which is polynomial in the length of I", 4, 4. Hence it is a polynomial

simulation. Since all the transformations are elementary, they can be performed

in S3. O -

For G, and 8G, it is an open problem whether G, polynomlally simulates SG,.
We know only the following relations:

» Lemma 2.2. S3 proves
- () Go ~°F, (ii) SG; ~° SF ~° ER ~° EF.

Proof. Go ~°F, SF 2° EF have been shown in [5]. SG, ~° SF and ER ~° EF
are easy. EF >° SF has been shown in [8], [9]. [] '

Corollary 2.3. 8§ proves G, 2° ER. [J

3 Ztschr. f. math. T.ooik
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§ 3. Translation of bounded formulas into propositions

We define a translation of bounded formulas into propositions. The translation we
use is a generalization of the translation used in Cooxk [3], Dowp [6], and KRAJICEK-
PupLix [9].

For k > O define k(i) = 0 or 1, the i-th digit of k, by k = 3 k(i) - 2'. Observe that

iz0
for i > |k|, k(3) = 0. Sometimes we shall use the following abbreviations: For a pro-
position B with free atoms p,, p,, . . . and k = 0, we abbreviate B(po/k(0), pyfR(), .. .)
by B(p/k) or simply B(k).

Take a bounded formula A(a,, ..., a,). As all functions in the language of S, are
polynomial time computable, there exists a polynomial p,(x) such that for any
Myy..., M With |n4],...,|n] £ m one needs to compute only numbers with the

length < p,(m) in order to decide the truth value of A(n,, ..., 7). This is proved
by induction on the complexity of the terms occurring in A and the complexity
of A.

Any polynomial g(z) satisfying Vz(g(z) 2 p.(x)) will be called a bounding polynomial
of A.

For any bounding polynomial ¢(x) of A we shall construct a sequence of proposi-
tions [A%m, m = 0, with the following property (we shall occaswnally omit the in-

dices m, g(m), if there is no danger of confusion): If a, ..., e are all free variables
of A then the only free atoms of [A]%,, are p{,. .., p‘{("‘) e Dy PR and for
any ny, ..., n with |nqf, ..., |n] < m it holds:

A(ay/n,) is true iff [A]Z(pi/m;) is true.
Moreover, we want the following properties of [A] which we state as a lemma.
Lemma 3.1. For Ae€XP, i 2 0, we have:
(1) [4] € A% with respect to G, for i =0, and [A] € XD for i = 1;
(2) |[AT5m) < 7(m), for some polynomial r(x) depending only on A and q(x);
(3) [4 o B] is [A] o [B] for o = A, v, o, [14] is 7[A];
@) [@ < 1) A@] is Ve < 1 A A@)] (wile),

where S = {(go, - - -» Eqemy) € {0, 1}4™*1 | (Vi > |q(m)]) &; = O} and the p;’s are the atoms
assoctated to a;

6) [Qz < ) A@)] is Fxg . . . Izgemla S ¢ A A(@)] (pif2)),
where t is a term mot of the form |s|;
(6) [(vz < [¢]) A(=)] es /} fa < lt] = 4(a)] (pifer),
&€
where S is as in (4);
(7) [(Vz < t) A(@)] 48 Yoo . . . Vagemla St 2 AW)] (pu/21),
where t is not of the form |s|;
(8) for A(a) € X2, t a term, a a free variable, q(x) a bounding polynomial of A(),
SiFVy(G [t =an A(“)]%yl) - [A( t)]]q(lyl)
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It suffices to construct [A7%m for A atomic, since conditions (3)—(7) determine
the construction for other bounded formulas. The translation of atomic formulas

Hay, .. oa) =8(ay, ..., a)
and
ay,...,o) S s(a;,...,0)
is defined as follows: Associate with any variable a, free atoms p2, . . ., Dobmy- As any

function f in the language of S, is polynomial time computable, there are Boolean
circuits Cf* of the size polynomial in m, ¢(m) computing f on inputs of the length <m.
Combining these circuits one can construct circuits Ci' computing any term ¢ and
having again size polynomial in m, g(m). Circuit O™ has some dummy input nodes pf1,
for j > m, and may have also some dummy output nodes g,’8 if q(m) is larger than
the length of the output. We assume that these nodes are labelled e.g. by 0. Boolean
circuit Cf" can be easily turned to a X'9-proposition B'(p, . . ., p*, g). Sofor n,, . . ., n
with the length <m we have:

ny,...,m)=mn iff Bl'n,,...,n,n) is true.
We shall occasionally say that the atoms ¢,’s are associated with the term t.
Define the translation of atomic formulas:
v(a) [ay, .. .,a4) = s(ay, ..., a)]5m i8
o - - g (B (D%, - - -, q,l7)) A BY(p™, . . ., g4z5)).

This can be also written in a /7¢-form
a(m)

VxVy(Bf(p™, ..., x) ABT(p*,...,p) D _/\ox,- =y,).
i=
(b) I[t(al LS | a’k) é 8(“1 EERER ] a’k)]]zl(m) iS
a(m)  q(m)
AxIp(BE(p™, . . ., x) A BF(p™, ..., p) A /\0( A (TI=Y 2 (@ 2 y).
i=0 j=i+
Again this has a I7¢-form, too,
q(m)  q(m)
VxVy(Bi(p*, ..., x) ABJ(p™, ..., y) D /\0( A lxj =y; D (@ 2 ¥1))-
i=0 j=i+

Now, having 4 € X? for ¢ = 1 choose such a form (Z¢ or 11Y) of the translations
of the atomic subformulas of 4 so that [A] e 2%

(8) is proved easily by induction on the length of £ and 4. ]

Lemma 3.2. For A(a)eZP, ¢ 2 1, A(a) with one free variable a, and q(x) a bound-
ing polynomial of A,

82 b Vy(Tauty([41p) = Va(lz| < ly| > 4(@)).

Proof. We shall prove a stronger statement by induction on the length of
A(al PR ak) € 2
(%) 82 b VyVa, .. Va(lz] S Jyl A . Al Syl

=) (Sat,([[A]];“y,), (T, - x) = ARy, ..., 2)),

where z(x,,...,a;) is the substitution which substitutes x; for the propositional

variables corresponding to a;, j = 1, , k. For A atomic one can use Z?-PIND to
prove the formula in S}, since Satl(A 'r) = Saty(4,7) by Lemma 1.2 and Sat, is

e
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A? by Lemma 1.1. If 4 is not atomic we can reduce the proof of () to a simpler for-
mula using (i), . .., (iv), (v) of Lemma 1.2 and (3)—(7) of Lemma 3.1. We shall de-

monstrate it on the case when 4 begins with 3. So let 4 be (3x < t) B(x, 2, . - -, 2),

let v denote z(z,,...,%). Working in S} assume that |z,],...,|%| < |y|. Then by
(6) of Lemma 3.1 and (i) and (iv) of Lemma 1.2 we have

Sat,([(3z < t) B(x, 2)]"', 7)
= Saty(3x, . . . Ixgqyple < ¢ A Bz, 2)]7, 1)
= (|2 = q(lyl) A Sety([z = 17, w(x, 2y, . . -, %))
A Sat([B(z, 2)]", 1(x, 24, . . ., 2)))-
Since we have (x) for atomic formula,s,‘the first two conjuncts are equivalent to

x Z Hz,,...,%). By the induction assumption the last conjunct is equivalent to
B(z, 7). Thus (%) is proved. The other cases can be handled similarly. [

Lemma 3.3. For AeZX?, i 2 1, and ¢(x) a bounding polynomial of A,
8z F4-REN(P) o Vy(P + [A]Y,) = Va(lz} < lyl > 4(2))).
This lemma follows from Lemma 3.2. [] |
Lemma 3.4. (i) For A(a)eZX? and q(z) a bounding polynomial of A,
83+ A(a) > Gy F [A(@)]a)-
(ii) For ¢ = 1 and g(x) a bounding polynomial of Taut,,
SitAdeZinlyl 2 4] o (G, F [Taut,(4)]%,), 2 G F 4).
The same holds for i = O with G, instead of G. '

Proof. Part (i) is simple: Choose the witnesses of the J-quantifiers of A(d) and
using their digits compute the truth value of [A(d)].

(ii) We shall prove the statement for ¢ = 0. The case ¢ = 1 is essentially the same.
Tauty(4) is defined as

Vr(lz] < 4] = Sato(4, 7)),
where we have to take Sat, in II{-form. Saty(4, 7) is defined by
Yw (“w is a computation of the value of 4 on 7"’ > “the last bit of w is 17).

Thus the translation of Tauty(4) in the 'propositional calculus has the following form |

VpVq Comp,(p, q) > ¢.,

where p is a vector of atoms associated with 7, ¢ is associated with w, ¢, is the last
element of ¢, and Comp,, is the translation of “w is a computation of the value of 4 |
on 7”’. We shall assume that p are just the atoms of 4. In g certain atoms code the |
truth value of subformulas of 4 computed on p. If the variables in g are suitably !
ordered, it is possible to prove (using PIND of S3) that

Gy F Comp,(p, g) = (9 = 4,),
where ¢, corresponds to a subformula 4, of 4. In particular, we have

(1) 4).

Gy F Comp,(p, q) o (g,
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Now, let Comp,(p, i, - - -, q;) be subformulas of Comp ,(p, g) Which express that there
are “‘¢ steps of the computation”. Again by PIND on ¢ one can show
Gl k HQU R aqi Compf(p: ST qi)!

thus in particular
(2) G, F 3¢ Comp(p, q)-
From (1) and (2) we obtain easily
Gy FVpVg(Comp,(p, ) = ¢,) = 4.
As the above proof can be done in S}, we have proved (ii). [J

We have not quite specified the translation:[4] for atomic formulas. If we want
to be able to prove relation between weak fragments of arithmetic and weak proposi-
tional proof systems, we have to choose ‘‘natural” Boolean circuits computing the
arithmetical functions in the atomic formulas. Again, we state our last condition as
a lemma. .

Lemma 3.5. For A any axiom of BASIC and q(x) any bounding polynomial of A,
83 FVy(Gy FLATYL,) -

Proof. We shall use the construction of Coox [4]. He introduced an equational
theory PV which has a function symbol for each polynomial time computable func-
tion. He defined translations of equations of PV into the propositional calculus such
that the translations of equalities provable in PV have proofs of polynomial length
in ER. Dowp [7] proved this simulation using EF instead of ER. The simulation can
be extended to the theory PV 1 which is an extension of PV to open formulas. The
proof actually gives an explicit polynomial time algorithm which, for given m, con-
structs an EF proof of [4]™ and, moreover, this can be formalized in S}. Buss [1]
has shown a close relation of PV and PV 1 to S}; in particular, if we translate formulas
containing < using Cook’s function LESS, all open theorems of S} become provable
in PV 1. Thus we define our translation into quantified propositional calculus by tak-
ing Cook’s one for equations in the language of S, and by adding quantifiers to it as
described above. Now the translation of atomic formulas will be different from the
one described above, since we shall use equations LESS(, s) = 0 instead of ¢ < s.
But one can show in S} that they are equivalent (and, moreover, it is irrelevant for
this paper). Thus we obtain the condition of Lemma 3.5. []

§ 4. Relations between propositional proof systems and theories

This section develops a general connection between propositional proof systems and
theories. We tacitly assume that the languages of theories discussed contain the lan-
guage of S;.

We shall write VZP(T) for the set of all VZP-consequences of 7'.

Definition. For ¢ 2 0, P a proof system and 7T a theory, P simulates VZP(T) iff
for any VxA(x) e VZP(T) there is a bounding polynomial p(x) of 4 such that

S} F V(P F LAY, -
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Definition. For ¢ 2 0 a proof system P is i-reqular iff S} proves
G P26,
(i) PFA>BAPFA S P} B,
(iii) for 4 €Y, ly| 2 |4
P+ [Taut,(A)]%,, > P+ 4,

where g(x) is a bounding polynomial of Taut,. Observe that an i-regular proof system
gatisfies Lemmas 3.2, 3.4 and 3.5. This is the motivation for their definition.

Theorem 4.1. Let T 2 S} and P be an i-regular proof system.
(i) Suppose ¢ = 2, P simulates VZ}’(T)_ and T F i-REN(P). Then
VZXT) = (Si + i-RFN(P)),
thus YXP(T) is finitely axiomatizable.

(ii) Suppose ¢ =2 0, P simulates VZP(T) and Tt i-REN(Q) for some propositional
proof system Q. Then

SIFP Q.
(iii) Suppose i = 0, P simulates VEX(T) and T + NP = coNP. Then there exists a
polynomial p(x) such that T proves
(V4 € TAUT,) 3d(d:P + A A |d| < p(JA]).

Statement (ii) generalizes a construction of Cook [3] using which he showed (ii)
for P = ER, T = PV and j§ = 0. Statement (iii) could be used to generalize a result
of WiLkiE [11] who proved (iii) for 7 = S} and P = SF.

Proof. (i) 83 is VXY and so S} € VZXT) for i = 2. By Lemma 1.3, i-RFN(P) e
€ VZP(T). On the other hand, assume VxA(x) € VEX(T). Then S} I Vy(P + [4]™), for
some bounding polynomial. By Lemma 3.3 then

S: + i-RNF(P) | VyVx(|x| < |y| o A(x)),
ie. 83 + i-RFN(P) | VxA(x).
(ii) Assume 7' | ¢-RFN(Q), so
(1) SiF (PH[d:QF A A A eZf > Taut,(4)]9+H)).

By Lemma 3.4 (i), as d: QF+ A and A4 € X9 are XV-formulas and since P is i-regular
we have

(2) S+ d:QF AAAeZ2 o Pt [Taut,(4)]4+4l.
Since P is i-regular we can use Lemma 3.4 (i) to deduce
() S3Fd:QFrAndeZio PLHA.
By the main theorem of Buss [1] there is a polynomial time function f such that,
SItd:QFrAnAeXZio fd,A): PHA. '

(iii) Assume 7'+ NP = coNP. Then every bounded formula is equivalent to a Z?
formula, thus

(1) T+ Taut(4) = (3= < t(4)) B(x, a),

From (
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for some A%-formula B. Define the proof system @ by
d:QFA iff d<4)AB(d A).
From (1) then
@) T+ i-RFN(Q).
Using the statement (ii) then
3) Si+P 2'Q.

Hence
T F Taut,(4) = 3d(|d| £ p(l4A))Ad:P} A),

where p(z) is the polynomial given by the function f of (ii). O

Next corollary shows that, in principle, Theorem 4.1 can be used to show that two
theories are different.

Corollary 4.2. Assume that for i = 0, theories T 2 S} and S, and proof systems P
and @Q the following holds:

(i) P is i-regular,
(il) P simulates VX*(T),
{iii) S F ¢-RFN(@Q),
(iv) not P = Q.
Then T F 8, tn particular T f i-RFN(Q).
Proof. Use Theorem 4.1 (ii). [
- On the other hand, we have the following corollary:

Corollary 4.3. Assume S} < S = T, = 1, P is i-regular, P simulates VZ"(T) and
T+ i-RFN(P). Then the following statements are equivalent:

(i) T is VZP-conservative over S,
(i) S F i-REN(P).

Proof. For (i) = (ii) use Lemma 1.3. The other implication is proved as Theo-
rem 4.1 (i).

In the following sections we shall apply the general theorems of this section to the
proof systems G; and theories S5 and T5.

§ 5. Provability of reflection principles

By the definition of proof systems in § 1, any formula :-RFN(P) is true. In this
section we are interested in the question which theory suffices to prove i-RFN(P),
for P a calculus of § 2.

Theorem 5.1. For i 2 0, Si! I i-RFN(G,).

Proof. A sequent I'— A is satisfied by a truth valuation ¢ iff the formula
(A') = (V4) is satisfied by 7. Analogically with Lemma 1.1, there are formulas
S8at,(Z, v) and STauty(Z, 7) formalizing “sequent Z consisting only of X8\ IT3-pro-
positions is satisfied by truth valuation 7>’ and “sequent Z consisting only of X2y IT3-
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Definition. For ¢ = 0 a proof system P is i-regular iff S proves
G P26,
(i) PrA>BAPFA>S Pt B,
(iii) for 4 € I3, |y] 2 14|
P} [Taut(4)]%,, > P+ A4,

where ¢(z) is a bounding polynomial of Taut,. Observe that an ¢-regular proof system
satisfies Lemmas 3.2, 3.4 and 3.5. This is the motivation for their definition.

Theorem 4.1. Let T 2 S5 and P be an i-regular proof system.
(i) Suppose i = 2, P simulates VEZP(T) and T + i-RFEN(P). Then
VINT) = (8} + - REN(P)),
thus VEP(T) is finitely axiomatizable.

(ii) Suppose i = 0, P simulates VIP(T) and Tt i-RFEN(Q) for some propositional
proof system Q. Then

S;FP2'Q.

(iil) Suppose ¢ = 0, P simulates VEP(T) and T + NP = coNP. Then there exists a
polynomial p(x) such that T proves

(VA e TAUT,) 3d(d:P + 4 A |d] < p(l4)).

Statement (ii) generalizes a construction of Coox [3] using which he showed (ii)
for P = ER, T = PV and j = 0. Statement (iii) could be used to generalize a result
of WiLk1E [11] who proved (iii) for 77 = S and P = SF. .

Proof. (i) 83 is V22 and so 83  VEP(T) for ¢ 2 2. By Lemma 1.3, i-RFN(P) e
€ VZP(T). On the other hand, assume VxA(x) € VEP(T). Then 8} + Vy(P  [A]Y), for
some bounding polynomial. By Lemma 3.3 then

S} + -RNF(P) I VyVx(|x| < |y| = A(x)),
ie. 81 + i-RFN(P) F VxA(x).
(ii) Assume 7' I +-RFN(@Q), so
(1) S (PFH[d:QF A A AeXd 5 Taut,(4)]9*4h).

By Lemma 3.4 (i), as d: QF+ A and 4 € X3 are X¥-formulas and since P is i-regular
we have

(2) S3Fd:QFAAAdeXd o Pt [Taut,(4)]4+H4.
Since P is i-regular we can use Lemma 3.4 (ii) to deduce
8) SiFd:QFrAAAeXioPHA.
By the main theorem of Buss [1] there is a polynomial time function f such that,
SiFd:QFrAnAdeXios fd, 4): PHA.

(iii) Assume 7' + NP = coNP. Then every bounded formula is equivalent to a X%
formula, thus

1) T F Taut(4) = Gz < 4(4)) Bz, a),
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propositions is satisfied by any truth valuation”. Also it is evident that SSat, € A},
and STaut, e IT%,, .

Fix ¢ =2 1. Let A(d) be the formula
(VZ £ d)(d:G; + Z > STaut(Z)).

Thus A(d) is a I}, -formula. We shall prove A(d) by induction on the number of
inferences in d, i.e. using IT}, ,-PIND. As 4(0) is trivially true we need only to establish

S 4(1d)2)) o A(d).

This is proved by checking that any rule of G, is semantically correct, i.e. that it infers Derive
a tautological sequent from tautological premisses. By Lemma 1.2 this is easily

checked. (Note that it is also not hard to show the semantical correctness of the sub- Avplvi
gtitution rule, of. [9].) (J PRiym,

Corollary 5.2. For i = 1, T, I i-RFN(G,).

Proof. By Lemma 1.3, +-RFN(G,) is an VZP-sentence. By Buss [2], VEL (Sity =
= VZP ,(T%). Use Theorem 5.1. ]

and b
§ 6. Simulation of arithmetical proofs by propositional ealeuli Y

Theorem 6.1. For i = 1, G, simulates VZP(T}).

Proof. Assume d:T I A(a), where 4 € XP. By cut-elimination for T} (cf. Buss
[1, Chapter 4]) we may assume that all formulas in d are in TP U IIP. Choose a
polynomial g(z) which is a bounding polynomial of all formulas occurring in d. The
idea of the simulation of d is to replace any formula B in d by its translation [B]j.,
and to fill some parts in the resulted “preproof” to obtain a G;-proof of [A]gm -

To show that this can be done we shall proceed by induction on the number of in.
ferences in d. Consider several cases according to the type of the last inference in d. i
We shall write [ ] instead of [ Jjm and [I'] instead of [4,], ..., [4] for a cedent we Lirst
I'=4,,..., 4,. "

(a) d is an initial sequent, i.e. a logical axiom, an equality axiom or an instance of
an axiom of BASIC. The translations of the first two cases are easily proved in G,.
The last case is assured by Lemma 3.5. '

Again ¢

to get th
(b) The inference is a structural rule, cut-rule or a propositional rule: These cases are g
handled by the corresponding rules of G;.
(e) (V:right)
a s, I'-» A, Ba)
and

I'—> A, (Vz < 5) Bz)
Consider two subcases: (c1) s is not of the form |t], (¢2) otherwise.
(cl) By (> : right) derive

[I'7 - [4].[a S s > Bla)] We sh,
and using q(m) + 1 applications of (V:right) to the free atoms associated with a derive

[I'] - {41, [(Vz < s) B(x)].

Claim
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(¢2) First derive

Zy: VIa=zere =l - [a < 1],
ges

where § = {(go, . - -, cqm) € {0, 1J4™*2 | (Vi > lg(m)]) &, = 0}, and
Z;: [B(@)] - [B(a)]. \

By successively applying (> : left) and (o right) to Z,, Z, get
Zs: [ast| > B@]— V[a=zrz< ] > [B@].

Derive ses

Zy: VIa=¢enes|f] = [B@]—> Ale=énrz < || > Bla)]
&S zeS

Applying cut-rule to Z,, Z, we obtain :
Zs: [asll>B@]—> Afle=erzs|t| o Ba)].
€S
Now derive

Zs: Nla=¢ene <[t > Ba)] > !/} [e = 18] = Bla)] (p/e),

E€S

and by cut from Z,, Z¢ .

Z;: [a 21t > B@)] (p) - /\s[[a = |4l = B(a)] (pfe).

&€

Now use cut-rule to Z, and to the first sequent derived in the case (c1) to obtain

1 - [4), /\sl[a < |4l > B(a)] (pfe).

2€,
(d) (V:left)
B, I'~4
t<s, (Vo 2 8)B), ' 4°

Again consider two cases: (dl) s is not of the form 7], (d2) otherwise. In both casges
we first derive

Zo: [t = s, (Ve < ) B(x)] - [B@)]
and apply cut-rule to this sequent and to
[B®I, [I'] - [41
to get the wanted sequent
[t = s, [(V= = ) B(2)], [I'] - [4].
(d1) First derive
Zy: [t <] - Ix[a g sna = t] (p/x)

and
Z;: [(Vx < s) B(@)], 3x[a £ sra = t] (p/x) » dx[a = ¢ A B(a)] (p/x)

By cut-rule from Z,, Z, it follows
Zs: [t = 5], [(Ve < ) B(z)] - 3x[a = ¢ A B(a)] (p/x).
We shall use the following
Claim. If Ce ZP VII}, then for an appropriate bounding polynomial
G F[t =anC)] - [CH)].
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For the proof of the Claim take the open matrix of C(a) and apply Lemma 3. (8)
to it. The sequent above is easily got from this sequent in G,.

Using Claim derive
Z,: 3xfa = t A Ba)] (p/x) - [BW)]
and by cut from Z,, Z, derive Z,.
(d2) First derive
Zy: tsirl - BZV [t =ana <] (pl),
where the set S is the same as in (c%). Then derive
Zii [V S 1) B VI =ana sl (¢fe) » V[t = an Bol (20
Using cut-rule obtain from Z,, Z,
Zy: [t < |7l [Vz < ) B@)] > V [t = ar B@)] (pfe).
Using Claim deriv
Zy: E\/s[[t = a A B(a)] (p/e) - [B(t)]
and by cut from Z;, Z, derive Z,,.

(2)

(e) The (3: rules) are dual to the (V: rules) and are handled similarly.
(f) ZP-IND rule:
‘ B(a) - Bla + 1)
B(0) — B(t)
We omit the side formulas. Assume that we have derived
Z: [B@)] - [B@ + 1)]. |

We assume that atoms p are associated with a and atoms g with £. We cannot replace
IND by cuts as there would be exponentially many of them in m. We shall shorten
the simulation essentially using the substitution rule which is provably simulablei
in G; (Lemma 2.2).

(1) We shall first derive sequents
Wo: [B(@)] - [Ba + 2°)],

Wom: [B@)] - [Bla + 29m)]. Using

Wo is Z. W, is derived from W, as follows: Assume that atoms P are associated Deri
to a and new atoms ¢ will be associated to the new variable b. By substitution p > ¢ erve
derive from W,

Wi [B@)] (plg) > [Bla + 29] (plg). - Finally

Using (the translation of) equality axioms derive (3) B
W2: [a + 2" = 8] (p, q), [Bla + 2] (p) - [B(@)] (p/q)- _

Also is

Apply cut to W, and W5 to get
Ws: [a + 2 = b] (p, ), [B(@)] (p) > [B(a)] (p/g)-
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Apply cut to W) and W} to get

Wa: [a+ 2 =b](p, g), [B@] (p) - [Bla + 2] (p/q).-
Using (the translation of) equality axioms derive

Ws: [a+2' = b] (p, 9), [Bla + 2')] (plg) - [Bla + 2:*1)] (p)
Apply cut to W4 and W5 to get

We: [a + 2! =0](p, g), [B@)] (p) > [Bla + 2*1)] (p).
To Ws apply (g(m) + 1)-times (3: left) with eigenvariables q to get

W7: 3x[a + 2! = 8] (p, x), [B@)] (p) - [Bla + 2'*1)] (p).
Derive
Ws: —3x[a + 2! = b] (p, x)

and apply cut to W3 and W5 to get W,,,.
(2) Now we shall derive sequents
Zo:  [2° 2 b] (), [B(@)] (p) - [Bla + )] (p, q)

Zeomy: [2°™ 2 ] (9), [B(@)] (p) — [Bla + b)] (p, g)-
Now Z, simply follows from W, using
[2°28)(g)»[a=bva+1=0](pg.

Zyyy I8 derived as follows: Take new variables ¢, d and associate with them atoms
r,s. By substitution p > s, g > r derive from Z, »

Zy: [2 2 c](r), [B@)] (s) > [B@ + )] (s, r).
Derive from W,

Zz: [B@](p), [a + 2' = d] (p, s) > [B@)] (s).
Apply cut to Zi, Z; to get

Zs: [2'z cl(r), [ + 2" = d] (p, ), [B@] (p) - [B@ + o)] (s, )
From Z5 derive

Zi: [2' 2 c](r), [b =2+ c] (g, r), [B@)] (p) - [Bla + b)] (p, q).
Apply to Z; and Z, (v: left) to get

Zs: [22bv @' 2cab=2+0)](gr), [B@] (p) > [Bla + b)] (p, g)-
Using (3: left) applied to eigenatoms r we get

Ze: 3Ix[2'2bv(2'2 cab =2+ )] (¢, r/x), [B@)] (p) ~ [Bla + b)] (P, q).
Derive
Zy: [2% 28] (@~ 3[2'2bv (22 cnb =2+ o] (g rlx).

Finally apply cut to Zg and Z5 to get Z,,,.
(3) Now we substitute to Z,,, p - 0, g — p*, where P’ are atoms associated to  to get
[24 z ] (p"), [B(0)] - [B®)] (p").
Also is simply derived
—=[2¢m = 1] (p").
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Apply cut to these two sequents to get

LBO)] — [B(®)].

This completes the proof. (]

Corollary 6.2. For i 2 1, G, simulates YEP(Si'1).

Proof. By Buss [2], VZ!,(T%) = VR, (S41), for ¢ 2 1. Use Theorem 6.1. []

Corollary 6.3. For ¢ > j = 1,
(i) G, simulates VEP(S§'!) and VEP(TL),
(ii) G simulates VEP(S,). 0O

Consider the simulation of VX3 statements. We can choose a translation of the
atomic subformulas of a X3-formula A such that [A] is I7¢. Denote by *[A4] the pro-
‘position arising from [A] after omitting all guantifiers. So *[4] € 3 and *[4] may
have other free atoms then those associated to some free variable of A. Then it holds:
For [n,|, ..., |m| £ m, A(a;/n,) is true iff *[A]"(p]/n,(j)) is tautological.

This is the translation (of I7P-formulas, actually) used in Krasi¢ex-Puprix [9].

There it is proved, using the results of Coox [4] and Buss [1], that SG, simulates
VZ8(S3) if the translation *[ ] is used.

Observe in the next section that if we used the translation *[ ], the theorems would
extend to the case i = 0 too with SG, instead of G,.

§ 7. Consequences for fragments 8%, T, and for S,

Now we shall explicitely state the consequences following from the results of §5
and § 6 for S, and T}. .

Corollary 7.1. For i 2 j 22, VIP(S5) = VIX(TS) is finitely axiomatized by
81 + j-RFN(G,). . ‘

Proof. Use Theorems 4.1 (i) 5.1, 5.2 and 6.3. [

Corollary 7.2. For 1252 0,4 2 1, if S | j-RFN(P) for some proof system P,
then S + G, 27 P. The same holds for i = 0 and SG, instead of G,.

Proof. Use Theorems 4.1(ii), 6.1 for the case i > 1. The case i = 0 follows from
the results of Cook [4] and Buss [1], cf. KrasiCEx-PupLik [9]. [

Corollary 7.3. For i 2 1, if S§1 F NP = coNP, then there is a polynomial p(x)
such that

(%) (VA € TAUT,) 3d(|d] < p(jA]) A d: G, + 4),
and S5 proves (). The same holds for i = 0 with SG, instead of Gq.

Proof. Use Theorems 4.1 (iii), 6.2 for the case i = 1. The case i = 0 was proved
by WiLKIE [11], however it can be proved in the same way as for i 2 1, for details
cf. KraJiCER-PUDLAR [9]. (O

Some consequences mentioned above can be transferred to S,.
Corollary 74.
(i) 8, is axiomatized by 83 + {i-RFN(G,) | i < w)}.
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(i) If 8, F NP = coNP, then there is a polynomial p(x) such that
(%) (VA € TAUT,) 3d(|d| < p(|A]) Ad:G+ 4),

and S, proves ().

(iii) If 8, F O-RFN(P), for some proof system P, then S+ G >° P.

Proof. Part (i) is obvious from Corollary 7.1. Parts (ii) and (iii) are derived from
Corollaries 7.2, 7.3 using a simple observation: 83 F G >! G,,720 O

-We shall sketch a nontnvml extension of the preceeding results with interesting
corollaries.

Let A be a true VXP-sentence, i > 1. Define G# to be the extension of G; where

we add initial sequents of the form
ﬁI[A]]Z’<m>

for m = 1,2,... and ¢ a bounding polynomial.

Theorem 7.5. For + 2 1 and A a true VXP-sentence .
(i) Gf is an i-regular proof system,
(il) S5 + 4 Fi-RFN(G{),
(iii) Gf! simulates VEP(SL1 + A).

Proof (sketch): (i) The only nontrivial condition of the definition of i-regular proof
systems is the condition (iii). This is proved in the same way as Lemma 3.4 (ii).

(ii) The proof follows the proof of Theorem 5.1. We have only to check that it is
provable in 84! + A that initial sequents of Gf are tautologies. This follows from
Lemma 3.2.

(iii) Here we need a modification of the proof of Theorems 6.1 and 6.2. Again the
only difference is in initial sequents and again we use Lemma 3.2. It is also easily
seen that the equality VX7, (T, + 4) = VX%, (S5! + 4) can be obtained from the
proof of Buss [2]. ]

Corollary 7.6. For i Z j=2 and 4 a true VEP-sentence,
vz:"(s'“ + A) = VIMT, + A)
and both sets are finitely axiomatized by Si + j-RFN(GH).

Corollary 7.7. Suppose propositions of TAUT, have proofs of polynomial length
n Gy, i> 1. Then all propositions in TAUT, have proofs of polynomial length
mn G;.

Proof. Assume TAUT, has polynomial proofs in G;. Thus, in particular, the fol-
lowing formula, denoted by 4, is true: Tauty(B) > 3d(|d| < p(|B)) A d: G, + B), where
P is a suitable polynomial. As 85! F :-RFN(G,) we have

SF1 + A+ Tauty(B) = 3d(|d] < p(|d|) Ad:G, F B),
thus 85! + 4 proves NP = coNP. Hence by theorems 4.1 (iii) and 7.5 TAUT, has
polynomlal proofs in G{. But the formulas [A]7n are in TAUT, (since 4 € X?), hence

they have polynomial proofs in G;. Thus G, polynomially simulates G{ and the corol-
larv follows. M
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§ 8. Open problems, conclusions

In previous sections we have left open several questions. In particular, we do not
know whether S; F G; 2! G,,,, whether S} F - RFN(G,) or whether G;_; simulates
VIR 1(T)-

It follows from the next two theorems that these problems are important.
Theorem 8.1. For i = 1, the following statements are equivalent:

(i) SiFG; 2'Gyy,

(i) S§!Fi-REN(G,.,),

(iii) G, simulates VEP(TH1) = VIP(S52),

(iv) 2 is VEP-conservative over S,

The same holds for i = 0 with SG, instead of Gy .

Proof. (ii) = (i): use Corollary 7.2. (i) = (iii): use Theorem 6.1. (iii) = (iv): use
Theorem 5.1 and Lemma 3.3. (iv) = (ii): use Lemma 1.3 and Theorem 5.1. []

Theorem 8.2. For ¢ = 0, the following statements are equivalent:
(i) Sk (¢ + 1)-RFN(G,,,),
(i) Si2 is VIPE  -conservative over S51.

Proof. (i) = (ii): use Corollary 6.2. (ii) = (i): use Lemma 1.3 and Theorem 5.1. [J
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