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§ O. Introduction

The motivation for this paper comes from a well-known and probably very difficult
problem whether Bounded Arithmetic is fiIiitely axiomatizable. Attempts tosolve this
problem using the machinery of mathematicallogic have failed so far. It is possible
that, the problem can be solved by combining logic with combinatl;>rics. This would
require a transformation onto a more combinatorial problem. Thefinite axiomatizability
of Bounded Arithmetic seems to be tightly connected with the problem whether Poly-
nomial Hierarchy collapses to somCi\ level 1:f, b~t no implication relating these two
problems has been proved.l) Here we present a different problem of a combinatorial
character and prove a relation between this problem and the problem of the finite
axiomatizability of Bounded Arithmetic.

COOK [4] introduced an equational theory PV of pólynomial time computablé flinc-
tions and showed an interesting relation between PV and propositional proof system
ER (ExtendedResolution).. He showed that (1) PV proves soundness ofER and (2) the
translati~n of the equalities provable in PV into propositional calculus have poly-
nomial1y long proofs in ER. Bus~ [1] showed that S~ (a fragment of the bounded
arithmetic S2) is conservative over PV; thus this relation is transferred to S~.

The finite axiomatizability of S2 is equivalent to the question whether the hierarchy
S~, i = 1,2, . . ., is increasing. We shall construct propositional proof systems G,
which have similar relation to S~+l for i ~ 1 as ER has to S~. Then we show tttat
the problem about ,the hierarchy S~, i = 1,2, . . ., can be reduced to a problem about
the length of proofs in proof systems G" i = 1, 2, ... .. The systems G, are natural
extensions of a Gentzen system for the propositional logic to quantified propositional
formulas with at most i quantifier alternations.

The problem about G,'s would require proving superpolynomial lower bounds, to
the length of proofs in these systems. This seems too difficult at present, as exponen-
tial lower bounds have been proved only for quite a weak system Resolution System
(not extended) so far, cf. HAKEN [8]. However we shall show that nontrivial state-
ments about S2 and its fragments can be derived from this relation, in particular:

(1) For i > j ~ 2 the V1:J-consequences if S~ are finitely axiomatizable (Corol-lary 7.1), .

(2) for i ~ 1, if S~+l I- "NP =co-NP", then G, proves all tautologies by proofs of

polynomiallength (Corollary 7.3).
(WILKIE [11] proved statement (2) for S~ and a Frege syste~ with the substitution
rule instead of Go.)

1) Addéd in proof: Reoently KRAJfèEK, PUDLÁK a,nd TAKE1:TTI proved that T~ = 8';1
implies 2'•+2 = 11•+2 for i ~ 1.
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After writing the first draft of this paper (January 1988) we learned about the work
of MARTIN DOWD [6], [7]. In [7] he gave a full proof of COOK'S theorem mentioned
above and showed the same relation between the quantified propositional calculus
(in our notation G) and Polynomial Space Arithmetic (PSA, an equational theory
extending PV). In [6] he stated without proof a theorem which relates the fragments
of S2 to fragments of the quantified propositional calculus. He did not derive any
corollaries of this theorem such as (1) and (2) above.

Throughout the paper we assume knowledge of Buss [1], nevertheless we recall
briefly some baBic definitions.
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§ 1. Preliminaries

The class of quantified propositional formulas (shortly propositions) is the least class
of formulas containing the atoms Po, Pl , . . ., constants O (falsity) and 1 (truth),
closed under the connectives A, V, -, and ::) and with any proposition A(p) contain-
ing also propositions 3xA(x) and 'v'xA(x), where x substitutes for some occurrence
of p in A(p). The semantical meaning of 3xA(x) is A(O) v A(I) and of 'v'xA(x) is
A(O) A A(I).

We shall use the usual distinction between bounded and free atoms as is the dis-
tinction between bounded and free variables in first order logic (cf. TAKEUTI [10]).

As usual we assume that the indices i in Pt and Xt are written in the binary nota-
tion. Hence the lengths Iptl and Ixt! of Pt and Xt are proportional to log2(i).

We do not include = among the baBic connectives but we shall occasionally use
A = B as the abbreviation for (A ::) B) A (B ::) A).

Etq, lI? (i ~ O) is a hierarchy of propositions defined similarly as is the arithmetical
hierarchy:

E3 = 113 is the class of quantifier free propositions. Both E? and lI? are closed
under A, vand the negation of a E?-proposition is lI? and vice versa. E~l contains
both E? and lI? and propositions of the form 3xA(x), for A elI? Similarly 1I~1 con-
tains both E? andlI? and propositions of the form 'v'xA(x), for A eE? For A in Ejq
respectively B in lI? the propositions 3xA and 'v'xB are in E? and lI?respectively, too.

Thus a proposition in a prenex form with i blocks of the like quantifiers and with
the prefix beginning with the block of 3's is in E?

We shall consider systems of bounded arithmetic introduced by Buss [1]. Theory S2
is equivalent to (more precisely conservative over) 1110 + 'v'x3y(y = xrlO82(x+l)l).
The formulas in the hierarchy of formulas E?, lI? define sets which are in the cor-
responding levels of the polynomial hierarchy Ef, lIf. The fragments S~ are obtained
from S2 by restricting the PIND-schema to E? formulas. The schema PIND is

ffJ(O) A 'v'x(rp(Lxj2J) ::) rp(x)) ::) 'v'xrp(x).

Thus the S~ is the finite set of open formulas BASIC plus E?-PIND. The fragments
T~ are defined similarly but with the ordinary schema of induction. The system S2 is
the union of S~, i = 1,2, . . ., and is equivalent to the union of T~, i = 1,2, . . . For
the details sec [1].

Lemn
sentence.
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It is well known that t4e syntax can be easily formalized in S2. In particular, for-
mulas Satl(A, -r) and Tautl(A) can be constructed in S2, formalizing "};:' v lI:'-pro-
position A is satisfied by the truth valuation -r" and "};:' v IIp-proposition A is sat-
isfied by all truth valuations ", respectively. As such constructions are quite
standard (using recursion on notation) we shall only state the properties of such a
formalization.

Lemma 1.1.

(i) Sato is /J~ with respect to S~ .

(ii) Satl is .dA(};•) for i ~ 1.
(iii) Tautl is lIti and for i ~ 1 also \f};•.

(.dA(X) denotes the class of Boolean combinations of formulas from X.)

Lemma 1.2. For i ~ O, S! proves that for all propositions A, B of appropriate com-
plexity and for all k it kolds that

(i) Satl(A oB, -r) = Satl(A, -r) o Satl(B, -r), for o = /\,v, ::) and

Satl(-,A,-r) = -,Satl(A,-r);

(ii) Satl(3xA(x), -r) = Satl(A(O) v A(I), -r) = (38 ~ 1) Satl(A(p), -rn(p, 8»)

and analogically for \f, where -r"(p,8) is the truth valuation -r' extending -r by putting
-r'(p) = 8, and p does not occur in 3xA(x);

(iii) Satl+ i (A, -r) = Sati(A, -r), for A E};:' v lIP;

(iv) Satl(3xl . . . 3XkA(Xl' . . ., Xk), -r)

= 3-r'(-r' = (Pl, 81), . . ., (Pk' 8k») /\ A8) ~ 1/\ Satl(A(pl' . . ., Pk), -rn-r'),
j
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where Pl, . . ., Pk do not occur in 3Xl . . . 3XkA(Xl' . . ., Xk), and analogically for V;

(v) Satt( V A(pJ/eJ)' T) = (3(el' . . ., ek) e S) Satt(A(PJ/ej), 't)
(61' ..., 6.)ES

and analogically for /\, where S is a subset of {O, 1 }k.

Definition. A polynomial time computable binary relation P(x, y) is a quantified
propositional proof system (shortly: proof system) iff 3dP(d, A) implies A E U TAUTt,

'> 0,=
where TAUTt is the set of tautological E?-propositions. We shall write d: Pf-A in-
stead of P(d, A) and we shall call d a P-proof of A.

The length of a formula or a proof will be denoted by IAI, Idl, respectively. We think
of formulas and proofs as 0-1 sequences, thus we can use the same symbol as it is used
for OOg2(X + 1)1 in [1].

We shall often use statements about proof system s in fragments of arithmetic. In
such cases we shal1 tacitly assume that we have a fixed arithmetical definition of P,

h. h . Ab' SlW lC IS LIl m 2'

Definition. For P a proof system and i ~ O, i-RFN(P) is the formula

(Vd,A,T)(d:Pf-AAAeE? =' Satt(A,T)).

Lemma 1.3. For i ~ 1, i-RFN(P) is an VEt-sentence, and O-RFN(P) is an VlI~-
sentence.
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Definition. For P, Q proof system s and i ~ O, P i-PQlynomially simulates Q iff
there is a polynomial time computable function f(x, y) such that for any Er-proposi-
tion A, if d: Q I- A then f(d, A): P I- A. P ~I Q will denote "P i-polynomially simu-
lates Q" and P ,..,1 Q will denote the conjunction of P ~ 1 Q and Q ~ 1 P.

This notion generalizes the notion of polynomial simulation introduced by COOK-
REOKHOW [5].

Finally let us recall some standard proof systems: Frege system F, extended Frege
system EF, Frege system with substitution SF and extended resolution ER (cf. [5]). where A
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§ 2. Quantified propositional calculi

Proof systems for quantified propositional calculus have been considered several
times; for the history see CIlUROIl [3]. We shalldefine a system G and its fragments Gt,
for i ~ O. Our system is similar to that considered by DOWD [6, 7], which in turn is
based on some earlier aneB.

The calculus G is defined in a sequential manner analogically to the definition of
LK in TAKEUTI [10]. The important difference is that a sequent may be a premisse
of more than Dne inferences. Thus proof figures of G-proofs are not trees but directed
graphs.

The calculus G works with sequents of propositions. The rules of the calculus G are

(a) the rule of initial sequent,

(b) structural rules,

(c) cut rule,

(d) propositional rules,
(e) quantifier rules.

Now we shall describe the rules explicitely.

(a) The initial sequents are the sequents of the form p -+ p, 0-+, -+ 1, for p a
free atom.

The rules (b), (c), (d) are identical with those of TAKEUTI [10].

(e) Quantifier rules are

A(B), r -+ .1 . r .:.. .1, A(p)
(V: left) -VxA(x), r -+ .1 (V: nght) r -+ .1, VxA(x) ,

A(p), r -+ .1 r -+.1, A(B)
(3: left) 3xA(x), r - 11 ' (3:

with the proviso that p does not occur in t

The G-proofs are sequences of ,sequents

For i ~ O define Gt by d: Gt f- r- 11
curring in d are in E? V lI? In particular,

This completes the definition of the cal

right) r ~ ,.,1, 3xA(x) ,

he lower sequents of ('1: right) and (3: left).

satisfying obvious conditions.

iff d: G I- r ~.,1 and all propositions oc-
011- A (i.e. GII- ~A) implies A El:{v111.

culi that we shall need.
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Now we shall show that the substitution rule can be polynomially simulated in G
and each fragment Gt, for i ~ 1. We assume that only quantifier free propositions
may be substituted. (This is needed for the proof of Lemma 2.1..) Clearly it is sufficient
to consider only the following special case of the substitution role

" r(p)-+L1(p)
,.) F(A) ~ i1(A) ,

where A is a quantifier free proposition which does not contain pand is substituted
for a1l occurrences of p in F(p) ~ i1(p).

Lemma 2.1. Let SO and SOI be the systems O and 01 augmented with the substitution
rule. Then for i ~ O, O ",ISO, and for i ~ 1,01 ",ISOI. Moreover, these facts are
provable in S1.

Prooi. Clearly we need only to show the simulation of the substitution rule in 01,
Consider a substitution of the form (*). Thus we have a proof of

Zl: F(p) ~ i1(p)

in GI and we want to derive

Z2: F(A) ~ i1(A)

in G;, Using the induction on the iength of F and i1 Dne can show that i J

Z3: p = A, i1(p), F(A) ~ i1(A),

Z4: p = A, F(A) ~ i1(A), F(p),

Zs: ~3x(x = A)

are derivable in 01 by proofs whose size is polynomial in the length of F, i1, A. Ap-
plying the cut-rule to Zl' Z4 we obtain

Z6: p = A,F(A) ~i1(A),i1(p),

and applying it again to Z3 and Z6 we obtain

Z7: p = A, F(A) ~ i1(A).

Using (3: left) we get

Za: 3x(x ;; A), F(A) -+ L1(A).

Thus Z2 follows from Zs and Za by cut. In this way the proof is increased only by an
additive factor which is polynomial in the length of F,L1, A. Hence it is a polynomial
simulation. Since all the transformations are elementary, they caD be performed
. Slm 2. O ~

For Go and SGo it is an open problem whether Go polynomially simulates SGo.
We know only the following relations:

Lemma 2.2. S~ prOves

(i) Go "'o F, (ii) SGo "'o SF "'o ER "'o EF.

Proof. Go ",o F, SF ~o EF have been shown in [5]. SGo ",o SF and ER ",o EF
are easy. EF ~o SF has been shown in [6], [9]. O

Corollary 2.3. S~ proves G1 ~o ER. O
3 Zt..chr. f. mRth. 1"",;1.
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§ 3. Translation 01 bounded lormulas into propositions

We define a translation of bounded formulas into propositions. Thetranslation we
use is a generalization of the translation used in COOK [3], DOWD [6], and KRAJíÈEK-
PUDLÁK [9].

For k :?:, O define k(i) = O or 1, the i-th digit of k, by k = L k(i) . 21. Observe that
i~O

for i > Ikl, k(i) = O. Sometimes we shall use the following abbreviations: For a pro-
position B with free atoms Po, Pl, . . . and k :?:, O, we abbreviate B(Po/k(O), Pl/k(l), . . .)
by B(p/k) or simply B(k).

Take a bounded formula A(al' . . ., ak)' As aIl functions in the language of S2 are
polynomial time computable, there exists a polynomial PA(X) such that for any
nI' . . ., nk with Inl!"'" Inkl ~ m one needs to compute auly numbers with the
length ~ PA(m) in order to decide the truth value of A(nl' . . ., nk)' This is proveï
by induction on the complexity of the terms occurring in A and the complexity
of A.

Any polynomial q(x) satisfying 'v'x(q(x) :?:, P A(X)) wiIl be caIled a bounding polynomial
of A.

;For any bounding polynomial q(x) of A we shaIl construct a sequence of proposi-
tions [A ]::'<m), m :?:, O, with the following property (we shaIl occasionally omit the in-
dices m, q(m), if there is no danger of confusion): Tf al, . . ., ak are aIl free variables
of A then the ouly free atoms of [A]::'<m) are p~,..., p1(m),..., p2,..., pz(m) and for

anynl,...,nkwith Inll,...,lnkl ~mitholds:
A(al/nJ is trne iff [A]::'<m)(PI/nJ is trne.

Moreover, we want the following properties of [A] which we state as a lemma.

Lemma 3.1. For A EL'•, i :?:, O, we have;

(1) [A]EL11 with respect to 01 for i = O, and [A]EL'? for i:?:, 1;

(2) I [A]::'<m)1 ~ r(m), for some polynomial r(x) depending only on A and q(x);

(3) [A oB] is [A] o [B] for o = A,V,::>, [-,A] is -,[A];

(4) [(3x ~ Itl) A(x)] is V [a ~ Itl A A(a)] (PI/tJ,
leS

where S = {(to,..., tq(m») E {O, l}q(m)+1 I ('v'i> Iq(m)l) ti = O} and the PI'S are the atoms
associated to a;

(5) [(3x ~ t) A(x)] is 3xo. . . 3xq(m)[a ~ tA A(a)] (PI/XI)'

where t is a term not of the form Isl;

(6) [('v'x ~ Itl) A(x)] is 1\ [a ~ Itl::> A(a)] (PI/tJ,
leS

where S is as in (4);

(7) [('v'x ~ t) A(x)] is 'v'xo . . . 'v'Xq(m)[a ~ t ::> A(t)] (Pi/XJ,

where t is not of the form Isl ;

(8) for A(a) E L'g, t a term, a a free variable, q(x) a bounding polynomial of A(t),

s! f- 'v'y(OI f- [t = a A A(a)]~'YI) ~ [A(t)]~lyl»)'

Proof.
A(al' . . .

(*) :

where -r(x
variables I

prove the

3*
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It suffices to construct [A]~m) for A atomic, since conditions (3) - (7) determine
the construction for other bounded formulas. The translation of atomic formulas

t(al' . . ., ak) = 8(al' . . ., ak)
and

t(al,...,ak)~s(al,...,ak)
is defined as follows: Associate with any variable a, free atoms P~', . . ., P:tm). As any
function I in the language of S2 is polynomial time computable, there are Boolean
circuits Cf of the size polynomial in m, q(m) computing I on inputs of the length ~m.
Combining these circuits one can construct circuits C~ computing any term t and
having again size polynoniial in m, q(m). Circuit C~ has some dummy input nodes Pi',
for j > m, and may have also some dummy output nodes qj'S if q(m) is larger than
the length of the output. We assume that these nodes are labelled e.g. by o. Boolean
circuit C~ can be easily turned to a 2:~-proposition B~(pDl, . . ., pa., q). So for nI, . . ., nk
with the length ~m we have:

t(nl'.. .,nk) = n iff B~(III'.. .,IIk,n) is truc.

We shall occasionally saJ that the atoms qj'S are a8sociated with the term t.

Define the translation of atomic formulas:

(a) [t(al'. . ., ak) = s(al, . . ., ak)]:'<m) is

3xo... 3xq(m)(B~(pal,..., qjfxj) 1\ B~(pal,. .., qjfxj».

This can be alBa written in a n1-form
q(m)

'v'x'v'y(B~(pal, . . ., x) 1\ B~(pal, . . ., y)::) 1\ Xi == yJ.
i=O

(b) [t(al' . . ., ak) ~ s(al, . . ., ak)]:'<m) is
q(m) q(m)

3x3y(B~(pal,..., x) 1\ B~(pal,.. .,y) 1\ 1\ ( 1\ Xj == Yj ::) (Xi::) yJ).
i=O j=i+l

Again this has a n~-form, too,
q(m) q(m)

'v'x'v'y(B~(pal,..., x) I\B~(pal,.. .,y)::) 1\ ( 1\ Xj == Yj:::> (Xi::) yJ».
i=O j=i+l

Now, having A e2:f for i ~ 1 chaose such a form (2:1 or nv of the translations
af the atomic subformulas of A so that [A] e2:(.

(8) is proved easily by induction on the length of t and A. O

Lemma 3.2. For A(a) E 2:ib, i ~ 1, A(a) with one Iree variable a, and q(x) a bound-

ing polynomial 01 A,
S} fo 'v'y(Tauti([A]~!yJ)) == 'v'x(lxl ~ Iyl ::) A(x»).

Proof. We shall prove a stronger statenient by induction on the length of
A(al' . . ., ak) E 2:f:

(*) s~ I- VyVXl . . . Vxk(lxll ~ Iyl /\ . . . /\ IXkl ~ 1yl

::J (Satl([A]~(IYI),T(Xl'.. .,Xk)) = A(Xl'.. .,Xk)))'

where T(Xl' . . ., Xk) is the substitution which substitutes xJ for the propositional
variables corresponding to aj, i = 1, . . ., k. For A atomic one can use E~-PIND to
plave the formula in S~, since Sat,(A, T) = Sato(A, T) by Lemma 1.2 and Sato is

"*
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LI~ by Lemma 1.1. I:f A is not atomic we can reduce the proof of (*) to a simpler for-
mula using (i),..., (iv), (v) of Lemma 1.2 and (3)-(7) of Lemma 3.1. We shall de-
monstrate it on the case when A begins with 3. So let A be (3x ~ t) B(x, Zl' . . ., Zk),

let T denote T(Zl",.,Zk). Working in S~ assume that Iz11,...,lzkl ~ Iyl. Then by
(5) of Lemma 3.1 and (i) and (iv) of Lemma 1.2 we have

Sat,([(3x ~ t) B(x, Z)]IYI, T)
= Sat,(3x1 . .. . 3xq(lyl)[x ~ tA B(x, Z)]'YI, T)

= 3x(lxl = q(lyl) A Satj([x ~ t]IYI, T(X, Zl' . . ., Zk))

A Sat,([B(x, Z)]IYI, T(X, Zl' . . ., Zk))).

Since we have (*) for atomic formulas, the first two conjuncts are equivalent to
x ~ t(Zl' . . ., Zk)' By the induction assumption the last conjunct is equivalent to
B(x, z). Thus (*) is proveï. The other cases can be handled similarly. O

Lemma 3.3. For A EE?, i ~ 1, and q(x) a bounding polynomial of A,

S~ fo i-RFN(P) :;) Vy(P fo [A]~!YI) :;) Vx(lxl ~ Iyl :;) A(x))).

This lemma follows 1rom Lemma 3.2. O

Lemma 3.4. (i) For A(a) E E~ and q(x) a bounding polynomial of A,

S~ fo A(a) :;) G1 fo [A{d)]~(lal)'

(ii) For i ~ 1 and q(x) a boundin,q polynomial of Taut"

S~ fo A EE?A Iyl ~ IAI :;) (G, fo [Taut,(A)]~lyl):;) G, fo A).

The same holds for i = O with G1 instead of Go.

Proof. Part (i) is simple: Choose the witnesses of the 3-quantifiers of A(d) and
using their digits compute the truth value of [A(d)].

(ii) We shall prove the statement for i = O. The case i ~ 1 is essentially the same.
Tauto(A) is defined as .

VT(ITI ~ IAI :;) Sato(A, T)),

where we have to take Sato in lI~-form. Sato(A, T) is defined by

Vw ("w is a computation of the value of A on T" :;) "the last bit of w is 1 ").

Thus the translation of Tauto(A) in the propositional calculus has the iollowing form

VpVq CompA(p, q) :;) qr,

where p is a vector of atoms associated with T, q is associated with w, qr is the last
element of q, and CompA is the translation of "w is a computation of the value of A
on T". We shall assume that p are just the atoms of A. In q certain atoms code- the
truth value of subformulas of A computed on p. If the variables in q are suitably
ordered, it is possible to prove (using PIND of S~) that

G1 fo CompA(p, q) :;) (q, = Ai),

where q, corresponds to a subformula A, of A. In particular, we have

(1) G1 fo CompA(p, q) :;) (qr = A).
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Now, let Comp~(p, ql, . . ., qJ be subformulas 0f CompA(p, q) which express that there
are "i steps of the computation ". Again by PIND on ione can show

G1 I- 3ql, . . ., 3qj ComP1(p, ql, . . ., qj),

thus in particular

(2) G1 I- 3q CompA(p, q).

From (1), and (2) we obtain easily

Gy I-VpVq(CompA(p, q) ::) q,) ::) A.

As the above proof can be done in S}, we have -proveï (ii). D

We have not quite specified ,the translation.. [A] for atomic formulas. li we want
to be able to prove relation between weak fragments of arithmetic and weak proposi.
tional proof systems, we have to choose "natural" Boolean circuits computing the
arithmetical functions in the atomic formulas. Again, we state our last condition as
a lemma.

Lemma 3.5. For A any axiom oj BASIC and q(x) any bounding polynomial oj A,

S~ I- Vy(G1 I- [A]~IYI»)'

Proof. We shall use the construction of COOK [4]. He introduced an equational
theory PV which has a function symbol for each polynomial time computable func-
tion. He defined translations of equations of PV into the propositional calculus such
that the translations of equalities provable in PV have proofs of polynomial length
in ER. DOWD [7] proveï this simulation using EF instead of ER. The simulation can
be extended to the theory PV 1 which is an extension of PV to open formulas. The
proof actually gives an explicit polynomial time algorithm which, for given m, con.
structs an EF proof of [A]m and, moreover, this can be formalized in S}. Buss [1]
has shown a close relation of PV and PV .1 to S~ ; in particular, if we tt'anslate formulas
containing ~ using COOK'S function LESS, all open theorems of S} become provable
in PV 1. Thus we define our translation into quantified propositional calculus by tak-
ing COOK'S one for equations in the language of S2 and by adding quantifiers to it as
described above. Now the translation of atomic formulas wilI be different froní the
one described above, since we shalI use equations LESS(t,8) = O instead of • ~ 8.
But one can show in S} that they are equivalent (and, moreover, it is irrelevant for
trus paper). Thus we obtain the condition of Lemma 3.5. O

§ 4. Relations between propositional proof systems and theories

This section develops a general connection between propositional proof systems and
theories. We tacitly assume that the languages of theories discussed contain the lan-
guage of Si.

We shall write \1'L'f(T) for the set of all \1'L'f-consequences of T.

Definition. For i ~ O, P a proof system and T a theory, P simulates \1'L'f(T) iff
for any \1'xA(x) e\1'L'f(T) there is a bounding polynomial p(x) of A such that

S~ I- \1'y(P I- [A]1.>(IYI»).
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Defini tion. For i ~ O a proof system P is i-re(Jular iff s1 proves

(i) P ~1 O1'

(ò) Pf-A::) B /\ Pf-A::) P f- B,

(iò) for A eJ:?, Iyl ~ IAI

P f- [Taut,(A)]~lyl) ::) Pf-A,

where q(x) is a bounding polynomial of Taut,. Observe that an i-regular proof system
satisfies Lemmas 3.2, 3.4 and 3.5. This is the motivation for their definition.

Theorem 4.1. Let T ~ s1 and P be an i-re(Jular proof system.

(i) Suppose i ~ 2, P simulates 'v'J:~(T) and T f- i-RFN(P). Then

'v'J:~(T) = (S1 + i-RFN(P)),

thus 'v'J:~(T) is finitely axiomatizable.

(ò) Suppose i ~ O, P simulates 'v'J:t(T) and T f- i.RFN(Q) for some propositional
proof system Q. Then

s1 f- P ~' Q.

(òi) Suppose i ~ O, P simulates 'v'J:ib(T) and Tf- NP = coNP. Then there exÍ8ts a
polynomial p(x) such that T proves

('v'~ e TAUTJ 3d(d:P f- A /\ Idl ~ p(I.AI)).
Statement (ii) generalizes a construction of COOK [3] using which he showed (ò)

for P = ER, T = PV and j = o. Statement (iò) could be used to generalize a result
of WILKIE [11] who proveï (iii) for T = s1 and P = SF.

Proof. (i) s1 is 'v'J:~ and so s1 ~ 'v'J:~(T) for i ~ 2. By Lemma 1.3, i-RFN(P) e
e 'v'J:t(T). On the other band, assume 'v'xA(x) e 'v'J:t(T). Then s1 f- 'v'y(P f- [A]IYI), for
some bounding polynomial. By Lemma 3.3 then

s1 + i-RNF(P) f- 'v'Y'v'x(lxl ~ Iyl ::> A(x)),

i.e. s1 + i-RFN(P) f- 'v'xA(x).

(ò) Assume T I- i-RFN(Q), so

(1) S1 I- (P f- [d: Q f- A /\ A e J:? ::> Taut,(A)]ldl+IAI).

By Lemma 3.4 (i), as d: Q f- A and A e J:? are J:~-formulas and srnce P is i-regular
we have

(2) S1 f- d: Q f- A /\ A eJ:? ::) P I- [Taut,(A)]ldl+IAI.

Srnce P is i-regular we can use Lemma 3.4 (ii) to deduc,e

(3) s1 f- d: Q f- A /\ A e J:? ::> P I- A.

By the main theorem of Buss [1] there is a polynomial time function f such that.

S1 f- d: Q f- A /\ A e J:? ::> f(d, A): Pf-A.

(òi) Assume T f- NP = coNP. Then every bounded formula is equivalent to a J:~
formula, thus

(1) Tf- Taut,{A) = (3x ~ t(A)) B(x, a),
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for some L1~-formula B. Define the proof system Q by

d:QI-A iff d~t(A)I\B(d,A).

From (1) then

(2) T I- i-RFN(Q).

Using the statement (ii) then

(3) 81 I- P ~i Q.

Hence
TI-Tautt(A) = 3d(ldl ~ p(IAI)/\d:PI-A),

where p(x) is the polynomial given by the function f of (ii). O

Next corollary shows that, in principle, Theorem 4:1 can be used to show that two
theories are different.

Corollary 4.2. Assume that for i ~ O, theories T ~ S~ and S, and proof systems P
and Q the following holds:

(i) P is i-regular,

(ii) P simulates VE•(T),

(iii) S I- i-RFN(Q),

(iv) not P ~t Q.

Then T 1- S, in particular T 1- i-RFN(Q).

Proof. Use Theorem 4.1 (ii). O

On the other band, we have the following corollary:

Corollary 4.3. Assume S~ ~ S ~ T, i ~ 1, P is i-regular, P simulates VE?(T) and
T I- i-RFN(P). Then the following statements are equivalent:

(i) T is VE?-conservative over S,
(ii) S I- i-RFN(P).

Proof. For (i) =;.. (ii) use Lemma 1.3. The other implication is proved as Theo-
lem 4.1 (i). O

In the following sections we shall apply the general theorems of this section to the
proof system s Gt and theories S~ and T~.

§ 5. Provability 01 reflection principles

By the definition of proof systems in § 1, aBY formula i-RFN(P) is tr:ue. In this
section we are interested in the question which theory suffices to prove i-RFN(P),
for P a calculus of § 2.

Theorem 5.1. For i ~ O, S~+1 f- i-RFN(GJ.

Proof. A sequent r -Jo LJ is satisfied by a truth valuation 1: iff the formula
(Ar) => (VLJ) is satisfied by 1:. Analogically with Lemma 1.1, there are formulas
SSatj(Z,1:) and STautj(Z, 1:) formalizing "sequent Z consisting oHly of L'? V lI?-pro-
positions is satisfied by truth valuation 1:" and "sequent Z consisting only of L'? V 1I?-
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Definition. For i ~ O aproof system P is i-regular iff s~ proves

(i) P ~1 01,

(ii) Pf-A => B A Pf-A => P f- B,

(iii) for A EE?, Iyl ~ IAI

P f- [Tautt(A)]~IYI) => Pf-A,

where q(x) is a bounding polynomial of Tautt. Observe that an i-regular proof system
satisfies Lemmas 3.2, 3.4 and 3.5. This is the motivation for their definition.

Theorem 4.1. Let T ~ s~ and P be an i-regular proot system.

(i) Suppose i ~ 2, P simulates 'tEr(T) and T f- i-RFN(P). Then

'tE•(T) = (s~ + i-RFN(P)),

thus 'tE•(T) is finitely axiomatizable.

(ò) Suppose i ~ O, P simulates 'tE•(T) and T f- i.RFN(Q) for some propositional
proot system Q. Then

s~ f- P ~ t Q.

(òi) Suppose i ~ O, P simulates 'tE•(T) and T f- NP = coNP. Then there exists a
polynomial p(x) such that T proves

('t4 E TAUTt) 3d(d:P f- A A Idl ~ p(IAI)).

Statement (ii) generalizes a construction of COOK [3] using which he showed (ò)
for P = ER, T = PY and j = o. Statement (iò) could be used to generalize a result
of WILKIE [11] who proveï (òi) for T = S~ and P = SF.

Proof. (i) S~ is 'tE~ and so S~ ~ 'tEr(T) for i ~ 2. By Lemma 1.3, i-RFN(P) E

E 'tEr(T). On the other band, assume 'txA(x) E 'tE~(T). Then S~ f- 'ty(P f- [A]IYI), for
some bounding polynomial. By Lemma 3.3 then

S~ + i-RNF(P) f- 'ty'tx(lxl ~ Iyl => A(x)),

i.e. S~ + i-RFN(P) f- 'txA(x).

(ii) Assume T f- i-RFN(Q), so

(1) S~ f- (P f- [d: Qf- A A A EE? => Tautt(A)]ldl+IAI).

By Lemma 3.4 (i), as d: Q f- A and A E E? are E~-formulas and since P is i-regular
we have .

(2) sl f- d: Q f- A A A EE? => Pf- [Tautt(A)]ldl+IAI.

Srnce P is i-regular we can use Lemma 3.4 (ii) to deduce

(3) S~ f- d: Q f- A A A E E? => Pf-.A.

By the main theorem of Buss [1] there is a polynomial time function t such that.

S~ f- d: Q f- A A A E E? => t(d, A): Pf-A.
(òi) Assume T f- NP = coNP. Then every bounded formula is equivalent to a E~

formula, thus
(1) Tf- Tautj(A) = (3x ~ t(A)) B(x, a),
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propositions is satisfied by any truth valuation ". AIso it is evident that SSatl e L1r+l
and STaut, e 1I?+1 .

Fix i ~ 1. Let A(d) be the formula

(VZ ~ d) (d:G; f- Z::) STautJZ)).

Thus A(d) is a lI~l-formula. We shall prove A(d) by induction on the number of
inferences in d, i.e. using lI~+l-PIND. As A(O) is trivial1y trne we need only to establish

S~+l f- A(tdj2j) ::) A(d).

This is proveï by checking that any rule of G1 is semantical1y correct, i.e. that it infers
a tautological sequent from tautological premisses. By Lemma 1.2 this is easily
checked. (Note that it is alBa not hard to show the semantical correctness of the sub-
stitution rule, cf. [9].) O

Corollary 5.2. For i ~ 1, T~ f- i-RFN(GJ.
Proof. By Lemma 1.3, i-RFN(GJ is an VE?-sentence. By Buss [2], VE1~1(S~-i-l) =

b .= VE1+l(T~). Use Theorem 5.1. O

Derive

Applyinl

and by

Again c,
we first

to get th

§ 6. Simulation 01 arithmetical prools by propositional calculi

Theorem 6.1. For i :;;;; I, G, simulates 'v'J:•(T~).
Proof. Assume d:T~ f- A(a), where A eJ:? By cut-elimination forT~ (cf. Buss

[1, Chapter 4]) we may assume that all formulas in d are in J:,b v lI? Choose a
polynomial q(x) which is a bounding polynomial of all formulas occurring in d. The
idea of the simulation of d is to replace any.formula B in d by its translation [B];(m)
and to fill some parts in the resulted "preproof" to obtain a G,-proof of [A];(m).

To show that this can be done we shall proceed by induction on the number of in.
ferences in d. Consider several cases according to the type of the last inference in d.
We shall write [ ] instead of [ ];(m) and [r] instead of [AI], . . ., [Ak] for a cedent

r=AI,...,Ak.
(a) d is an initial sequent, i.e. a logical axiom, an equality axiom or a:n instance of

an axiom of BASIC. The translations of the first two cases are easily proveï in 01,
The last oase is assured by Lemma 3.5.

(b) The inference is a structural TuZe, cut-rule or a propositional TuZe: These cases are
handled by the corresponding rules of G,.

(c) ('v':right)
a ~ s, r -+.1, B(a)

and

We shl

Claim

r-L1, (Vx ~ 8)B(x) o

Consider two subcases: (cI) 8 is not of the form Itl, (c2) otherwiseo

(cI) By (=>: right) derive

[F] - [L1], [a ~ 8 => B(a)]

and using q(m) + I applications of (V: right) to the free atoms associated with a derive

[F] .,.+ [L1], [(Vx ~ 8) B(x)] o
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(c2) First derive

Zl: V [a = ÌI\ Ì ~ Itl] -fo [a ~ Itl],
leS

where S = {(co,..., Cq(mJ E {O, l}q(m)+l I (Vi> /q(m))) Ci = O}, and

Z2: [B(a)] -fo [B(a)].

.By successively applying (~ : left) and (~ : right) to Zl' Z2 get

Z3: [a ~ Itl ~ B(a)] -fo V [a = Ì 1\ Ì ~ Itl] ~ [B(a)].
Derive leS

Z4: V [a = ÌI\Ì ~ Itl] ~ [B(a)] -fo A [a = ÌI\Ì ~ Itl ~ B(a)]

leS leS

Applying cut-rule to Z3, Z4 we obtain

Zs: [a ~ Itl ~ B(a)] -fo A [a = Ì 1\ Ì ~ Itl ~ B(a)].
leS

Now derive

Z6: !\ [a = e /\ e ~ Itt :;) B(a)] -+ !\ [a ~ Itl:;) B(a)] (lije),
leS leS

and by cut from Zs, Z6

Z7: [a ~ Itl:;) B(a)] (p) -+ !\ [a ~ Itl:;) B(a)] (pje).
leS

Now use cut-rule to Z7 and to the first sequent derived in the case (cI) to obtain

[/1 -+ [Li], !\ [a ~ Itl:;) B(a)] (pje).
leS

(d) (V:left)
B(t), r -+ L1

t ~ 8, (VX ~ 8) B(x), r -+ 11 .
Again consider two cases: (dl) 8 is not of the form Irf, (d2) otherwise. In both cases
we first derive

Zo: [t ~ 8], [('v'x ~ 8) B(x)] -+ [B(t)]
and apply cut-rule to this sequent and to

[B(t)], [F] -+ [11]
to get the wanted sequent

[t ~ 8], [('v'x ~ 8) B(x)], [F] -+ [11].

(dl) First derive

Zl: [t ~ 8] -+ 3x[a ~ 8/\ a = t] (p/x)
and

Z2: [('v'X ~ 8) B(x)], 3x[a ~ 8/\ a = t] (p/x) ~ 3x[a = t /\ B(a)] (p/x)

By cut-rule from Zl' Z2 it follows

ZJ: [t ~ 8], [('v'X ~ 8) B(x)] ~ 3x[a = t /\ B(a)] (p/x).

We shall use the following

Claim. If OE E1b V lIjb, then for an appropriate bounding polynomial

Oj f- [t = a /\ O(a)] ~ [O(•)].
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(8)For the proof of the Claim take the opeR matrix of C(a) and apply Lemma 3.
to it. The sequent above is easily got from this sequent in Gj.

Using Claim derive

Z4: 3x[a = t 1\ B(a)] (plx) -+ [B(t)]

and by cut from Z3, Z4 derive Za.

(d2) First derive

Zl: [t ~ Irl] -+ V [t = a 1\ a ~ Irl] (pil),
leS

where the set S is the same as in (c~). Then derive

Z2: [(V'x ~ Irl) B(x)], V [t = a 1\ a ~ Irl] (pil) -+ V [t = a 1\ B(a)] (pil)
.eS leS

Using cut-rule obtain from Zl' Z2

Z3: [t ~ Irl], [(V'x ~ Irl) B(x)] -+ V [t = (2)a /\ B(a)] (p/i)

Using Claim deriv

Z4: V [t = a A B(a)] (p{ì) -jo [B(t)]
leS

and by cut from Z3' Z4 derive Zo'

(e) The (3: rules) are dual to the (V: rules) and are handled similarly.

(f) E,b.IND rule:

B(a) -jo B(a + 1)
-

B(O) -jo B(t)
We omit the side formulas. Assume that we have derived

Z: [B(a)] -jo [B(a + 1)].
We assume that atoms p are associated with a and atoms q with t. We cannot replacel
IND by cuts as there would be exponentially many of them in m. We shall shorteni
the simulation essentially using the substitution role which is provably simulablel
in G1 (Lemma 2.2).

(1) We shall first derive sequents

W o: [B(a)] -jo [B(a + 2°)],

jr fl(m): [B(a)] -. [B(a + 2fl(m»)]. Using

Wo is Z. W1+l is derived from W1 as follows: Assume that atoms p are associated .
to a and new atoms q will be associated to the new variable b. By substitution p ~ q Denve
derive hom W 1

Wí: [B(a)] (p/q) -. [B(a + 21)] (p/q). Finally
Using (the translation of) equality axioms derive (3) ~

W;: [a + 2' = b] (p, q), [B(a + 21)] (p) -. [B(a)] (p/q).
, Also is

Apply cut to W 1 and W 2 to get

W;: [a + 21 = b] (p, q), [.B(a)] (p) -+ [B(a)] (p/q)
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lipply cut to TV~ and TV; to get

TV~: [a + 2' = b] (p, q), [B(a)] (p) -+ [B(a + 2')] (plq).

Using (the translation of) equality axioms derive

TV~: [a + 2' = b] (p, q), [B(a + 2')] (plq) -+ [B(a + 2'+1)] (p)

lipply cut to TV~ and TV~ to get

TV~: [a + 2' = b] (p, q), [B(a)] (p) -+ [B(a + 21+1)] (p).

To TV~ apply (q(m) + l)-times (3: left) with eigenvariables q to get

TV;: 3x[a + 21 = b] (p, x), [B(a)] (p) -+ [B(a + 21+1)] (p).
Derive

w~: -.3x[a + 2' = b] (p, x)
and apply cut to W; and W~ to get W,+ 1 .

(2) Now we shall derive sequents

Zo: [20 ~ b] (q), [B(a)] (p} -. [B(a + b)] (p, q)

Zq(m): [2q(m) ~ b] (q), [B(a)] (p) - [B(a + b)] (p, q).
Now Zo simply follows from Wo using

[20 ~ b] (q) - [a = b v a + 1 = b] (p, q).

Z,+l is derived as follows: Take new variables c, d and associate with them atoms
r,8. By substitution p f--+o 8, q f--+o r derive from Z,

Z~: [2' ~ c] (r), [B(d)] (8) - [B(d + c)] (8, r).

Derive from W I

Z;: [B(a)] (p), [a + 2' = d] (p, 8) - [B(d)] (8).

Apply cut to Z~, Z; to get

Z;: [2' ~ c] (r), [a + 2' = d] (p, s), [B(a)] (p) - [B(d + c)] (8, r)

From Z; derive

Z~: [2' ~ c] (r), [ff = 2' + c] (lJ, r), [B(a)] (p) - [B(a + b)] (p, q).

Apply to Z, and Z~ (v: left) to get

Z;: [2' ~ b v (2' ~ c A b = 2' + c)] (q, r), [B(a)] (p) - [B(a + b)] (p, q).

Using (3: left) applied to eigenatoms r we get

Z~: 3x[2' ~ b V (2' ~ c A b = 2' + c)] (q, rlx), [B(a)] (p) - [B(a + b)](p, q).
I Derive

to get

Z,: [2'+1 ~ b] (q) -+ 3~[2' ~ b V (2' ~ C 1\ b = 2' + c)] (q, 'Ix).

Finally apply cut to Z~ and Z, to get Z'+l'

(3) Now we substitute to Zq(m) P f-+ O, q f-+ pf, where pf are atoms associated to

[2q(m) ~ t] (pf), [B(O)] -+ [B(t)] (pf).
Also is simply derived

-+[2q(m) ~ t] (pf).
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We
corolll

(i) (

(ii) ~

Apply cut to these two sequents to get

[B(O)] -+ [B(t)].
This completes the proof. D

Corollary 6.2. For i ~ 1, Oj simulates Vl:~(S~+I).

Proof. By Buss [2], Vl:i~I(T~) = Vl:j~I(S~+I), for i ~ 1. Use Theorem 6.1. D

Corollary 6.3. For i ~ j ~ 1,

(i) Oj simulates VIib(S~+I) and Vl:•(T~),
(ti) O simulates VI•(S2)' D

Consider the simulation of Vl:~ statements. We can choose a translation of the
atomic subformulas of aI~-formula A such that [A] isl1? Denote by *[A] the pro-
position arising from [A] after omitting all quantifiers. So *[A] el:g and *[A] may
have other free atoms then those associated to some free varia~le of A. Then it holds:
For Inll, . . ., Inkl ~ m, A(aj/nj) is true iff *[A]m(p1/nj(j)) is tautological.

This is the translation (of l1r-formulas, actually) used in KRAJÍÈEK-PUDLÁK [9].
There it is proveï, using the results of Coo~ [4] and Buss [1], that SOo simulates
VI~(S!) if the translation *[ ] is used.

Observe in the next section that if we used the translation *[], the theorems would
extend to the oase i = O too with SOo instead of 00,

(iii) Gí
Pro,

system

provab
Lemm~

(iii) :
only di
seen th
proof o

§ 7. Consequences for fragments S~, T~ and for S2

Now we shall explicitely state the consequences following from the results of § 5
and § 6 for S~ and T~.

Corollary 7.1. For i ~ j ~ 2, \1'J:Jb(S~+l) = \1'~b(T~) is finitely axiomatized by
S~ + j-RFN(Gj).

Proof. Use Theorems 4.1 (i) 5.1, 5.2 and 6.3. O

Corollary 7.2. For i ~ j ~ O, i ~ 1, ij S~+l f- j-RFN(P) for some proof system P,
then s~ f- Gj ~Jp. The same holds for i = O and SGo instead of Go.

Proof. Use TheorelUs 4.1 (ii), 6.1 for the case i ~ 1. The case i = O follows from
the results of COOK [4] and Buss [1], cf: KRAJièEK-PuDLÁK [9]. O

Corollary 7.3. For i ~ 1, if S~+l f- NP = coNP, then there is a polynomial p(x)
such that Coro

in G"

in G,o

Proo

lowing f

p iB a B

thuB 8/+
2

polynom
they hal
lary folII

(.) (VA E TAUTo) 3d(ldl ~ p(IAI) /\ d: 0,1- A),

and S~+l proves (.). The same holds lor i = O with SOo instead 01 00.
Proof. Use Theorems 4.1 (iii), 6.2 for the oase i ~ 1. The case i = O was proveï

by WILXIE [11], however it caD be proveï in the same way as for i ~ 1, for details
cf. KRAJfèEK-PUDLÁK [9]. O

Some consequences mentioned above CaD be transferred to 82.

Corollary 7.4.

(i) S2 is axiomatized by S~ + f.i-RFN(O,) I i < aJ}.
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(ii) II S2 I- NP = coNP, then there i8 a polynomial p(x) such that

(*) (VAeTAUTo)3d(ldl ~ p(IAI)/\d:OI-A),
and S2 proves (*).

(òi) II S2 I- O-RFN(P), lor some prool system P, then S! I- O ~o P.

Proof. Part (i) is obvious from Corollary 7.1. Parta (ii) and (iii) are derived from
Corollaries 7.2, 7.3 using a simple observation: S! f- O ~ 1 0" i ~ O. O

We shall sketch a nontrivial extension of the preceeding results with interesting
corollaries.

Let A be a true VE•-sentence, i ~ I. Define ot to be the extension of Oi where
we add initial sequents of the form

-+[A]q(m)
for m = I, 2, . . . and q a bounding polynomial.

Theorem 7.5. For i ~ I and A a true VEjb-8entence

(i) 01 i8 an i-re,qularprool 8ystem,

(ii) S~+1 + A f- i-RFN(01),

(iò) 01 8imulates VEf(S~+1 + A).

Proof (sketch): (i) The only nontrivial condition of the definition of i-regular proof
systems is the condition (iò). This is proved in the same way as Lemma 3.4 (ii).

(ò) The proof follows the proof of Theorem 5.1. We have only to check that it is
provable in S~+1 + A that initial sequents of 01 are tautologies. This follows from
Lemma 3.2.

(iii) Here we need a modification of the proof of Theorems 6.1 and 6.2. Again the
only difference is in initial sequents and again we use Lemma 3.2. It is alBa easily
seen that the equality VEt1(T~ + A) = VEj~1(Si2+1 + A) can be obtained from the
proof of Buss [2]. O

Corollary 7.6. For i ~ i ~ 2 and A a true VE~-sentence,
.

VEjb(S~+l + A) = V~b(T~ + A)

and both 8et8 are linitely axiomatized by S! + i-RFN(Ot).

Corollary 7.7. Suppose propositions 01 TAUT 1 have prools 01 polynomial len,qth
in °i, i > I. Then all propositions in TAUT, have prools 01 polynomial len(jth
in 0"

Proof. Assume TAUT1 has polynomial proofs in 0" Thus, in particular, the fol-
lowing formula, denoted by A, is true: Tauto(B) => 3d(ldl ~ p(IBI) /\ d:O, f- B), where
p ls a suitable polynomial. As S~+1 f- i-RFN(OJ w~ have

S~+1 + A f- Tauto(B) = 3d(ldl ~ p(ldl) /\ d:O, f- B),

thus S~+1 + A proves NP = coNP. Hence by theorems 4.1 (iò) and 7.5 TAUT, has
polynomial proofs in ot. But the formulas [A]':(m) are in TAUT1 (since A eEr), hence
they have polynomial proofs in 0" Thus Oi polynomially simulates 01 and the corol-
larv follows. n
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§ 8. OpeR problems, conclusions

In previous sections we have left open several questions. In particular, we do not
know whether S~ f- G, ~' G'+l' whether S~ f- i-RFN(GJ or whether Gi-l simulates
VL"~l(T~). '

It follows from the next two theorems that these problems are important.

Theorem 8.1. For i ~ 1, tke followin,g statements are equivalent:

(i) S~ f- G, ~' G'+l,
(ò) S~+l f- i-RFN(G'+l)'

(òi) G, simulates VL'?(T~+l) = VL'?(S~+2),

(iv) S~+2 is VL'?-conservative over S~+l.

The same kolds for i = O witk SGo instead of Go.

Proof. (ii) => (i): use Corollary 7.2. (i) => (iii): use Theorem 6.1. (iii) => (iv): use
Theorem 5.1 and Lemma 3.3. (iv) => (ii): use Lemma 1.3 and Theorem 5.1. O

Theorem 8.2. For i ~ O, tke followin,g statements are equivalent:

(i) S~+l f- (i + 1)-RFN(G'+l)'

(ii) S~+2 is VL'i~l-conservative over S~+l.

Proof. (i) => (ii): use Corollary 6.2. (ii) => (i): use Lemma 1.3 and Theorem 5.1. Q
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